##// END OF EJS Templates
Removed error on fat32 library, seems now to be able navigate among sectors in...
Removed error on fat32 library, seems now to be able navigate among sectors in both directions. Improved SDLCD drawing performances by almost 1000x.

File last commit:

r41:27c5438a4566 dev_alexis
r68:104125d87b89 dev_alexis
Show More
arm_fir_decimate_f32.c
370 lines | 12.1 KiB | text/x-c | CLexer
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_fir_decimate_f32.c
*
* Description: FIR decimation for floating-point sequences.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
*
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @defgroup FIR_decimate Finite Impulse Response (FIR) Decimator
*
* These functions combine an FIR filter together with a decimator.
* They are used in multirate systems for reducing the sample rate of a signal without introducing aliasing distortion.
* Conceptually, the functions are equivalent to the block diagram below:
* \image html FIRDecimator.gif "Components included in the FIR Decimator functions"
* When decimating by a factor of <code>M</code>, the signal should be prefiltered by a lowpass filter with a normalized
* cutoff frequency of <code>1/M</code> in order to prevent aliasing distortion.
* The user of the function is responsible for providing the filter coefficients.
*
* The FIR decimator functions provided in the CMSIS DSP Library combine the FIR filter and the decimator in an efficient manner.
* Instead of calculating all of the FIR filter outputs and discarding <code>M-1</code> out of every <code>M</code>, only the
* samples output by the decimator are computed.
* The functions operate on blocks of input and output data.
* <code>pSrc</code> points to an array of <code>blockSize</code> input values and
* <code>pDst</code> points to an array of <code>blockSize/M</code> output values.
* In order to have an integer number of output samples <code>blockSize</code>
* must always be a multiple of the decimation factor <code>M</code>.
*
* The library provides separate functions for Q15, Q31 and floating-point data types.
*
* \par Algorithm:
* The FIR portion of the algorithm uses the standard form filter:
* <pre>
* y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]
* </pre>
* where, <code>b[n]</code> are the filter coefficients.
* \par
* The <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
* Coefficients are stored in time reversed order.
* \par
* <pre>
* {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
* </pre>
* \par
* <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.
* Samples in the state buffer are stored in the order:
* \par
* <pre>
* {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}
* </pre>
* The state variables are updated after each block of data is processed, the coefficients are untouched.
*
* \par Instance Structure
* The coefficients and state variables for a filter are stored together in an instance data structure.
* A separate instance structure must be defined for each filter.
* Coefficient arrays may be shared among several instances while state variable array should be allocated separately.
* There are separate instance structure declarations for each of the 3 supported data types.
*
* \par Initialization Functions
* There is also an associated initialization function for each data type.
* The initialization function performs the following operations:
* - Sets the values of the internal structure fields.
* - Zeros out the values in the state buffer.
* - Checks to make sure that the size of the input is a multiple of the decimation factor.
*
* \par
* Use of the initialization function is optional.
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
* To place an instance structure into a const data section, the instance structure must be manually initialized.
* The code below statically initializes each of the 3 different data type filter instance structures
* <pre>
*arm_fir_decimate_instance_f32 S = {M, numTaps, pCoeffs, pState};
*arm_fir_decimate_instance_q31 S = {M, numTaps, pCoeffs, pState};
*arm_fir_decimate_instance_q15 S = {M, numTaps, pCoeffs, pState};
* </pre>
* where <code>M</code> is the decimation factor; <code>numTaps</code> is the number of filter coefficients in the filter;
* <code>pCoeffs</code> is the address of the coefficient buffer;
* <code>pState</code> is the address of the state buffer.
* Be sure to set the values in the state buffer to zeros when doing static initialization.
*
* \par Fixed-Point Behavior
* Care must be taken when using the fixed-point versions of the FIR decimate filter functions.
* In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
* Refer to the function specific documentation below for usage guidelines.
*/
/**
* @addtogroup FIR_decimate
* @{
*/
/**
* @brief Processing function for the floating-point FIR decimator.
* @param[in] *S points to an instance of the floating-point FIR decimator structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of input samples to process per call.
* @return none.
*/
void arm_fir_decimate_f32(
const arm_fir_decimate_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
float32_t *pState = S->pState; /* State pointer */
float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
float32_t *pStateCurnt; /* Points to the current sample of the state */
float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
float32_t sum0; /* Accumulator */
float32_t x0, c0; /* Temporary variables to hold state and coefficient values */
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
uint32_t i, tapCnt, blkCnt, outBlockSize = blockSize / S->M; /* Loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* S->pState buffer contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = S->pState + (numTaps - 1u);
/* Total number of output samples to be computed */
blkCnt = outBlockSize;
while(blkCnt > 0u)
{
/* Copy decimation factor number of new input samples into the state buffer */
i = S->M;
do
{
*pStateCurnt++ = *pSrc++;
} while(--i);
/* Set accumulator to zero */
sum0 = 0.0f;
/* Initialize state pointer */
px = pState;
/* Initialize coeff pointer */
pb = pCoeffs;
/* Loop unrolling. Process 4 taps at a time. */
tapCnt = numTaps >> 2;
/* Loop over the number of taps. Unroll by a factor of 4.
** Repeat until we've computed numTaps-4 coefficients. */
while(tapCnt > 0u)
{
/* Read the b[numTaps-1] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-1] sample */
x0 = *(px++);
/* Perform the multiply-accumulate */
sum0 += x0 * c0;
/* Read the b[numTaps-2] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-2] sample */
x0 = *(px++);
/* Perform the multiply-accumulate */
sum0 += x0 * c0;
/* Read the b[numTaps-3] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-3] sample */
x0 = *(px++);
/* Perform the multiply-accumulate */
sum0 += x0 * c0;
/* Read the b[numTaps-4] coefficient */
c0 = *(pb++);
/* Read x[n-numTaps-4] sample */
x0 = *(px++);
/* Perform the multiply-accumulate */
sum0 += x0 * c0;
/* Decrement the loop counter */
tapCnt--;
}
/* If the filter length is not a multiple of 4, compute the remaining filter taps */
tapCnt = numTaps % 0x4u;
while(tapCnt > 0u)
{
/* Read coefficients */
c0 = *(pb++);
/* Fetch 1 state variable */
x0 = *(px++);
/* Perform the multiply-accumulate */
sum0 += x0 * c0;
/* Decrement the loop counter */
tapCnt--;
}
/* Advance the state pointer by the decimation factor
* to process the next group of decimation factor number samples */
pState = pState + S->M;
/* The result is in the accumulator, store in the destination buffer. */
*pDst++ = sum0;
/* Decrement the loop counter */
blkCnt--;
}
/* Processing is complete.
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
** This prepares the state buffer for the next function call. */
/* Points to the start of the state buffer */
pStateCurnt = S->pState;
i = (numTaps - 1u) >> 2;
/* copy data */
while(i > 0u)
{
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
i--;
}
i = (numTaps - 1u) % 0x04u;
/* copy data */
while(i > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
i--;
}
#else
/* Run the below code for Cortex-M0 */
/* S->pState buffer contains previous frame (numTaps - 1) samples */
/* pStateCurnt points to the location where the new input data should be written */
pStateCurnt = S->pState + (numTaps - 1u);
/* Total number of output samples to be computed */
blkCnt = outBlockSize;
while(blkCnt > 0u)
{
/* Copy decimation factor number of new input samples into the state buffer */
i = S->M;
do
{
*pStateCurnt++ = *pSrc++;
} while(--i);
/* Set accumulator to zero */
sum0 = 0.0f;
/* Initialize state pointer */
px = pState;
/* Initialize coeff pointer */
pb = pCoeffs;
tapCnt = numTaps;
while(tapCnt > 0u)
{
/* Read coefficients */
c0 = *pb++;
/* Fetch 1 state variable */
x0 = *px++;
/* Perform the multiply-accumulate */
sum0 += x0 * c0;
/* Decrement the loop counter */
tapCnt--;
}
/* Advance the state pointer by the decimation factor
* to process the next group of decimation factor number samples */
pState = pState + S->M;
/* The result is in the accumulator, store in the destination buffer. */
*pDst++ = sum0;
/* Decrement the loop counter */
blkCnt--;
}
/* Processing is complete.
** Now copy the last numTaps - 1 samples to the start of the state buffer.
** This prepares the state buffer for the next function call. */
/* Points to the start of the state buffer */
pStateCurnt = S->pState;
/* Copy numTaps number of values */
i = (numTaps - 1u);
/* copy data */
while(i > 0u)
{
*pStateCurnt++ = *pState++;
/* Decrement the loop counter */
i--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of FIR_decimate group
*/