##// END OF EJS Templates
Removed error on fat32 library, seems now to be able navigate among sectors in...
Removed error on fat32 library, seems now to be able navigate among sectors in both directions. Improved SDLCD drawing performances by almost 1000x.

File last commit:

r41:27c5438a4566 dev_alexis
r68:104125d87b89 dev_alexis
Show More
arm_conv_f32.c
623 lines | 18.4 KiB | text/x-c | CLexer
/* ----------------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_conv_f32.c
*
* Description: Convolution of floating-point sequences.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
*
* -------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @defgroup Conv Convolution
*
* Convolution is a mathematical operation that operates on two finite length vectors to generate a finite length output vector.
* Convolution is similar to correlation and is frequently used in filtering and data analysis.
* The CMSIS DSP library contains functions for convolving Q7, Q15, Q31, and floating-point data types.
* The library also provides fast versions of the Q15 and Q31 functions on Cortex-M4 and Cortex-M3.
*
* \par Algorithm
* Let <code>a[n]</code> and <code>b[n]</code> be sequences of length <code>srcALen</code> and <code>srcBLen</code> samples respectively.
* Then the convolution
*
* <pre>
* c[n] = a[n] * b[n]
* </pre>
*
* \par
* is defined as
* \image html ConvolutionEquation.gif
* \par
* Note that <code>c[n]</code> is of length <code>srcALen + srcBLen - 1</code> and is defined over the interval <code>n=0, 1, 2, ..., srcALen + srcBLen - 2</code>.
* <code>pSrcA</code> points to the first input vector of length <code>srcALen</code> and
* <code>pSrcB</code> points to the second input vector of length <code>srcBLen</code>.
* The output result is written to <code>pDst</code> and the calling function must allocate <code>srcALen+srcBLen-1</code> words for the result.
*
* \par
* Conceptually, when two signals <code>a[n]</code> and <code>b[n]</code> are convolved,
* the signal <code>b[n]</code> slides over <code>a[n]</code>.
* For each offset \c n, the overlapping portions of a[n] and b[n] are multiplied and summed together.
*
* \par
* Note that convolution is a commutative operation:
*
* <pre>
* a[n] * b[n] = b[n] * a[n].
* </pre>
*
* \par
* This means that switching the A and B arguments to the convolution functions has no effect.
*
* <b>Fixed-Point Behavior</b>
*
* \par
* Convolution requires summing up a large number of intermediate products.
* As such, the Q7, Q15, and Q31 functions run a risk of overflow and saturation.
* Refer to the function specific documentation below for further details of the particular algorithm used.
*/
/**
* @addtogroup Conv
* @{
*/
/**
* @brief Convolution of floating-point sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
* @return none.
*/
void arm_conv_f32(
float32_t * pSrcA,
uint32_t srcALen,
float32_t * pSrcB,
uint32_t srcBLen,
float32_t * pDst)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t *pIn1; /* inputA pointer */
float32_t *pIn2; /* inputB pointer */
float32_t *pOut = pDst; /* output pointer */
float32_t *px; /* Intermediate inputA pointer */
float32_t *py; /* Intermediate inputB pointer */
float32_t *pSrc1, *pSrc2; /* Intermediate pointers */
float32_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
float32_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counters */
/* The algorithm implementation is based on the lengths of the inputs. */
/* srcB is always made to slide across srcA. */
/* So srcBLen is always considered as shorter or equal to srcALen */
if(srcALen >= srcBLen)
{
/* Initialization of inputA pointer */
pIn1 = pSrcA;
/* Initialization of inputB pointer */
pIn2 = pSrcB;
}
else
{
/* Initialization of inputA pointer */
pIn1 = pSrcB;
/* Initialization of inputB pointer */
pIn2 = pSrcA;
/* srcBLen is always considered as shorter or equal to srcALen */
j = srcBLen;
srcBLen = srcALen;
srcALen = j;
}
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
/* The function is internally
* divided into three stages according to the number of multiplications that has to be
* taken place between inputA samples and inputB samples. In the first stage of the
* algorithm, the multiplications increase by one for every iteration.
* In the second stage of the algorithm, srcBLen number of multiplications are done.
* In the third stage of the algorithm, the multiplications decrease by one
* for every iteration. */
/* The algorithm is implemented in three stages.
The loop counters of each stage is initiated here. */
blockSize1 = srcBLen - 1u;
blockSize2 = srcALen - (srcBLen - 1u);
blockSize3 = blockSize1;
/* --------------------------
* initializations of stage1
* -------------------------*/
/* sum = x[0] * y[0]
* sum = x[0] * y[1] + x[1] * y[0]
* ....
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
*/
/* In this stage the MAC operations are increased by 1 for every iteration.
The count variable holds the number of MAC operations performed */
count = 1u;
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
py = pIn2;
/* ------------------------
* Stage1 process
* ----------------------*/
/* The first stage starts here */
while(blockSize1 > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0.0f;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = count >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* x[0] * y[srcBLen - 1] */
sum += *px++ * *py--;
/* x[1] * y[srcBLen - 2] */
sum += *px++ * *py--;
/* x[2] * y[srcBLen - 3] */
sum += *px++ * *py--;
/* x[3] * y[srcBLen - 4] */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* If the count is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = count % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum;
/* Update the inputA and inputB pointers for next MAC calculation */
py = pIn2 + count;
px = pIn1;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blockSize1--;
}
/* --------------------------
* Initializations of stage2
* ------------------------*/
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
* ....
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
*/
/* Working pointer of inputA */
px = pIn1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* count is index by which the pointer pIn1 to be incremented */
count = 1u;
/* -------------------
* Stage2 process
* ------------------*/
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
* So, to loop unroll over blockSize2,
* srcBLen should be greater than or equal to 4 */
if(srcBLen >= 4u)
{
/* Loop unroll over blockSize2, by 4 */
blkCnt = blockSize2 >> 2u;
while(blkCnt > 0u)
{
/* Set all accumulators to zero */
acc0 = 0.0f;
acc1 = 0.0f;
acc2 = 0.0f;
acc3 = 0.0f;
/* read x[0], x[1], x[2] samples */
x0 = *(px++);
x1 = *(px++);
x2 = *(px++);
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
do
{
/* Read y[srcBLen - 1] sample */
c0 = *(py--);
/* Read x[3] sample */
x3 = *(px++);
/* Perform the multiply-accumulate */
/* acc0 += x[0] * y[srcBLen - 1] */
acc0 += x0 * c0;
/* acc1 += x[1] * y[srcBLen - 1] */
acc1 += x1 * c0;
/* acc2 += x[2] * y[srcBLen - 1] */
acc2 += x2 * c0;
/* acc3 += x[3] * y[srcBLen - 1] */
acc3 += x3 * c0;
/* Read y[srcBLen - 2] sample */
c0 = *(py--);
/* Read x[4] sample */
x0 = *(px++);
/* Perform the multiply-accumulate */
/* acc0 += x[1] * y[srcBLen - 2] */
acc0 += x1 * c0;
/* acc1 += x[2] * y[srcBLen - 2] */
acc1 += x2 * c0;
/* acc2 += x[3] * y[srcBLen - 2] */
acc2 += x3 * c0;
/* acc3 += x[4] * y[srcBLen - 2] */
acc3 += x0 * c0;
/* Read y[srcBLen - 3] sample */
c0 = *(py--);
/* Read x[5] sample */
x1 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[2] * y[srcBLen - 3] */
acc0 += x2 * c0;
/* acc1 += x[3] * y[srcBLen - 2] */
acc1 += x3 * c0;
/* acc2 += x[4] * y[srcBLen - 2] */
acc2 += x0 * c0;
/* acc3 += x[5] * y[srcBLen - 2] */
acc3 += x1 * c0;
/* Read y[srcBLen - 4] sample */
c0 = *(py--);
/* Read x[6] sample */
x2 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[3] * y[srcBLen - 4] */
acc0 += x3 * c0;
/* acc1 += x[4] * y[srcBLen - 4] */
acc1 += x0 * c0;
/* acc2 += x[5] * y[srcBLen - 4] */
acc2 += x1 * c0;
/* acc3 += x[6] * y[srcBLen - 4] */
acc3 += x2 * c0;
} while(--k);
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Read y[srcBLen - 5] sample */
c0 = *(py--);
/* Read x[7] sample */
x3 = *(px++);
/* Perform the multiply-accumulates */
/* acc0 += x[4] * y[srcBLen - 5] */
acc0 += x0 * c0;
/* acc1 += x[5] * y[srcBLen - 5] */
acc1 += x1 * c0;
/* acc2 += x[6] * y[srcBLen - 5] */
acc2 += x2 * c0;
/* acc3 += x[7] * y[srcBLen - 5] */
acc3 += x3 * c0;
/* Reuse the present samples for the next MAC */
x0 = x1;
x1 = x2;
x2 = x3;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = acc0;
*pOut++ = acc1;
*pOut++ = acc2;
*pOut++ = acc3;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + (count * 4u);
py = pSrc2;
/* Increment the pointer pIn1 index, count by 1 */
count++;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize2 % 0x4u;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0.0f;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = srcBLen >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* Perform the multiply-accumulates */
sum += *px++ * *py--;
sum += *px++ * *py--;
sum += *px++ * *py--;
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = srcBLen % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* If the srcBLen is not a multiple of 4,
* the blockSize2 loop cannot be unrolled by 4 */
blkCnt = blockSize2;
while(blkCnt > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0.0f;
/* srcBLen number of MACS should be performed */
k = srcBLen;
while(k > 0u)
{
/* Perform the multiply-accumulate */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum;
/* Update the inputA and inputB pointers for next MAC calculation */
px = pIn1 + count;
py = pSrc2;
/* Increment the MAC count */
count++;
/* Decrement the loop counter */
blkCnt--;
}
}
/* --------------------------
* Initializations of stage3
* -------------------------*/
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
* ....
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
* sum += x[srcALen-1] * y[srcBLen-1]
*/
/* In this stage the MAC operations are decreased by 1 for every iteration.
The blockSize3 variable holds the number of MAC operations performed */
/* Working pointer of inputA */
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
px = pSrc1;
/* Working pointer of inputB */
pSrc2 = pIn2 + (srcBLen - 1u);
py = pSrc2;
/* -------------------
* Stage3 process
* ------------------*/
while(blockSize3 > 0u)
{
/* Accumulator is made zero for every iteration */
sum = 0.0f;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
k = blockSize3 >> 2u;
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
** a second loop below computes MACs for the remaining 1 to 3 samples. */
while(k > 0u)
{
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
sum += *px++ * *py--;
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
sum += *px++ * *py--;
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
sum += *px++ * *py--;
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
k = blockSize3 % 0x4u;
while(k > 0u)
{
/* Perform the multiply-accumulates */
/* sum += x[srcALen-1] * y[srcBLen-1] */
sum += *px++ * *py--;
/* Decrement the loop counter */
k--;
}
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = sum;
/* Update the inputA and inputB pointers for next MAC calculation */
px = ++pSrc1;
py = pSrc2;
/* Decrement the loop counter */
blockSize3--;
}
#else
/* Run the below code for Cortex-M0 */
float32_t *pIn1 = pSrcA; /* inputA pointer */
float32_t *pIn2 = pSrcB; /* inputB pointer */
float32_t sum; /* Accumulator */
uint32_t i, j; /* loop counters */
/* Loop to calculate convolution for output length number of times */
for (i = 0u; i < ((srcALen + srcBLen) - 1u); i++)
{
/* Initialize sum with zero to carry out MAC operations */
sum = 0.0f;
/* Loop to perform MAC operations according to convolution equation */
for (j = 0u; j <= i; j++)
{
/* Check the array limitations */
if((((i - j) < srcBLen) && (j < srcALen)))
{
/* z[i] += x[i-j] * y[j] */
sum += pIn1[j] * pIn2[i - j];
}
}
/* Store the output in the destination buffer */
pDst[i] = sum;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of Conv group
*/