##// END OF EJS Templates
Added Oplayer BSP, Fixed bug on GPIO library(gpiosetval change all the port...
Added Oplayer BSP, Fixed bug on GPIO library(gpiosetval change all the port instead of the desired bit).

File last commit:

r41:27c5438a4566 dev_alexis
r60:17402611bd25 dev_alexis
Show More
arm_rfft_q31.c
326 lines | 10.0 KiB | text/x-c | CLexer
jeandet@pc-de-jeandet3.LAB-LPP.LOCAL
Added ARM CMSIS for fast math and circle drawing function for ili9328 driver.
r41 /* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_rfft_q31.c
*
* Description: RFFT & RIFFT Q31 process function
*
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/*--------------------------------------------------------------------
* Internal functions prototypes
--------------------------------------------------------------------*/
void arm_split_rfft_q31(
q31_t * pSrc,
uint32_t fftLen,
q31_t * pATable,
q31_t * pBTable,
q31_t * pDst,
uint32_t modifier);
void arm_split_rifft_q31(
q31_t * pSrc,
uint32_t fftLen,
q31_t * pATable,
q31_t * pBTable,
q31_t * pDst,
uint32_t modifier);
/**
* @addtogroup RFFT_RIFFT
* @{
*/
/**
* @brief Processing function for the Q31 RFFT/RIFFT.
* @param[in] *S points to an instance of the Q31 RFFT/RIFFT structure.
* @param[in] *pSrc points to the input buffer.
* @param[out] *pDst points to the output buffer.
* @return none.
*
* \par Input an output formats:
* \par
* Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
* Hence the output format is different for different RFFT sizes.
* The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:
* \par
* \image html RFFTQ31.gif "Input and Output Formats for Q31 RFFT"
*
* \par
* \image html RIFFTQ31.gif "Input and Output Formats for Q31 RIFFT"
*/
void arm_rfft_q31(
const arm_rfft_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst)
{
const arm_cfft_radix4_instance_q31 *S_CFFT = S->pCfft;
/* Calculation of RIFFT of input */
if(S->ifftFlagR == 1u)
{
/* Real IFFT core process */
arm_split_rifft_q31(pSrc, S->fftLenBy2, S->pTwiddleAReal,
S->pTwiddleBReal, pDst, S->twidCoefRModifier);
/* Complex readix-4 IFFT process */
arm_radix4_butterfly_inverse_q31(pDst, S_CFFT->fftLen,
S_CFFT->pTwiddle,
S_CFFT->twidCoefModifier);
/* Bit reversal process */
if(S->bitReverseFlagR == 1u)
{
arm_bitreversal_q31(pDst, S_CFFT->fftLen,
S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
}
}
else
{
/* Calculation of RFFT of input */
/* Complex readix-4 FFT process */
arm_radix4_butterfly_q31(pSrc, S_CFFT->fftLen,
S_CFFT->pTwiddle, S_CFFT->twidCoefModifier);
/* Bit reversal process */
if(S->bitReverseFlagR == 1u)
{
arm_bitreversal_q31(pSrc, S_CFFT->fftLen,
S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
}
/* Real FFT core process */
arm_split_rfft_q31(pSrc, S->fftLenBy2, S->pTwiddleAReal,
S->pTwiddleBReal, pDst, S->twidCoefRModifier);
}
}
/**
* @} end of RFFT_RIFFT group
*/
/**
* @brief Core Real FFT process
* @param[in] *pSrc points to the input buffer.
* @param[in] fftLen length of FFT.
* @param[in] *pATable points to the twiddle Coef A buffer.
* @param[in] *pBTable points to the twiddle Coef B buffer.
* @param[out] *pDst points to the output buffer.
* @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
* @return none.
*/
void arm_split_rfft_q31(
q31_t * pSrc,
uint32_t fftLen,
q31_t * pATable,
q31_t * pBTable,
q31_t * pDst,
uint32_t modifier)
{
uint32_t i; /* Loop Counter */
q31_t outR, outI; /* Temporary variables for output */
q31_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
q31_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */
q31_t *pOut1 = &pDst[2], *pOut2 = &pDst[(4u * fftLen) - 1u];
q31_t *pIn1 = &pSrc[2], *pIn2 = &pSrc[(2u * fftLen) - 1u];
pSrc[2u * fftLen] = pSrc[0];
pSrc[(2u * fftLen) + 1u] = pSrc[1];
/* Init coefficient pointers */
pCoefA = &pATable[modifier * 2u];
pCoefB = &pBTable[modifier * 2u];
i = fftLen - 1u;
while(i > 0u)
{
/*
outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
+ pSrc[2 * n - 2 * i] * pBTable[2 * i] +
pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
*/
/* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
CoefA1 = *pCoefA++;
CoefA2 = *pCoefA;
/* outR = (pSrc[2 * i] * pATable[2 * i] */
outR = ((int32_t) (((q63_t) * pIn1 * CoefA1) >> 32));
/* outI = pIn[2 * i] * pATable[2 * i + 1] */
outI = ((int32_t) (((q63_t) * pIn1++ * CoefA2) >> 32));
/* - pSrc[2 * i + 1] * pATable[2 * i + 1] */
outR =
(q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn1 * (-CoefA2))) >> 32);
/* (pIn[2 * i + 1] * pATable[2 * i] */
outI =
(q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn1++ * (CoefA1))) >> 32);
/* pSrc[2 * n - 2 * i] * pBTable[2 * i] */
outR =
(q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn2 * (-CoefA2))) >> 32);
CoefB1 = *pCoefB;
/* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] */
outI =
(q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn2-- * (-CoefB1))) >> 32);
/* pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1] */
outR =
(q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn2 * (CoefB1))) >> 32);
/* pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
outI =
(q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn2-- * (-CoefA2))) >> 32);
/* write output */
*pOut1++ = (outR << 1u);
*pOut1++ = (outI << 1u);
/* write complex conjugate output */
*pOut2-- = -(outI << 1u);
*pOut2-- = (outR << 1u);
/* update coefficient pointer */
pCoefB = pCoefB + (modifier * 2u);
pCoefA = pCoefA + ((modifier * 2u) - 1u);
i--;
}
pDst[2u * fftLen] = pSrc[0] - pSrc[1];
pDst[(2u * fftLen) + 1u] = 0;
pDst[0] = pSrc[0] + pSrc[1];
pDst[1] = 0;
}
/**
* @brief Core Real IFFT process
* @param[in] *pSrc points to the input buffer.
* @param[in] fftLen length of FFT.
* @param[in] *pATable points to the twiddle Coef A buffer.
* @param[in] *pBTable points to the twiddle Coef B buffer.
* @param[out] *pDst points to the output buffer.
* @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
* @return none.
*/
void arm_split_rifft_q31(
q31_t * pSrc,
uint32_t fftLen,
q31_t * pATable,
q31_t * pBTable,
q31_t * pDst,
uint32_t modifier)
{
q31_t outR, outI; /* Temporary variables for output */
q31_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
q31_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */
q31_t *pIn1 = &pSrc[0], *pIn2 = &pSrc[(2u * fftLen) + 1u];
pCoefA = &pATable[0];
pCoefB = &pBTable[0];
while(fftLen > 0u)
{
/*
outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
pIn[2 * n - 2 * i] * pBTable[2 * i] -
pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
*/
CoefA1 = *pCoefA++;
CoefA2 = *pCoefA;
/* outR = (pIn[2 * i] * pATable[2 * i] */
outR = ((int32_t) (((q63_t) * pIn1 * CoefA1) >> 32));
/* - pIn[2 * i] * pATable[2 * i + 1] */
outI = -((int32_t) (((q63_t) * pIn1++ * CoefA2) >> 32));
/* pIn[2 * i + 1] * pATable[2 * i + 1] */
outR =
(q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn1 * (CoefA2))) >> 32);
/* pIn[2 * i + 1] * pATable[2 * i] */
outI =
(q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn1++ * (CoefA1))) >> 32);
/* pIn[2 * n - 2 * i] * pBTable[2 * i] */
outR =
(q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn2 * (CoefA2))) >> 32);
CoefB1 = *pCoefB;
/* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] */
outI =
(q31_t) ((((q63_t) outI << 32) - ((q63_t) * pIn2-- * (CoefB1))) >> 32);
/* pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1] */
outR =
(q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn2 * (CoefB1))) >> 32);
/* pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
outI =
(q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn2-- * (CoefA2))) >> 32);
/* write output */
*pDst++ = (outR << 1u);
*pDst++ = (outI << 1u);
/* update coefficient pointer */
pCoefB = pCoefB + (modifier * 2u);
pCoefA = pCoefA + ((modifier * 2u) - 1u);
/* Decrement loop count */
fftLen--;
}
}