stm32f4xx_rcc.c
1811 lines
| 71.1 KiB
| text/x-c
|
CLexer
jeandet@pc-de-jeandet3.LAB-LPP.LOCAL
|
r18 | /** | ||
****************************************************************************** | ||||
* @file stm32f4xx_rcc.c | ||||
* @author MCD Application Team | ||||
* @version V1.0.0RC1 | ||||
* @date 25-August-2011 | ||||
* @brief This file provides firmware functions to manage the following | ||||
* functionalities of the Reset and clock control (RCC) peripheral: | ||||
* - Internal/external clocks, PLL, CSS and MCO configuration | ||||
* - System, AHB and APB busses clocks configuration | ||||
* - Peripheral clocks configuration | ||||
* - Interrupts and flags management | ||||
* | ||||
* @verbatim | ||||
* | ||||
* =================================================================== | ||||
* RCC specific features | ||||
* =================================================================== | ||||
* | ||||
* After reset the device is running from Internal High Speed oscillator | ||||
* (HSI 16MHz) with Flash 0 wait state, Flash prefetch buffer, D-Cache | ||||
* and I-Cache are disabled, and all peripherals are off except internal | ||||
* SRAM, Flash and JTAG. | ||||
* - There is no prescaler on High speed (AHB) and Low speed (APB) busses; | ||||
* all peripherals mapped on these busses are running at HSI speed. | ||||
* - The clock for all peripherals is switched off, except the SRAM and FLASH. | ||||
* - All GPIOs are in input floating state, except the JTAG pins which | ||||
* are assigned to be used for debug purpose. | ||||
* | ||||
* Once the device started from reset, the user application has to: | ||||
* - Configure the clock source to be used to drive the System clock | ||||
* (if the application needs higher frequency/performance) | ||||
* - Configure the System clock frequency and Flash settings | ||||
* - Configure the AHB and APB busses prescalers | ||||
* - Enable the clock for the peripheral(s) to be used | ||||
* - Configure the clock source(s) for peripherals which clocks are not | ||||
* derived from the System clock (I2S, RTC, ADC, USB OTG FS/SDIO/RNG) | ||||
* | ||||
* @endverbatim | ||||
* | ||||
****************************************************************************** | ||||
* @attention | ||||
* | ||||
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS | ||||
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE | ||||
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY | ||||
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING | ||||
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE | ||||
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. | ||||
* | ||||
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2> | ||||
****************************************************************************** | ||||
*/ | ||||
/* Includes ------------------------------------------------------------------*/ | ||||
#include "stm32f4xx_rcc.h" | ||||
/** @addtogroup STM32F4xx_StdPeriph_Driver | ||||
* @{ | ||||
*/ | ||||
/** @defgroup RCC | ||||
* @brief RCC driver modules | ||||
* @{ | ||||
*/ | ||||
/* Private typedef -----------------------------------------------------------*/ | ||||
/* Private define ------------------------------------------------------------*/ | ||||
/* ------------ RCC registers bit address in the alias region ----------- */ | ||||
#define RCC_OFFSET (RCC_BASE - PERIPH_BASE) | ||||
/* --- CR Register ---*/ | ||||
/* Alias word address of HSION bit */ | ||||
#define CR_OFFSET (RCC_OFFSET + 0x00) | ||||
#define HSION_BitNumber 0x00 | ||||
#define CR_HSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (HSION_BitNumber * 4)) | ||||
/* Alias word address of CSSON bit */ | ||||
#define CSSON_BitNumber 0x13 | ||||
#define CR_CSSON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (CSSON_BitNumber * 4)) | ||||
/* Alias word address of PLLON bit */ | ||||
#define PLLON_BitNumber 0x18 | ||||
#define CR_PLLON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLON_BitNumber * 4)) | ||||
/* Alias word address of PLLI2SON bit */ | ||||
#define PLLI2SON_BitNumber 0x1A | ||||
#define CR_PLLI2SON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLI2SON_BitNumber * 4)) | ||||
/* --- CFGR Register ---*/ | ||||
/* Alias word address of I2SSRC bit */ | ||||
#define CFGR_OFFSET (RCC_OFFSET + 0x08) | ||||
#define I2SSRC_BitNumber 0x17 | ||||
#define CFGR_I2SSRC_BB (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (I2SSRC_BitNumber * 4)) | ||||
/* --- BDCR Register ---*/ | ||||
/* Alias word address of RTCEN bit */ | ||||
#define BDCR_OFFSET (RCC_OFFSET + 0x70) | ||||
#define RTCEN_BitNumber 0x0F | ||||
#define BDCR_RTCEN_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (RTCEN_BitNumber * 4)) | ||||
/* Alias word address of BDRST bit */ | ||||
#define BDRST_BitNumber 0x10 | ||||
#define BDCR_BDRST_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (BDRST_BitNumber * 4)) | ||||
/* --- CSR Register ---*/ | ||||
/* Alias word address of LSION bit */ | ||||
#define CSR_OFFSET (RCC_OFFSET + 0x74) | ||||
#define LSION_BitNumber 0x00 | ||||
#define CSR_LSION_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSION_BitNumber * 4)) | ||||
/* ---------------------- RCC registers bit mask ------------------------ */ | ||||
/* CFGR register bit mask */ | ||||
#define CFGR_MCO2_RESET_MASK ((uint32_t)0x07FFFFFF) | ||||
#define CFGR_MCO1_RESET_MASK ((uint32_t)0xF89FFFFF) | ||||
/* RCC Flag Mask */ | ||||
#define FLAG_MASK ((uint8_t)0x1F) | ||||
/* CR register byte 3 (Bits[23:16]) base address */ | ||||
#define CR_BYTE3_ADDRESS ((uint32_t)0x40023802) | ||||
/* CIR register byte 2 (Bits[15:8]) base address */ | ||||
#define CIR_BYTE2_ADDRESS ((uint32_t)(RCC_BASE + 0x0C + 0x01)) | ||||
/* CIR register byte 3 (Bits[23:16]) base address */ | ||||
#define CIR_BYTE3_ADDRESS ((uint32_t)(RCC_BASE + 0x0C + 0x02)) | ||||
/* BDCR register base address */ | ||||
#define BDCR_ADDRESS (PERIPH_BASE + BDCR_OFFSET) | ||||
/* Private macro -------------------------------------------------------------*/ | ||||
/* Private variables ---------------------------------------------------------*/ | ||||
static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9}; | ||||
/* Private function prototypes -----------------------------------------------*/ | ||||
/* Private functions ---------------------------------------------------------*/ | ||||
/** @defgroup RCC_Private_Functions | ||||
* @{ | ||||
*/ | ||||
/** @defgroup RCC_Group1 Internal and external clocks, PLL, CSS and MCO configuration functions | ||||
* @brief Internal and external clocks, PLL, CSS and MCO configuration functions | ||||
* | ||||
@verbatim | ||||
=============================================================================== | ||||
Internal/external clocks, PLL, CSS and MCO configuration functions | ||||
=============================================================================== | ||||
This section provide functions allowing to configure the internal/external clocks, | ||||
PLLs, CSS and MCO pins. | ||||
1. HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through | ||||
the PLL as System clock source. | ||||
2. LSI (low-speed internal), 32 KHz low consumption RC used as IWDG and/or RTC | ||||
clock source. | ||||
3. HSE (high-speed external), 4 to 26 MHz crystal oscillator used directly or | ||||
through the PLL as System clock source. Can be used also as RTC clock source. | ||||
4. LSE (low-speed external), 32 KHz oscillator used as RTC clock source. | ||||
5. PLL (clocked by HSI or HSE), featuring two different output clocks: | ||||
- The first output is used to generate the high speed system clock (up to 120 MHz) | ||||
- The second output is used to generate the clock for the USB OTG FS (48 MHz), | ||||
the random analog generator (<=48 MHz) and the SDIO (<= 48 MHz). | ||||
6. PLLI2S (clocked by HSI or HSE), used to generate an accurate clock to achieve | ||||
high-quality audio performance on the I2S interface. | ||||
7. CSS (Clock security system), once enable and if a HSE clock failure occurs | ||||
(HSE used directly or through PLL as System clock source), the System clock | ||||
is automatically switched to HSI and an interrupt is generated if enabled. | ||||
The interrupt is linked to the Cortex-M4 NMI (Non-Maskable Interrupt) | ||||
exception vector. | ||||
8. MCO1 (microcontroller clock output), used to output HSI, LSE, HSE or PLL | ||||
clock (through a configurable prescaler) on PA8 pin. | ||||
9. MCO2 (microcontroller clock output), used to output HSE, PLL, SYSCLK or PLLI2S | ||||
clock (through a configurable prescaler) on PC9 pin. | ||||
@endverbatim | ||||
* @{ | ||||
*/ | ||||
/** | ||||
* @brief Resets the RCC clock configuration to the default reset state. | ||||
* @note The default reset state of the clock configuration is given below: | ||||
* - HSI ON and used as system clock source | ||||
* - HSE, PLL and PLLI2S OFF | ||||
* - AHB, APB1 and APB2 prescaler set to 1. | ||||
* - CSS, MCO1 and MCO2 OFF | ||||
* - All interrupts disabled | ||||
* @note This function doesn't modify the configuration of the | ||||
* - Peripheral clocks | ||||
* - LSI, LSE and RTC clocks | ||||
* @param None | ||||
* @retval None | ||||
*/ | ||||
void RCC_DeInit(void) | ||||
{ | ||||
/* Set HSION bit */ | ||||
RCC->CR |= (uint32_t)0x00000001; | ||||
/* Reset CFGR register */ | ||||
RCC->CFGR = 0x00000000; | ||||
/* Reset HSEON, CSSON and PLLON bits */ | ||||
RCC->CR &= (uint32_t)0xFEF6FFFF; | ||||
/* Reset PLLCFGR register */ | ||||
RCC->PLLCFGR = 0x24003010; | ||||
/* Reset HSEBYP bit */ | ||||
RCC->CR &= (uint32_t)0xFFFBFFFF; | ||||
/* Disable all interrupts */ | ||||
RCC->CIR = 0x00000000; | ||||
} | ||||
/** | ||||
* @brief Configures the External High Speed oscillator (HSE). | ||||
* @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application | ||||
* software should wait on HSERDY flag to be set indicating that HSE clock | ||||
* is stable and can be used to clock the PLL and/or system clock. | ||||
* @note HSE state can not be changed if it is used directly or through the | ||||
* PLL as system clock. In this case, you have to select another source | ||||
* of the system clock then change the HSE state (ex. disable it). | ||||
* @note The HSE is stopped by hardware when entering STOP and STANDBY modes. | ||||
* @note This function reset the CSSON bit, so if the Clock security system(CSS) | ||||
* was previously enabled you have to enable it again after calling this | ||||
* function. | ||||
* @param RCC_HSE: specifies the new state of the HSE. | ||||
* This parameter can be one of the following values: | ||||
* @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after | ||||
* 6 HSE oscillator clock cycles. | ||||
* @arg RCC_HSE_ON: turn ON the HSE oscillator | ||||
* @arg RCC_HSE_Bypass: HSE oscillator bypassed with external clock | ||||
* @retval None | ||||
*/ | ||||
void RCC_HSEConfig(uint8_t RCC_HSE) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_HSE(RCC_HSE)); | ||||
/* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/ | ||||
*(__IO uint8_t *) CR_BYTE3_ADDRESS = RCC_HSE_OFF; | ||||
/* Set the new HSE configuration -------------------------------------------*/ | ||||
*(__IO uint8_t *) CR_BYTE3_ADDRESS = RCC_HSE; | ||||
} | ||||
/** | ||||
* @brief Waits for HSE start-up. | ||||
* @note This functions waits on HSERDY flag to be set and return SUCCESS if | ||||
* this flag is set, otherwise returns ERROR if the timeout is reached | ||||
* and this flag is not set. The timeout value is defined by the constant | ||||
* HSE_STARTUP_TIMEOUT in stm32f4xx.h file. You can tailor it depending | ||||
* on the HSE crystal used in your application. | ||||
* @param None | ||||
* @retval An ErrorStatus enumeration value: | ||||
* - SUCCESS: HSE oscillator is stable and ready to use | ||||
* - ERROR: HSE oscillator not yet ready | ||||
*/ | ||||
ErrorStatus RCC_WaitForHSEStartUp(void) | ||||
{ | ||||
__IO uint32_t startupcounter = 0; | ||||
ErrorStatus status = ERROR; | ||||
FlagStatus hsestatus = RESET; | ||||
/* Wait till HSE is ready and if Time out is reached exit */ | ||||
do | ||||
{ | ||||
hsestatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY); | ||||
startupcounter++; | ||||
} while((startupcounter != HSE_STARTUP_TIMEOUT) && (hsestatus == RESET)); | ||||
if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET) | ||||
{ | ||||
status = SUCCESS; | ||||
} | ||||
else | ||||
{ | ||||
status = ERROR; | ||||
} | ||||
return (status); | ||||
} | ||||
/** | ||||
* @brief Adjusts the Internal High Speed oscillator (HSI) calibration value. | ||||
* @note The calibration is used to compensate for the variations in voltage | ||||
* and temperature that influence the frequency of the internal HSI RC. | ||||
* @param HSICalibrationValue: specifies the calibration trimming value. | ||||
* This parameter must be a number between 0 and 0x1F. | ||||
* @retval None | ||||
*/ | ||||
void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue) | ||||
{ | ||||
uint32_t tmpreg = 0; | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_CALIBRATION_VALUE(HSICalibrationValue)); | ||||
tmpreg = RCC->CR; | ||||
/* Clear HSITRIM[4:0] bits */ | ||||
tmpreg &= ~RCC_CR_HSITRIM; | ||||
/* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */ | ||||
tmpreg |= (uint32_t)HSICalibrationValue << 3; | ||||
/* Store the new value */ | ||||
RCC->CR = tmpreg; | ||||
} | ||||
/** | ||||
* @brief Enables or disables the Internal High Speed oscillator (HSI). | ||||
* @note The HSI is stopped by hardware when entering STOP and STANDBY modes. | ||||
* It is used (enabled by hardware) as system clock source after startup | ||||
* from Reset, wakeup from STOP and STANDBY mode, or in case of failure | ||||
* of the HSE used directly or indirectly as system clock (if the Clock | ||||
* Security System CSS is enabled). | ||||
* @note HSI can not be stopped if it is used as system clock source. In this case, | ||||
* you have to select another source of the system clock then stop the HSI. | ||||
* @note After enabling the HSI, the application software should wait on HSIRDY | ||||
* flag to be set indicating that HSI clock is stable and can be used as | ||||
* system clock source. | ||||
* @param NewState: new state of the HSI. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator | ||||
* clock cycles. | ||||
* @retval None | ||||
*/ | ||||
void RCC_HSICmd(FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
*(__IO uint32_t *) CR_HSION_BB = (uint32_t)NewState; | ||||
} | ||||
/** | ||||
* @brief Configures the External Low Speed oscillator (LSE). | ||||
* @note As the LSE is in the Backup domain and write access is denied to | ||||
* this domain after reset, you have to enable write access using | ||||
* PWR_BackupAccessCmd(ENABLE) function before to configure the LSE | ||||
* (to be done once after reset). | ||||
* @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_Bypass), the application | ||||
* software should wait on LSERDY flag to be set indicating that LSE clock | ||||
* is stable and can be used to clock the RTC. | ||||
* @param RCC_LSE: specifies the new state of the LSE. | ||||
* This parameter can be one of the following values: | ||||
* @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after | ||||
* 6 LSE oscillator clock cycles. | ||||
* @arg RCC_LSE_ON: turn ON the LSE oscillator | ||||
* @arg RCC_LSE_Bypass: LSE oscillator bypassed with external clock | ||||
* @retval None | ||||
*/ | ||||
void RCC_LSEConfig(uint8_t RCC_LSE) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_LSE(RCC_LSE)); | ||||
/* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/ | ||||
/* Reset LSEON bit */ | ||||
*(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_OFF; | ||||
/* Reset LSEBYP bit */ | ||||
*(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_OFF; | ||||
/* Configure LSE (RCC_LSE_OFF is already covered by the code section above) */ | ||||
switch (RCC_LSE) | ||||
{ | ||||
case RCC_LSE_ON: | ||||
/* Set LSEON bit */ | ||||
*(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_ON; | ||||
break; | ||||
case RCC_LSE_Bypass: | ||||
/* Set LSEBYP and LSEON bits */ | ||||
*(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_Bypass | RCC_LSE_ON; | ||||
break; | ||||
default: | ||||
break; | ||||
} | ||||
} | ||||
/** | ||||
* @brief Enables or disables the Internal Low Speed oscillator (LSI). | ||||
* @note After enabling the LSI, the application software should wait on | ||||
* LSIRDY flag to be set indicating that LSI clock is stable and can | ||||
* be used to clock the IWDG and/or the RTC. | ||||
* @note LSI can not be disabled if the IWDG is running. | ||||
* @param NewState: new state of the LSI. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator | ||||
* clock cycles. | ||||
* @retval None | ||||
*/ | ||||
void RCC_LSICmd(FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
*(__IO uint32_t *) CSR_LSION_BB = (uint32_t)NewState; | ||||
} | ||||
/** | ||||
* @brief Configures the main PLL clock source, multiplication and division factors. | ||||
* @note This function must be used only when the main PLL is disabled. | ||||
* | ||||
* @param RCC_PLLSource: specifies the PLL entry clock source. | ||||
* This parameter can be one of the following values: | ||||
* @arg RCC_PLLSource_HSI: HSI oscillator clock selected as PLL clock entry | ||||
* @arg RCC_PLLSource_HSE: HSE oscillator clock selected as PLL clock entry | ||||
* @note This clock source (RCC_PLLSource) is common for the main PLL and PLLI2S. | ||||
* | ||||
* @param PLLM: specifies the division factor for PLL VCO input clock | ||||
* This parameter must be a number between 0 and 63. | ||||
* @note You have to set the PLLM parameter correctly to ensure that the VCO input | ||||
* frequency ranges from 1 to 2 MHz. It is recommended to select a frequency | ||||
* of 2 MHz to limit PLL jitter. | ||||
* | ||||
* @param PLLN: specifies the multiplication factor for PLL VCO output clock | ||||
* This parameter must be a number between 192 and 432. | ||||
* @note You have to set the PLLN parameter correctly to ensure that the VCO | ||||
* output frequency is between 192 and 432 MHz. | ||||
* | ||||
* @param PLLP: specifies the division factor for main system clock (SYSCLK) | ||||
* This parameter must be a number in the range {2, 4, 6, or 8}. | ||||
* @note You have to set the PLLP parameter correctly to not exceed 120 MHz on | ||||
* the System clock frequency. | ||||
* | ||||
* @param PLLQ: specifies the division factor for OTG FS, SDIO and RNG clocks | ||||
* This parameter must be a number between 4 and 15. | ||||
* @note If the USB OTG FS is used in your application, you have to set the | ||||
* PLLQ parameter correctly to have 48 MHz clock for the USB. However, | ||||
* the SDIO and RNG need a frequency lower than or equal to 48 MHz to work | ||||
* correctly. | ||||
* | ||||
* @retval None | ||||
*/ | ||||
void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t PLLM, uint32_t PLLN, uint32_t PLLP, uint32_t PLLQ) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource)); | ||||
assert_param(IS_RCC_PLLM_VALUE(PLLM)); | ||||
assert_param(IS_RCC_PLLN_VALUE(PLLN)); | ||||
assert_param(IS_RCC_PLLP_VALUE(PLLP)); | ||||
assert_param(IS_RCC_PLLQ_VALUE(PLLQ)); | ||||
RCC->PLLCFGR = PLLM | (PLLN << 6) | (((PLLP >> 1) -1) << 16) | (RCC_PLLSource) | | ||||
(PLLQ << 24); | ||||
} | ||||
/** | ||||
* @brief Enables or disables the main PLL. | ||||
* @note After enabling the main PLL, the application software should wait on | ||||
* PLLRDY flag to be set indicating that PLL clock is stable and can | ||||
* be used as system clock source. | ||||
* @note The main PLL can not be disabled if it is used as system clock source | ||||
* @note The main PLL is disabled by hardware when entering STOP and STANDBY modes. | ||||
* @param NewState: new state of the main PLL. This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_PLLCmd(FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
*(__IO uint32_t *) CR_PLLON_BB = (uint32_t)NewState; | ||||
} | ||||
/** | ||||
* @brief Configures the PLLI2S clock multiplication and division factors. | ||||
* | ||||
* @note PLLI2S is available only in Silicon RevisionB and RevisionY. | ||||
* @note This function must be used only when the PLLI2S is disabled. | ||||
* @note PLLI2S clock source is common with the main PLL (configured in | ||||
* RCC_PLLConfig function ) | ||||
* | ||||
* @param PLLI2SN: specifies the multiplication factor for PLLI2S VCO output clock | ||||
* This parameter must be a number between 192 and 432. | ||||
* @note You have to set the PLLI2SN parameter correctly to ensure that the VCO | ||||
* output frequency is between 192 and 432 MHz. | ||||
* | ||||
* @param PLLI2SR: specifies the division factor for I2S clock | ||||
* This parameter must be a number between 2 and 7. | ||||
* @note You have to set the PLLI2SR parameter correctly to not exceed 192 MHz | ||||
* on the I2S clock frequency. | ||||
* | ||||
* @retval None | ||||
*/ | ||||
void RCC_PLLI2SConfig(uint32_t PLLI2SN, uint32_t PLLI2SR) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_PLLI2SN_VALUE(PLLI2SN)); | ||||
assert_param(IS_RCC_PLLI2SR_VALUE(PLLI2SR)); | ||||
RCC->PLLI2SCFGR = (PLLI2SN << 6) | (PLLI2SR << 28); | ||||
} | ||||
/** | ||||
* @brief Enables or disables the PLLI2S. | ||||
* @note PLLI2S is available only in RevisionB and RevisionY | ||||
* @note The PLLI2S is disabled by hardware when entering STOP and STANDBY modes. | ||||
* @param NewState: new state of the PLLI2S. This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_PLLI2SCmd(FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
*(__IO uint32_t *) CR_PLLI2SON_BB = (uint32_t)NewState; | ||||
} | ||||
/** | ||||
* @brief Enables or disables the Clock Security System. | ||||
* @note If a failure is detected on the HSE oscillator clock, this oscillator | ||||
* is automatically disabled and an interrupt is generated to inform the | ||||
* software about the failure (Clock Security System Interrupt, CSSI), | ||||
* allowing the MCU to perform rescue operations. The CSSI is linked to | ||||
* the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector. | ||||
* @param NewState: new state of the Clock Security System. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_ClockSecuritySystemCmd(FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
*(__IO uint32_t *) CR_CSSON_BB = (uint32_t)NewState; | ||||
} | ||||
/** | ||||
* @brief Selects the clock source to output on MCO1 pin(PA8). | ||||
* @note PA8 should be configured in alternate function mode. | ||||
* @param RCC_MCO1Source: specifies the clock source to output. | ||||
* This parameter can be one of the following values: | ||||
* @arg RCC_MCO1Source_HSI: HSI clock selected as MCO1 source | ||||
* @arg RCC_MCO1Source_LSE: LSE clock selected as MCO1 source | ||||
* @arg RCC_MCO1Source_HSE: HSE clock selected as MCO1 source | ||||
* @arg RCC_MCO1Source_PLLCLK: main PLL clock selected as MCO1 source | ||||
* @param RCC_MCO1Div: specifies the MCO1 prescaler. | ||||
* This parameter can be one of the following values: | ||||
* @arg RCC_MCO1Div_1: no division applied to MCO1 clock | ||||
* @arg RCC_MCO1Div_2: division by 2 applied to MCO1 clock | ||||
* @arg RCC_MCO1Div_3: division by 3 applied to MCO1 clock | ||||
* @arg RCC_MCO1Div_4: division by 4 applied to MCO1 clock | ||||
* @arg RCC_MCO1Div_5: division by 5 applied to MCO1 clock | ||||
* @retval None | ||||
*/ | ||||
void RCC_MCO1Config(uint32_t RCC_MCO1Source, uint32_t RCC_MCO1Div) | ||||
{ | ||||
uint32_t tmpreg = 0; | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_MCO1SOURCE(RCC_MCO1Source)); | ||||
assert_param(IS_RCC_MCO1DIV(RCC_MCO1Div)); | ||||
tmpreg = RCC->CFGR; | ||||
/* Clear MCO1[1:0] and MCO1PRE[2:0] bits */ | ||||
tmpreg &= CFGR_MCO1_RESET_MASK; | ||||
/* Select MCO1 clock source and prescaler */ | ||||
tmpreg |= RCC_MCO1Source | RCC_MCO1Div; | ||||
/* Store the new value */ | ||||
RCC->CFGR = tmpreg; | ||||
} | ||||
/** | ||||
* @brief Selects the clock source to output on MCO2 pin(PC9). | ||||
* @note PC9 should be configured in alternate function mode. | ||||
* @param RCC_MCO2Source: specifies the clock source to output. | ||||
* This parameter can be one of the following values: | ||||
* @arg RCC_MCO2Source_SYSCLK: System clock (SYSCLK) selected as MCO2 source | ||||
* @arg RCC_MCO2Source_PLLI2SCLK: PLLI2S clock selected as MCO2 source | ||||
* @arg RCC_MCO2Source_HSE: HSE clock selected as MCO2 source | ||||
* @arg RCC_MCO2Source_PLLCLK: main PLL clock selected as MCO2 source | ||||
* @param RCC_MCO2Div: specifies the MCO2 prescaler. | ||||
* This parameter can be one of the following values: | ||||
* @arg RCC_MCO2Div_1: no division applied to MCO2 clock | ||||
* @arg RCC_MCO2Div_2: division by 2 applied to MCO2 clock | ||||
* @arg RCC_MCO2Div_3: division by 3 applied to MCO2 clock | ||||
* @arg RCC_MCO2Div_4: division by 4 applied to MCO2 clock | ||||
* @arg RCC_MCO2Div_5: division by 5 applied to MCO2 clock | ||||
* @retval None | ||||
*/ | ||||
void RCC_MCO2Config(uint32_t RCC_MCO2Source, uint32_t RCC_MCO2Div) | ||||
{ | ||||
uint32_t tmpreg = 0; | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_MCO2SOURCE(RCC_MCO2Source)); | ||||
assert_param(IS_RCC_MCO2DIV(RCC_MCO2Div)); | ||||
tmpreg = RCC->CFGR; | ||||
/* Clear MCO2 and MCO2PRE[2:0] bits */ | ||||
tmpreg &= CFGR_MCO2_RESET_MASK; | ||||
/* Select MCO2 clock source and prescaler */ | ||||
tmpreg |= RCC_MCO2Source | RCC_MCO2Div; | ||||
/* Store the new value */ | ||||
RCC->CFGR = tmpreg; | ||||
} | ||||
/** | ||||
* @} | ||||
*/ | ||||
/** @defgroup RCC_Group2 System AHB and APB busses clocks configuration functions | ||||
* @brief System, AHB and APB busses clocks configuration functions | ||||
* | ||||
@verbatim | ||||
=============================================================================== | ||||
System, AHB and APB busses clocks configuration functions | ||||
=============================================================================== | ||||
This section provide functions allowing to configure the System, AHB, APB1 and | ||||
APB2 busses clocks. | ||||
1. Several clock sources can be used to drive the System clock (SYSCLK): HSI, | ||||
HSE and PLL. | ||||
The AHB clock (HCLK) is derived from System clock through configurable prescaler | ||||
and used to clock the CPU, memory and peripherals mapped on AHB bus (DMA, GPIO...). | ||||
APB1 (PCLK1) and APB2 (PCLK2) clocks are derived from AHB clock through | ||||
configurable prescalers and used to clock the peripherals mapped on these busses. | ||||
You can use "RCC_GetClocksFreq()" function to retrieve the frequencies of these clocks. | ||||
@note All the peripheral clocks are derived from the System clock (SYSCLK) except: | ||||
- I2S: the I2S clock can be derived either from a specific PLL (PLLI2S) or | ||||
from an external clock mapped on the I2S_CKIN pin. | ||||
You have to use RCC_I2SCLKConfig() function to configure this clock. | ||||
- RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock | ||||
divided by 2 to 31. You have to use RCC_RTCCLKConfig() and RCC_RTCCLKCmd() | ||||
functions to configure this clock. | ||||
- USB OTG FS, SDIO and RTC: USB OTG FS require a frequency equal to 48 MHz | ||||
to work correctly, while the SDIO require a frequency equal or lower than | ||||
to 48. This clock is derived of the main PLL through PLLQ divider. | ||||
- IWDG clock which is always the LSI clock. | ||||
2. The maximum frequency of the SYSCLK and HCLK is 120 MHz, PCLK2 60 MHz and PCLK1 30 MHz. | ||||
Depending on the device voltage range, the maximum frequency should be | ||||
adapted accordingly: | ||||
+-------------------------------------------------------------------------------------+ | ||||
| Latency | HCLK clock frequency (MHz) | | ||||
| |---------------------------------------------------------------------| | ||||
| | voltage range | voltage range | voltage range | voltage range | | ||||
| | 2.7 V - 3.6 V | 2.4 V - 2.7 V | 2.1 V - 2.4 V | 1.8 V - 2.1 V | | ||||
|---------------|----------------|----------------|-----------------|-----------------| | ||||
|0WS(1CPU cycle)|0 < HCLK <= 30 |0 < HCLK <= 24 |0 < HCLK <= 18 |0 < HCLK <= 16 | | ||||
|---------------|----------------|----------------|-----------------|-----------------| | ||||
|1WS(2CPU cycle)|30 < HCLK <= 60 |24 < HCLK <= 48 |18 < HCLK <= 36 |16 < HCLK <= 32 | | ||||
|---------------|----------------|----------------|-----------------|-----------------| | ||||
|2WS(3CPU cycle)|60 < HCLK <= 90 |48 < HCLK <= 72 |36 < HCLK <= 54 |32 < HCLK <= 48 | | ||||
|---------------|----------------|----------------|-----------------|-----------------| | ||||
|3WS(4CPU cycle)|90 < HCLK <= 120|72 < HCLK <= 96 |54 < HCLK <= 72 |48 < HCLK <= 64 | | ||||
|---------------|----------------|----------------|-----------------|-----------------| | ||||
|4WS(5CPU cycle)| NA |96 < HCLK <= 120|72 < HCLK <= 90 |64 < HCLK <= 80 | | ||||
|---------------|----------------|----------------|-----------------|-----------------| | ||||
|5WS(6CPU cycle)| NA | NA |90 < HCLK <= 108 |80 < HCLK <= 96 | | ||||
|---------------|----------------|----------------|-----------------|-----------------| | ||||
|6WS(7CPU cycle)| NA | NA |108 < HCLK <= 120|96 < HCLK <= 112 | | ||||
|---------------|----------------|----------------|-----------------|-----------------| | ||||
|7WS(8CPU cycle)| NA | NA | NA |112 < HCLK <= 120| | ||||
+-------------------------------------------------------------------------------------+ | ||||
@endverbatim | ||||
* @{ | ||||
*/ | ||||
/** | ||||
* @brief Configures the system clock (SYSCLK). | ||||
* @note The HSI is used (enabled by hardware) as system clock source after | ||||
* startup from Reset, wake-up from STOP and STANDBY mode, or in case | ||||
* of failure of the HSE used directly or indirectly as system clock | ||||
* (if the Clock Security System CSS is enabled). | ||||
* @note A switch from one clock source to another occurs only if the target | ||||
* clock source is ready (clock stable after startup delay or PLL locked). | ||||
* If a clock source which is not yet ready is selected, the switch will | ||||
* occur when the clock source will be ready. | ||||
* You can use RCC_GetSYSCLKSource() function to know which clock is | ||||
* currently used as system clock source. | ||||
* @param RCC_SYSCLKSource: specifies the clock source used as system clock. | ||||
* This parameter can be one of the following values: | ||||
* @arg RCC_SYSCLKSource_HSI: HSI selected as system clock source | ||||
* @arg RCC_SYSCLKSource_HSE: HSE selected as system clock source | ||||
* @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock source | ||||
* @retval None | ||||
*/ | ||||
void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource) | ||||
{ | ||||
uint32_t tmpreg = 0; | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource)); | ||||
tmpreg = RCC->CFGR; | ||||
/* Clear SW[1:0] bits */ | ||||
tmpreg &= ~RCC_CFGR_SW; | ||||
/* Set SW[1:0] bits according to RCC_SYSCLKSource value */ | ||||
tmpreg |= RCC_SYSCLKSource; | ||||
/* Store the new value */ | ||||
RCC->CFGR = tmpreg; | ||||
} | ||||
/** | ||||
* @brief Returns the clock source used as system clock. | ||||
* @param None | ||||
* @retval The clock source used as system clock. The returned value can be one | ||||
* of the following: | ||||
* - 0x00: HSI used as system clock | ||||
* - 0x04: HSE used as system clock | ||||
* - 0x08: PLL used as system clock | ||||
*/ | ||||
uint8_t RCC_GetSYSCLKSource(void) | ||||
{ | ||||
return ((uint8_t)(RCC->CFGR & RCC_CFGR_SWS)); | ||||
} | ||||
/** | ||||
* @brief Configures the AHB clock (HCLK). | ||||
* @note Depending on the device voltage range, the software has to set correctly | ||||
* these bits to ensure that HCLK not exceed the maximum allowed frequency | ||||
* (for more details refer to section above | ||||
* "CPU, AHB and APB busses clocks configuration functions") | ||||
* @param RCC_SYSCLK: defines the AHB clock divider. This clock is derived from | ||||
* the system clock (SYSCLK). | ||||
* This parameter can be one of the following values: | ||||
* @arg RCC_SYSCLK_Div1: AHB clock = SYSCLK | ||||
* @arg RCC_SYSCLK_Div2: AHB clock = SYSCLK/2 | ||||
* @arg RCC_SYSCLK_Div4: AHB clock = SYSCLK/4 | ||||
* @arg RCC_SYSCLK_Div8: AHB clock = SYSCLK/8 | ||||
* @arg RCC_SYSCLK_Div16: AHB clock = SYSCLK/16 | ||||
* @arg RCC_SYSCLK_Div64: AHB clock = SYSCLK/64 | ||||
* @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128 | ||||
* @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256 | ||||
* @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512 | ||||
* @retval None | ||||
*/ | ||||
void RCC_HCLKConfig(uint32_t RCC_SYSCLK) | ||||
{ | ||||
uint32_t tmpreg = 0; | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_HCLK(RCC_SYSCLK)); | ||||
tmpreg = RCC->CFGR; | ||||
/* Clear HPRE[3:0] bits */ | ||||
tmpreg &= ~RCC_CFGR_HPRE; | ||||
/* Set HPRE[3:0] bits according to RCC_SYSCLK value */ | ||||
tmpreg |= RCC_SYSCLK; | ||||
/* Store the new value */ | ||||
RCC->CFGR = tmpreg; | ||||
} | ||||
/** | ||||
* @brief Configures the Low Speed APB clock (PCLK1). | ||||
* @param RCC_HCLK: defines the APB1 clock divider. This clock is derived from | ||||
* the AHB clock (HCLK). | ||||
* This parameter can be one of the following values: | ||||
* @arg RCC_HCLK_Div1: APB1 clock = HCLK | ||||
* @arg RCC_HCLK_Div2: APB1 clock = HCLK/2 | ||||
* @arg RCC_HCLK_Div4: APB1 clock = HCLK/4 | ||||
* @arg RCC_HCLK_Div8: APB1 clock = HCLK/8 | ||||
* @arg RCC_HCLK_Div16: APB1 clock = HCLK/16 | ||||
* @retval None | ||||
*/ | ||||
void RCC_PCLK1Config(uint32_t RCC_HCLK) | ||||
{ | ||||
uint32_t tmpreg = 0; | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_PCLK(RCC_HCLK)); | ||||
tmpreg = RCC->CFGR; | ||||
/* Clear PPRE1[2:0] bits */ | ||||
tmpreg &= ~RCC_CFGR_PPRE1; | ||||
/* Set PPRE1[2:0] bits according to RCC_HCLK value */ | ||||
tmpreg |= RCC_HCLK; | ||||
/* Store the new value */ | ||||
RCC->CFGR = tmpreg; | ||||
} | ||||
/** | ||||
* @brief Configures the High Speed APB clock (PCLK2). | ||||
* @param RCC_HCLK: defines the APB2 clock divider. This clock is derived from | ||||
* the AHB clock (HCLK). | ||||
* This parameter can be one of the following values: | ||||
* @arg RCC_HCLK_Div1: APB2 clock = HCLK | ||||
* @arg RCC_HCLK_Div2: APB2 clock = HCLK/2 | ||||
* @arg RCC_HCLK_Div4: APB2 clock = HCLK/4 | ||||
* @arg RCC_HCLK_Div8: APB2 clock = HCLK/8 | ||||
* @arg RCC_HCLK_Div16: APB2 clock = HCLK/16 | ||||
* @retval None | ||||
*/ | ||||
void RCC_PCLK2Config(uint32_t RCC_HCLK) | ||||
{ | ||||
uint32_t tmpreg = 0; | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_PCLK(RCC_HCLK)); | ||||
tmpreg = RCC->CFGR; | ||||
/* Clear PPRE2[2:0] bits */ | ||||
tmpreg &= ~RCC_CFGR_PPRE2; | ||||
/* Set PPRE2[2:0] bits according to RCC_HCLK value */ | ||||
tmpreg |= RCC_HCLK << 3; | ||||
/* Store the new value */ | ||||
RCC->CFGR = tmpreg; | ||||
} | ||||
/** | ||||
* @brief Returns the frequencies of different on chip clocks; SYSCLK, HCLK, | ||||
* PCLK1 and PCLK2. | ||||
* | ||||
* @note The system frequency computed by this function is not the real | ||||
* frequency in the chip. It is calculated based on the predefined | ||||
* constant and the selected clock source: | ||||
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) | ||||
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**) | ||||
* @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**) | ||||
* or HSI_VALUE(*) multiplied/divided by the PLL factors. | ||||
* @note (*) HSI_VALUE is a constant defined in stm32f4xx.h file (default value | ||||
* 16 MHz) but the real value may vary depending on the variations | ||||
* in voltage and temperature. | ||||
* @note (**) HSE_VALUE is a constant defined in stm32f4xx.h file (default value | ||||
* 25 MHz), user has to ensure that HSE_VALUE is same as the real | ||||
* frequency of the crystal used. Otherwise, this function may | ||||
* have wrong result. | ||||
* | ||||
* @note The result of this function could be not correct when using fractional | ||||
* value for HSE crystal. | ||||
* | ||||
* @param RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold | ||||
* the clocks frequencies. | ||||
* | ||||
* @note This function can be used by the user application to compute the | ||||
* baudrate for the communication peripherals or configure other parameters. | ||||
* @note Each time SYSCLK, HCLK, PCLK1 and/or PCLK2 clock changes, this function | ||||
* must be called to update the structure's field. Otherwise, any | ||||
* configuration based on this function will be incorrect. | ||||
* | ||||
* @retval None | ||||
*/ | ||||
void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks) | ||||
{ | ||||
uint32_t tmp = 0, presc = 0, pllvco = 0, pllp = 2, pllsource = 0, pllm = 2; | ||||
/* Get SYSCLK source -------------------------------------------------------*/ | ||||
tmp = RCC->CFGR & RCC_CFGR_SWS; | ||||
switch (tmp) | ||||
{ | ||||
case 0x00: /* HSI used as system clock source */ | ||||
RCC_Clocks->SYSCLK_Frequency = HSI_VALUE; | ||||
break; | ||||
case 0x04: /* HSE used as system clock source */ | ||||
RCC_Clocks->SYSCLK_Frequency = HSE_VALUE; | ||||
break; | ||||
case 0x08: /* PLL used as system clock source */ | ||||
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN | ||||
SYSCLK = PLL_VCO / PLLP | ||||
*/ | ||||
pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) >> 22; | ||||
pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM; | ||||
if (pllsource != 0) | ||||
{ | ||||
/* HSE used as PLL clock source */ | ||||
pllvco = (HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6); | ||||
} | ||||
else | ||||
{ | ||||
/* HSI used as PLL clock source */ | ||||
pllvco = (HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6); | ||||
} | ||||
pllp = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >>16) + 1 ) *2; | ||||
RCC_Clocks->SYSCLK_Frequency = pllvco/pllp; | ||||
break; | ||||
default: | ||||
RCC_Clocks->SYSCLK_Frequency = HSI_VALUE; | ||||
break; | ||||
} | ||||
/* Compute HCLK, PCLK1 and PCLK2 clocks frequencies ------------------------*/ | ||||
/* Get HCLK prescaler */ | ||||
tmp = RCC->CFGR & RCC_CFGR_HPRE; | ||||
tmp = tmp >> 4; | ||||
presc = APBAHBPrescTable[tmp]; | ||||
/* HCLK clock frequency */ | ||||
RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc; | ||||
/* Get PCLK1 prescaler */ | ||||
tmp = RCC->CFGR & RCC_CFGR_PPRE1; | ||||
tmp = tmp >> 10; | ||||
presc = APBAHBPrescTable[tmp]; | ||||
/* PCLK1 clock frequency */ | ||||
RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc; | ||||
/* Get PCLK2 prescaler */ | ||||
tmp = RCC->CFGR & RCC_CFGR_PPRE2; | ||||
tmp = tmp >> 13; | ||||
presc = APBAHBPrescTable[tmp]; | ||||
/* PCLK2 clock frequency */ | ||||
RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> presc; | ||||
} | ||||
/** | ||||
* @} | ||||
*/ | ||||
/** @defgroup RCC_Group3 Peripheral clocks configuration functions | ||||
* @brief Peripheral clocks configuration functions | ||||
* | ||||
@verbatim | ||||
=============================================================================== | ||||
Peripheral clocks configuration functions | ||||
=============================================================================== | ||||
This section provide functions allowing to configure the Peripheral clocks. | ||||
1. The RTC clock which is derived from the LSI, LSE or HSE clock divided by 2 to 31. | ||||
2. After restart from Reset or wakeup from STANDBY, all peripherals are off | ||||
except internal SRAM, Flash and JTAG. Before to start using a peripheral you | ||||
have to enable its interface clock. You can do this using RCC_AHBPeriphClockCmd() | ||||
, RCC_APB2PeriphClockCmd() and RCC_APB1PeriphClockCmd() functions. | ||||
3. To reset the peripherals configuration (to the default state after device reset) | ||||
you can use RCC_AHBPeriphResetCmd(), RCC_APB2PeriphResetCmd() and | ||||
RCC_APB1PeriphResetCmd() functions. | ||||
4. To further reduce power consumption in SLEEP mode the peripheral clocks can | ||||
be disabled prior to executing the WFI or WFE instructions. You can do this | ||||
using RCC_AHBPeriphClockLPModeCmd(), RCC_APB2PeriphClockLPModeCmd() and | ||||
RCC_APB1PeriphClockLPModeCmd() functions. | ||||
@endverbatim | ||||
* @{ | ||||
*/ | ||||
/** | ||||
* @brief Configures the RTC clock (RTCCLK). | ||||
* @note As the RTC clock configuration bits are in the Backup domain and write | ||||
* access is denied to this domain after reset, you have to enable write | ||||
* access using PWR_BackupAccessCmd(ENABLE) function before to configure | ||||
* the RTC clock source (to be done once after reset). | ||||
* @note Once the RTC clock is configured it can't be changed unless the | ||||
* Backup domain is reset using RCC_BackupResetCmd() function, or by | ||||
* a Power On Reset (POR). | ||||
* | ||||
* @param RCC_RTCCLKSource: specifies the RTC clock source. | ||||
* This parameter can be one of the following values: | ||||
* @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock | ||||
* @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock | ||||
* @arg RCC_RTCCLKSource_HSE_Divx: HSE clock divided by x selected | ||||
* as RTC clock, where x:[2,31] | ||||
* | ||||
* @note If the LSE or LSI is used as RTC clock source, the RTC continues to | ||||
* work in STOP and STANDBY modes, and can be used as wakeup source. | ||||
* However, when the HSE clock is used as RTC clock source, the RTC | ||||
* cannot be used in STOP and STANDBY modes. | ||||
* @note The maximum input clock frequency for RTC is 1MHz (when using HSE as | ||||
* RTC clock source). | ||||
* | ||||
* @retval None | ||||
*/ | ||||
void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource) | ||||
{ | ||||
uint32_t tmpreg = 0; | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource)); | ||||
if ((RCC_RTCCLKSource & 0x00000300) == 0x00000300) | ||||
{ /* If HSE is selected as RTC clock source, configure HSE division factor for RTC clock */ | ||||
tmpreg = RCC->CFGR; | ||||
/* Clear RTCPRE[4:0] bits */ | ||||
tmpreg &= ~RCC_CFGR_RTCPRE; | ||||
/* Configure HSE division factor for RTC clock */ | ||||
tmpreg |= (RCC_RTCCLKSource & 0xFFFFCFF); | ||||
/* Store the new value */ | ||||
RCC->CFGR = tmpreg; | ||||
} | ||||
/* Select the RTC clock source */ | ||||
RCC->BDCR |= (RCC_RTCCLKSource & 0x00000FFF); | ||||
} | ||||
/** | ||||
* @brief Enables or disables the RTC clock. | ||||
* @note This function must be used only after the RTC clock source was selected | ||||
* using the RCC_RTCCLKConfig function. | ||||
* @param NewState: new state of the RTC clock. This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_RTCCLKCmd(FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
*(__IO uint32_t *) BDCR_RTCEN_BB = (uint32_t)NewState; | ||||
} | ||||
/** | ||||
* @brief Forces or releases the Backup domain reset. | ||||
* @note This function resets the RTC peripheral (including the backup registers) | ||||
* and the RTC clock source selection in RCC_CSR register. | ||||
* @note The BKPSRAM is not affected by this reset. | ||||
* @param NewState: new state of the Backup domain reset. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_BackupResetCmd(FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
*(__IO uint32_t *) BDCR_BDRST_BB = (uint32_t)NewState; | ||||
} | ||||
/** | ||||
* @brief Configures the I2S clock source (I2SCLK). | ||||
* | ||||
* @note This function must be called before enabling the I2S APB clock. | ||||
* @note This function applies only to Silicon RevisionB and RevisionY. | ||||
* | ||||
* @param RCC_I2SCLKSource: specifies the I2S clock source. | ||||
* This parameter can be one of the following values: | ||||
* @arg RCC_I2S2CLKSource_PLLI2S: PLLI2S clock used as I2S clock source | ||||
* @arg RCC_I2S2CLKSource_Ext: External clock mapped on the I2S_CKIN pin | ||||
* used as I2S clock source | ||||
* @retval None | ||||
*/ | ||||
void RCC_I2SCLKConfig(uint32_t RCC_I2SCLKSource) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_I2SCLK_SOURCE(RCC_I2SCLKSource)); | ||||
*(__IO uint32_t *) CFGR_I2SSRC_BB = RCC_I2SCLKSource; | ||||
} | ||||
/** | ||||
* @brief Enables or disables the AHB1 peripheral clock. | ||||
* @note After reset, the peripheral clock (used for registers read/write access) | ||||
* is disabled and the application software has to enable this clock before | ||||
* using it. | ||||
* @param RCC_AHBPeriph: specifies the AHB1 peripheral to gates its clock. | ||||
* This parameter can be any combination of the following values: | ||||
* @arg RCC_AHB1Periph_GPIOA: GPIOA clock | ||||
* @arg RCC_AHB1Periph_GPIOB: GPIOB clock | ||||
* @arg RCC_AHB1Periph_GPIOC: GPIOC clock | ||||
* @arg RCC_AHB1Periph_GPIOD: GPIOD clock | ||||
* @arg RCC_AHB1Periph_GPIOE: GPIOE clock | ||||
* @arg RCC_AHB1Periph_GPIOF: GPIOF clock | ||||
* @arg RCC_AHB1Periph_GPIOG: GPIOG clock | ||||
* @arg RCC_AHB1Periph_GPIOG: GPIOG clock | ||||
* @arg RCC_AHB1Periph_GPIOI: GPIOI clock | ||||
* @arg RCC_AHB1Periph_CRC: CRC clock | ||||
* @arg RCC_AHB1Periph_BKPSRAM: BKPSRAM interface clock | ||||
* @arg RCC_AHB1Periph_DMA1: DMA1 clock | ||||
* @arg RCC_AHB1Periph_DMA2: DMA2 clock | ||||
* @arg RCC_AHB1Periph_ETH_MAC: Ethernet MAC clock | ||||
* @arg RCC_AHB1Periph_ETH_MAC_Tx: Ethernet Transmission clock | ||||
* @arg RCC_AHB1Periph_ETH_MAC_Rx: Ethernet Reception clock | ||||
* @arg RCC_AHB1Periph_ETH_MAC_PTP: Ethernet PTP clock | ||||
* @arg RCC_AHB1Periph_OTG_HS: USB OTG HS clock | ||||
* @arg RCC_AHB1Periph_OTG_HS_ULPI: USB OTG HS ULPI clock | ||||
* @param NewState: new state of the specified peripheral clock. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_AHB1PeriphClockCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_AHB1_CLOCK_PERIPH(RCC_AHB1Periph)); | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
if (NewState != DISABLE) | ||||
{ | ||||
RCC->AHB1ENR |= RCC_AHB1Periph; | ||||
} | ||||
else | ||||
{ | ||||
RCC->AHB1ENR &= ~RCC_AHB1Periph; | ||||
} | ||||
} | ||||
/** | ||||
* @brief Enables or disables the AHB2 peripheral clock. | ||||
* @note After reset, the peripheral clock (used for registers read/write access) | ||||
* is disabled and the application software has to enable this clock before | ||||
* using it. | ||||
* @param RCC_AHBPeriph: specifies the AHB2 peripheral to gates its clock. | ||||
* This parameter can be any combination of the following values: | ||||
* @arg RCC_AHB2Periph_DCMI: DCMI clock | ||||
* @arg RCC_AHB2Periph_CRYP: CRYP clock | ||||
* @arg RCC_AHB2Periph_HASH: HASH clock | ||||
* @arg RCC_AHB2Periph_RNG: RNG clock | ||||
* @arg RCC_AHB2Periph_OTG_FS: USB OTG FS clock | ||||
* @param NewState: new state of the specified peripheral clock. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_AHB2PeriphClockCmd(uint32_t RCC_AHB2Periph, FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_AHB2_PERIPH(RCC_AHB2Periph)); | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
if (NewState != DISABLE) | ||||
{ | ||||
RCC->AHB2ENR |= RCC_AHB2Periph; | ||||
} | ||||
else | ||||
{ | ||||
RCC->AHB2ENR &= ~RCC_AHB2Periph; | ||||
} | ||||
} | ||||
/** | ||||
* @brief Enables or disables the AHB3 peripheral clock. | ||||
* @note After reset, the peripheral clock (used for registers read/write access) | ||||
* is disabled and the application software has to enable this clock before | ||||
* using it. | ||||
* @param RCC_AHBPeriph: specifies the AHB3 peripheral to gates its clock. | ||||
* This parameter must be: RCC_AHB3Periph_FSMC | ||||
* @param NewState: new state of the specified peripheral clock. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_AHB3PeriphClockCmd(uint32_t RCC_AHB3Periph, FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_AHB3_PERIPH(RCC_AHB3Periph)); | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
if (NewState != DISABLE) | ||||
{ | ||||
RCC->AHB3ENR |= RCC_AHB3Periph; | ||||
} | ||||
else | ||||
{ | ||||
RCC->AHB3ENR &= ~RCC_AHB3Periph; | ||||
} | ||||
} | ||||
/** | ||||
* @brief Enables or disables the Low Speed APB (APB1) peripheral clock. | ||||
* @note After reset, the peripheral clock (used for registers read/write access) | ||||
* is disabled and the application software has to enable this clock before | ||||
* using it. | ||||
* @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock. | ||||
* This parameter can be any combination of the following values: | ||||
* @arg RCC_APB1Periph_TIM2: TIM2 clock | ||||
* @arg RCC_APB1Periph_TIM3: TIM3 clock | ||||
* @arg RCC_APB1Periph_TIM4: TIM4 clock | ||||
* @arg RCC_APB1Periph_TIM5: TIM5 clock | ||||
* @arg RCC_APB1Periph_TIM6: TIM6 clock | ||||
* @arg RCC_APB1Periph_TIM7: TIM7 clock | ||||
* @arg RCC_APB1Periph_TIM12: TIM12 clock | ||||
* @arg RCC_APB1Periph_TIM13: TIM13 clock | ||||
* @arg RCC_APB1Periph_TIM14: TIM14 clock | ||||
* @arg RCC_APB1Periph_WWDG: WWDG clock | ||||
* @arg RCC_APB1Periph_SPI2: SPI2 clock | ||||
* @arg RCC_APB1Periph_SPI3: SPI3 clock | ||||
* @arg RCC_APB1Periph_USART2: USART2 clock | ||||
* @arg RCC_APB1Periph_USART3: USART3 clock | ||||
* @arg RCC_APB1Periph_UART4: UART4 clock | ||||
* @arg RCC_APB1Periph_UART5: UART5 clock | ||||
* @arg RCC_APB1Periph_I2C1: I2C1 clock | ||||
* @arg RCC_APB1Periph_I2C2: I2C2 clock | ||||
* @arg RCC_APB1Periph_I2C3: I2C3 clock | ||||
* @arg RCC_APB1Periph_CAN1: CAN1 clock | ||||
* @arg RCC_APB1Periph_CAN2: CAN2 clock | ||||
* @arg RCC_APB1Periph_PWR: PWR clock | ||||
* @arg RCC_APB1Periph_DAC: DAC clock | ||||
* @param NewState: new state of the specified peripheral clock. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph)); | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
if (NewState != DISABLE) | ||||
{ | ||||
RCC->APB1ENR |= RCC_APB1Periph; | ||||
} | ||||
else | ||||
{ | ||||
RCC->APB1ENR &= ~RCC_APB1Periph; | ||||
} | ||||
} | ||||
/** | ||||
* @brief Enables or disables the High Speed APB (APB2) peripheral clock. | ||||
* @note After reset, the peripheral clock (used for registers read/write access) | ||||
* is disabled and the application software has to enable this clock before | ||||
* using it. | ||||
* @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock. | ||||
* This parameter can be any combination of the following values: | ||||
* @arg RCC_APB2Periph_TIM1: TIM1 clock | ||||
* @arg RCC_APB2Periph_TIM8: TIM8 clock | ||||
* @arg RCC_APB2Periph_USART1: USART1 clock | ||||
* @arg RCC_APB2Periph_USART6: USART6 clock | ||||
* @arg RCC_APB2Periph_ADC1: ADC1 clock | ||||
* @arg RCC_APB2Periph_ADC2: ADC2 clock | ||||
* @arg RCC_APB2Periph_ADC3: ADC3 clock | ||||
* @arg RCC_APB2Periph_SDIO: SDIO clock | ||||
* @arg RCC_APB2Periph_SPI1: SPI1 clock | ||||
* @arg RCC_APB2Periph_SYSCFG: SYSCFG clock | ||||
* @arg RCC_APB2Periph_TIM9: TIM9 clock | ||||
* @arg RCC_APB2Periph_TIM10: TIM10 clock | ||||
* @arg RCC_APB2Periph_TIM11: TIM11 clock | ||||
* @param NewState: new state of the specified peripheral clock. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph)); | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
if (NewState != DISABLE) | ||||
{ | ||||
RCC->APB2ENR |= RCC_APB2Periph; | ||||
} | ||||
else | ||||
{ | ||||
RCC->APB2ENR &= ~RCC_APB2Periph; | ||||
} | ||||
} | ||||
/** | ||||
* @brief Forces or releases AHB1 peripheral reset. | ||||
* @param RCC_AHB1Periph: specifies the AHB1 peripheral to reset. | ||||
* This parameter can be any combination of the following values: | ||||
* @arg RCC_AHB1Periph_GPIOA: GPIOA clock | ||||
* @arg RCC_AHB1Periph_GPIOB: GPIOB clock | ||||
* @arg RCC_AHB1Periph_GPIOC: GPIOC clock | ||||
* @arg RCC_AHB1Periph_GPIOD: GPIOD clock | ||||
* @arg RCC_AHB1Periph_GPIOE: GPIOE clock | ||||
* @arg RCC_AHB1Periph_GPIOF: GPIOF clock | ||||
* @arg RCC_AHB1Periph_GPIOG: GPIOG clock | ||||
* @arg RCC_AHB1Periph_GPIOG: GPIOG clock | ||||
* @arg RCC_AHB1Periph_GPIOI: GPIOI clock | ||||
* @arg RCC_AHB1Periph_CRC: CRC clock | ||||
* @arg RCC_AHB1Periph_DMA1: DMA1 clock | ||||
* @arg RCC_AHB1Periph_DMA2: DMA2 clock | ||||
* @arg RCC_AHB1Periph_ETH_MAC: Ethernet MAC clock | ||||
* @arg RCC_AHB1Periph_OTG_HS: USB OTG HS clock | ||||
* | ||||
* @param NewState: new state of the specified peripheral reset. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_AHB1PeriphResetCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_AHB1_RESET_PERIPH(RCC_AHB1Periph)); | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
if (NewState != DISABLE) | ||||
{ | ||||
RCC->AHB1RSTR |= RCC_AHB1Periph; | ||||
} | ||||
else | ||||
{ | ||||
RCC->AHB1RSTR &= ~RCC_AHB1Periph; | ||||
} | ||||
} | ||||
/** | ||||
* @brief Forces or releases AHB2 peripheral reset. | ||||
* @param RCC_AHB2Periph: specifies the AHB2 peripheral to reset. | ||||
* This parameter can be any combination of the following values: | ||||
* @arg RCC_AHB2Periph_DCMI: DCMI clock | ||||
* @arg RCC_AHB2Periph_CRYP: CRYP clock | ||||
* @arg RCC_AHB2Periph_HASH: HASH clock | ||||
* @arg RCC_AHB2Periph_RNG: RNG clock | ||||
* @arg RCC_AHB2Periph_OTG_FS: USB OTG FS clock | ||||
* @param NewState: new state of the specified peripheral reset. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_AHB2PeriphResetCmd(uint32_t RCC_AHB2Periph, FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_AHB2_PERIPH(RCC_AHB2Periph)); | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
if (NewState != DISABLE) | ||||
{ | ||||
RCC->AHB2RSTR |= RCC_AHB2Periph; | ||||
} | ||||
else | ||||
{ | ||||
RCC->AHB2RSTR &= ~RCC_AHB2Periph; | ||||
} | ||||
} | ||||
/** | ||||
* @brief Forces or releases AHB3 peripheral reset. | ||||
* @param RCC_AHB3Periph: specifies the AHB3 peripheral to reset. | ||||
* This parameter must be: RCC_AHB3Periph_FSMC | ||||
* @param NewState: new state of the specified peripheral reset. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_AHB3PeriphResetCmd(uint32_t RCC_AHB3Periph, FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_AHB3_PERIPH(RCC_AHB3Periph)); | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
if (NewState != DISABLE) | ||||
{ | ||||
RCC->AHB3RSTR |= RCC_AHB3Periph; | ||||
} | ||||
else | ||||
{ | ||||
RCC->AHB3RSTR &= ~RCC_AHB3Periph; | ||||
} | ||||
} | ||||
/** | ||||
* @brief Forces or releases Low Speed APB (APB1) peripheral reset. | ||||
* @param RCC_APB1Periph: specifies the APB1 peripheral to reset. | ||||
* This parameter can be any combination of the following values: | ||||
* @arg RCC_APB1Periph_TIM2: TIM2 clock | ||||
* @arg RCC_APB1Periph_TIM3: TIM3 clock | ||||
* @arg RCC_APB1Periph_TIM4: TIM4 clock | ||||
* @arg RCC_APB1Periph_TIM5: TIM5 clock | ||||
* @arg RCC_APB1Periph_TIM6: TIM6 clock | ||||
* @arg RCC_APB1Periph_TIM7: TIM7 clock | ||||
* @arg RCC_APB1Periph_TIM12: TIM12 clock | ||||
* @arg RCC_APB1Periph_TIM13: TIM13 clock | ||||
* @arg RCC_APB1Periph_TIM14: TIM14 clock | ||||
* @arg RCC_APB1Periph_WWDG: WWDG clock | ||||
* @arg RCC_APB1Periph_SPI2: SPI2 clock | ||||
* @arg RCC_APB1Periph_SPI3: SPI3 clock | ||||
* @arg RCC_APB1Periph_USART2: USART2 clock | ||||
* @arg RCC_APB1Periph_USART3: USART3 clock | ||||
* @arg RCC_APB1Periph_UART4: UART4 clock | ||||
* @arg RCC_APB1Periph_UART5: UART5 clock | ||||
* @arg RCC_APB1Periph_I2C1: I2C1 clock | ||||
* @arg RCC_APB1Periph_I2C2: I2C2 clock | ||||
* @arg RCC_APB1Periph_I2C3: I2C3 clock | ||||
* @arg RCC_APB1Periph_CAN1: CAN1 clock | ||||
* @arg RCC_APB1Periph_CAN2: CAN2 clock | ||||
* @arg RCC_APB1Periph_PWR: PWR clock | ||||
* @arg RCC_APB1Periph_DAC: DAC clock | ||||
* @param NewState: new state of the specified peripheral reset. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph)); | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
if (NewState != DISABLE) | ||||
{ | ||||
RCC->APB1RSTR |= RCC_APB1Periph; | ||||
} | ||||
else | ||||
{ | ||||
RCC->APB1RSTR &= ~RCC_APB1Periph; | ||||
} | ||||
} | ||||
/** | ||||
* @brief Forces or releases High Speed APB (APB2) peripheral reset. | ||||
* @param RCC_APB2Periph: specifies the APB2 peripheral to reset. | ||||
* This parameter can be any combination of the following values: | ||||
* @arg RCC_APB2Periph_TIM1: TIM1 clock | ||||
* @arg RCC_APB2Periph_TIM8: TIM8 clock | ||||
* @arg RCC_APB2Periph_USART1: USART1 clock | ||||
* @arg RCC_APB2Periph_USART6: USART6 clock | ||||
* @arg RCC_APB2Periph_ADC1: ADC1 clock | ||||
* @arg RCC_APB2Periph_ADC2: ADC2 clock | ||||
* @arg RCC_APB2Periph_ADC3: ADC3 clock | ||||
* @arg RCC_APB2Periph_SDIO: SDIO clock | ||||
* @arg RCC_APB2Periph_SPI1: SPI1 clock | ||||
* @arg RCC_APB2Periph_SYSCFG: SYSCFG clock | ||||
* @arg RCC_APB2Periph_TIM9: TIM9 clock | ||||
* @arg RCC_APB2Periph_TIM10: TIM10 clock | ||||
* @arg RCC_APB2Periph_TIM11: TIM11 clock | ||||
* @param NewState: new state of the specified peripheral reset. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_APB2_RESET_PERIPH(RCC_APB2Periph)); | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
if (NewState != DISABLE) | ||||
{ | ||||
RCC->APB2RSTR |= RCC_APB2Periph; | ||||
} | ||||
else | ||||
{ | ||||
RCC->APB2RSTR &= ~RCC_APB2Periph; | ||||
} | ||||
} | ||||
/** | ||||
* @brief Enables or disables the AHB1 peripheral clock during Low Power (Sleep) mode. | ||||
* @note Peripheral clock gating in SLEEP mode can be used to further reduce | ||||
* power consumption. | ||||
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again. | ||||
* @note By default, all peripheral clocks are enabled during SLEEP mode. | ||||
* @param RCC_AHBPeriph: specifies the AHB1 peripheral to gates its clock. | ||||
* This parameter can be any combination of the following values: | ||||
* @arg RCC_AHB1Periph_GPIOA: GPIOA clock | ||||
* @arg RCC_AHB1Periph_GPIOB: GPIOB clock | ||||
* @arg RCC_AHB1Periph_GPIOC: GPIOC clock | ||||
* @arg RCC_AHB1Periph_GPIOD: GPIOD clock | ||||
* @arg RCC_AHB1Periph_GPIOE: GPIOE clock | ||||
* @arg RCC_AHB1Periph_GPIOF: GPIOF clock | ||||
* @arg RCC_AHB1Periph_GPIOG: GPIOG clock | ||||
* @arg RCC_AHB1Periph_GPIOG: GPIOG clock | ||||
* @arg RCC_AHB1Periph_GPIOI: GPIOI clock | ||||
* @arg RCC_AHB1Periph_CRC: CRC clock | ||||
* @arg RCC_AHB1Periph_BKPSRAM: BKPSRAM interface clock | ||||
* @arg RCC_AHB1Periph_DMA1: DMA1 clock | ||||
* @arg RCC_AHB1Periph_DMA2: DMA2 clock | ||||
* @arg RCC_AHB1Periph_ETH_MAC: Ethernet MAC clock | ||||
* @arg RCC_AHB1Periph_ETH_MAC_Tx: Ethernet Transmission clock | ||||
* @arg RCC_AHB1Periph_ETH_MAC_Rx: Ethernet Reception clock | ||||
* @arg RCC_AHB1Periph_ETH_MAC_PTP: Ethernet PTP clock | ||||
* @arg RCC_AHB1Periph_OTG_HS: USB OTG HS clock | ||||
* @arg RCC_AHB1Periph_OTG_HS_ULPI: USB OTG HS ULPI clock | ||||
* @param NewState: new state of the specified peripheral clock. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_AHB1PeriphClockLPModeCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_AHB1_LPMODE_PERIPH(RCC_AHB1Periph)); | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
if (NewState != DISABLE) | ||||
{ | ||||
RCC->AHB1LPENR |= RCC_AHB1Periph; | ||||
} | ||||
else | ||||
{ | ||||
RCC->AHB1LPENR &= ~RCC_AHB1Periph; | ||||
} | ||||
} | ||||
/** | ||||
* @brief Enables or disables the AHB2 peripheral clock during Low Power (Sleep) mode. | ||||
* @note Peripheral clock gating in SLEEP mode can be used to further reduce | ||||
* power consumption. | ||||
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again. | ||||
* @note By default, all peripheral clocks are enabled during SLEEP mode. | ||||
* @param RCC_AHBPeriph: specifies the AHB2 peripheral to gates its clock. | ||||
* This parameter can be any combination of the following values: | ||||
* @arg RCC_AHB2Periph_DCMI: DCMI clock | ||||
* @arg RCC_AHB2Periph_CRYP: CRYP clock | ||||
* @arg RCC_AHB2Periph_HASH: HASH clock | ||||
* @arg RCC_AHB2Periph_RNG: RNG clock | ||||
* @arg RCC_AHB2Periph_OTG_FS: USB OTG FS clock | ||||
* @param NewState: new state of the specified peripheral clock. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_AHB2PeriphClockLPModeCmd(uint32_t RCC_AHB2Periph, FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_AHB2_PERIPH(RCC_AHB2Periph)); | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
if (NewState != DISABLE) | ||||
{ | ||||
RCC->AHB2LPENR |= RCC_AHB2Periph; | ||||
} | ||||
else | ||||
{ | ||||
RCC->AHB2LPENR &= ~RCC_AHB2Periph; | ||||
} | ||||
} | ||||
/** | ||||
* @brief Enables or disables the AHB3 peripheral clock during Low Power (Sleep) mode. | ||||
* @note Peripheral clock gating in SLEEP mode can be used to further reduce | ||||
* power consumption. | ||||
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again. | ||||
* @note By default, all peripheral clocks are enabled during SLEEP mode. | ||||
* @param RCC_AHBPeriph: specifies the AHB3 peripheral to gates its clock. | ||||
* This parameter must be: RCC_AHB3Periph_FSMC | ||||
* @param NewState: new state of the specified peripheral clock. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_AHB3PeriphClockLPModeCmd(uint32_t RCC_AHB3Periph, FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_AHB3_PERIPH(RCC_AHB3Periph)); | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
if (NewState != DISABLE) | ||||
{ | ||||
RCC->AHB3LPENR |= RCC_AHB3Periph; | ||||
} | ||||
else | ||||
{ | ||||
RCC->AHB3LPENR &= ~RCC_AHB3Periph; | ||||
} | ||||
} | ||||
/** | ||||
* @brief Enables or disables the APB1 peripheral clock during Low Power (Sleep) mode. | ||||
* @note Peripheral clock gating in SLEEP mode can be used to further reduce | ||||
* power consumption. | ||||
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again. | ||||
* @note By default, all peripheral clocks are enabled during SLEEP mode. | ||||
* @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock. | ||||
* This parameter can be any combination of the following values: | ||||
* @arg RCC_APB1Periph_TIM2: TIM2 clock | ||||
* @arg RCC_APB1Periph_TIM3: TIM3 clock | ||||
* @arg RCC_APB1Periph_TIM4: TIM4 clock | ||||
* @arg RCC_APB1Periph_TIM5: TIM5 clock | ||||
* @arg RCC_APB1Periph_TIM6: TIM6 clock | ||||
* @arg RCC_APB1Periph_TIM7: TIM7 clock | ||||
* @arg RCC_APB1Periph_TIM12: TIM12 clock | ||||
* @arg RCC_APB1Periph_TIM13: TIM13 clock | ||||
* @arg RCC_APB1Periph_TIM14: TIM14 clock | ||||
* @arg RCC_APB1Periph_WWDG: WWDG clock | ||||
* @arg RCC_APB1Periph_SPI2: SPI2 clock | ||||
* @arg RCC_APB1Periph_SPI3: SPI3 clock | ||||
* @arg RCC_APB1Periph_USART2: USART2 clock | ||||
* @arg RCC_APB1Periph_USART3: USART3 clock | ||||
* @arg RCC_APB1Periph_UART4: UART4 clock | ||||
* @arg RCC_APB1Periph_UART5: UART5 clock | ||||
* @arg RCC_APB1Periph_I2C1: I2C1 clock | ||||
* @arg RCC_APB1Periph_I2C2: I2C2 clock | ||||
* @arg RCC_APB1Periph_I2C3: I2C3 clock | ||||
* @arg RCC_APB1Periph_CAN1: CAN1 clock | ||||
* @arg RCC_APB1Periph_CAN2: CAN2 clock | ||||
* @arg RCC_APB1Periph_PWR: PWR clock | ||||
* @arg RCC_APB1Periph_DAC: DAC clock | ||||
* @param NewState: new state of the specified peripheral clock. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_APB1PeriphClockLPModeCmd(uint32_t RCC_APB1Periph, FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph)); | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
if (NewState != DISABLE) | ||||
{ | ||||
RCC->APB1LPENR |= RCC_APB1Periph; | ||||
} | ||||
else | ||||
{ | ||||
RCC->APB1LPENR &= ~RCC_APB1Periph; | ||||
} | ||||
} | ||||
/** | ||||
* @brief Enables or disables the APB2 peripheral clock during Low Power (Sleep) mode. | ||||
* @note Peripheral clock gating in SLEEP mode can be used to further reduce | ||||
* power consumption. | ||||
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again. | ||||
* @note By default, all peripheral clocks are enabled during SLEEP mode. | ||||
* @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock. | ||||
* This parameter can be any combination of the following values: | ||||
* @arg RCC_APB2Periph_TIM1: TIM1 clock | ||||
* @arg RCC_APB2Periph_TIM8: TIM8 clock | ||||
* @arg RCC_APB2Periph_USART1: USART1 clock | ||||
* @arg RCC_APB2Periph_USART6: USART6 clock | ||||
* @arg RCC_APB2Periph_ADC1: ADC1 clock | ||||
* @arg RCC_APB2Periph_ADC2: ADC2 clock | ||||
* @arg RCC_APB2Periph_ADC3: ADC3 clock | ||||
* @arg RCC_APB2Periph_SDIO: SDIO clock | ||||
* @arg RCC_APB2Periph_SPI1: SPI1 clock | ||||
* @arg RCC_APB2Periph_SYSCFG: SYSCFG clock | ||||
* @arg RCC_APB2Periph_TIM9: TIM9 clock | ||||
* @arg RCC_APB2Periph_TIM10: TIM10 clock | ||||
* @arg RCC_APB2Periph_TIM11: TIM11 clock | ||||
* @param NewState: new state of the specified peripheral clock. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_APB2PeriphClockLPModeCmd(uint32_t RCC_APB2Periph, FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph)); | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
if (NewState != DISABLE) | ||||
{ | ||||
RCC->APB2LPENR |= RCC_APB2Periph; | ||||
} | ||||
else | ||||
{ | ||||
RCC->APB2LPENR &= ~RCC_APB2Periph; | ||||
} | ||||
} | ||||
/** | ||||
* @} | ||||
*/ | ||||
/** @defgroup RCC_Group4 Interrupts and flags management functions | ||||
* @brief Interrupts and flags management functions | ||||
* | ||||
@verbatim | ||||
=============================================================================== | ||||
Interrupts and flags management functions | ||||
=============================================================================== | ||||
@endverbatim | ||||
* @{ | ||||
*/ | ||||
/** | ||||
* @brief Enables or disables the specified RCC interrupts. | ||||
* @param RCC_IT: specifies the RCC interrupt sources to be enabled or disabled. | ||||
* This parameter can be any combination of the following values: | ||||
* @arg RCC_IT_LSIRDY: LSI ready interrupt | ||||
* @arg RCC_IT_LSERDY: LSE ready interrupt | ||||
* @arg RCC_IT_HSIRDY: HSI ready interrupt | ||||
* @arg RCC_IT_HSERDY: HSE ready interrupt | ||||
* @arg RCC_IT_PLLRDY: main PLL ready interrupt | ||||
* @arg RCC_IT_PLLI2SRDY: PLLI2S ready interrupt | ||||
* @param NewState: new state of the specified RCC interrupts. | ||||
* This parameter can be: ENABLE or DISABLE. | ||||
* @retval None | ||||
*/ | ||||
void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_IT(RCC_IT)); | ||||
assert_param(IS_FUNCTIONAL_STATE(NewState)); | ||||
if (NewState != DISABLE) | ||||
{ | ||||
/* Perform Byte access to RCC_CIR[14:8] bits to enable the selected interrupts */ | ||||
*(__IO uint8_t *) CIR_BYTE2_ADDRESS |= RCC_IT; | ||||
} | ||||
else | ||||
{ | ||||
/* Perform Byte access to RCC_CIR[14:8] bits to disable the selected interrupts */ | ||||
*(__IO uint8_t *) CIR_BYTE2_ADDRESS &= (uint8_t)~RCC_IT; | ||||
} | ||||
} | ||||
/** | ||||
* @brief Checks whether the specified RCC flag is set or not. | ||||
* @param RCC_FLAG: specifies the flag to check. | ||||
* This parameter can be one of the following values: | ||||
* @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready | ||||
* @arg RCC_FLAG_HSERDY: HSE oscillator clock ready | ||||
* @arg RCC_FLAG_PLLRDY: main PLL clock ready | ||||
* @arg RCC_FLAG_PLLI2SRDY: PLLI2S clock ready | ||||
* @arg RCC_FLAG_LSERDY: LSE oscillator clock ready | ||||
* @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready | ||||
* @arg RCC_FLAG_BORRST: POR/PDR or BOR reset | ||||
* @arg RCC_FLAG_PINRST: Pin reset | ||||
* @arg RCC_FLAG_PORRST: POR/PDR reset | ||||
* @arg RCC_FLAG_SFTRST: Software reset | ||||
* @arg RCC_FLAG_IWDGRST: Independent Watchdog reset | ||||
* @arg RCC_FLAG_WWDGRST: Window Watchdog reset | ||||
* @arg RCC_FLAG_LPWRRST: Low Power reset | ||||
* @retval The new state of RCC_FLAG (SET or RESET). | ||||
*/ | ||||
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG) | ||||
{ | ||||
uint32_t tmp = 0; | ||||
uint32_t statusreg = 0; | ||||
FlagStatus bitstatus = RESET; | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_FLAG(RCC_FLAG)); | ||||
/* Get the RCC register index */ | ||||
tmp = RCC_FLAG >> 5; | ||||
if (tmp == 1) /* The flag to check is in CR register */ | ||||
{ | ||||
statusreg = RCC->CR; | ||||
} | ||||
else if (tmp == 2) /* The flag to check is in BDCR register */ | ||||
{ | ||||
statusreg = RCC->BDCR; | ||||
} | ||||
else /* The flag to check is in CSR register */ | ||||
{ | ||||
statusreg = RCC->CSR; | ||||
} | ||||
/* Get the flag position */ | ||||
tmp = RCC_FLAG & FLAG_MASK; | ||||
if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET) | ||||
{ | ||||
bitstatus = SET; | ||||
} | ||||
else | ||||
{ | ||||
bitstatus = RESET; | ||||
} | ||||
/* Return the flag status */ | ||||
return bitstatus; | ||||
} | ||||
/** | ||||
* @brief Clears the RCC reset flags. | ||||
* The reset flags are: RCC_FLAG_PINRST, RCC_FLAG_PORRST, RCC_FLAG_SFTRST, | ||||
* RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST | ||||
* @param None | ||||
* @retval None | ||||
*/ | ||||
void RCC_ClearFlag(void) | ||||
{ | ||||
/* Set RMVF bit to clear the reset flags */ | ||||
RCC->CSR |= RCC_CSR_RMVF; | ||||
} | ||||
/** | ||||
* @brief Checks whether the specified RCC interrupt has occurred or not. | ||||
* @param RCC_IT: specifies the RCC interrupt source to check. | ||||
* This parameter can be one of the following values: | ||||
* @arg RCC_IT_LSIRDY: LSI ready interrupt | ||||
* @arg RCC_IT_LSERDY: LSE ready interrupt | ||||
* @arg RCC_IT_HSIRDY: HSI ready interrupt | ||||
* @arg RCC_IT_HSERDY: HSE ready interrupt | ||||
* @arg RCC_IT_PLLRDY: main PLL ready interrupt | ||||
* @arg RCC_IT_PLLI2SRDY: PLLI2S ready interrupt | ||||
* @arg RCC_IT_CSS: Clock Security System interrupt | ||||
* @retval The new state of RCC_IT (SET or RESET). | ||||
*/ | ||||
ITStatus RCC_GetITStatus(uint8_t RCC_IT) | ||||
{ | ||||
ITStatus bitstatus = RESET; | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_GET_IT(RCC_IT)); | ||||
/* Check the status of the specified RCC interrupt */ | ||||
if ((RCC->CIR & RCC_IT) != (uint32_t)RESET) | ||||
{ | ||||
bitstatus = SET; | ||||
} | ||||
else | ||||
{ | ||||
bitstatus = RESET; | ||||
} | ||||
/* Return the RCC_IT status */ | ||||
return bitstatus; | ||||
} | ||||
/** | ||||
* @brief Clears the RCC's interrupt pending bits. | ||||
* @param RCC_IT: specifies the interrupt pending bit to clear. | ||||
* This parameter can be any combination of the following values: | ||||
* @arg RCC_IT_LSIRDY: LSI ready interrupt | ||||
* @arg RCC_IT_LSERDY: LSE ready interrupt | ||||
* @arg RCC_IT_HSIRDY: HSI ready interrupt | ||||
* @arg RCC_IT_HSERDY: HSE ready interrupt | ||||
* @arg RCC_IT_PLLRDY: main PLL ready interrupt | ||||
* @arg RCC_IT_PLLI2SRDY: PLLI2S ready interrupt | ||||
* @arg RCC_IT_CSS: Clock Security System interrupt | ||||
* @retval None | ||||
*/ | ||||
void RCC_ClearITPendingBit(uint8_t RCC_IT) | ||||
{ | ||||
/* Check the parameters */ | ||||
assert_param(IS_RCC_CLEAR_IT(RCC_IT)); | ||||
/* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt | ||||
pending bits */ | ||||
*(__IO uint8_t *) CIR_BYTE3_ADDRESS = RCC_IT; | ||||
} | ||||
/** | ||||
* @} | ||||
*/ | ||||
/** | ||||
* @} | ||||
*/ | ||||
/** | ||||
* @} | ||||
*/ | ||||
/** | ||||
* @} | ||||
*/ | ||||
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/ | ||||