##// END OF EJS Templates
Removed error on fat32 library, seems now to be able navigate among sectors in...
Removed error on fat32 library, seems now to be able navigate among sectors in both directions. Improved SDLCD drawing performances by almost 1000x.

File last commit:

r41:27c5438a4566 dev_alexis
r68:104125d87b89 dev_alexis
Show More
arm_fir_q31.c
383 lines | 11.4 KiB | text/x-c | CLexer
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_fir_q31.c
*
* Description: Q31 FIR filter processing function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup FIR
* @{
*/
/**
* @param[in] *S points to an instance of the Q31 FIR filter structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process per call.
* @return none.
*
* @details
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 64-bit accumulator.
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
* Thus, if the accumulator result overflows it wraps around rather than clip.
* In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits.
* After all multiply-accumulates are performed, the 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
*
* \par
* Refer to the function <code>arm_fir_fast_q31()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
*/
void arm_fir_q31(
const arm_fir_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
q31_t *pState = S->pState; /* State pointer */
q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q31_t *pStateCurnt; /* Points to the current sample of the state */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t x0, x1, x2, x3; /* Temporary variables to hold state */
q31_t c0; /* Temporary variable to hold coefficient value */
q31_t *px; /* Temporary pointer for state */
q31_t *pb; /* Temporary pointer for coefficient buffer */
q63_t acc0, acc1, acc2, acc3; /* Accumulators */
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
uint32_t i, tapCnt, blkCnt; /* Loop counters */
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1u)]);
/* Apply loop unrolling and compute 4 output values simultaneously.
* The variables acc0 ... acc3 hold output values that are being computed:
*
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
*/
blkCnt = blockSize >> 2;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Copy four new input samples into the state buffer */
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
*pStateCurnt++ = *pSrc++;
/* Set all accumulators to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* Initialize state pointer */
px = pState;
/* Initialize coefficient pointer */
pb = pCoeffs;
/* Read the first three samples from the state buffer:
* x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
x0 = *(px++);
x1 = *(px++);
x2 = *(px++);
/* Loop unrolling. Process 4 taps at a time. */
tapCnt = numTaps >> 2;
i = tapCnt;
while(i > 0u)
{
/* Read the b[numTaps] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-3] sample */
x3 = *(px++);
/* acc0 += b[numTaps] * x[n-numTaps] */
acc0 += ((q63_t) x0 * c0);
/* acc1 += b[numTaps] * x[n-numTaps-1] */
acc1 += ((q63_t) x1 * c0);
/* acc2 += b[numTaps] * x[n-numTaps-2] */
acc2 += ((q63_t) x2 * c0);
/* acc3 += b[numTaps] * x[n-numTaps-3] */
acc3 += ((q63_t) x3 * c0);
/* Read the b[numTaps-1] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-4] sample */
x0 = *(px++);
/* Perform the multiply-accumulates */
acc0 += ((q63_t) x1 * c0);
acc1 += ((q63_t) x2 * c0);
acc2 += ((q63_t) x3 * c0);
acc3 += ((q63_t) x0 * c0);
/* Read the b[numTaps-2] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-5] sample */
x1 = *(px++);
/* Perform the multiply-accumulates */
acc0 += ((q63_t) x2 * c0);
acc1 += ((q63_t) x3 * c0);
acc2 += ((q63_t) x0 * c0);
acc3 += ((q63_t) x1 * c0);
/* Read the b[numTaps-3] coefficients */
c0 = *(pb++);
/* Read x[n-numTaps-6] sample */
x2 = *(px++);
/* Perform the multiply-accumulates */
acc0 += ((q63_t) x3 * c0);
acc1 += ((q63_t) x0 * c0);
acc2 += ((q63_t) x1 * c0);
acc3 += ((q63_t) x2 * c0);
i--;
}
/* If the filter length is not a multiple of 4, compute the remaining filter taps */
i = numTaps - (tapCnt * 4u);
while(i > 0u)
{
/* Read coefficients */
c0 = *(pb++);
/* Fetch 1 state variable */
x3 = *(px++);
/* Perform the multiply-accumulates */
acc0 += ((q63_t) x0 * c0);
acc1 += ((q63_t) x1 * c0);
acc2 += ((q63_t) x2 * c0);
acc3 += ((q63_t) x3 * c0);
/* Reuse the present sample states for next sample */
x0 = x1;
x1 = x2;
x2 = x3;
/* Decrement the loop counter */
i--;
}
/* Advance the state pointer by 4 to process the next group of 4 samples */
pState = pState + 4;
/* The results in the 4 accumulators are in 2.62 format. Convert to 1.31
** Then store the 4 outputs in the destination buffer. */
*pDst++ = (q31_t) (acc0 >> 31u);
*pDst++ = (q31_t) (acc1 >> 31u);
*pDst++ = (q31_t) (acc2 >> 31u);
*pDst++ = (q31_t) (acc3 >> 31u);
/* Decrement the samples loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 4u;
while(blkCnt > 0u)
{
/* Copy one sample at a time into state buffer */
*pStateCurnt++ = *pSrc++;
/* Set the accumulator to zero */
acc0 = 0;
/* Initialize state pointer */
px = pState;
/* Initialize Coefficient pointer */
pb = (pCoeffs);
i = numTaps;
/* Perform the multiply-accumulates */
do
{
acc0 += (q63_t) * (px++) * (*(pb++));
i--;
} while(i > 0u);
/* The result is in 2.62 format. Convert to 1.31
** Then store the output in the destination buffer. */
*pDst++ = (q31_t) (acc0 >> 31u);
/* Advance state pointer by 1 for the next sample */
pState = pState + 1;
/* Decrement the samples loop counter */
blkCnt--;
}
/* Processing is complete.
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
** This prepares the state buffer for the next function call. */
/* Points to the start of the state buffer */
pStateCurnt = S->pState;
tapCnt = (numTaps - 1u) >> 2u;
/* copy data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
/* Calculate remaining number of copies */
tapCnt = (numTaps - 1u) % 0x4u;
/* Copy the remaining q31_t data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
#else
/* Run the below code for Cortex-M0 */
q31_t *px; /* Temporary pointer for state */
q31_t *pb; /* Temporary pointer for coefficient buffer */
q63_t acc; /* Accumulator */
uint32_t numTaps = S->numTaps; /* Length of the filter */
uint32_t i, tapCnt, blkCnt; /* Loop counters */
/* S->pState buffer contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = &(S->pState[(numTaps - 1u)]);
/* Initialize blkCnt with blockSize */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* Copy one sample at a time into state buffer */
*pStateCurnt++ = *pSrc++;
/* Set the accumulator to zero */
acc = 0;
/* Initialize state pointer */
px = pState;
/* Initialize Coefficient pointer */
pb = pCoeffs;
i = numTaps;
/* Perform the multiply-accumulates */
do
{
/* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
acc += (q63_t) * px++ * *pb++;
i--;
} while(i > 0u);
/* The result is in 2.62 format. Convert to 1.31
** Then store the output in the destination buffer. */
*pDst++ = (q31_t) (acc >> 31u);
/* Advance state pointer by 1 for the next sample */
pState = pState + 1;
/* Decrement the samples loop counter */
blkCnt--;
}
/* Processing is complete.
** Now copy the last numTaps - 1 samples to the starting of the state buffer.
** This prepares the state buffer for the next function call. */
/* Points to the start of the state buffer */
pStateCurnt = S->pState;
/* Copy numTaps number of values */
tapCnt = numTaps - 1u;
/* Copy the data */
while(tapCnt > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
tapCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of FIR group
*/