##// END OF EJS Templates
Removed error on fat32 library, seems now to be able navigate among sectors in...
Removed error on fat32 library, seems now to be able navigate among sectors in both directions. Improved SDLCD drawing performances by almost 1000x.

File last commit:

r41:27c5438a4566 dev_alexis
r68:104125d87b89 dev_alexis
Show More
arm_fir_sparse_q31.c
367 lines | 10.6 KiB | text/x-c | CLexer
jeandet@pc-de-jeandet3.LAB-LPP.LOCAL
Added ARM CMSIS for fast math and circle drawing function for ili9328 driver.
r41 /* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_fir_sparse_q31.c
*
* Description: Q31 sparse FIR filter processing function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup FIR_Sparse
* @{
*/
/**
* @brief Processing function for the Q31 sparse FIR filter.
* @param[in] *S points to an instance of the Q31 sparse FIR structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] *pScratchIn points to a temporary buffer of size blockSize.
* @param[in] blockSize number of input samples to process per call.
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 32-bit accumulator.
* The 1.31 x 1.31 multiplications are truncated to 2.30 format.
* This leads to loss of precision on the intermediate multiplications and provides only a single guard bit.
* If the accumulator result overflows, it wraps around rather than saturate.
* In order to avoid overflows the input signal or coefficients must be scaled down by log2(numTaps) bits.
*/
void arm_fir_sparse_q31(
arm_fir_sparse_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
q31_t * pScratchIn,
uint32_t blockSize)
{
q31_t *pState = S->pState; /* State pointer */
q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
q31_t *px; /* Scratch buffer pointer */
q31_t *py = pState; /* Temporary pointers for state buffer */
q31_t *pb = pScratchIn; /* Temporary pointers for scratch buffer */
q31_t *pOut; /* Destination pointer */
q63_t out; /* Temporary output variable */
int32_t *pTapDelay = S->pTapDelay; /* Pointer to the array containing offset of the non-zero tap values. */
uint32_t delaySize = S->maxDelay + blockSize; /* state length */
uint16_t numTaps = S->numTaps; /* Filter order */
int32_t readIndex; /* Read index of the state buffer */
uint32_t tapCnt, blkCnt; /* loop counters */
q31_t coeff = *pCoeffs++; /* Read the first coefficient value */
q31_t in;
/* BlockSize of Input samples are copied into the state buffer */
/* StateIndex points to the starting position to write in the state buffer */
arm_circularWrite_f32((int32_t *) py, delaySize, &S->stateIndex, 1,
(int32_t *) pSrc, 1, blockSize);
/* Read Index, from where the state buffer should be read, is calculated. */
readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;
/* Wraparound of readIndex */
if(readIndex < 0)
{
readIndex += (int32_t) delaySize;
}
/* Working pointer for state buffer is updated */
py = pState;
/* blockSize samples are read from the state buffer */
arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
(int32_t *) pb, (int32_t *) pb, blockSize, 1,
blockSize);
/* Working pointer for the scratch buffer of state values */
px = pb;
/* Working pointer for scratch buffer of output values */
pOut = pDst;
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Loop over the blockSize. Unroll by a factor of 4.
* Compute 4 Multiplications at a time. */
blkCnt = blockSize >> 2;
while(blkCnt > 0u)
{
/* Perform Multiplications and store in the destination buffer */
*pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);
*pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);
*pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);
*pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4,
* compute the remaining samples */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* Perform Multiplications and store in the destination buffer */
*pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);
/* Decrement the loop counter */
blkCnt--;
}
/* Load the coefficient value and
* increment the coefficient buffer for the next set of state values */
coeff = *pCoeffs++;
/* Read Index, from where the state buffer should be read, is calculated. */
readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;
/* Wraparound of readIndex */
if(readIndex < 0)
{
readIndex += (int32_t) delaySize;
}
/* Loop over the number of taps. */
tapCnt = (uint32_t) numTaps - 1u;
while(tapCnt > 0u)
{
/* Working pointer for state buffer is updated */
py = pState;
/* blockSize samples are read from the state buffer */
arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
(int32_t *) pb, (int32_t *) pb, blockSize, 1,
blockSize);
/* Working pointer for the scratch buffer of state values */
px = pb;
/* Working pointer for scratch buffer of output values */
pOut = pDst;
/* Loop over the blockSize. Unroll by a factor of 4.
* Compute 4 MACS at a time. */
blkCnt = blockSize >> 2;
while(blkCnt > 0u)
{
out = *pOut;
out += ((q63_t) * px++ * coeff) >> 32;
*pOut++ = (q31_t) (out);
out = *pOut;
out += ((q63_t) * px++ * coeff) >> 32;
*pOut++ = (q31_t) (out);
out = *pOut;
out += ((q63_t) * px++ * coeff) >> 32;
*pOut++ = (q31_t) (out);
out = *pOut;
out += ((q63_t) * px++ * coeff) >> 32;
*pOut++ = (q31_t) (out);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4,
* compute the remaining samples */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* Perform Multiply-Accumulate */
out = *pOut;
out += ((q63_t) * px++ * coeff) >> 32;
*pOut++ = (q31_t) (out);
/* Decrement the loop counter */
blkCnt--;
}
/* Load the coefficient value and
* increment the coefficient buffer for the next set of state values */
coeff = *pCoeffs++;
/* Read Index, from where the state buffer should be read, is calculated. */
readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;
/* Wraparound of readIndex */
if(readIndex < 0)
{
readIndex += (int32_t) delaySize;
}
/* Decrement the tap loop counter */
tapCnt--;
}
/* Working output pointer is updated */
pOut = pDst;
/* Output is converted into 1.31 format. */
/* Loop over the blockSize. Unroll by a factor of 4.
* process 4 output samples at a time. */
blkCnt = blockSize >> 2;
while(blkCnt > 0u)
{
in = *pOut << 1;
*pOut++ = in;
in = *pOut << 1;
*pOut++ = in;
in = *pOut << 1;
*pOut++ = in;
in = *pOut << 1;
*pOut++ = in;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4,
* process the remaining output samples */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
in = *pOut << 1;
*pOut++ = in;
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* Perform Multiplications and store in the destination buffer */
*pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);
/* Decrement the loop counter */
blkCnt--;
}
/* Load the coefficient value and
* increment the coefficient buffer for the next set of state values */
coeff = *pCoeffs++;
/* Read Index, from where the state buffer should be read, is calculated. */
readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;
/* Wraparound of readIndex */
if(readIndex < 0)
{
readIndex += (int32_t) delaySize;
}
/* Loop over the number of taps. */
tapCnt = (uint32_t) numTaps - 1u;
while(tapCnt > 0u)
{
/* Working pointer for state buffer is updated */
py = pState;
/* blockSize samples are read from the state buffer */
arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
(int32_t *) pb, (int32_t *) pb, blockSize, 1,
blockSize);
/* Working pointer for the scratch buffer of state values */
px = pb;
/* Working pointer for scratch buffer of output values */
pOut = pDst;
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* Perform Multiply-Accumulate */
out = *pOut;
out += ((q63_t) * px++ * coeff) >> 32;
*pOut++ = (q31_t) (out);
/* Decrement the loop counter */
blkCnt--;
}
/* Load the coefficient value and
* increment the coefficient buffer for the next set of state values */
coeff = *pCoeffs++;
/* Read Index, from where the state buffer should be read, is calculated. */
readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;
/* Wraparound of readIndex */
if(readIndex < 0)
{
readIndex += (int32_t) delaySize;
}
/* Decrement the tap loop counter */
tapCnt--;
}
/* Working output pointer is updated */
pOut = pDst;
/* Output is converted into 1.31 format. */
blkCnt = blockSize;
while(blkCnt > 0u)
{
in = *pOut << 1;
*pOut++ = in;
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of FIR_Sparse group
*/