##// END OF EJS Templates
Removed error on fat32 library, seems now to be able navigate among sectors in...
Removed error on fat32 library, seems now to be able navigate among sectors in both directions. Improved SDLCD drawing performances by almost 1000x.

File last commit:

r41:27c5438a4566 dev_alexis
r68:104125d87b89 dev_alexis
Show More
arm_conv_partial_fast_q31.c
593 lines | 19.8 KiB | text/x-c | CLexer
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_conv_partial_fast_q31.c
*
* Description: Fast Q31 Partial convolution.
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup PartialConv
* @{
*/
/**
* @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written.
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*
* \par
* See <code>arm_conv_partial_q31()</code> for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision.
*/
arm_status arm_conv_partial_fast_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst,
uint32_t firstIndex,
uint32_t numPoints)
{
q31_t *pIn1; /* inputA pointer */
q31_t *pIn2; /* inputB pointer */
q31_t *pOut = pDst; /* output pointer */
q31_t *px; /* Intermediate inputA pointer */
q31_t *py; /* Intermediate inputB pointer */
q31_t *pSrc1, *pSrc2; /* Intermediate pointers */
q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
q31_t x0, x1, x2, x3, c0;
uint32_t j, k, count, check, blkCnt;
int32_t blockSize1, blockSize2, blockSize3; /* loop counters */
arm_status status; /* status of Partial convolution */
/* Check for range of output samples to be calculated */
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
{
/* Set status as ARM_MATH_ARGUMENT_ERROR */
status = ARM_MATH_ARGUMENT_ERROR;
}
else
{
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if(srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = pSrcB;
/* Initialization of inputB pointer */
pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* Conditions to check which loopCounter holds
* the first and last indices of the output samples to be calculated. */
check = firstIndex + numPoints;
blockSize3 = ((int32_t) check - (int32_t) srcALen);
blockSize3 = (blockSize3 > 0) ? blockSize3 : 0;
blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex);
blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1u)) ? blockSize1 :
(int32_t) numPoints) : 0;
blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) +
(int32_t) firstIndex);
blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
/* The function is internally
* divided into three stages according to the number of multiplications that has to be
* taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
* In the second stage of the algorithm, srcBLen number of multiplications are done.
* In the third stage of the algorithm, the multiplications decrease by one
* for every iteration. */
/* Set the output pointer to point to the firstIndex
* of the output sample to be calculated. */
pOut = pDst + firstIndex;
/* --------------------------
* Initializations of stage1
* -------------------------*/
/* sum = x[0] * y[0]
* sum = x[0] * y[1] + x[1] * y[0]
* ....
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
*/
/* In this stage the MAC operations are increased by 1 for every iteration.
The count variable holds the number of MAC operations performed.
Since the partial convolution starts from firstIndex
Number of Macs to be performed is firstIndex + 1 */
count = 1u + firstIndex;
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + firstIndex;
py = pSrc2;
/* ------------------------
* Stage1 process
* ----------------------*/
/* The first loop starts here */
while(blockSize1 > 0)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* x[0] * y[srcBLen - 1] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* x[1] * y[srcBLen - 2] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* x[2] * y[srcBLen - 3] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* x[3] * y[srcBLen - 4] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum << 1;
/* Update the inputA and inputB pointers for next MAC calculation */
py = ++pSrc2;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* --------------------------
* Initializations of stage2
* ------------------------*/
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
* ....
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
*/
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* count is index by which the pointer pIn1 to be incremented */
count = 1u;
/* -------------------
* Stage2 process
* ------------------*/
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
* So, to loop unroll over blockSize2,
* srcBLen should be greater than or equal to 4 */
if(srcBLen >= 4u)
{
/* Loop unroll over blockSize2 */
blkCnt = ((uint32_t) blockSize2 >> 2u);
while(blkCnt > 0u)
{
/* Set all accumulators to zero */
acc0 = 0;
acc1 = 0;
acc2 = 0;
acc3 = 0;
/* read x[0], x[1], x[2] samples */
x0 = *(px++);
x1 = *(px++);
x2 = *(px++);
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
do
{
/* Read y[srcBLen - 1] sample */
c0 = *(py--);
/* Read x[3] sample */
x3 = *(px++);
/* Perform the multiply-accumulate */
/* acc0 += x[0] * y[srcBLen - 1] */
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
/* acc1 += x[1] * y[srcBLen - 1] */
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
/* acc2 += x[2] * y[srcBLen - 1] */
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
/* acc3 += x[3] * y[srcBLen - 1] */
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
/* Read y[srcBLen - 2] sample */
c0 = *(py--);
/* Read x[4] sample */
x0 = *(px++);
/* Perform the multiply-accumulate */
/* acc0 += x[1] * y[srcBLen - 2] */
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x1 * c0)) >> 32);
/* acc1 += x[2] * y[srcBLen - 2] */
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x2 * c0)) >> 32);
/* acc2 += x[3] * y[srcBLen - 2] */
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x3 * c0)) >> 32);
/* acc3 += x[4] * y[srcBLen - 2] */
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x0 * c0)) >> 32);
/* Read y[srcBLen - 3] sample */
c0 = *(py--);
/* Read x[5] sample */
x1 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[2] * y[srcBLen - 3] */
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x2 * c0)) >> 32);
/* acc1 += x[3] * y[srcBLen - 2] */
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x3 * c0)) >> 32);
/* acc2 += x[4] * y[srcBLen - 2] */
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x0 * c0)) >> 32);
/* acc3 += x[5] * y[srcBLen - 2] */
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x1 * c0)) >> 32);
/* Read y[srcBLen - 4] sample */
c0 = *(py--);
/* Read x[6] sample */
x2 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[3] * y[srcBLen - 4] */
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x3 * c0)) >> 32);
/* acc1 += x[4] * y[srcBLen - 4] */
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x0 * c0)) >> 32);
/* acc2 += x[5] * y[srcBLen - 4] */
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x1 * c0)) >> 32);
/* acc3 += x[6] * y[srcBLen - 4] */
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x2 * c0)) >> 32);
} while(--k);
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Read y[srcBLen - 5] sample */
c0 = *(py--);
/* Read x[7] sample */
x3 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[4] * y[srcBLen - 5] */
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
/* acc1 += x[5] * y[srcBLen - 5] */
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
/* acc2 += x[6] * y[srcBLen - 5] */
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
/* acc3 += x[7] * y[srcBLen - 5] */
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
/* Reuse the present samples for the next MAC */
x0 = x1;
x1 = x2;
x2 = x3;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = (q31_t) (acc0 << 1);
*pOut++ = (q31_t) (acc1 << 1);
*pOut++ = (q31_t) (acc2 << 1);
*pOut++ = (q31_t) (acc3 << 1);
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + (count * 4u);
py = pSrc2;
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = (uint32_t) blockSize2 % 0x4u;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum << 1;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* If the srcBLen is not a multiple of 4,
* the blockSize2 loop cannot be unrolled by 4 */
blkCnt = (uint32_t) blockSize2;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* srcBLen number of MACS should be performed */
k = srcBLen;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum << 1;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
/* --------------------------
* Initializations of stage3
* -------------------------*/
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
* ....
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
* sum += x[srcALen-1] * y[srcBLen-1]
*/
/* In this stage the MAC operations are decreased by 1 for every iteration.
The count variable holds the number of MAC operations performed */
count = srcBLen - 1u;
/* Working pointer of inputA */
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
px = pSrc1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* -------------------
* Stage3 process
* ------------------*/
while(blockSize3 > 0)
{
/* Accumulator is made zero for every iteration */
sum = 0;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
/* sum += x[srcALen-1] * y[srcBLen-1] */
sum = (q31_t) ((((q63_t) sum << 32) +
((q63_t) * px++ * (*py--))) >> 32);
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum << 1;
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pSrc2;
/* Decrement the MAC count */
count--;
/* Decrement the loop counter */
blockSize3--;
}
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of PartialConv group
*/