##// END OF EJS Templates
Removed error on fat32 library, seems now to be able navigate among sectors in...
Removed error on fat32 library, seems now to be able navigate among sectors in both directions. Improved SDLCD drawing performances by almost 1000x.

File last commit:

r41:27c5438a4566 dev_alexis
r68:104125d87b89 dev_alexis
Show More
arm_lms_norm_q31.c
404 lines | 11.9 KiB | text/x-c | CLexer
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_lms_norm_q31.c
*
* Description: Processing function for the Q31 NLMS filter.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup LMS_NORM
* @{
*/
/**
* @brief Processing function for Q31 normalized LMS filter.
* @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
* @param[in] *pSrc points to the block of input data.
* @param[in] *pRef points to the block of reference data.
* @param[out] *pOut points to the block of output data.
* @param[out] *pErr points to the block of error data.
* @param[in] blockSize number of samples to process.
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 64-bit accumulator.
* The accumulator has a 2.62 format and maintains full precision of the intermediate
* multiplication results but provides only a single guard bit.
* Thus, if the accumulator result overflows it wraps around rather than clip.
* In order to avoid overflows completely the input signal must be scaled down by
* log2(numTaps) bits. The reference signal should not be scaled down.
* After all multiply-accumulates are performed, the 2.62 accumulator is shifted
* and saturated to 1.31 format to yield the final result.
* The output signal and error signal are in 1.31 format.
*
* \par
* In this filter, filter coefficients are updated for each sample and the
* updation of filter cofficients are saturted.
*
*/
void arm_lms_norm_q31(
arm_lms_norm_instance_q31 * S,
q31_t * pSrc,
q31_t * pRef,
q31_t * pOut,
q31_t * pErr,
uint32_t blockSize)
{
q31_t *pState = S->pState; /* State pointer */
q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q31_t *pStateCurnt; /* Points to the current sample of the state */
q31_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
q31_t mu = S->mu; /* Adaptive factor */
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
uint32_t tapCnt, blkCnt; /* Loop counters */
q63_t energy; /* Energy of the input */
q63_t acc; /* Accumulator */
q31_t e = 0, d = 0; /* error, reference data sample */
q31_t w = 0, in; /* weight factor and state */
q31_t x0; /* temporary variable to hold input sample */
uint32_t shift = 32u - ((uint32_t) S->postShift + 1u); /* Shift to be applied to the output */
q31_t errorXmu, oneByEnergy; /* Temporary variables to store error and mu product and reciprocal of energy */
q31_t postShift; /* Post shift to be applied to weight after reciprocal calculation */
q31_t coef; /* Temporary variable for coef */
energy = S->energy;
x0 = S->x0;
/* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1u)]);
/* Loop over blockSize number of values */
blkCnt = blockSize;
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
while(blkCnt > 0u)
{
/* Copy the new input sample into the state buffer */
*pStateCurnt++ = *pSrc;
/* Initialize pState pointer */
px = pState;
/* Initialize coeff pointer */
pb = (pCoeffs);
/* Read the sample from input buffer */
in = *pSrc++;
/* Update the energy calculation */
energy = (q31_t) ((((q63_t) energy << 32) -
(((q63_t) x0 * x0) << 1)) >> 32);
energy = (q31_t) (((((q63_t) in * in) << 1) + (energy << 32)) >> 32);
/* Set the accumulator to zero */
acc = 0;
/* Loop unrolling. Process 4 taps at a time. */
tapCnt = numTaps >> 2;
while(tapCnt > 0u)
{
/* Perform the multiply-accumulate */
acc += ((q63_t) (*px++)) * (*pb++);
acc += ((q63_t) (*px++)) * (*pb++);
acc += ((q63_t) (*px++)) * (*pb++);
acc += ((q63_t) (*px++)) * (*pb++);
/* Decrement the loop counter */
tapCnt--;
}
/* If the filter length is not a multiple of 4, compute the remaining filter taps */
tapCnt = numTaps % 0x4u;
while(tapCnt > 0u)
{
/* Perform the multiply-accumulate */
acc += ((q63_t) (*px++)) * (*pb++);
/* Decrement the loop counter */
tapCnt--;
}
/* Converting the result to 1.31 format */
acc = (q31_t) (acc >> shift);
/* Store the result from accumulator into the destination buffer. */
*pOut++ = (q31_t) acc;
/* Compute and store error */
d = *pRef++;
e = d - (q31_t) acc;
*pErr++ = e;
/* Calculates the reciprocal of energy */
postShift = arm_recip_q31(energy + DELTA_Q31,
&oneByEnergy, &S->recipTable[0]);
/* Calculation of product of (e * mu) */
errorXmu = (q31_t) (((q63_t) e * mu) >> 31);
/* Weighting factor for the normalized version */
w = clip_q63_to_q31(((q63_t) errorXmu * oneByEnergy) >> (31 - postShift));
/* Initialize pState pointer */
px = pState;
/* Initialize coeff pointer */
pb = (pCoeffs);
/* Loop unrolling. Process 4 taps at a time. */
tapCnt = numTaps >> 2;
/* Update filter coefficients */
while(tapCnt > 0u)
{
/* Perform the multiply-accumulate */
/* coef is in 2.30 format */
coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
/* get coef in 1.31 format by left shifting */
*pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
/* update coefficient buffer to next coefficient */
pb++;
coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
*pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
pb++;
coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
*pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
pb++;
coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
*pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
pb++;
/* Decrement the loop counter */
tapCnt--;
}
/* If the filter length is not a multiple of 4, compute the remaining filter taps */
tapCnt = numTaps % 0x4u;
while(tapCnt > 0u)
{
/* Perform the multiply-accumulate */
coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
*pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
pb++;
/* Decrement the loop counter */
tapCnt--;
}
/* Read the sample from state buffer */
x0 = *pState;
/* Advance state pointer by 1 for the next sample */
pState = pState + 1;
/* Decrement the loop counter */
blkCnt--;
}
/* Save energy and x0 values for the next frame */
S->energy = (q31_t) energy;
S->x0 = x0;
/* Processing is complete. Now copy the last numTaps - 1 samples to the
satrt of the state buffer. This prepares the state buffer for the
next function call. */
/* Points to the start of the pState buffer */
pStateCurnt = S->pState;
/* Loop unrolling for (numTaps - 1u) samples copy */
tapCnt = (numTaps - 1u) >> 2u;
/* copy data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
/* Calculate remaining number of copies */
tapCnt = (numTaps - 1u) % 0x4u;
/* Copy the remaining q31_t data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(blkCnt > 0u)
{
/* Copy the new input sample into the state buffer */
*pStateCurnt++ = *pSrc;
/* Initialize pState pointer */
px = pState;
/* Initialize pCoeffs pointer */
pb = pCoeffs;
/* Read the sample from input buffer */
in = *pSrc++;
/* Update the energy calculation */
energy =
(q31_t) ((((q63_t) energy << 32) - (((q63_t) x0 * x0) << 1)) >> 32);
energy = (q31_t) (((((q63_t) in * in) << 1) + (energy << 32)) >> 32);
/* Set the accumulator to zero */
acc = 0;
/* Loop over numTaps number of values */
tapCnt = numTaps;
while(tapCnt > 0u)
{
/* Perform the multiply-accumulate */
acc += ((q63_t) (*px++)) * (*pb++);
/* Decrement the loop counter */
tapCnt--;
}
/* Converting the result to 1.31 format */
acc = (q31_t) (acc >> shift);
/* Store the result from accumulator into the destination buffer. */
*pOut++ = (q31_t) acc;
/* Compute and store error */
d = *pRef++;
e = d - (q31_t) acc;
*pErr++ = e;
/* Calculates the reciprocal of energy */
postShift =
arm_recip_q31(energy + DELTA_Q31, &oneByEnergy, &S->recipTable[0]);
/* Calculation of product of (e * mu) */
errorXmu = (q31_t) (((q63_t) e * mu) >> 31);
/* Weighting factor for the normalized version */
w = clip_q63_to_q31(((q63_t) errorXmu * oneByEnergy) >> (31 - postShift));
/* Initialize pState pointer */
px = pState;
/* Initialize coeff pointer */
pb = (pCoeffs);
/* Loop over numTaps number of values */
tapCnt = numTaps;
while(tapCnt > 0u)
{
/* Perform the multiply-accumulate */
/* coef is in 2.30 format */
coef = (q31_t) (((q63_t) w * (*px++)) >> (32));
/* get coef in 1.31 format by left shifting */
*pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
/* update coefficient buffer to next coefficient */
pb++;
/* Decrement the loop counter */
tapCnt--;
}
/* Read the sample from state buffer */
x0 = *pState;
/* Advance state pointer by 1 for the next sample */
pState = pState + 1;
/* Decrement the loop counter */
blkCnt--;
}
/* Save energy and x0 values for the next frame */
S->energy = (q31_t) energy;
S->x0 = x0;
/* Processing is complete. Now copy the last numTaps - 1 samples to the
start of the state buffer. This prepares the state buffer for the
next function call. */
/* Points to the start of the pState buffer */
pStateCurnt = S->pState;
/* Loop for (numTaps - 1u) samples copy */
tapCnt = (numTaps - 1u);
/* Copy the remaining q31_t data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of LMS_NORM group
*/