##// END OF EJS Templates
Removed error on fat32 library, seems now to be able navigate among sectors in...
Removed error on fat32 library, seems now to be able navigate among sectors in both directions. Improved SDLCD drawing performances by almost 1000x.

File last commit:

r41:27c5438a4566 dev_alexis
r68:104125d87b89 dev_alexis
Show More
arm_biquad_cascade_df1_fast_q31.c
271 lines | 9.8 KiB | text/x-c | CLexer
/ lib / src / stm32f4 / CPU / CMSIS / DSP_Lib / Source / FilteringFunctions / arm_biquad_cascade_df1_fast_q31.c
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_fast_q31.c
*
* Description: Processing function for the
* Q31 Fast Biquad cascade DirectFormI(DF1) filter.
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.9 2010/08/27
* Initial version
*
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup BiquadCascadeDF1
* @{
*/
/**
* @details
*
* @param[in] *S points to an instance of the Q31 Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process per call.
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* This function is optimized for speed at the expense of fixed-point precision and overflow protection.
* The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
* These intermediate results are added to a 2.30 accumulator.
* Finally, the accumulator is saturated and converted to a 1.31 result.
* The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result.
* In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25). Use the intialization function
* arm_biquad_cascade_df1_init_q31() to initialize filter structure.
*
* \par
* Refer to the function <code>arm_biquad_cascade_df1_q31()</code> for a slower implementation of this function which uses 64-bit accumulation to provide higher precision. Both the slow and the fast versions use the same instance structure.
* Use the function <code>arm_biquad_cascade_df1_init_q31()</code> to initialize the filter structure.
*/
void arm_biquad_cascade_df1_fast_q31(
const arm_biquad_casd_df1_inst_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
q31_t *pIn = pSrc; /* input pointer initialization */
q31_t *pOut = pDst; /* output pointer initialization */
q31_t *pState = S->pState; /* pState pointer initialization */
q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
q31_t acc; /* accumulator */
q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
q31_t Xn; /* temporary input */
int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */
uint32_t sample, stage = S->numStages; /* loop counters */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/* Reading the state values */
Xn1 = pState[0];
Xn2 = pState[1];
Yn1 = pState[2];
Yn2 = pState[3];
/* Apply loop unrolling and compute 4 output values simultaneously. */
/* The variables acc ... acc3 hold output values that are being computed:
*
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q31_t) (((q63_t) b0 * Xn) >> 32);
/* acc += b1 * x[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);
/* acc += b[2] * x[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);
/* acc += a1 * y[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);
/* acc += a2 * y[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);
/* The result is converted to 1.31 , Yn2 variable is reused */
Yn2 = acc << shift;
/* Store the output in the destination buffer. */
*pOut++ = Yn2;
/* Read the second input */
Xn2 = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q31_t) (((q63_t) b0 * (Xn2)) >> 32);
/* acc += b1 * x[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn))) >> 32);
/* acc += b[2] * x[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn1))) >> 32);
/* acc += a1 * y[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);
/* acc += a2 * y[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);
/* The result is converted to 1.31, Yn1 variable is reused */
Yn1 = acc << shift;
/* Store the output in the destination buffer. */
*pOut++ = Yn1;
/* Read the third input */
Xn1 = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q31_t) (((q63_t) b0 * (Xn1)) >> 32);
/* acc += b1 * x[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn2))) >> 32);
/* acc += b[2] * x[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn))) >> 32);
/* acc += a1 * y[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);
/* acc += a2 * y[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);
/* The result is converted to 1.31, Yn2 variable is reused */
Yn2 = acc << shift;
/* Store the output in the destination buffer. */
*pOut++ = Yn2;
/* Read the forth input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);
/* acc += b1 * x[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);
/* acc += b[2] * x[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);
/* acc += a1 * y[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);
/* acc += a2 * y[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);
/* The result is converted to 1.31, Yn1 variable is reused */
Yn1 = acc << shift;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
/* Store the output in the destination buffer. */
*pOut++ = Yn1;
/* decrement the loop counter */
sample--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
sample = (blockSize & 0x3u);
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);
/* acc += b1 * x[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);
/* acc += b[2] * x[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);
/* acc += a1 * y[n-1] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);
/* acc += a2 * y[n-2] */
acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);
/* The result is converted to 1.31 */
acc = acc << shift;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
Yn1 = acc;
/* Store the output in the destination buffer. */
*pOut++ = acc;
/* decrement the loop counter */
sample--;
}
/* The first stage goes from the input buffer to the output buffer. */
/* Subsequent stages occur in-place in the output buffer */
pIn = pDst;
/* Reset to destination pointer */
pOut = pDst;
/* Store the updated state variables back into the pState array */
*pState++ = Xn1;
*pState++ = Xn2;
*pState++ = Yn1;
*pState++ = Yn2;
} while(--stage);
}
/**
* @} end of BiquadCascadeDF1 group
*/