##// END OF EJS Templates
LFR-EQM et MINI-LFR x.1.70
pellion -
r577:bcb5a865d2bb (MINI-LFR) 0-1-70 (LFR-EQM) 2-1-70 JC
parent child
Show More
@@ -0,0 +1,213
1 ------------------------------------------------------------------------------
2 -- This file is a part of the LPP VHDL IP LIBRARY
3 -- Copyright (C) 2009 - 2010, Laboratory of Plasmas Physic - CNRS
4 --
5 -- This program is free software; you can redistribute it and/or modify
6 -- it under the terms of the GNU General Public License as published by
7 -- the Free Software Foundation; either version 3 of the License, or
8 -- (at your option) any later version.
9 --
10 -- This program is distributed in the hope that it will be useful,
11 -- but WITHOUT ANY WARRANTY; without even the implied warranty of
12 -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 -- GNU General Public License for more details.
14 --
15 -- You should have received a copy of the GNU General Public License
16 -- along with this program; if not, write to the Free Software
17 -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 -------------------------------------------------------------------------------
19 -- Author : Jean-christophe Pellion
20 -- Mail : jean-christophe.pellion@lpp.polytechnique.fr
21 -- jean-christophe.pellion@easii-ic.com
22 -------------------------------------------------------------------------------
23 -- 1.0 - initial version
24 -------------------------------------------------------------------------------
25 LIBRARY ieee;
26 USE ieee.std_logic_1164.ALL;
27 USE ieee.numeric_std.ALL;
28 LIBRARY grlib;
29 USE grlib.amba.ALL;
30 USE grlib.stdlib.ALL;
31 USE grlib.devices.ALL;
32
33 LIBRARY lpp;
34 USE lpp.lpp_amba.ALL;
35 USE lpp.apb_devices_list.ALL;
36 USE lpp.lpp_memory.ALL;
37 USE lpp.lpp_dma_pkg.ALL;
38 USE lpp.general_purpose.ALL;
39 --USE lpp.lpp_waveform_pkg.ALL;
40 LIBRARY techmap;
41 USE techmap.gencomp.ALL;
42
43
44 ENTITY lpp_dma_SEND16B_FIFO2DMA IS
45 GENERIC (
46 hindex : INTEGER := 2;
47 vendorid : IN INTEGER := 0;
48 deviceid : IN INTEGER := 0;
49 version : IN INTEGER := 0
50 );
51 PORT (
52 clk : IN STD_LOGIC;
53 rstn : IN STD_LOGIC;
54
55 -- AMBA AHB Master Interface
56 AHB_Master_In : IN AHB_Mst_In_Type;
57 AHB_Master_Out : OUT AHB_Mst_Out_Type;
58
59 -- FIFO Interface
60 ren : OUT STD_LOGIC;
61 data : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
62
63 -- Controls
64 send : IN STD_LOGIC;
65 valid_burst : IN STD_LOGIC; -- (1 => BURST , 0 => SINGLE)
66 done : OUT STD_LOGIC;
67 address : IN STD_LOGIC_VECTOR(31 DOWNTO 0)
68 );
69 END;
70
71 ARCHITECTURE Behavioral OF lpp_dma_SEND16B_FIFO2DMA IS
72
73 CONSTANT HConfig : AHB_Config_Type := (
74 0 => ahb_device_reg(vendorid, deviceid, 0, version, 0),
75 OTHERS => (OTHERS => '0'));
76
77 TYPE AHB_DMA_FSM_STATE IS (IDLE, s_ARBITER ,s_CTRL, s_CTRL_DATA, s_DATA);
78 SIGNAL state : AHB_DMA_FSM_STATE;
79
80 SIGNAL address_counter_reg : STD_LOGIC_VECTOR(3 DOWNTO 0);
81 SIGNAL address_counter : STD_LOGIC_VECTOR(3 DOWNTO 0);
82
83 SIGNAL data_window : STD_LOGIC;
84 SIGNAL ctrl_window : STD_LOGIC;
85
86 SIGNAL bus_request : STD_LOGIC;
87 SIGNAL bus_lock : STD_LOGIC;
88
89 BEGIN
90
91 -----------------------------------------------------------------------------
92 AHB_Master_Out.HCONFIG <= HConfig;
93 AHB_Master_Out.HSIZE <= "010"; --WORDS 32b
94 AHB_Master_Out.HINDEX <= hindex;
95 AHB_Master_Out.HPROT <= "0011"; --DATA ACCESS and PRIVILEDGED ACCESS
96 AHB_Master_Out.HIRQ <= (OTHERS => '0');
97 AHB_Master_Out.HBURST <= "111"; -- INCR --"111"; --INCR16
98 AHB_Master_Out.HWRITE <= '1';
99
100 --AHB_Master_Out.HTRANS <= HTRANS_NONSEQ WHEN ctrl_window = '1' OR data_window = '1' ELSE HTRANS_IDLE;
101
102 --AHB_Master_Out.HBUSREQ <= bus_request;
103 --AHB_Master_Out.HLOCK <= data_window;
104
105 --bus_request <= '0' WHEN address_counter_reg = "1111" AND AHB_Master_In.HREADY = '1' ELSE
106 -- '1' WHEN ctrl_window = '1' ELSE
107 -- '0';
108
109 --bus_lock <= '0' WHEN address_counter_reg = "1111" ELSE
110 -- '1' WHEN ctrl_window = '1' ELSE '0';
111
112 -----------------------------------------------------------------------------
113 AHB_Master_Out.HADDR <= address(31 DOWNTO 6) & address_counter_reg & "00";
114 AHB_Master_Out.HWDATA <= ahbdrivedata(data);
115
116 -----------------------------------------------------------------------------
117 --ren <= NOT ((AHB_Master_In.HGRANT(hindex) OR LAST_READ ) AND AHB_Master_In.HREADY );
118 --ren <= NOT beat;
119 -----------------------------------------------------------------------------
120 PROCESS (clk, rstn)
121 BEGIN -- PROCESS
122 IF rstn = '0' THEN -- asynchronous reset (active low)
123 state <= IDLE;
124 done <= '0';
125 address_counter_reg <= (OTHERS => '0');
126 AHB_Master_Out.HTRANS <= HTRANS_IDLE;
127 AHB_Master_Out.HBUSREQ <= '0';
128 AHB_Master_Out.HLOCK <= '0';
129 ELSIF clk'event AND clk = '1' THEN -- rising clock edge
130 done <= '0';
131 CASE state IS
132 WHEN IDLE =>
133 AHB_Master_Out.HBUSREQ <= '0';
134 AHB_Master_Out.HLOCK <= '0';
135 AHB_Master_Out.HTRANS <= HTRANS_IDLE;
136 address_counter_reg <= (OTHERS => '0');
137 IF send = '1' THEN
138 AHB_Master_Out.HBUSREQ <= '1';
139 AHB_Master_Out.HLOCK <= '1';
140 AHB_Master_Out.HTRANS <= HTRANS_IDLE;
141 state <= s_ARBITER;
142 END IF;
143
144 WHEN s_ARBITER =>
145 AHB_Master_Out.HBUSREQ <= '1';
146 AHB_Master_Out.HLOCK <= '1';
147 AHB_Master_Out.HTRANS <= HTRANS_IDLE;
148 address_counter_reg <= (OTHERS => '0');
149
150 IF AHB_Master_In.HGRANT(hindex) = '1' THEN
151 AHB_Master_Out.HTRANS <= HTRANS_IDLE;
152 state <= s_CTRL;
153 END IF;
154
155 WHEN s_CTRL =>
156 AHB_Master_Out.HBUSREQ <= '1';
157 AHB_Master_Out.HLOCK <= '1';
158 AHB_Master_Out.HTRANS <= HTRANS_NONSEQ;
159 IF AHB_Master_In.HREADY = '1' AND AHB_Master_In.HGRANT(hindex) = '1' THEN
160 AHB_Master_Out.HTRANS <= HTRANS_SEQ;
161 state <= s_CTRL_DATA;
162 END IF;
163
164 WHEN s_CTRL_DATA =>
165 AHB_Master_Out.HBUSREQ <= '1';
166 AHB_Master_Out.HLOCK <= '1';
167 AHB_Master_Out.HTRANS <= HTRANS_SEQ;
168 IF AHB_Master_In.HREADY = '1' AND AHB_Master_In.HGRANT(hindex) = '1' THEN
169 address_counter_reg <= STD_LOGIC_VECTOR(UNSIGNED(address_counter_reg) + 1);
170 END IF;
171
172 IF address_counter_reg = "1111" AND AHB_Master_In.HREADY = '1' THEN
173 AHB_Master_Out.HBUSREQ <= '0';
174 AHB_Master_Out.HLOCK <= '1';--'0';
175 AHB_Master_Out.HTRANS <= HTRANS_IDLE;
176 state <= s_DATA;
177 END IF;
178
179 WHEN s_DATA =>
180 AHB_Master_Out.HBUSREQ <= '0';
181 AHB_Master_Out.HLOCK <= '0';
182 AHB_Master_Out.HTRANS <= HTRANS_IDLE;
183 IF AHB_Master_In.HREADY = '1' THEN
184 state <= IDLE;
185 done <= '1';
186 END IF;
187
188 WHEN OTHERS => NULL;
189 END CASE;
190 END IF;
191 END PROCESS;
192
193 ctrl_window <= '1' WHEN state = s_CTRL OR state = s_CTRL_DATA ELSE '0';
194 data_window <= '1' WHEN state = s_CTRL_DATA OR state = s_DATA ELSE '0';
195 -----------------------------------------------------------------------------
196 ren <= NOT(AHB_Master_In.HREADY) WHEN state = s_CTRL_DATA ELSE '1';
197
198 -----------------------------------------------------------------------------
199 --PROCESS (clk, rstn)
200 --BEGIN -- PROCESS
201 -- IF rstn = '0' THEN -- asynchronous reset (active low)
202 -- address_counter_reg <= (OTHERS => '0');
203 -- ELSIF clk'event AND clk = '1' THEN -- rising clock edge
204 -- address_counter_reg <= address_counter;
205 -- END IF;
206 --END PROCESS;
207
208 --address_counter <= STD_LOGIC_VECTOR(UNSIGNED(address_counter_reg) + 1) WHEN data_window = '1' AND AHB_Master_In.HREADY = '1' AND AHB_Master_In.HGRANT(hindex) = '1' ELSE
209 -- address_counter_reg;
210 -----------------------------------------------------------------------------
211
212
213 END Behavioral;
@@ -1,469 +1,469
1 1 ------------------------------------------------------------------------------
2 2 -- This file is a part of the LPP VHDL IP LIBRARY
3 3 -- Copyright (C) 2009 - 2010, Laboratory of Plasmas Physic - CNRS
4 4 --
5 5 -- This program is free software; you can redistribute it and/or modify
6 6 -- it under the terms of the GNU General Public License as published by
7 7 -- the Free Software Foundation; either version 3 of the License, or
8 8 -- (at your option) any later version.
9 9 --
10 10 -- This program is distributed in the hope that it will be useful,
11 11 -- but WITHOUT ANY WARRANTY; without even the implied warranty of
12 12 -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 13 -- GNU General Public License for more details.
14 14 --
15 15 -- You should have received a copy of the GNU General Public License
16 16 -- along with this program; if not, write to the Free Software
17 17 -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 18 -------------------------------------------------------------------------------
19 19 -- Author : Jean-christophe Pellion
20 20 -- Mail : jean-christophe.pellion@lpp.polytechnique.fr
21 21 -------------------------------------------------------------------------------
22 22 LIBRARY IEEE;
23 23 USE IEEE.numeric_std.ALL;
24 24 USE IEEE.std_logic_1164.ALL;
25 25 LIBRARY grlib;
26 26 USE grlib.amba.ALL;
27 27 USE grlib.stdlib.ALL;
28 28 LIBRARY techmap;
29 29 USE techmap.gencomp.ALL;
30 30 LIBRARY gaisler;
31 31 USE gaisler.memctrl.ALL;
32 32 USE gaisler.leon3.ALL;
33 33 USE gaisler.uart.ALL;
34 34 USE gaisler.misc.ALL;
35 35 USE gaisler.spacewire.ALL;
36 36 LIBRARY esa;
37 37 USE esa.memoryctrl.ALL;
38 38 LIBRARY lpp;
39 39 USE lpp.lpp_memory.ALL;
40 40 USE lpp.lpp_ad_conv.ALL;
41 41 USE lpp.lpp_lfr_pkg.ALL; -- contains lpp_lfr, not in the 206 rev of the VHD_Lib
42 42 USE lpp.lpp_top_lfr_pkg.ALL; -- contains top_wf_picker
43 43 USE lpp.iir_filter.ALL;
44 44 USE lpp.general_purpose.ALL;
45 45 USE lpp.lpp_lfr_management.ALL;
46 46 USE lpp.lpp_leon3_soc_pkg.ALL;
47 47
48 48 --library proasic3l;
49 49 --use proasic3l.all;
50 50
51 51 ENTITY LFR_EQM IS
52 52 --GENERIC (
53 53 -- Mem_use : INTEGER := use_RAM);
54 54
55 55 PORT (
56 56 clk50MHz : IN STD_ULOGIC;
57 57 clk49_152MHz : IN STD_ULOGIC;
58 58 reset : IN STD_ULOGIC;
59 59
60 60 -- TAG --------------------------------------------------------------------
61 61 TAG1 : IN STD_ULOGIC; -- DSU rx data
62 62 TAG3 : OUT STD_ULOGIC; -- DSU tx data
63 63 -- UART APB ---------------------------------------------------------------
64 64 TAG2 : IN STD_ULOGIC; -- UART1 rx data
65 65 TAG4 : OUT STD_ULOGIC; -- UART1 tx data
66 66 -- RAM --------------------------------------------------------------------
67 67 address : OUT STD_LOGIC_VECTOR(18 DOWNTO 0);
68 68 data : INOUT STD_LOGIC_VECTOR(31 DOWNTO 0);
69 69
70 70 nSRAM_MBE : INOUT STD_LOGIC; -- new
71 71 nSRAM_E1 : OUT STD_LOGIC; -- new
72 72 nSRAM_E2 : OUT STD_LOGIC; -- new
73 73 -- nSRAM_SCRUB : OUT STD_LOGIC; -- new
74 74 nSRAM_W : OUT STD_LOGIC; -- new
75 75 nSRAM_G : OUT STD_LOGIC; -- new
76 76 nSRAM_BUSY : IN STD_LOGIC; -- new
77 77 -- SPW --------------------------------------------------------------------
78 78 spw1_en : OUT STD_LOGIC; -- new
79 79 spw1_din : IN STD_LOGIC;
80 80 spw1_sin : IN STD_LOGIC;
81 81 spw1_dout : OUT STD_LOGIC;
82 82 spw1_sout : OUT STD_LOGIC;
83 83 spw2_en : OUT STD_LOGIC; -- new
84 84 spw2_din : IN STD_LOGIC;
85 85 spw2_sin : IN STD_LOGIC;
86 86 spw2_dout : OUT STD_LOGIC;
87 87 spw2_sout : OUT STD_LOGIC;
88 88 -- ADC --------------------------------------------------------------------
89 89 bias_fail_sw : OUT STD_LOGIC;
90 90 ADC_OEB_bar_CH : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
91 91 ADC_smpclk : OUT STD_LOGIC;
92 92 ADC_data : IN STD_LOGIC_VECTOR(13 DOWNTO 0);
93 93 -- DAC --------------------------------------------------------------------
94 94 DAC_SDO : OUT STD_LOGIC;
95 95 DAC_SCK : OUT STD_LOGIC;
96 96 DAC_SYNC : OUT STD_LOGIC;
97 97 DAC_CAL_EN : OUT STD_LOGIC;
98 98 -- HK ---------------------------------------------------------------------
99 99 HK_smpclk : OUT STD_LOGIC;
100 100 ADC_OEB_bar_HK : OUT STD_LOGIC;
101 101 HK_SEL : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
102 102 ---------------------------------------------------------------------------
103 103 TAG8 : OUT STD_LOGIC
104 104 );
105 105
106 106 END LFR_EQM;
107 107
108 108
109 109 ARCHITECTURE beh OF LFR_EQM IS
110 110
111 111 SIGNAL clk_25 : STD_LOGIC := '0';
112 112 SIGNAL clk_24 : STD_LOGIC := '0';
113 113 -----------------------------------------------------------------------------
114 114 SIGNAL coarse_time : STD_LOGIC_VECTOR(31 DOWNTO 0);
115 115 SIGNAL fine_time : STD_LOGIC_VECTOR(15 DOWNTO 0);
116 116
117 117 -- CONSTANTS
118 118 CONSTANT CFG_PADTECH : INTEGER := inferred;
119 119 CONSTANT NB_APB_SLAVE : INTEGER := 11; -- 3 = grspw + waveform picker + time manager, 11 allows pindex = f
120 120 CONSTANT NB_AHB_SLAVE : INTEGER := 1;
121 121 CONSTANT NB_AHB_MASTER : INTEGER := 2; -- 2 = grspw + waveform picker
122 122
123 123 SIGNAL apbi_ext : apb_slv_in_type;
124 124 SIGNAL apbo_ext : soc_apb_slv_out_vector(NB_APB_SLAVE-1+5 DOWNTO 5) := (OTHERS => apb_none);
125 125 SIGNAL ahbi_s_ext : ahb_slv_in_type;
126 126 SIGNAL ahbo_s_ext : soc_ahb_slv_out_vector(NB_AHB_SLAVE-1+3 DOWNTO 3) := (OTHERS => ahbs_none);
127 127 SIGNAL ahbi_m_ext : AHB_Mst_In_Type;
128 128 SIGNAL ahbo_m_ext : soc_ahb_mst_out_vector(NB_AHB_MASTER-1+1 DOWNTO 1) := (OTHERS => ahbm_none);
129 129
130 130 -- Spacewire signals
131 131 SIGNAL dtmp : STD_LOGIC_VECTOR(1 DOWNTO 0);
132 132 SIGNAL stmp : STD_LOGIC_VECTOR(1 DOWNTO 0);
133 133 SIGNAL spw_rxclk : STD_LOGIC_VECTOR(1 DOWNTO 0);
134 134 SIGNAL spw_rxtxclk : STD_ULOGIC;
135 135 SIGNAL spw_rxclkn : STD_ULOGIC;
136 136 SIGNAL spw_clk : STD_LOGIC;
137 137 SIGNAL swni : grspw_in_type;
138 138 SIGNAL swno : grspw_out_type;
139 139
140 140 --GPIO
141 141 SIGNAL gpioi : gpio_in_type;
142 142 SIGNAL gpioo : gpio_out_type;
143 143
144 144 -- AD Converter ADS7886
145 145 SIGNAL sample : Samples14v(8 DOWNTO 0);
146 146 SIGNAL sample_s : Samples(8 DOWNTO 0);
147 147 SIGNAL sample_val : STD_LOGIC;
148 148 SIGNAL ADC_OEB_bar_CH_s : STD_LOGIC_VECTOR(8 DOWNTO 0);
149 149
150 150 -----------------------------------------------------------------------------
151 151 SIGNAL observation_reg : STD_LOGIC_VECTOR(31 DOWNTO 0);
152 152
153 153 -----------------------------------------------------------------------------
154 154 SIGNAL rstn_25 : STD_LOGIC;
155 155 SIGNAL rstn_24 : STD_LOGIC;
156 156
157 157 SIGNAL LFR_soft_rstn : STD_LOGIC;
158 158 SIGNAL LFR_rstn : STD_LOGIC;
159 159
160 160 SIGNAL ADC_smpclk_s : STD_LOGIC;
161 161
162 162 SIGNAL nSRAM_CE : STD_LOGIC_VECTOR(1 DOWNTO 0);
163 163
164 164 SIGNAL clk50MHz_int : STD_LOGIC := '0';
165 165 SIGNAL clk_25_int : STD_LOGIC := '0';
166 166
167 167 component clkint port(A : in std_ulogic; Y :out std_ulogic); end component;
168 168
169 169 BEGIN -- beh
170 170
171 171 -----------------------------------------------------------------------------
172 172 -- CLK
173 173 -----------------------------------------------------------------------------
174 174 rst_domain25 : rstgen PORT MAP (reset, clk_25, '1', rstn_25, OPEN);
175 175 rst_domain24 : rstgen PORT MAP (reset, clk_24, '1', rstn_24, OPEN);
176 176
177 177 --clk_pad : clkint port map (A => clk50MHz, Y => clk50MHz_int );
178 178 clk50MHz_int <= clk50MHz;
179 179
180 180 PROCESS(clk50MHz_int)
181 181 BEGIN
182 182 IF clk50MHz_int'EVENT AND clk50MHz_int = '1' THEN
183 183 --clk_25_int <= NOT clk_25_int;
184 184 clk_25 <= NOT clk_25;
185 185 END IF;
186 186 END PROCESS;
187 187 --clk_pad_25 : clkint port map (A => clk_25_int, Y => clk_25 );
188 188
189 189 PROCESS(clk49_152MHz)
190 190 BEGIN
191 191 IF clk49_152MHz'EVENT AND clk49_152MHz = '1' THEN
192 192 clk_24 <= NOT clk_24;
193 193 END IF;
194 194 END PROCESS;
195 195
196 196 -----------------------------------------------------------------------------
197 197 --
198 198 leon3_soc_1 : leon3_soc
199 199 GENERIC MAP (
200 200 fabtech => apa3l,
201 201 memtech => apa3l,
202 202 padtech => inferred,
203 203 clktech => inferred,
204 204 disas => 0,
205 205 dbguart => 0,
206 206 pclow => 2,
207 207 clk_freq => 25000,
208 208 IS_RADHARD => 0,
209 209 NB_CPU => 1,
210 210 ENABLE_FPU => 1,
211 211 FPU_NETLIST => 0,
212 212 ENABLE_DSU => 1,
213 213 ENABLE_AHB_UART => 1,
214 214 ENABLE_APB_UART => 1,
215 215 ENABLE_IRQMP => 1,
216 216 ENABLE_GPT => 1,
217 217 NB_AHB_MASTER => NB_AHB_MASTER,
218 218 NB_AHB_SLAVE => NB_AHB_SLAVE,
219 219 NB_APB_SLAVE => NB_APB_SLAVE,
220 220 ADDRESS_SIZE => 19,
221 221 USES_IAP_MEMCTRLR => 1,
222 222 BYPASS_EDAC_MEMCTRLR => '0',
223 223 SRBANKSZ => 8)
224 224 PORT MAP (
225 225 clk => clk_25,
226 226 reset => rstn_25,
227 227 errorn => OPEN,
228 228
229 229 ahbrxd => TAG1,
230 230 ahbtxd => TAG3,
231 231 urxd1 => TAG2,
232 232 utxd1 => TAG4,
233 233
234 234 address => address,
235 235 data => data,
236 236 nSRAM_BE0 => OPEN,
237 237 nSRAM_BE1 => OPEN,
238 238 nSRAM_BE2 => OPEN,
239 239 nSRAM_BE3 => OPEN,
240 240 nSRAM_WE => nSRAM_W,
241 241 nSRAM_CE => nSRAM_CE,
242 242 nSRAM_OE => nSRAM_G,
243 243 nSRAM_READY => nSRAM_BUSY,
244 244 SRAM_MBE => nSRAM_MBE,
245 245
246 246 apbi_ext => apbi_ext,
247 247 apbo_ext => apbo_ext,
248 248 ahbi_s_ext => ahbi_s_ext,
249 249 ahbo_s_ext => ahbo_s_ext,
250 250 ahbi_m_ext => ahbi_m_ext,
251 251 ahbo_m_ext => ahbo_m_ext);
252 252
253 253
254 254 nSRAM_E1 <= nSRAM_CE(0);
255 255 nSRAM_E2 <= nSRAM_CE(1);
256 256
257 257 -------------------------------------------------------------------------------
258 258 -- APB_LFR_TIME_MANAGEMENT ----------------------------------------------------
259 259 -------------------------------------------------------------------------------
260 260 apb_lfr_management_1 : apb_lfr_management
261 261 GENERIC MAP (
262 262 tech => apa3l,
263 263 pindex => 6,
264 264 paddr => 6,
265 265 pmask => 16#fff#,
266 266 --FIRST_DIVISION => 374, -- ((49.152/2) /2^16) - 1 = 375 - 1 = 374
267 267 NB_SECOND_DESYNC => 60) -- 60 secondes of desynchronization before CoarseTime's MSB is Set
268 268 PORT MAP (
269 269 clk25MHz => clk_25,
270 270 resetn_25MHz => rstn_25, -- TODO
271 271 --clk24_576MHz => clk_24, -- 49.152MHz/2
272 272 --resetn_24_576MHz => rstn_24, -- TODO
273 273
274 274 grspw_tick => swno.tickout,
275 275 apbi => apbi_ext,
276 276 apbo => apbo_ext(6),
277 277
278 278 HK_sample => sample_s(8),
279 279 HK_val => sample_val,
280 280 HK_sel => HK_SEL,
281 281
282 282 DAC_SDO => DAC_SDO,
283 283 DAC_SCK => DAC_SCK,
284 284 DAC_SYNC => DAC_SYNC,
285 285 DAC_CAL_EN => DAC_CAL_EN,
286 286
287 287 coarse_time => coarse_time,
288 288 fine_time => fine_time,
289 289 LFR_soft_rstn => LFR_soft_rstn
290 290 );
291 291
292 292 -----------------------------------------------------------------------
293 293 --- SpaceWire --------------------------------------------------------
294 294 -----------------------------------------------------------------------
295 295
296 296 ------------------------------------------------------------------------------
297 297 -- \/\/\/\/ TODO : spacewire enable should be controled by the SPW IP \/\/\/\/
298 298 ------------------------------------------------------------------------------
299 299 spw1_en <= '1';
300 300 spw2_en <= '1';
301 301 ------------------------------------------------------------------------------
302 302 -- /\/\/\/\ --------------------------------------------------------- /\/\/\/\
303 303 ------------------------------------------------------------------------------
304 304
305 305 --spw_clk <= clk50MHz;
306 306 --spw_rxtxclk <= spw_clk;
307 307 --spw_rxclkn <= NOT spw_rxtxclk;
308 308
309 309 -- PADS for SPW1
310 310 spw1_rxd_pad : inpad GENERIC MAP (tech => inferred)
311 311 PORT MAP (spw1_din, dtmp(0));
312 312 spw1_rxs_pad : inpad GENERIC MAP (tech => inferred)
313 313 PORT MAP (spw1_sin, stmp(0));
314 314 spw1_txd_pad : outpad GENERIC MAP (tech => inferred)
315 315 PORT MAP (spw1_dout, swno.d(0));
316 316 spw1_txs_pad : outpad GENERIC MAP (tech => inferred)
317 317 PORT MAP (spw1_sout, swno.s(0));
318 318 -- PADS FOR SPW2
319 319 spw2_rxd_pad : inpad GENERIC MAP (tech => inferred) -- bad naming of the MINI-LFR /!\
320 320 PORT MAP (spw2_din, dtmp(1));
321 321 spw2_rxs_pad : inpad GENERIC MAP (tech => inferred) -- bad naming of the MINI-LFR /!\
322 322 PORT MAP (spw2_sin, stmp(1));
323 323 spw2_txd_pad : outpad GENERIC MAP (tech => inferred)
324 324 PORT MAP (spw2_dout, swno.d(1));
325 325 spw2_txs_pad : outpad GENERIC MAP (tech => inferred)
326 326 PORT MAP (spw2_sout, swno.s(1));
327 327
328 328 -- GRSPW PHY
329 329 --spw1_input: if CFG_SPW_GRSPW = 1 generate
330 330 spw_inputloop : FOR j IN 0 TO 1 GENERATE
331 331 spw_phy0 : grspw_phy
332 332 GENERIC MAP(
333 333 tech => apa3l,
334 334 rxclkbuftype => 1,
335 335 scantest => 0)
336 336 PORT MAP(
337 337 rxrst => swno.rxrst,
338 338 di => dtmp(j),
339 339 si => stmp(j),
340 340 rxclko => spw_rxclk(j),
341 341 do => swni.d(j),
342 342 ndo => swni.nd(j*5+4 DOWNTO j*5),
343 343 dconnect => swni.dconnect(j*2+1 DOWNTO j*2));
344 344 END GENERATE spw_inputloop;
345 345
346 346 -- SPW core
347 347 sw0 : grspwm GENERIC MAP(
348 348 tech => apa3l,
349 349 hindex => 1,
350 350 pindex => 5,
351 351 paddr => 5,
352 352 pirq => 11,
353 353 sysfreq => 25000, -- CPU_FREQ
354 354 rmap => 1,
355 355 rmapcrc => 1,
356 356 fifosize1 => 16,
357 357 fifosize2 => 16,
358 358 rxclkbuftype => 1,
359 359 rxunaligned => 0,
360 360 rmapbufs => 4,
361 361 ft => 0,
362 362 netlist => 0,
363 363 ports => 2,
364 364 --dmachan => CFG_SPW_DMACHAN, -- not used byt the spw core 1
365 365 memtech => apa3l,
366 366 destkey => 2,
367 367 spwcore => 1
368 368 --input_type => CFG_SPW_INPUT, -- not used byt the spw core 1
369 369 --output_type => CFG_SPW_OUTPUT, -- not used byt the spw core 1
370 370 --rxtx_sameclk => CFG_SPW_RTSAME -- not used byt the spw core 1
371 371 )
372 372 PORT MAP(rstn_25, clk_25, spw_rxclk(0),
373 373 spw_rxclk(1),
374 374 clk50MHz_int,
375 375 clk50MHz_int,
376 376 -- spw_rxtxclk, spw_rxtxclk, spw_rxtxclk, spw_rxtxclk,
377 377 ahbi_m_ext, ahbo_m_ext(1), apbi_ext, apbo_ext(5),
378 378 swni, swno);
379 379
380 380 swni.tickin <= '0';
381 381 swni.rmapen <= '1';
382 382 swni.clkdiv10 <= "00000100"; -- 50 MHz / (4 + 1) = 10 MHz
383 383 swni.tickinraw <= '0';
384 384 swni.timein <= (OTHERS => '0');
385 385 swni.dcrstval <= (OTHERS => '0');
386 386 swni.timerrstval <= (OTHERS => '0');
387 387
388 388 -------------------------------------------------------------------------------
389 389 -- LFR ------------------------------------------------------------------------
390 390 -------------------------------------------------------------------------------
391 391 LFR_rstn <= LFR_soft_rstn AND rstn_25;
392 392
393 393 lpp_lfr_1 : lpp_lfr
394 394 GENERIC MAP (
395 395 Mem_use => use_RAM,
396 396 nb_data_by_buffer_size => 32,
397 397 --nb_word_by_buffer_size => 30,
398 398 nb_snapshot_param_size => 32,
399 399 delta_vector_size => 32,
400 400 delta_vector_size_f0_2 => 7, -- log2(96)
401 401 pindex => 15,
402 402 paddr => 15,
403 403 pmask => 16#fff#,
404 404 pirq_ms => 6,
405 405 pirq_wfp => 14,
406 406 hindex => 2,
407 top_lfr_version => X"020145") -- aa.bb.cc version
407 top_lfr_version => X"020146") -- aa.bb.cc version
408 408 -- AA : BOARD NUMBER
409 409 -- 0 => MINI_LFR
410 410 -- 1 => EM
411 411 -- 2 => EQM (with A3PE3000)
412 412 PORT MAP (
413 413 clk => clk_25,
414 414 rstn => LFR_rstn,
415 415 sample_B => sample_s(2 DOWNTO 0),
416 416 sample_E => sample_s(7 DOWNTO 3),
417 417 sample_val => sample_val,
418 418 apbi => apbi_ext,
419 419 apbo => apbo_ext(15),
420 420 ahbi => ahbi_m_ext,
421 421 ahbo => ahbo_m_ext(2),
422 422 coarse_time => coarse_time,
423 423 fine_time => fine_time,
424 424 data_shaping_BW => bias_fail_sw,
425 425 debug_vector => OPEN,
426 426 debug_vector_ms => OPEN); --,
427 427 --observation_vector_0 => OPEN,
428 428 --observation_vector_1 => OPEN,
429 429 --observation_reg => observation_reg);
430 430
431 431
432 432 all_sample : FOR I IN 7 DOWNTO 0 GENERATE
433 433 sample_s(I) <= sample(I) & '0' & '0';
434 434 END GENERATE all_sample;
435 435 sample_s(8) <= sample(8)(13) & sample(8)(13) & sample(8);
436 436
437 437 -----------------------------------------------------------------------------
438 438 --
439 439 -----------------------------------------------------------------------------
440 440 top_ad_conv_RHF1401_withFilter_1 : top_ad_conv_RHF1401_withFilter
441 441 GENERIC MAP (
442 442 ChanelCount => 9,
443 443 ncycle_cnv_high => 13,
444 444 ncycle_cnv => 25,
445 445 FILTER_ENABLED => 16#FF#)
446 446 PORT MAP (
447 447 cnv_clk => clk_24,
448 448 cnv_rstn => rstn_24,
449 449 cnv => ADC_smpclk_s,
450 450 clk => clk_25,
451 451 rstn => rstn_25,
452 452 ADC_data => ADC_data,
453 453 ADC_nOE => ADC_OEB_bar_CH_s,
454 454 sample => sample,
455 455 sample_val => sample_val);
456 456
457 457 ADC_OEB_bar_CH <= ADC_OEB_bar_CH_s(7 DOWNTO 0);
458 458
459 459 ADC_smpclk <= ADC_smpclk_s;
460 460 HK_smpclk <= ADC_smpclk_s;
461 461
462 462 TAG8 <= nSRAM_BUSY;
463 463
464 464 -----------------------------------------------------------------------------
465 465 -- HK
466 466 -----------------------------------------------------------------------------
467 467 ADC_OEB_bar_HK <= ADC_OEB_bar_CH_s(8);
468 468
469 469 END beh;
@@ -1,758 +1,774
1 1 ------------------------------------------------------------------------------
2 2 -- This file is a part of the LPP VHDL IP LIBRARY
3 3 -- Copyright (C) 2009 - 2010, Laboratory of Plasmas Physic - CNRS
4 4 --
5 5 -- This program is free software; you can redistribute it and/or modify
6 6 -- it under the terms of the GNU General Public License as published by
7 7 -- the Free Software Foundation; either version 3 of the License, or
8 8 -- (at your option) any later version.
9 9 --
10 10 -- This program is distributed in the hope that it will be useful,
11 11 -- but WITHOUT ANY WARRANTY; without even the implied warranty of
12 12 -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 13 -- GNU General Public License for more details.
14 14 --
15 15 -- You should have received a copy of the GNU General Public License
16 16 -- along with this program; if not, write to the Free Software
17 17 -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 18 -------------------------------------------------------------------------------
19 19 -- Author : Jean-christophe Pellion
20 20 -- Mail : jean-christophe.pellion@lpp.polytechnique.fr
21 21 -------------------------------------------------------------------------------
22 22 LIBRARY IEEE;
23 23 USE IEEE.numeric_std.ALL;
24 24 USE IEEE.std_logic_1164.ALL;
25 25 LIBRARY grlib;
26 26 USE grlib.amba.ALL;
27 27 USE grlib.stdlib.ALL;
28 28 LIBRARY techmap;
29 29 USE techmap.gencomp.ALL;
30 30 LIBRARY gaisler;
31 31 USE gaisler.memctrl.ALL;
32 32 USE gaisler.leon3.ALL;
33 33 USE gaisler.uart.ALL;
34 34 USE gaisler.misc.ALL;
35 35 USE gaisler.spacewire.ALL;
36 36 LIBRARY esa;
37 37 USE esa.memoryctrl.ALL;
38 38 LIBRARY lpp;
39 39 USE lpp.lpp_memory.ALL;
40 40 USE lpp.lpp_ad_conv.ALL;
41 41 USE lpp.lpp_lfr_pkg.ALL; -- contains lpp_lfr, not in the 206 rev of the VHD_Lib
42 42 USE lpp.lpp_top_lfr_pkg.ALL; -- contains top_wf_picker
43 43 USE lpp.iir_filter.ALL;
44 44 USE lpp.general_purpose.ALL;
45 45 USE lpp.lpp_lfr_management.ALL;
46 46 USE lpp.lpp_leon3_soc_pkg.ALL;
47 47
48 48 ENTITY MINI_LFR_top IS
49 49
50 50 PORT (
51 51 clk_50 : IN STD_LOGIC;
52 52 clk_49 : IN STD_LOGIC;
53 53 reset : IN STD_LOGIC;
54 54 --BPs
55 55 BP0 : IN STD_LOGIC;
56 56 BP1 : IN STD_LOGIC;
57 57 --LEDs
58 58 LED0 : OUT STD_LOGIC;
59 59 LED1 : OUT STD_LOGIC;
60 60 LED2 : OUT STD_LOGIC;
61 61 --UARTs
62 62 TXD1 : IN STD_LOGIC;
63 63 RXD1 : OUT STD_LOGIC;
64 64 nCTS1 : OUT STD_LOGIC;
65 65 nRTS1 : IN STD_LOGIC;
66 66
67 67 TXD2 : IN STD_LOGIC;
68 68 RXD2 : OUT STD_LOGIC;
69 69 nCTS2 : OUT STD_LOGIC;
70 70 nDTR2 : IN STD_LOGIC;
71 71 nRTS2 : IN STD_LOGIC;
72 72 nDCD2 : OUT STD_LOGIC;
73 73
74 74 --EXT CONNECTOR
75 75 IO0 : INOUT STD_LOGIC;
76 76 IO1 : INOUT STD_LOGIC;
77 77 IO2 : INOUT STD_LOGIC;
78 78 IO3 : INOUT STD_LOGIC;
79 79 IO4 : INOUT STD_LOGIC;
80 80 IO5 : INOUT STD_LOGIC;
81 81 IO6 : INOUT STD_LOGIC;
82 82 IO7 : INOUT STD_LOGIC;
83 83 IO8 : INOUT STD_LOGIC;
84 84 IO9 : INOUT STD_LOGIC;
85 85 IO10 : INOUT STD_LOGIC;
86 86 IO11 : INOUT STD_LOGIC;
87 87
88 88 --SPACE WIRE
89 89 SPW_EN : OUT STD_LOGIC; -- 0 => off
90 90 SPW_NOM_DIN : IN STD_LOGIC; -- NOMINAL LINK
91 91 SPW_NOM_SIN : IN STD_LOGIC;
92 92 SPW_NOM_DOUT : OUT STD_LOGIC;
93 93 SPW_NOM_SOUT : OUT STD_LOGIC;
94 94 SPW_RED_DIN : IN STD_LOGIC; -- REDUNDANT LINK
95 95 SPW_RED_SIN : IN STD_LOGIC;
96 96 SPW_RED_DOUT : OUT STD_LOGIC;
97 97 SPW_RED_SOUT : OUT STD_LOGIC;
98 98 -- MINI LFR ADC INPUTS
99 99 ADC_nCS : OUT STD_LOGIC;
100 100 ADC_CLK : OUT STD_LOGIC;
101 101 ADC_SDO : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
102 102
103 103 -- SRAM
104 104 SRAM_nWE : OUT STD_LOGIC;
105 105 SRAM_CE : OUT STD_LOGIC;
106 106 SRAM_nOE : OUT STD_LOGIC;
107 107 SRAM_nBE : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
108 108 SRAM_A : OUT STD_LOGIC_VECTOR(19 DOWNTO 0);
109 109 SRAM_DQ : INOUT STD_LOGIC_VECTOR(31 DOWNTO 0)
110 110 );
111 111
112 112 END MINI_LFR_top;
113 113
114 114
115 115 ARCHITECTURE beh OF MINI_LFR_top IS
116 116
117 117 --==========================================================================
118 118 -- USE_IAP_MEMCTRL allow to use the srctrle-0ws on MINILFR board
119 119 -- when enabled, chip enable polarity should be reversed and bank size also
120 120 -- MINILFR -> 1 bank of 4MBytes -> SRBANKSZ=9
121 121 -- LFR EQM & FM -> 2 banks of 2MBytes -> SRBANKSZ=8
122 122 --==========================================================================
123 123 CONSTANT USE_IAP_MEMCTRL : integer := 1;
124 124 --==========================================================================
125 125
126 126 SIGNAL clk_50_s : STD_LOGIC := '0';
127 127 SIGNAL clk_25 : STD_LOGIC := '0';
128 128 SIGNAL clk_24 : STD_LOGIC := '0';
129 129 -----------------------------------------------------------------------------
130 130 SIGNAL coarse_time : STD_LOGIC_VECTOR(31 DOWNTO 0);
131 131 SIGNAL fine_time : STD_LOGIC_VECTOR(15 DOWNTO 0);
132 132 --
133 133 SIGNAL errorn : STD_LOGIC;
134 134 -- UART AHB ---------------------------------------------------------------
135 135 -- SIGNAL ahbrxd : STD_ULOGIC; -- DSU rx data
136 136 -- SIGNAL ahbtxd : STD_ULOGIC; -- DSU tx data
137 137
138 138 -- UART APB ---------------------------------------------------------------
139 139 -- SIGNAL urxd1 : STD_ULOGIC; -- UART1 rx data
140 140 -- SIGNAL utxd1 : STD_ULOGIC; -- UART1 tx data
141 141 --
142 142 SIGNAL I00_s : STD_LOGIC;
143 143
144 144 -- CONSTANTS
145 145 CONSTANT CFG_PADTECH : INTEGER := inferred;
146 146 --
147 147 CONSTANT NB_APB_SLAVE : INTEGER := 11; -- 3 = grspw + waveform picker + time manager, 11 allows pindex = f
148 148 CONSTANT NB_AHB_SLAVE : INTEGER := 1;
149 149 CONSTANT NB_AHB_MASTER : INTEGER := 2; -- 2 = grspw + waveform picker
150 150
151 151 SIGNAL apbi_ext : apb_slv_in_type;
152 152 SIGNAL apbo_ext : soc_apb_slv_out_vector(NB_APB_SLAVE-1+5 DOWNTO 5); -- := (OTHERS => apb_none);
153 153 SIGNAL ahbi_s_ext : ahb_slv_in_type;
154 154 SIGNAL ahbo_s_ext : soc_ahb_slv_out_vector(NB_AHB_SLAVE-1+3 DOWNTO 3); -- := (OTHERS => ahbs_none);
155 155 SIGNAL ahbi_m_ext : AHB_Mst_In_Type;
156 156 SIGNAL ahbo_m_ext : soc_ahb_mst_out_vector(NB_AHB_MASTER-1+1 DOWNTO 1); -- := (OTHERS => ahbm_none);
157 157
158 158 -- Spacewire signals
159 159 SIGNAL dtmp : STD_LOGIC_VECTOR(1 DOWNTO 0);
160 160 SIGNAL stmp : STD_LOGIC_VECTOR(1 DOWNTO 0);
161 161 SIGNAL spw_rxclk : STD_LOGIC_VECTOR(1 DOWNTO 0);
162 162 SIGNAL spw_rxtxclk : STD_ULOGIC;
163 163 SIGNAL spw_rxclkn : STD_ULOGIC;
164 164 SIGNAL spw_clk : STD_LOGIC;
165 165 SIGNAL swni : grspw_in_type;
166 166 SIGNAL swno : grspw_out_type;
167 167 -- SIGNAL clkmn : STD_ULOGIC;
168 168 -- SIGNAL txclk : STD_ULOGIC;
169 169
170 170 --GPIO
171 171 SIGNAL gpioi : gpio_in_type;
172 172 SIGNAL gpioo : gpio_out_type;
173 173
174 174 -- AD Converter ADS7886
175 175 SIGNAL sample : Samples14v(7 DOWNTO 0);
176 176 SIGNAL sample_s : Samples(7 DOWNTO 0);
177 177 SIGNAL sample_val : STD_LOGIC;
178 178 SIGNAL ADC_nCS_sig : STD_LOGIC;
179 179 SIGNAL ADC_CLK_sig : STD_LOGIC;
180 180 SIGNAL ADC_SDO_sig : STD_LOGIC_VECTOR(7 DOWNTO 0);
181 181
182 182 SIGNAL bias_fail_sw_sig : STD_LOGIC;
183 183
184 184 SIGNAL observation_reg : STD_LOGIC_VECTOR(31 DOWNTO 0);
185 185 SIGNAL observation_vector_0 : STD_LOGIC_VECTOR(11 DOWNTO 0);
186 186 SIGNAL observation_vector_1 : STD_LOGIC_VECTOR(11 DOWNTO 0);
187 187 -----------------------------------------------------------------------------
188 188
189 189 SIGNAL LFR_soft_rstn : STD_LOGIC;
190 190 SIGNAL LFR_rstn : STD_LOGIC;
191 191
192 192
193 193 SIGNAL rstn_25 : STD_LOGIC;
194 194 SIGNAL rstn_25_d1 : STD_LOGIC;
195 195 SIGNAL rstn_25_d2 : STD_LOGIC;
196 196 SIGNAL rstn_25_d3 : STD_LOGIC;
197 197
198 198 SIGNAL rstn_24 : STD_LOGIC;
199 199 SIGNAL rstn_24_d1 : STD_LOGIC;
200 200 SIGNAL rstn_24_d2 : STD_LOGIC;
201 201 SIGNAL rstn_24_d3 : STD_LOGIC;
202 202
203 203 SIGNAL rstn_50 : STD_LOGIC;
204 204 SIGNAL rstn_50_d1 : STD_LOGIC;
205 205 SIGNAL rstn_50_d2 : STD_LOGIC;
206 206 SIGNAL rstn_50_d3 : STD_LOGIC;
207 207
208 208 SIGNAL lfr_debug_vector : STD_LOGIC_VECTOR(11 DOWNTO 0);
209 209 SIGNAL lfr_debug_vector_ms : STD_LOGIC_VECTOR(11 DOWNTO 0);
210 210
211 211 --
212 212 SIGNAL SRAM_CE_s : STD_LOGIC_VECTOR(1 DOWNTO 0);
213 213
214 214 --
215 215 SIGNAL sample_hk : STD_LOGIC_VECTOR(15 DOWNTO 0);
216 216 SIGNAL HK_SEL : STD_LOGIC_VECTOR(1 DOWNTO 0);
217
218 SIGNAL nSRAM_READY : STD_LOGIC;
217 219
218 220 BEGIN -- beh
219 221
220 222 -----------------------------------------------------------------------------
221 223 -- CLK
222 224 -----------------------------------------------------------------------------
223 225
224 226 --PROCESS(clk_50)
225 227 --BEGIN
226 228 -- IF clk_50'EVENT AND clk_50 = '1' THEN
227 229 -- clk_50_s <= NOT clk_50_s;
228 230 -- END IF;
229 231 --END PROCESS;
230 232
231 233 --PROCESS(clk_50_s)
232 234 --BEGIN
233 235 -- IF clk_50_s'EVENT AND clk_50_s = '1' THEN
234 236 -- clk_25 <= NOT clk_25;
235 237 -- END IF;
236 238 --END PROCESS;
237 239
238 240 --PROCESS(clk_49)
239 241 --BEGIN
240 242 -- IF clk_49'EVENT AND clk_49 = '1' THEN
241 243 -- clk_24 <= NOT clk_24;
242 244 -- END IF;
243 245 --END PROCESS;
244 246
245 247 --PROCESS(clk_25)
246 248 --BEGIN
247 249 -- IF clk_25'EVENT AND clk_25 = '1' THEN
248 250 -- rstn_25 <= reset;
249 251 -- END IF;
250 252 --END PROCESS;
251 253
252 254 PROCESS (clk_50, reset)
253 255 BEGIN -- PROCESS
254 256 IF clk_50'EVENT AND clk_50 = '1' THEN -- rising clock edge
255 257 clk_50_s <= NOT clk_50_s;
256 258 END IF;
257 259 END PROCESS;
258 260
259 261 PROCESS (clk_50_s, reset)
260 262 BEGIN -- PROCESS
261 263 IF reset = '0' THEN -- asynchronous reset (active low)
262 264 clk_25 <= '0';
263 265 rstn_25 <= '0';
264 266 rstn_25_d1 <= '0';
265 267 rstn_25_d2 <= '0';
266 268 rstn_25_d3 <= '0';
267 269 ELSIF clk_50_s'EVENT AND clk_50_s = '1' THEN -- rising clock edge
268 270 clk_25 <= NOT clk_25;
269 271 rstn_25_d1 <= '1';
270 272 rstn_25_d2 <= rstn_25_d1;
271 273 rstn_25_d3 <= rstn_25_d2;
272 274 rstn_25 <= rstn_25_d3;
273 275 END IF;
274 276 END PROCESS;
275 277
276 278 PROCESS (clk_49, reset)
277 279 BEGIN -- PROCESS
278 280 IF reset = '0' THEN -- asynchronous reset (active low)
279 281 clk_24 <= '0';
280 282 rstn_24_d1 <= '0';
281 283 rstn_24_d2 <= '0';
282 284 rstn_24_d3 <= '0';
283 285 rstn_24 <= '0';
284 286 ELSIF clk_49'EVENT AND clk_49 = '1' THEN -- rising clock edge
285 287 clk_24 <= NOT clk_24;
286 288 rstn_24_d1 <= '1';
287 289 rstn_24_d2 <= rstn_24_d1;
288 290 rstn_24_d3 <= rstn_24_d2;
289 291 rstn_24 <= rstn_24_d3;
290 292 END IF;
291 293 END PROCESS;
292 294
293 295 -----------------------------------------------------------------------------
294 296
295 297 PROCESS (clk_25, rstn_25)
296 298 BEGIN -- PROCESS
297 299 IF rstn_25 = '0' THEN -- asynchronous reset (active low)
298 300 LED0 <= '0';
299 301 LED1 <= '0';
300 302 LED2 <= '0';
301 303 --IO1 <= '0';
302 304 --IO2 <= '1';
303 305 --IO3 <= '0';
304 306 --IO4 <= '0';
305 307 --IO5 <= '0';
306 308 --IO6 <= '0';
307 309 --IO7 <= '0';
308 310 --IO8 <= '0';
309 311 --IO9 <= '0';
310 312 --IO10 <= '0';
311 313 --IO11 <= '0';
312 314 ELSIF clk_25'EVENT AND clk_25 = '1' THEN -- rising clock edge
313 315 LED0 <= '0';
314 316 LED1 <= '1';
315 317 LED2 <= BP0 OR BP1 OR nDTR2 OR nRTS2 OR nRTS1;
316 318 --IO1 <= '1';
317 319 --IO2 <= SPW_NOM_DIN OR SPW_NOM_SIN OR SPW_RED_DIN OR SPW_RED_SIN;
318 320 --IO3 <= ADC_SDO(0);
319 321 --IO4 <= ADC_SDO(1);
320 322 --IO5 <= ADC_SDO(2);
321 323 --IO6 <= ADC_SDO(3);
322 324 --IO7 <= ADC_SDO(4);
323 325 --IO8 <= ADC_SDO(5);
324 326 --IO9 <= ADC_SDO(6);
325 327 --IO10 <= ADC_SDO(7);
326 328 --IO11 <= BP1 OR nDTR2 OR nRTS2 OR nRTS1;
327 329 END IF;
328 330 END PROCESS;
329 331
330 332 PROCESS (clk_24, rstn_24)
331 333 BEGIN -- PROCESS
332 334 IF rstn_24 = '0' THEN -- asynchronous reset (active low)
333 335 I00_s <= '0';
334 336 ELSIF clk_24'EVENT AND clk_24 = '1' THEN -- rising clock edge
335 337 I00_s <= NOT I00_s;
336 338 END IF;
337 339 END PROCESS;
338 340 -- IO0 <= I00_s;
339 341
340 342 --UARTs
341 343 nCTS1 <= '1';
342 344 nCTS2 <= '1';
343 345 nDCD2 <= '1';
344 346
345 347 --
346 348
347 349 leon3_soc_1 : leon3_soc
348 350 GENERIC MAP (
349 351 fabtech => apa3e,
350 352 memtech => apa3e,
351 353 padtech => inferred,
352 354 clktech => inferred,
353 355 disas => 0,
354 356 dbguart => 0,
355 357 pclow => 2,
356 358 clk_freq => 25000,
357 359 IS_RADHARD => 0,
358 360 NB_CPU => 1,
359 361 ENABLE_FPU => 1,
360 362 FPU_NETLIST => 0,
361 363 ENABLE_DSU => 1,
362 364 ENABLE_AHB_UART => 1,
363 365 ENABLE_APB_UART => 1,
364 366 ENABLE_IRQMP => 1,
365 367 ENABLE_GPT => 1,
366 368 NB_AHB_MASTER => NB_AHB_MASTER,
367 369 NB_AHB_SLAVE => NB_AHB_SLAVE,
368 370 NB_APB_SLAVE => NB_APB_SLAVE,
369 371 ADDRESS_SIZE => 20,
370 372 USES_IAP_MEMCTRLR => USE_IAP_MEMCTRL,
371 BYPASS_EDAC_MEMCTRLR => '1',
373 BYPASS_EDAC_MEMCTRLR => '0',
372 374 SRBANKSZ => 9)
373 375 PORT MAP (
374 376 clk => clk_25,
375 377 reset => rstn_25,
376 378 errorn => errorn,
377 379 ahbrxd => TXD1,
378 380 ahbtxd => RXD1,
379 381 urxd1 => TXD2,
380 382 utxd1 => RXD2,
381 383 address => SRAM_A,
382 384 data => SRAM_DQ,
383 385 nSRAM_BE0 => SRAM_nBE(0),
384 386 nSRAM_BE1 => SRAM_nBE(1),
385 387 nSRAM_BE2 => SRAM_nBE(2),
386 388 nSRAM_BE3 => SRAM_nBE(3),
387 389 nSRAM_WE => SRAM_nWE,
388 390 nSRAM_CE => SRAM_CE_s,
389 391 nSRAM_OE => SRAM_nOE,
390 nSRAM_READY => '1',
392 nSRAM_READY => nSRAM_READY,
391 393 SRAM_MBE => OPEN,
392 394 apbi_ext => apbi_ext,
393 395 apbo_ext => apbo_ext,
394 396 ahbi_s_ext => ahbi_s_ext,
395 397 ahbo_s_ext => ahbo_s_ext,
396 398 ahbi_m_ext => ahbi_m_ext,
397 399 ahbo_m_ext => ahbo_m_ext);
398 400
399 IAP:if USE_IAP_MEMCTRL = 1 GENERATE
400 SRAM_CE <= not SRAM_CE_s(0);
401 END GENERATE;
401 PROCESS (clk_25, rstn_25)
402 BEGIN -- PROCESS
403 IF rstn_25 = '0' THEN -- asynchronous reset (active low)
404 nSRAM_READY <= '1';
405 ELSIF clk_25'event AND clk_25 = '1' THEN -- rising clock edge
406 nSRAM_READY <= '1';
407 IF IO0 = '1' THEN
408 nSRAM_READY <= '0';
409 END IF;
410 END IF;
411 END PROCESS;
412
413
402 414
403 NOIAP:if USE_IAP_MEMCTRL = 0 GENERATE
404 SRAM_CE <= SRAM_CE_s(0);
405 END GENERATE;
415 IAP:if USE_IAP_MEMCTRL = 1 GENERATE
416 SRAM_CE <= not SRAM_CE_s(0);
417 END GENERATE;
418
419 NOIAP:if USE_IAP_MEMCTRL = 0 GENERATE
420 SRAM_CE <= SRAM_CE_s(0);
421 END GENERATE;
406 422 -------------------------------------------------------------------------------
407 423 -- APB_LFR_MANAGEMENT ---------------------------------------------------------
408 424 -------------------------------------------------------------------------------
409 425 apb_lfr_management_1 : apb_lfr_management
410 426 GENERIC MAP (
411 427 tech => apa3e,
412 428 pindex => 6,
413 429 paddr => 6,
414 430 pmask => 16#fff#,
415 FIRST_DIVISION => 374, -- ((49.152/2) /2^16) - 1 = 375 - 1 = 374
431 -- FIRST_DIVISION => 374, -- ((49.152/2) /2^16) - 1 = 375 - 1 = 374
416 432 NB_SECOND_DESYNC => 60) -- 60 secondes of desynchronization before CoarseTime's MSB is Set
417 433 PORT MAP (
418 434 clk25MHz => clk_25,
419 435 resetn_25MHz => rstn_25, -- TODO
420 clk24_576MHz => clk_24, -- 49.152MHz/2
421 resetn_24_576MHz => rstn_24, -- TODO
436 -- clk24_576MHz => clk_24, -- 49.152MHz/2
437 -- resetn_24_576MHz => rstn_24, -- TODO
422 438 grspw_tick => swno.tickout,
423 439 apbi => apbi_ext,
424 440 apbo => apbo_ext(6),
425 441 HK_sample => sample_hk,
426 442 HK_val => sample_val,
427 443 HK_sel => HK_SEL,
428 444 DAC_SDO => OPEN,
429 445 DAC_SCK => OPEN,
430 446 DAC_SYNC => OPEN,
431 447 DAC_CAL_EN => OPEN,
432 448 coarse_time => coarse_time,
433 449 fine_time => fine_time,
434 450 LFR_soft_rstn => LFR_soft_rstn
435 451 );
436 452
437 453 -----------------------------------------------------------------------
438 454 --- SpaceWire --------------------------------------------------------
439 455 -----------------------------------------------------------------------
440 456
441 457 SPW_EN <= '1';
442 458
443 459 spw_clk <= clk_50_s;
444 460 spw_rxtxclk <= spw_clk;
445 461 spw_rxclkn <= NOT spw_rxtxclk;
446 462
447 463 -- PADS for SPW1
448 464 spw1_rxd_pad : inpad GENERIC MAP (tech => inferred)
449 465 PORT MAP (SPW_NOM_DIN, dtmp(0));
450 466 spw1_rxs_pad : inpad GENERIC MAP (tech => inferred)
451 467 PORT MAP (SPW_NOM_SIN, stmp(0));
452 468 spw1_txd_pad : outpad GENERIC MAP (tech => inferred)
453 469 PORT MAP (SPW_NOM_DOUT, swno.d(0));
454 470 spw1_txs_pad : outpad GENERIC MAP (tech => inferred)
455 471 PORT MAP (SPW_NOM_SOUT, swno.s(0));
456 472 -- PADS FOR SPW2
457 473 spw2_rxd_pad : inpad GENERIC MAP (tech => inferred) -- bad naming of the MINI-LFR /!\
458 474 PORT MAP (SPW_RED_SIN, dtmp(1));
459 475 spw2_rxs_pad : inpad GENERIC MAP (tech => inferred) -- bad naming of the MINI-LFR /!\
460 476 PORT MAP (SPW_RED_DIN, stmp(1));
461 477 spw2_txd_pad : outpad GENERIC MAP (tech => inferred)
462 478 PORT MAP (SPW_RED_DOUT, swno.d(1));
463 479 spw2_txs_pad : outpad GENERIC MAP (tech => inferred)
464 480 PORT MAP (SPW_RED_SOUT, swno.s(1));
465 481
466 482 -- GRSPW PHY
467 483 --spw1_input: if CFG_SPW_GRSPW = 1 generate
468 484 spw_inputloop : FOR j IN 0 TO 1 GENERATE
469 485 spw_phy0 : grspw_phy
470 486 GENERIC MAP(
471 487 tech => apa3e,
472 488 rxclkbuftype => 1,
473 489 scantest => 0)
474 490 PORT MAP(
475 491 rxrst => swno.rxrst,
476 492 di => dtmp(j),
477 493 si => stmp(j),
478 494 rxclko => spw_rxclk(j),
479 495 do => swni.d(j),
480 496 ndo => swni.nd(j*5+4 DOWNTO j*5),
481 497 dconnect => swni.dconnect(j*2+1 DOWNTO j*2));
482 498 END GENERATE spw_inputloop;
483 499
484 500 swni.rmapnodeaddr <= (OTHERS => '0');
485 501
486 502 -- SPW core
487 503 sw0 : grspwm GENERIC MAP(
488 504 tech => apa3e,
489 505 hindex => 1,
490 506 pindex => 5,
491 507 paddr => 5,
492 508 pirq => 11,
493 509 sysfreq => 25000, -- CPU_FREQ
494 510 rmap => 1,
495 511 rmapcrc => 1,
496 512 fifosize1 => 16,
497 513 fifosize2 => 16,
498 514 rxclkbuftype => 1,
499 515 rxunaligned => 0,
500 516 rmapbufs => 4,
501 517 ft => 0,
502 518 netlist => 0,
503 519 ports => 2,
504 520 --dmachan => CFG_SPW_DMACHAN, -- not used byt the spw core 1
505 521 memtech => apa3e,
506 522 destkey => 2,
507 523 spwcore => 1
508 524 --input_type => CFG_SPW_INPUT, -- not used byt the spw core 1
509 525 --output_type => CFG_SPW_OUTPUT, -- not used byt the spw core 1
510 526 --rxtx_sameclk => CFG_SPW_RTSAME -- not used byt the spw core 1
511 527 )
512 528 PORT MAP(rstn_25, clk_25, spw_rxclk(0),
513 529 spw_rxclk(1), spw_rxtxclk, spw_rxtxclk,
514 530 ahbi_m_ext, ahbo_m_ext(1), apbi_ext, apbo_ext(5),
515 531 swni, swno);
516 532
517 533 swni.tickin <= '0';
518 534 swni.rmapen <= '1';
519 535 swni.clkdiv10 <= "00000100"; -- 10 MHz / (4 + 1) = 10 MHz
520 536 swni.tickinraw <= '0';
521 537 swni.timein <= (OTHERS => '0');
522 538 swni.dcrstval <= (OTHERS => '0');
523 539 swni.timerrstval <= (OTHERS => '0');
524 540
525 541 -------------------------------------------------------------------------------
526 542 -- LFR ------------------------------------------------------------------------
527 543 -------------------------------------------------------------------------------
528 544
529 545
530 546 LFR_rstn <= LFR_soft_rstn AND rstn_25;
531 547 --LFR_rstn <= rstn_25;
532 548
533 549 lpp_lfr_1 : lpp_lfr
534 550 GENERIC MAP (
535 551 Mem_use => use_RAM,
536 552 nb_data_by_buffer_size => 32,
537 553 nb_snapshot_param_size => 32,
538 554 delta_vector_size => 32,
539 555 delta_vector_size_f0_2 => 7, -- log2(96)
540 556 pindex => 15,
541 557 paddr => 15,
542 558 pmask => 16#fff#,
543 559 pirq_ms => 6,
544 560 pirq_wfp => 14,
545 561 hindex => 2,
546 top_lfr_version => X"000144") -- aa.bb.cc version
562 top_lfr_version => X"000146") -- aa.bb.cc version
547 563 PORT MAP (
548 564 clk => clk_25,
549 565 rstn => LFR_rstn,
550 566 sample_B => sample_s(2 DOWNTO 0),
551 567 sample_E => sample_s(7 DOWNTO 3),
552 568 sample_val => sample_val,
553 569 apbi => apbi_ext,
554 570 apbo => apbo_ext(15),
555 571 ahbi => ahbi_m_ext,
556 572 ahbo => ahbo_m_ext(2),
557 573 coarse_time => coarse_time,
558 574 fine_time => fine_time,
559 575 data_shaping_BW => bias_fail_sw_sig,
560 576 debug_vector => lfr_debug_vector,
561 577 debug_vector_ms => lfr_debug_vector_ms
562 578 );
563 579
564 580 observation_reg(11 DOWNTO 0) <= lfr_debug_vector;
565 581 observation_reg(31 DOWNTO 12) <= (OTHERS => '0');
566 582 observation_vector_0(11 DOWNTO 0) <= lfr_debug_vector;
567 583 observation_vector_1(11 DOWNTO 0) <= lfr_debug_vector;
568 IO0 <= rstn_25;
584 -- IO0 <= rstn_25;
569 585 IO1 <= lfr_debug_vector_ms(0); -- LFR MS FFT data_valid
570 586 IO2 <= lfr_debug_vector_ms(0); -- LFR MS FFT ready
571 587 IO3 <= lfr_debug_vector(0); -- LFR APBREG error_buffer_full
572 588 IO4 <= lfr_debug_vector(1); -- LFR APBREG reg_sp.status_error_buffer_full
573 589 IO5 <= lfr_debug_vector(8); -- LFR APBREG ready_matrix_f2
574 590 IO6 <= lfr_debug_vector(9); -- LFR APBREG reg0_ready_matrix_f2
575 591 IO7 <= lfr_debug_vector(10); -- LFR APBREG reg0_ready_matrix_f2
576 592
577 593 all_sample : FOR I IN 7 DOWNTO 0 GENERATE
578 594 sample_s(I) <= sample(I)(11 DOWNTO 0) & '0' & '0' & '0' & '0';
579 595 END GENERATE all_sample;
580 596
581 597 top_ad_conv_ADS7886_v2_1 : top_ad_conv_ADS7886_v2
582 598 GENERIC MAP(
583 599 ChannelCount => 8,
584 600 SampleNbBits => 14,
585 601 ncycle_cnv_high => 40, -- at least 32 cycles at 25 MHz, 32 * 49.152 / 25 /2 = 31.5
586 602 ncycle_cnv => 249) -- 49 152 000 / 98304 /2
587 603 PORT MAP (
588 604 -- CONV
589 605 cnv_clk => clk_24,
590 606 cnv_rstn => rstn_24,
591 607 cnv => ADC_nCS_sig,
592 608 -- DATA
593 609 clk => clk_25,
594 610 rstn => rstn_25,
595 611 sck => ADC_CLK_sig,
596 612 sdo => ADC_SDO_sig,
597 613 -- SAMPLE
598 614 sample => sample,
599 615 sample_val => sample_val);
600 616
601 617 --IO10 <= ADC_SDO_sig(5);
602 618 --IO9 <= ADC_SDO_sig(4);
603 619 --IO8 <= ADC_SDO_sig(3);
604 620
605 621 ADC_nCS <= ADC_nCS_sig;
606 622 ADC_CLK <= ADC_CLK_sig;
607 623 ADC_SDO_sig <= ADC_SDO;
608 624
609 625 sample_hk <= "0001000100010001" WHEN HK_SEL = "00" ELSE
610 626 "0010001000100010" WHEN HK_SEL = "01" ELSE
611 627 "0100010001000100" WHEN HK_SEL = "10" ELSE
612 628 (OTHERS => '0');
613 629
614 630
615 631 ----------------------------------------------------------------------
616 632 --- GPIO -----------------------------------------------------------
617 633 ----------------------------------------------------------------------
618 634
619 635 grgpio0 : grgpio
620 636 GENERIC MAP(pindex => 11, paddr => 11, imask => 16#0000#, nbits => 8)
621 637 PORT MAP(rstn_25, clk_25, apbi_ext, apbo_ext(11), gpioi, gpioo);
622 638
623 639 gpioi.sig_en <= (OTHERS => '0');
624 640 gpioi.sig_in <= (OTHERS => '0');
625 641 gpioi.din <= (OTHERS => '0');
626 642 --pio_pad_0 : iopad
627 643 -- GENERIC MAP (tech => CFG_PADTECH)
628 644 -- PORT MAP (IO0, gpioo.dout(0), gpioo.oen(0), gpioi.din(0));
629 645 --pio_pad_1 : iopad
630 646 -- GENERIC MAP (tech => CFG_PADTECH)
631 647 -- PORT MAP (IO1, gpioo.dout(1), gpioo.oen(1), gpioi.din(1));
632 648 --pio_pad_2 : iopad
633 649 -- GENERIC MAP (tech => CFG_PADTECH)
634 650 -- PORT MAP (IO2, gpioo.dout(2), gpioo.oen(2), gpioi.din(2));
635 651 --pio_pad_3 : iopad
636 652 -- GENERIC MAP (tech => CFG_PADTECH)
637 653 -- PORT MAP (IO3, gpioo.dout(3), gpioo.oen(3), gpioi.din(3));
638 654 --pio_pad_4 : iopad
639 655 -- GENERIC MAP (tech => CFG_PADTECH)
640 656 -- PORT MAP (IO4, gpioo.dout(4), gpioo.oen(4), gpioi.din(4));
641 657 --pio_pad_5 : iopad
642 658 -- GENERIC MAP (tech => CFG_PADTECH)
643 659 -- PORT MAP (IO5, gpioo.dout(5), gpioo.oen(5), gpioi.din(5));
644 660 --pio_pad_6 : iopad
645 661 -- GENERIC MAP (tech => CFG_PADTECH)
646 662 -- PORT MAP (IO6, gpioo.dout(6), gpioo.oen(6), gpioi.din(6));
647 663 --pio_pad_7 : iopad
648 664 -- GENERIC MAP (tech => CFG_PADTECH)
649 665 -- PORT MAP (IO7, gpioo.dout(7), gpioo.oen(7), gpioi.din(7));
650 666
651 667 PROCESS (clk_25, rstn_25)
652 668 BEGIN -- PROCESS
653 669 IF rstn_25 = '0' THEN -- asynchronous reset (active low)
654 670 -- --IO0 <= '0';
655 671 -- IO1 <= '0';
656 672 -- IO2 <= '0';
657 673 -- IO3 <= '0';
658 674 -- IO4 <= '0';
659 675 -- IO5 <= '0';
660 676 -- IO6 <= '0';
661 677 -- IO7 <= '0';
662 678 IO8 <= '0';
663 679 IO9 <= '0';
664 680 IO10 <= '0';
665 681 IO11 <= '0';
666 682 ELSIF clk_25'EVENT AND clk_25 = '1' THEN -- rising clock edge
667 683 CASE gpioo.dout(2 DOWNTO 0) IS
668 684 WHEN "011" =>
669 685 -- --IO0 <= observation_reg(0 );
670 686 -- IO1 <= observation_reg(1 );
671 687 -- IO2 <= observation_reg(2 );
672 688 -- IO3 <= observation_reg(3 );
673 689 -- IO4 <= observation_reg(4 );
674 690 -- IO5 <= observation_reg(5 );
675 691 -- IO6 <= observation_reg(6 );
676 692 -- IO7 <= observation_reg(7 );
677 693 IO8 <= observation_reg(8);
678 694 IO9 <= observation_reg(9);
679 695 IO10 <= observation_reg(10);
680 696 IO11 <= observation_reg(11);
681 697 WHEN "001" =>
682 698 -- --IO0 <= observation_reg(0 + 12);
683 699 -- IO1 <= observation_reg(1 + 12);
684 700 -- IO2 <= observation_reg(2 + 12);
685 701 -- IO3 <= observation_reg(3 + 12);
686 702 -- IO4 <= observation_reg(4 + 12);
687 703 -- IO5 <= observation_reg(5 + 12);
688 704 -- IO6 <= observation_reg(6 + 12);
689 705 -- IO7 <= observation_reg(7 + 12);
690 706 IO8 <= observation_reg(8 + 12);
691 707 IO9 <= observation_reg(9 + 12);
692 708 IO10 <= observation_reg(10 + 12);
693 709 IO11 <= observation_reg(11 + 12);
694 710 WHEN "010" =>
695 711 -- --IO0 <= observation_reg(0 + 12 + 12);
696 712 -- IO1 <= observation_reg(1 + 12 + 12);
697 713 -- IO2 <= observation_reg(2 + 12 + 12);
698 714 -- IO3 <= observation_reg(3 + 12 + 12);
699 715 -- IO4 <= observation_reg(4 + 12 + 12);
700 716 -- IO5 <= observation_reg(5 + 12 + 12);
701 717 -- IO6 <= observation_reg(6 + 12 + 12);
702 718 -- IO7 <= observation_reg(7 + 12 + 12);
703 719 IO8 <= '0';
704 720 IO9 <= '0';
705 721 IO10 <= '0';
706 722 IO11 <= '0';
707 723 WHEN "000" =>
708 724 -- --IO0 <= observation_vector_0(0 );
709 725 -- IO1 <= observation_vector_0(1 );
710 726 -- IO2 <= observation_vector_0(2 );
711 727 -- IO3 <= observation_vector_0(3 );
712 728 -- IO4 <= observation_vector_0(4 );
713 729 -- IO5 <= observation_vector_0(5 );
714 730 -- IO6 <= observation_vector_0(6 );
715 731 -- IO7 <= observation_vector_0(7 );
716 732 IO8 <= observation_vector_0(8);
717 733 IO9 <= observation_vector_0(9);
718 734 IO10 <= observation_vector_0(10);
719 735 IO11 <= observation_vector_0(11);
720 736 WHEN "100" =>
721 737 -- --IO0 <= observation_vector_1(0 );
722 738 -- IO1 <= observation_vector_1(1 );
723 739 -- IO2 <= observation_vector_1(2 );
724 740 -- IO3 <= observation_vector_1(3 );
725 741 -- IO4 <= observation_vector_1(4 );
726 742 -- IO5 <= observation_vector_1(5 );
727 743 -- IO6 <= observation_vector_1(6 );
728 744 -- IO7 <= observation_vector_1(7 );
729 745 IO8 <= observation_vector_1(8);
730 746 IO9 <= observation_vector_1(9);
731 747 IO10 <= observation_vector_1(10);
732 748 IO11 <= observation_vector_1(11);
733 749 WHEN OTHERS => NULL;
734 750 END CASE;
735 751
736 752 END IF;
737 753 END PROCESS;
738 754 -----------------------------------------------------------------------------
739 755 --
740 756 -----------------------------------------------------------------------------
741 757 all_apbo_ext : FOR I IN NB_APB_SLAVE-1+5 DOWNTO 5 GENERATE
742 758 apbo_ext_not_used : IF I /= 5 AND I /= 6 AND I /= 11 AND I /= 15 GENERATE
743 759 apbo_ext(I) <= apb_none;
744 760 END GENERATE apbo_ext_not_used;
745 761 END GENERATE all_apbo_ext;
746 762
747 763
748 764 all_ahbo_ext : FOR I IN NB_AHB_SLAVE-1+3 DOWNTO 3 GENERATE
749 765 ahbo_s_ext(I) <= ahbs_none;
750 766 END GENERATE all_ahbo_ext;
751 767
752 768 all_ahbo_m_ext : FOR I IN NB_AHB_MASTER-1+1 DOWNTO 1 GENERATE
753 769 ahbo_m_ext_not_used : IF I /= 1 AND I /= 2 GENERATE
754 770 ahbo_m_ext(I) <= ahbm_none;
755 771 END GENERATE ahbo_m_ext_not_used;
756 772 END GENERATE all_ahbo_m_ext;
757 773
758 774 END beh;
@@ -1,201 +1,226
1 1 LIBRARY ieee;
2 2 USE ieee.std_logic_1164.ALL;
3 3 USE ieee.numeric_std.ALL;
4 4
5 5 LIBRARY lpp;
6 USE lpp.apb_devices_list.ALL;
6 7 USE lpp.lpp_ad_conv.ALL;
7 8 USE lpp.iir_filter.ALL;
8 9 USE lpp.FILTERcfg.ALL;
9 10 USE lpp.lpp_memory.ALL;
10 11 --USE lpp.lpp_waveform_pkg.ALL;
11 12 USE lpp.lpp_dma_pkg.ALL;
12 13 --USE lpp.lpp_top_lfr_pkg.ALL;
13 14 --USE lpp.lpp_lfr_pkg.ALL;
14 15 USE lpp.general_purpose.ALL;
15 16
16 17 LIBRARY techmap;
17 18 USE techmap.gencomp.ALL;
18 19
19 20 LIBRARY grlib;
20 21 USE grlib.amba.ALL;
21 22 USE grlib.stdlib.ALL;
22 23 USE grlib.devices.ALL;
23 24 USE GRLIB.DMA2AHB_Package.ALL;
24 25
25 26 ENTITY DMA_SubSystem IS
26 27
27 28 GENERIC (
28 hindex : INTEGER := 2);
29 hindex : INTEGER := 2;
30 CUSTOM_DMA : INTEGER := 1);
29 31
30 32 PORT (
31 33 clk : IN STD_LOGIC;
32 34 rstn : IN STD_LOGIC;
33 35 run : IN STD_LOGIC;
34 36 -- AHB
35 37 ahbi : IN AHB_Mst_In_Type;
36 38 ahbo : OUT AHB_Mst_Out_Type;
37 39 ---------------------------------------------------------------------------
38 40 fifo_burst_valid : IN STD_LOGIC_VECTOR(4 DOWNTO 0);
39 41 fifo_data : IN STD_LOGIC_VECTOR(32*5-1 DOWNTO 0);
40 42 fifo_ren : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
41 43 ---------------------------------------------------------------------------
42 44 buffer_new : IN STD_LOGIC_VECTOR(4 DOWNTO 0);
43 45 buffer_addr : IN STD_LOGIC_VECTOR(32*5-1 DOWNTO 0);
44 46 buffer_length : IN STD_LOGIC_VECTOR(26*5-1 DOWNTO 0);
45 47 buffer_full : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
46 48 buffer_full_err : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
47 49 ---------------------------------------------------------------------------
48 50 grant_error : OUT STD_LOGIC --
49 51
50 52 );
51 53
52 54 END DMA_SubSystem;
53 55
54 56
55 57 ARCHITECTURE beh OF DMA_SubSystem IS
56 58
57 59 COMPONENT DMA_SubSystem_GestionBuffer
58 60 GENERIC (
59 61 BUFFER_ADDR_SIZE : INTEGER;
60 62 BUFFER_LENGTH_SIZE : INTEGER);
61 63 PORT (
62 64 clk : IN STD_LOGIC;
63 65 rstn : IN STD_LOGIC;
64 66 run : IN STD_LOGIC;
65 67 buffer_new : IN STD_LOGIC;
66 68 buffer_addr : IN STD_LOGIC_VECTOR(BUFFER_ADDR_SIZE-1 DOWNTO 0);
67 69 buffer_length : IN STD_LOGIC_VECTOR(BUFFER_LENGTH_SIZE-1 DOWNTO 0);
68 70 buffer_full : OUT STD_LOGIC;
69 71 buffer_full_err : OUT STD_LOGIC;
70 72 burst_send : IN STD_LOGIC;
71 73 burst_addr : OUT STD_LOGIC_VECTOR(BUFFER_ADDR_SIZE-1 DOWNTO 0));
72 74 END COMPONENT;
73 75
74 76 COMPONENT DMA_SubSystem_Arbiter
75 77 PORT (
76 78 clk : IN STD_LOGIC;
77 79 rstn : IN STD_LOGIC;
78 80 run : IN STD_LOGIC;
79 81 data_burst_valid : IN STD_LOGIC_VECTOR(4 DOWNTO 0);
80 82 data_burst_valid_grant : OUT STD_LOGIC_VECTOR(4 DOWNTO 0));
81 83 END COMPONENT;
82 84
83 85 COMPONENT DMA_SubSystem_MUX
84 86 PORT (
85 87 clk : IN STD_LOGIC;
86 88 rstn : IN STD_LOGIC;
87 89 run : IN STD_LOGIC;
88 90 fifo_grant : IN STD_LOGIC_VECTOR(4 DOWNTO 0);
89 91 fifo_data : IN STD_LOGIC_VECTOR(32*5-1 DOWNTO 0);
90 92 fifo_address : IN STD_LOGIC_VECTOR(32*5-1 DOWNTO 0);
91 93 fifo_ren : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
92 94 fifo_burst_done : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
93 95 dma_send : OUT STD_LOGIC;
94 96 dma_valid_burst : OUT STD_LOGIC;
95 97 dma_address : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
96 98 dma_data : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
97 99 dma_ren : IN STD_LOGIC;
98 100 dma_done : IN STD_LOGIC;
99 101 grant_error : OUT STD_LOGIC);
100 102 END COMPONENT;
101 103
102 104 -----------------------------------------------------------------------------
103 105 SIGNAL dma_send : STD_LOGIC;
104 106 SIGNAL dma_valid_burst : STD_LOGIC; -- (1 => BURST , 0 => SINGLE)
105 107 SIGNAL dma_done : STD_LOGIC;
106 108 SIGNAL dma_ren : STD_LOGIC;
107 109 SIGNAL dma_address : STD_LOGIC_VECTOR(31 DOWNTO 0);
108 110 SIGNAL dma_data : STD_LOGIC_VECTOR(31 DOWNTO 0);
109 111 SIGNAL burst_send : STD_LOGIC_VECTOR(4 DOWNTO 0);
110 112 SIGNAL fifo_grant : STD_LOGIC_VECTOR(4 DOWNTO 0);
111 113 SIGNAL fifo_address : STD_LOGIC_VECTOR(32*5-1 DOWNTO 0); --
112 114
113 115
114 116 BEGIN -- beh
115 117
116 118 -----------------------------------------------------------------------------
117 119 -- DMA
118 120 -----------------------------------------------------------------------------
119 lpp_dma_singleOrBurst_1 : lpp_dma_singleOrBurst
120 GENERIC MAP (
121 tech => inferred,
122 hindex => hindex)
123 PORT MAP (
124 HCLK => clk,
125 HRESETn => rstn,
126 run => run,
127 AHB_Master_In => ahbi,
128 AHB_Master_Out => ahbo,
121 GR_DMA : IF CUSTOM_DMA = 0 GENERATE
122 lpp_dma_singleOrBurst_1 : lpp_dma_singleOrBurst
123 GENERIC MAP (
124 tech => inferred,
125 hindex => hindex)
126 PORT MAP (
127 HCLK => clk,
128 HRESETn => rstn,
129 run => run,
130 AHB_Master_In => ahbi,
131 AHB_Master_Out => ahbo,
132
133 send => dma_send,
134 valid_burst => dma_valid_burst,
135 done => dma_done,
136 ren => dma_ren,
137 address => dma_address,
138 data => dma_data);
139 END GENERATE GR_DMA;
129 140
130 send => dma_send,
131 valid_burst => dma_valid_burst,
132 done => dma_done,
133 ren => dma_ren,
134 address => dma_address,
135 data => dma_data);
141 LPP_DMA_IP : IF CUSTOM_DMA = 1 GENERATE
142 lpp_dma_SEND16B_FIFO2DMA_1 : lpp_dma_SEND16B_FIFO2DMA
143 GENERIC MAP (
144 hindex => hindex,
145 vendorid => VENDOR_LPP,
146 deviceid => 10,
147 version => 0)
148 PORT MAP (
149 clk => clk,
150 rstn => rstn,
151 AHB_Master_In => ahbi,
152 AHB_Master_Out => ahbo,
136 153
137
154 ren => dma_ren,
155 data => dma_data,
156 send => dma_send,
157 valid_burst => dma_valid_burst,
158 done => dma_done,
159 address => dma_address);
160 END GENERATE LPP_DMA_IP;
161
162
138 163 -----------------------------------------------------------------------------
139 164 -- RoundRobin Selection Channel For DMA
140 165 -----------------------------------------------------------------------------
141 166 DMA_SubSystem_Arbiter_1: DMA_SubSystem_Arbiter
142 167 PORT MAP (
143 168 clk => clk,
144 169 rstn => rstn,
145 170 run => run,
146 171 data_burst_valid => fifo_burst_valid,
147 172 data_burst_valid_grant => fifo_grant);
148 173
149 174
150 175 -----------------------------------------------------------------------------
151 176 -- Mux between the channel from Waveform Picker and Spectral Matrix
152 177 -----------------------------------------------------------------------------
153 178 DMA_SubSystem_MUX_1: DMA_SubSystem_MUX
154 179 PORT MAP (
155 180 clk => clk,
156 181 rstn => rstn,
157 182 run => run,
158 183
159 184 fifo_grant => fifo_grant,
160 185 fifo_data => fifo_data,
161 186 fifo_address => fifo_address,
162 187 fifo_ren => fifo_ren,
163 188 fifo_burst_done => burst_send,
164 189
165 190 dma_send => dma_send,
166 191 dma_valid_burst => dma_valid_burst,
167 192 dma_address => dma_address,
168 193 dma_data => dma_data,
169 194 dma_ren => dma_ren,
170 195 dma_done => dma_done,
171 196
172 197 grant_error => grant_error);
173 198
174 199
175 200 -----------------------------------------------------------------------------
176 201 -- GEN ADDR
177 202 -----------------------------------------------------------------------------
178 203 all_buffer : FOR I IN 4 DOWNTO 0 GENERATE
179 204 DMA_SubSystem_GestionBuffer_I : DMA_SubSystem_GestionBuffer
180 205 GENERIC MAP (
181 206 BUFFER_ADDR_SIZE => 32,
182 207 BUFFER_LENGTH_SIZE => 26)
183 208 PORT MAP (
184 209 clk => clk,
185 210 rstn => rstn,
186 211 run => run,
187 212
188 213 buffer_new => buffer_new(I),
189 214 buffer_addr => buffer_addr(32*(I+1)-1 DOWNTO I*32),
190 215 buffer_length => buffer_length(26*(I+1)-1 DOWNTO I*26),
191 216 buffer_full => buffer_full(I),
192 217 buffer_full_err => buffer_full_err(I),
193 218
194 219 burst_send => burst_send(I),
195 220 burst_addr => fifo_address(32*(I+1)-1 DOWNTO 32*I)
196 221 );
197 222 END GENERATE all_buffer;
198 223
199 224
200 225
201 226 END beh;
@@ -1,289 +1,309
1 1 ------------------------------------------------------------------------------
2 2 -- This file is a part of the LPP VHDL IP LIBRARY
3 3 -- Copyright (C) 2009 - 2010, Laboratory of Plasmas Physic - CNRS
4 4 --
5 5 -- This program is free software; you can redistribute it and/or modify
6 6 -- it under the terms of the GNU General Public License as published by
7 7 -- the Free Software Foundation; either version 3 of the License, or
8 8 -- (at your option) any later version.
9 9 --
10 10 -- This program is distributed in the hope that it will be useful,
11 11 -- but WITHOUT ANY WARRANTY; without even the implied warranty of
12 12 -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 13 -- GNU General Public License for more details.
14 14 --
15 15 -- You should have received a copy of the GNU General Public License
16 16 -- along with this program; if not, write to the Free Software
17 17 -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 18 -------------------------------------------------------------------------------
19 19 -- Author : Jean-christophe Pellion
20 20 -- Mail : jean-christophe.pellion@lpp.polytechnique.fr
21 21 -- jean-christophe.pellion@easii-ic.com
22 22 ----------------------------------------------------------------------------
23 23 LIBRARY ieee;
24 24 USE ieee.std_logic_1164.ALL;
25 25 LIBRARY grlib;
26 26 USE grlib.amba.ALL;
27 27 USE std.textio.ALL;
28 28 LIBRARY grlib;
29 29 USE grlib.amba.ALL;
30 30 USE grlib.stdlib.ALL;
31 31 USE GRLIB.DMA2AHB_Package.ALL;
32 32 LIBRARY techmap;
33 33 USE techmap.gencomp.ALL;
34 34 --LIBRARY lpp;
35 35 --USE lpp.lpp_amba.ALL;
36 36 --USE lpp.apb_devices_list.ALL;
37 37 --USE lpp.lpp_memory.ALL;
38 38
39 39 PACKAGE lpp_dma_pkg IS
40 40
41 41 COMPONENT lpp_dma
42 42 GENERIC (
43 43 tech : INTEGER;
44 44 hindex : INTEGER;
45 45 pindex : INTEGER;
46 46 paddr : INTEGER;
47 47 pmask : INTEGER;
48 48 pirq : INTEGER);
49 49 PORT (
50 50 HCLK : IN STD_ULOGIC;
51 51 HRESETn : IN STD_ULOGIC;
52 52 apbi : IN apb_slv_in_type;
53 53 apbo : OUT apb_slv_out_type;
54 54 AHB_Master_In : IN AHB_Mst_In_Type;
55 55 AHB_Master_Out : OUT AHB_Mst_Out_Type;
56 56 -- fifo interface
57 57 fifo_data : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
58 58 fifo_empty : IN STD_LOGIC;
59 59 fifo_ren : OUT STD_LOGIC;
60 60 -- header
61 61 header : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
62 62 header_val : IN STD_LOGIC;
63 63 header_ack : OUT STD_LOGIC);
64 64 END COMPONENT;
65 65
66 66 COMPONENT fifo_test_dma
67 67 GENERIC (
68 68 tech : INTEGER;
69 69 pindex : INTEGER;
70 70 paddr : INTEGER;
71 71 pmask : INTEGER);
72 72 PORT (
73 73 HCLK : IN STD_ULOGIC;
74 74 HRESETn : IN STD_ULOGIC;
75 75 apbi : IN apb_slv_in_type;
76 76 apbo : OUT apb_slv_out_type;
77 77 -- fifo interface
78 78 fifo_data : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
79 79 fifo_empty : OUT STD_LOGIC;
80 80 fifo_ren : IN STD_LOGIC;
81 81 -- header
82 82 header : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
83 83 header_val : OUT STD_LOGIC;
84 84 header_ack : IN STD_LOGIC
85 85 );
86 86 END COMPONENT;
87 87
88 88 COMPONENT lpp_dma_apbreg
89 89 GENERIC (
90 90 pindex : INTEGER;
91 91 paddr : INTEGER;
92 92 pmask : INTEGER;
93 93 pirq : INTEGER);
94 94 PORT (
95 95 HCLK : IN STD_ULOGIC;
96 96 HRESETn : IN STD_ULOGIC;
97 97 apbi : IN apb_slv_in_type;
98 98 apbo : OUT apb_slv_out_type;
99 99 -- IN
100 100 ready_matrix_f0_0 : IN STD_LOGIC;
101 101 ready_matrix_f0_1 : IN STD_LOGIC;
102 102 ready_matrix_f1 : IN STD_LOGIC;
103 103 ready_matrix_f2 : IN STD_LOGIC;
104 104 error_anticipating_empty_fifo : IN STD_LOGIC;
105 105 error_bad_component_error : IN STD_LOGIC;
106 106 debug_reg : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
107 107
108 108 -- OUT
109 109 status_ready_matrix_f0_0 : OUT STD_LOGIC;
110 110 status_ready_matrix_f0_1 : OUT STD_LOGIC;
111 111 status_ready_matrix_f1 : OUT STD_LOGIC;
112 112 status_ready_matrix_f2 : OUT STD_LOGIC;
113 113 status_error_anticipating_empty_fifo : OUT STD_LOGIC;
114 114 status_error_bad_component_error : OUT STD_LOGIC;
115 115
116 116 config_active_interruption_onNewMatrix : OUT STD_LOGIC;
117 117 config_active_interruption_onError : OUT STD_LOGIC;
118 118 addr_matrix_f0_0 : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
119 119 addr_matrix_f0_1 : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
120 120 addr_matrix_f1 : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
121 121 addr_matrix_f2 : OUT STD_LOGIC_VECTOR(31 DOWNTO 0)
122 122 );
123 123 END COMPONENT;
124 124
125 125 COMPONENT lpp_dma_send_1word
126 126 PORT (
127 127 HCLK : IN STD_ULOGIC;
128 128 HRESETn : IN STD_ULOGIC;
129 129 DMAIn : OUT DMA_In_Type;
130 130 DMAOut : IN DMA_OUt_Type;
131 131 send : IN STD_LOGIC;
132 132 address : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
133 133 data : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
134 134 ren : OUT STD_LOGIC;
135 135 send_ok : OUT STD_LOGIC;
136 136 send_ko : OUT STD_LOGIC);
137 137 END COMPONENT;
138 138
139 139 COMPONENT lpp_dma_send_16word
140 140 PORT (
141 141 HCLK : IN STD_ULOGIC;
142 142 HRESETn : IN STD_ULOGIC;
143 143 DMAIn : OUT DMA_In_Type;
144 144 DMAOut : IN DMA_OUt_Type;
145 145 send : IN STD_LOGIC;
146 146 address : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
147 147 data : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
148 148 ren : OUT STD_LOGIC;
149 149 send_ok : OUT STD_LOGIC;
150 150 send_ko : OUT STD_LOGIC);
151 151 END COMPONENT;
152 152
153 153 COMPONENT fifo_latency_correction
154 154 PORT (
155 155 HCLK : IN STD_ULOGIC;
156 156 HRESETn : IN STD_ULOGIC;
157 157 fifo_data : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
158 158 fifo_empty : IN STD_LOGIC;
159 159 fifo_ren : OUT STD_LOGIC;
160 160 dma_data : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
161 161 dma_empty : OUT STD_LOGIC;
162 162 dma_ren : IN STD_LOGIC);
163 163 END COMPONENT;
164 164
165 165 COMPONENT lpp_dma_ip
166 166 GENERIC (
167 167 tech : INTEGER;
168 168 hindex : INTEGER);
169 169 PORT (
170 170 HCLK : IN STD_ULOGIC;
171 171 HRESETn : IN STD_ULOGIC;
172 172 AHB_Master_In : IN AHB_Mst_In_Type;
173 173 AHB_Master_Out : OUT AHB_Mst_Out_Type;
174 174 fifo_data : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
175 175 fifo_empty : IN STD_LOGIC;
176 176 fifo_ren : OUT STD_LOGIC;
177 177 header : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
178 178 header_val : IN STD_LOGIC;
179 179 header_ack : OUT STD_LOGIC;
180 180 ready_matrix_f0_0 : OUT STD_LOGIC;
181 181 ready_matrix_f0_1 : OUT STD_LOGIC;
182 182 ready_matrix_f1 : OUT STD_LOGIC;
183 183 ready_matrix_f2 : OUT STD_LOGIC;
184 184 error_anticipating_empty_fifo : OUT STD_LOGIC;
185 185 error_bad_component_error : OUT STD_LOGIC;
186 186 debug_reg : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
187 187 status_ready_matrix_f0_0 : IN STD_LOGIC;
188 188 status_ready_matrix_f0_1 : IN STD_LOGIC;
189 189 status_ready_matrix_f1 : IN STD_LOGIC;
190 190 status_ready_matrix_f2 : IN STD_LOGIC;
191 191 status_error_anticipating_empty_fifo : IN STD_LOGIC;
192 192 status_error_bad_component_error : IN STD_LOGIC;
193 193 config_active_interruption_onNewMatrix : IN STD_LOGIC;
194 194 config_active_interruption_onError : IN STD_LOGIC;
195 195 addr_matrix_f0_0 : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
196 196 addr_matrix_f0_1 : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
197 197 addr_matrix_f1 : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
198 198 addr_matrix_f2 : IN STD_LOGIC_VECTOR(31 DOWNTO 0));
199 199 END COMPONENT;
200 200
201 201 COMPONENT lpp_dma_singleOrBurst
202 202 GENERIC (
203 203 tech : INTEGER;
204 204 hindex : INTEGER);
205 205 PORT (
206 206 HCLK : IN STD_ULOGIC;
207 207 HRESETn : IN STD_ULOGIC;
208 208 run : IN STD_LOGIC;
209 209 AHB_Master_In : IN AHB_Mst_In_Type;
210 210 AHB_Master_Out : OUT AHB_Mst_Out_Type;
211 211 send : IN STD_LOGIC;
212 212 valid_burst : IN STD_LOGIC;
213 213 done : OUT STD_LOGIC;
214 214 ren : OUT STD_LOGIC;
215 215 address : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
216 216 data : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
217 217 debug_dmaout_okay : OUT STD_LOGIC);
218 218 END COMPONENT;
219 219
220 220
221 221 -----------------------------------------------------------------------------
222 222 -- DMA_SubSystem
223 223 -----------------------------------------------------------------------------
224 224 COMPONENT DMA_SubSystem
225 225 GENERIC (
226 hindex : INTEGER);
226 hindex : INTEGER;
227 CUSTOM_DMA : INTEGER := 1);
227 228 PORT (
228 229 clk : IN STD_LOGIC;
229 230 rstn : IN STD_LOGIC;
230 231 run : IN STD_LOGIC;
231 232 ahbi : IN AHB_Mst_In_Type;
232 233 ahbo : OUT AHB_Mst_Out_Type;
233 234 fifo_burst_valid : IN STD_LOGIC_VECTOR(4 DOWNTO 0);
234 235 fifo_data : IN STD_LOGIC_VECTOR(32*5-1 DOWNTO 0);
235 236 fifo_ren : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
236 237 buffer_new : IN STD_LOGIC_VECTOR(4 DOWNTO 0);
237 238 buffer_addr : IN STD_LOGIC_VECTOR(32*5-1 DOWNTO 0);
238 239 buffer_length : IN STD_LOGIC_VECTOR(26*5-1 DOWNTO 0);
239 240 buffer_full : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
240 241 buffer_full_err : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
241 242 grant_error : OUT STD_LOGIC);
242 243 END COMPONENT;
243 244
244 245 COMPONENT DMA_SubSystem_GestionBuffer
245 246 GENERIC (
246 247 BUFFER_ADDR_SIZE : INTEGER;
247 248 BUFFER_LENGTH_SIZE : INTEGER);
248 249 PORT (
249 250 clk : IN STD_LOGIC;
250 251 rstn : IN STD_LOGIC;
251 252 run : IN STD_LOGIC;
252 253 buffer_new : IN STD_LOGIC;
253 254 buffer_addr : IN STD_LOGIC_VECTOR(BUFFER_ADDR_SIZE-1 DOWNTO 0);
254 255 buffer_length : IN STD_LOGIC_VECTOR(BUFFER_LENGTH_SIZE-1 DOWNTO 0);
255 256 buffer_full : OUT STD_LOGIC;
256 257 buffer_full_err : OUT STD_LOGIC;
257 258 burst_send : IN STD_LOGIC;
258 259 burst_addr : OUT STD_LOGIC_VECTOR(BUFFER_ADDR_SIZE-1 DOWNTO 0));
259 260 END COMPONENT;
260 261
261 262 COMPONENT DMA_SubSystem_Arbiter
262 263 PORT (
263 264 clk : IN STD_LOGIC;
264 265 rstn : IN STD_LOGIC;
265 266 run : IN STD_LOGIC;
266 267 data_burst_valid : IN STD_LOGIC_VECTOR(4 DOWNTO 0);
267 268 data_burst_valid_grant : OUT STD_LOGIC_VECTOR(4 DOWNTO 0));
268 269 END COMPONENT;
269 270
270 271 COMPONENT DMA_SubSystem_MUX
271 272 PORT (
272 273 clk : IN STD_LOGIC;
273 274 rstn : IN STD_LOGIC;
274 275 run : IN STD_LOGIC;
275 276 fifo_grant : IN STD_LOGIC_VECTOR(4 DOWNTO 0);
276 277 fifo_data : IN STD_LOGIC_VECTOR(32*5-1 DOWNTO 0);
277 278 fifo_address : IN STD_LOGIC_VECTOR(32*5-1 DOWNTO 0);
278 279 fifo_ren : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
279 280 fifo_burst_done : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
280 281 dma_send : OUT STD_LOGIC;
281 282 dma_valid_burst : OUT STD_LOGIC;
282 283 dma_address : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
283 284 dma_data : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
284 285 dma_ren : IN STD_LOGIC;
285 286 dma_done : IN STD_LOGIC;
286 287 grant_error : OUT STD_LOGIC);
287 288 END COMPONENT;
289
290 COMPONENT lpp_dma_SEND16B_FIFO2DMA
291 GENERIC (
292 hindex : INTEGER;
293 vendorid : in Integer;
294 deviceid : in Integer;
295 version : in Integer);
296 PORT (
297 clk : IN STD_LOGIC;
298 rstn : IN STD_LOGIC;
299 AHB_Master_In : IN AHB_Mst_In_Type;
300 AHB_Master_Out : OUT AHB_Mst_Out_Type;
301 ren : OUT STD_LOGIC;
302 data : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
303 send : IN STD_LOGIC;
304 valid_burst : IN STD_LOGIC;
305 done : OUT STD_LOGIC;
306 address : IN STD_LOGIC_VECTOR(31 DOWNTO 0));
307 END COMPONENT;
288 308
289 309 END;
@@ -1,11 +1,12
1 1 lpp_dma_pkg.vhd
2 2 fifo_latency_correction.vhd
3 3 lpp_dma.vhd
4 4 lpp_dma_ip.vhd
5 5 lpp_dma_send_16word.vhd
6 6 lpp_dma_send_1word.vhd
7 7 lpp_dma_singleOrBurst.vhd
8 8 DMA_SubSystem.vhd
9 9 DMA_SubSystem_GestionBuffer.vhd
10 10 DMA_SubSystem_Arbiter.vhd
11 11 DMA_SubSystem_MUX.vhd
12 lpp_dma_SEND16B_FIFO2DMA.vhd
@@ -1,572 +1,572
1 1 -----------------------------------------------------------------------------
2 2 -- LEON3 Demonstration design
3 3 -- Copyright (C) 2004 Jiri Gaisler, Gaisler Research
4 4 --
5 5 -- This program is free software; you can redistribute it and/or modify
6 6 -- it under the terms of the GNU General Public License as published by
7 7 -- the Free Software Foundation; either version 2 of the License, or
8 8 -- (at your option) any later version.
9 9 --
10 10 -- This program is distributed in the hope that it will be useful,
11 11 -- but WITHOUT ANY WARRANTY; without even the implied warranty of
12 12 -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 13 -- GNU General Public License for more details.
14 14 --
15 15 -- You should have received a copy of the GNU General Public License
16 16 -- along with this program; if not, write to the Free Software
17 17 -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 18 ------------------------------------------------------------------------------
19 19
20 20
21 21 LIBRARY ieee;
22 22 USE ieee.std_logic_1164.ALL;
23 23 LIBRARY grlib;
24 24 USE grlib.amba.ALL;
25 25 USE grlib.stdlib.ALL;
26 26 LIBRARY techmap;
27 27 USE techmap.gencomp.ALL;
28 28 LIBRARY gaisler;
29 29 USE gaisler.memctrl.ALL;
30 30 USE gaisler.leon3.ALL;
31 31 USE gaisler.uart.ALL;
32 32 USE gaisler.misc.ALL;
33 33 USE gaisler.spacewire.ALL; -- PLE
34 34 LIBRARY esa;
35 35 USE esa.memoryctrl.ALL;
36 36 LIBRARY lpp;
37 37 USE lpp.lpp_memory.ALL;
38 38 USE lpp.lpp_ad_conv.ALL;
39 39 USE lpp.lpp_lfr_pkg.ALL;
40 40 USE lpp.iir_filter.ALL;
41 41 USE lpp.general_purpose.ALL;
42 42 USE lpp.lpp_leon3_soc_pkg.ALL;
43 43 LIBRARY iap;
44 44 USE iap.memctrl.ALL;
45 45
46 46
47 47 ENTITY leon3_soc IS
48 48 GENERIC (
49 49 fabtech : INTEGER := apa3e;
50 50 memtech : INTEGER := apa3e;
51 51 padtech : INTEGER := inferred;
52 52 clktech : INTEGER := inferred;
53 53 disas : INTEGER := 0; -- Enable disassembly to console
54 54 dbguart : INTEGER := 0; -- Print UART on console
55 55 pclow : INTEGER := 2;
56 56 --
57 57 clk_freq : INTEGER := 25000; --kHz
58 58 --
59 59 IS_RADHARD : INTEGER := 0;
60 60 --
61 61 NB_CPU : INTEGER := 1;
62 62 ENABLE_FPU : INTEGER := 1;
63 63 FPU_NETLIST : INTEGER := 1;
64 64 ENABLE_DSU : INTEGER := 1;
65 65 ENABLE_AHB_UART : INTEGER := 1;
66 66 ENABLE_APB_UART : INTEGER := 1;
67 67 ENABLE_IRQMP : INTEGER := 1;
68 68 ENABLE_GPT : INTEGER := 1;
69 69 --
70 70 NB_AHB_MASTER : INTEGER := 1;
71 71 NB_AHB_SLAVE : INTEGER := 1;
72 72 NB_APB_SLAVE : INTEGER := 1;
73 73 --
74 74 ADDRESS_SIZE : INTEGER := 20;
75 75 USES_IAP_MEMCTRLR : INTEGER := 0;
76 76 BYPASS_EDAC_MEMCTRLR : STD_LOGIC := '0';
77 77 SRBANKSZ : INTEGER := 8
78 78
79 79 );
80 80 PORT (
81 81 clk : IN STD_ULOGIC;
82 82 reset : IN STD_ULOGIC;
83 83
84 84 errorn : OUT STD_ULOGIC;
85 85
86 86 -- UART AHB ---------------------------------------------------------------
87 87 ahbrxd : IN STD_ULOGIC; -- DSU rx data
88 88 ahbtxd : OUT STD_ULOGIC; -- DSU tx data
89 89
90 90 -- UART APB ---------------------------------------------------------------
91 91 urxd1 : IN STD_ULOGIC; -- UART1 rx data
92 92 utxd1 : OUT STD_ULOGIC; -- UART1 tx data
93 93
94 94 -- RAM --------------------------------------------------------------------
95 95 address : OUT STD_LOGIC_VECTOR(ADDRESS_SIZE-1 DOWNTO 0);
96 96 data : INOUT STD_LOGIC_VECTOR(31 DOWNTO 0);
97 97 nSRAM_BE0 : OUT STD_LOGIC;
98 98 nSRAM_BE1 : OUT STD_LOGIC;
99 99 nSRAM_BE2 : OUT STD_LOGIC;
100 100 nSRAM_BE3 : OUT STD_LOGIC;
101 101 nSRAM_WE : OUT STD_LOGIC;
102 102 nSRAM_CE : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
103 103 nSRAM_OE : OUT STD_LOGIC;
104 104 nSRAM_READY : IN STD_LOGIC;
105 105 SRAM_MBE : INOUT STD_LOGIC;
106 106 -- APB --------------------------------------------------------------------
107 107 apbi_ext : OUT apb_slv_in_type;
108 108 apbo_ext : IN soc_apb_slv_out_vector(NB_APB_SLAVE-1+5 DOWNTO 5);
109 109 -- AHB_Slave --------------------------------------------------------------
110 110 ahbi_s_ext : OUT ahb_slv_in_type;
111 111 ahbo_s_ext : IN soc_ahb_slv_out_vector(NB_AHB_SLAVE-1+3 DOWNTO 3);
112 112 -- AHB_Master -------------------------------------------------------------
113 113 ahbi_m_ext : OUT AHB_Mst_In_Type;
114 114 ahbo_m_ext : IN soc_ahb_mst_out_vector(NB_AHB_MASTER-1+NB_CPU DOWNTO NB_CPU)
115 115
116 116 );
117 117 END;
118 118
119 119 ARCHITECTURE Behavioral OF leon3_soc IS
120 120
121 121 -----------------------------------------------------------------------------
122 122 -- CONFIG -------------------------------------------------------------------
123 123 -----------------------------------------------------------------------------
124 124
125 125 -- Clock generator
126 126 CONSTANT CFG_CLKMUL : INTEGER := (1);
127 127 CONSTANT CFG_CLKDIV : INTEGER := (1); -- divide 50MHz by 2 to get 25MHz
128 128 CONSTANT CFG_OCLKDIV : INTEGER := (1);
129 129 CONSTANT CFG_CLK_NOFB : INTEGER := 0;
130 130 -- LEON3 processor core
131 131 CONSTANT CFG_LEON3 : INTEGER := 1;
132 132 CONSTANT CFG_NCPU : INTEGER := NB_CPU;
133 133 CONSTANT CFG_NWIN : INTEGER := (8); -- to be compatible with BCC and RCC
134 134 CONSTANT CFG_V8 : INTEGER := 0;
135 135 CONSTANT CFG_MAC : INTEGER := 0;
136 136 CONSTANT CFG_SVT : INTEGER := 0;
137 137 CONSTANT CFG_RSTADDR : INTEGER := 16#00000#;
138 138 CONSTANT CFG_LDDEL : INTEGER := (1);
139 139 CONSTANT CFG_NWP : INTEGER := (0);
140 140 CONSTANT CFG_PWD : INTEGER := 1*2;
141 141 CONSTANT CFG_FPU : INTEGER := ENABLE_FPU *(8 + 16 * FPU_NETLIST);
142 142 -- 1*(8 + 16 * 0) => grfpu-light
143 143 -- 1*(8 + 16 * 1) => netlist
144 144 -- 0*(8 + 16 * 0) => No FPU
145 145 -- 0*(8 + 16 * 1) => No FPU;
146 146 CONSTANT CFG_ICEN : INTEGER := 1;
147 147 CONSTANT CFG_ISETS : INTEGER := 1;
148 148 CONSTANT CFG_ISETSZ : INTEGER := 4;
149 149 CONSTANT CFG_ILINE : INTEGER := 4;
150 150 CONSTANT CFG_IREPL : INTEGER := 0;
151 151 CONSTANT CFG_ILOCK : INTEGER := 0;
152 152 CONSTANT CFG_ILRAMEN : INTEGER := 0;
153 153 CONSTANT CFG_ILRAMADDR : INTEGER := 16#8E#;
154 154 CONSTANT CFG_ILRAMSZ : INTEGER := 1;
155 155 CONSTANT CFG_DCEN : INTEGER := 1;
156 156 CONSTANT CFG_DSETS : INTEGER := 1;
157 157 CONSTANT CFG_DSETSZ : INTEGER := 4;
158 158 CONSTANT CFG_DLINE : INTEGER := 4;
159 159 CONSTANT CFG_DREPL : INTEGER := 0;
160 160 CONSTANT CFG_DLOCK : INTEGER := 0;
161 161 CONSTANT CFG_DSNOOP : INTEGER := 0 + 0 + 4*0;
162 162 CONSTANT CFG_DLRAMEN : INTEGER := 0;
163 163 CONSTANT CFG_DLRAMADDR : INTEGER := 16#8F#;
164 164 CONSTANT CFG_DLRAMSZ : INTEGER := 1;
165 165 CONSTANT CFG_MMUEN : INTEGER := 0;
166 166 CONSTANT CFG_ITLBNUM : INTEGER := 2;
167 167 CONSTANT CFG_DTLBNUM : INTEGER := 2;
168 168 CONSTANT CFG_TLB_TYPE : INTEGER := 1 + 0*2;
169 169 CONSTANT CFG_TLB_REP : INTEGER := 1;
170 170
171 171 CONSTANT CFG_DSU : INTEGER := ENABLE_DSU;
172 172 CONSTANT CFG_ITBSZ : INTEGER := 0;
173 173 CONSTANT CFG_ATBSZ : INTEGER := 0;
174 174
175 175 -- AMBA settings
176 176 CONSTANT CFG_DEFMST : INTEGER := (0);
177 177 CONSTANT CFG_RROBIN : INTEGER := 1;
178 178 CONSTANT CFG_SPLIT : INTEGER := 0;
179 179 CONSTANT CFG_AHBIO : INTEGER := 16#FFF#;
180 180 CONSTANT CFG_APBADDR : INTEGER := 16#800#;
181 181
182 182 -- DSU UART
183 183 CONSTANT CFG_AHB_UART : INTEGER := ENABLE_AHB_UART;
184 184
185 185 -- LEON2 memory controller
186 186 CONSTANT CFG_MCTRL_SDEN : INTEGER := 0;
187 187
188 188 -- UART 1
189 189 CONSTANT CFG_UART1_ENABLE : INTEGER := ENABLE_APB_UART;
190 190 CONSTANT CFG_UART1_FIFO : INTEGER := 1;
191 191
192 192 -- LEON3 interrupt controller
193 193 CONSTANT CFG_IRQ3_ENABLE : INTEGER := ENABLE_IRQMP;
194 194
195 195 -- Modular timer
196 196 CONSTANT CFG_GPT_ENABLE : INTEGER := ENABLE_GPT;
197 197 CONSTANT CFG_GPT_NTIM : INTEGER := (2);
198 198 CONSTANT CFG_GPT_SW : INTEGER := (8);
199 199 CONSTANT CFG_GPT_TW : INTEGER := (32);
200 200 CONSTANT CFG_GPT_IRQ : INTEGER := (8);
201 201 CONSTANT CFG_GPT_SEPIRQ : INTEGER := 1;
202 202 CONSTANT CFG_GPT_WDOGEN : INTEGER := 0;
203 203 CONSTANT CFG_GPT_WDOG : INTEGER := 16#0#;
204 204 -----------------------------------------------------------------------------
205 205
206 206 -----------------------------------------------------------------------------
207 207 -- SIGNALs
208 208 -----------------------------------------------------------------------------
209 209 CONSTANT maxahbmsp : INTEGER := CFG_NCPU + CFG_AHB_UART + NB_AHB_MASTER;
210 210 -- CLK & RST --
211 211 SIGNAL clk2x : STD_ULOGIC;
212 212 SIGNAL clkmn : STD_ULOGIC;
213 213 SIGNAL clkm : STD_ULOGIC;
214 214 SIGNAL rstn : STD_ULOGIC;
215 215 SIGNAL rstraw : STD_ULOGIC;
216 216 SIGNAL pciclk : STD_ULOGIC;
217 217 SIGNAL sdclkl : STD_ULOGIC;
218 218 SIGNAL cgi : clkgen_in_type;
219 219 SIGNAL cgo : clkgen_out_type;
220 220 --- AHB / APB
221 221 SIGNAL apbi : apb_slv_in_type;
222 222 SIGNAL apbo : apb_slv_out_vector := (OTHERS => apb_none);
223 223 SIGNAL ahbsi : ahb_slv_in_type;
224 224 SIGNAL ahbso : ahb_slv_out_vector := (OTHERS => ahbs_none);
225 225 SIGNAL ahbmi : ahb_mst_in_type;
226 226 SIGNAL ahbmo : ahb_mst_out_vector := (OTHERS => ahbm_none);
227 227 --UART
228 228 SIGNAL ahbuarti : uart_in_type;
229 229 SIGNAL ahbuarto : uart_out_type;
230 230 SIGNAL apbuarti : uart_in_type;
231 231 SIGNAL apbuarto : uart_out_type;
232 232 --MEM CTRLR
233 233 SIGNAL memi : memory_in_type;
234 234 SIGNAL memo : memory_out_type;
235 235 SIGNAL wpo : wprot_out_type;
236 236 SIGNAL sdo : sdram_out_type;
237 237 SIGNAL mbe : STD_LOGIC; -- enable memory programming
238 238 SIGNAL mbe_drive : STD_LOGIC; -- drive the MBE memory signal
239 239 SIGNAL nSRAM_CE_s : STD_LOGIC_VECTOR(1 DOWNTO 0);
240 240 SIGNAL nSRAM_OE_s : STD_LOGIC;
241 241 --IRQ
242 242 SIGNAL irqi : irq_in_vector(0 TO CFG_NCPU-1);
243 243 SIGNAL irqo : irq_out_vector(0 TO CFG_NCPU-1);
244 244 --Timer
245 245 SIGNAL gpti : gptimer_in_type;
246 246 SIGNAL gpto : gptimer_out_type;
247 247 --DSU
248 248 SIGNAL dbgi : l3_debug_in_vector(0 TO CFG_NCPU-1);
249 249 SIGNAL dbgo : l3_debug_out_vector(0 TO CFG_NCPU-1);
250 250 SIGNAL dsui : dsu_in_type;
251 251 SIGNAL dsuo : dsu_out_type;
252 252 -----------------------------------------------------------------------------
253 253
254 254
255 255 BEGIN
256 256
257 257
258 258 ----------------------------------------------------------------------
259 259 --- Reset and Clock generation -------------------------------------
260 260 ----------------------------------------------------------------------
261 261
262 262 cgi.pllctrl <= "00";
263 263 cgi.pllrst <= rstraw;
264 264
265 265 rst0 : rstgen PORT MAP (reset, clkm, cgo.clklock, rstn, rstraw);
266 266
267 267 clkgen0 : clkgen -- clock generator
268 268 GENERIC MAP (clktech, CFG_CLKMUL, CFG_CLKDIV, CFG_MCTRL_SDEN,
269 269 CFG_CLK_NOFB, 0, 0, 0, clk_freq, 0, 0, CFG_OCLKDIV)
270 270 PORT MAP (clk, clk, clkm, clkmn, clk2x, sdclkl, pciclk, cgi, cgo);
271 271
272 272 ----------------------------------------------------------------------
273 273 --- LEON3 processor / DSU / IRQ ------------------------------------
274 274 ----------------------------------------------------------------------
275 275
276 276 l3 : IF CFG_LEON3 = 1 GENERATE
277 277 cpu : FOR i IN 0 TO CFG_NCPU-1 GENERATE
278 278 leon3_non_radhard : IF IS_RADHARD = 0 GENERATE
279 279 u0 : ENTITY gaisler.leon3s -- LEON3 processor
280 280 GENERIC MAP (i, fabtech, memtech, CFG_NWIN, CFG_DSU, CFG_FPU, CFG_V8,
281 281 0, CFG_MAC, pclow, 0, CFG_NWP, CFG_ICEN, CFG_IREPL, CFG_ISETS, CFG_ILINE,
282 282 CFG_ISETSZ, CFG_ILOCK, CFG_DCEN, CFG_DREPL, CFG_DSETS, CFG_DLINE, CFG_DSETSZ,
283 283 CFG_DLOCK, CFG_DSNOOP, CFG_ILRAMEN, CFG_ILRAMSZ, CFG_ILRAMADDR, CFG_DLRAMEN,
284 284 CFG_DLRAMSZ, CFG_DLRAMADDR, CFG_MMUEN, CFG_ITLBNUM, CFG_DTLBNUM, CFG_TLB_TYPE, CFG_TLB_REP,
285 285 CFG_LDDEL, disas, CFG_ITBSZ, CFG_PWD, CFG_SVT, CFG_RSTADDR, CFG_NCPU-1)
286 286 PORT MAP (clkm, rstn, ahbmi, ahbmo(i), ahbsi, ahbso,
287 287 irqi(i), irqo(i), dbgi(i), dbgo(i));
288 288 END GENERATE leon3_non_radhard;
289 289
290 290 leon3_radhard_i : IF IS_RADHARD = 1 GENERATE
291 291 cpu : ENTITY gaisler.leon3ft
292 292 GENERIC MAP (
293 293 HINDEX => i, --: integer; --CPU_HINDEX,
294 294 FABTECH => fabtech, --CFG_TECH,
295 295 MEMTECH => memtech, --CFG_TECH,
296 296 NWINDOWS => CFG_NWIN, --CFG_NWIN,
297 297 DSU => CFG_DSU, --condSel (HAS_DEBUG, 1, 0),
298 298 FPU => CFG_FPU, --CFG_FPU,
299 299 V8 => CFG_V8, --CFG_V8,
300 300 CP => 0, --CFG_CP,
301 301 MAC => CFG_MAC, --CFG_MAC,
302 302 PCLOW => pclow, --CFG_PCLOW,
303 303 NOTAG => 0, --CFG_NOTAG,
304 304 NWP => CFG_NWP, --CFG_NWP,
305 305 ICEN => CFG_ICEN, --CFG_ICEN,
306 306 IREPL => CFG_IREPL, --CFG_IREPL,
307 307 ISETS => CFG_ISETS, --CFG_ISETS,
308 308 ILINESIZE => CFG_ILINE, --CFG_ILINE,
309 309 ISETSIZE => CFG_ISETSZ, --CFG_ISETSZ,
310 310 ISETLOCK => CFG_ILOCK, --CFG_ILOCK,
311 311 DCEN => CFG_DCEN, --CFG_DCEN,
312 312 DREPL => CFG_DREPL, --CFG_DREPL,
313 313 DSETS => CFG_DSETS, --CFG_DSETS,
314 314 DLINESIZE => CFG_DLINE, --CFG_DLINE,
315 315 DSETSIZE => CFG_DSETSZ, --CFG_DSETSZ,
316 316 DSETLOCK => CFG_DLOCK, --CFG_DLOCK,
317 317 DSNOOP => CFG_DSNOOP, --CFG_DSNOOP,
318 318 ILRAM => CFG_ILRAMEN, --CFG_ILRAMEN,
319 319 ILRAMSIZE => CFG_ILRAMSZ, --CFG_ILRAMSZ,
320 320 ILRAMSTART => CFG_ILRAMADDR, --CFG_ILRAMADDR,
321 321 DLRAM => CFG_DLRAMEN, --CFG_DLRAMEN,
322 322 DLRAMSIZE => CFG_DLRAMSZ, --CFG_DLRAMSZ,
323 323 DLRAMSTART => CFG_DLRAMADDR, --CFG_DLRAMADDR,
324 324 MMUEN => CFG_MMUEN, --CFG_MMUEN,
325 325 ITLBNUM => CFG_ITLBNUM, --CFG_ITLBNUM,
326 326 DTLBNUM => CFG_DTLBNUM, --CFG_DTLBNUM,
327 327 TLB_TYPE => CFG_TLB_TYPE, --CFG_TLB_TYPE,
328 328 TLB_REP => CFG_TLB_REP, --CFG_TLB_REP,
329 329 LDDEL => CFG_LDDEL, --CFG_LDDEL,
330 330 DISAS => disas, --condSel (SIM_ENABLED, 1, 0),
331 331 TBUF => CFG_ITBSZ, --CFG_ITBSZ,
332 332 PWD => CFG_PWD, --CFG_PWD,
333 333 SVT => CFG_SVT, --CFG_SVT,
334 334 RSTADDR => CFG_RSTADDR, --CFG_RSTADDR,
335 335 SMP => CFG_NCPU-1, --CFG_NCPU-1,
336 336 IUFT => 2, --: integer range 0 to 4;--CFG_IUFT_EN,
337 337 FPFT => 1, --: integer range 0 to 4;--CFG_FPUFT_EN,
338 338 CMFT => 1, --: integer range 0 to 1;--CFG_CACHE_FT_EN,
339 339 IUINJ => 0, --: integer; --CFG_RF_ERRINJ,
340 340 CEINJ => 0, --: integer range 0 to 3;--CFG_CACHE_ERRINJ,
341 341 CACHED => 0, --: integer; --CFG_DFIXED,
342 342 NETLIST => 0, --: integer; --CFG_LEON3_NETLIST,
343 343 SCANTEST => 0, --: integer; --CFG_SCANTEST,
344 344 MMUPGSZ => 0, --: integer range 0 to 5;--CFG_MMU_PAGE,
345 345 BP => 1) --CFG_BP
346 346 PORT MAP ( --
347 347 rstn => rstn, --rst_n,
348 348 clk => clkm, --clk,
349 349 ahbi => ahbmi, --ahbmi,
350 350 ahbo => ahbmo(i), --ahbmo(CPU_HINDEX),
351 351 ahbsi => ahbsi, --ahbsi,
352 352 ahbso => ahbso, --ahbso,
353 353 irqi => irqi(i), --irqi(CPU_HINDEX),
354 354 irqo => irqo(i), --irqo(CPU_HINDEX),
355 355 dbgi => dbgi(i), --dbgi(CPU_HINDEX),
356 356 dbgo => dbgo(i), --dbgo(CPU_HINDEX),
357 357 gclk => clkm --clk
358 358 );
359 359 END GENERATE leon3_radhard_i;
360 360
361 361 END GENERATE;
362 362 errorn_pad : outpad GENERIC MAP (tech => padtech) PORT MAP (errorn, dbgo(0).error);
363 363
364 364 dsugen : IF CFG_DSU = 1 GENERATE
365 365 dsu0 : dsu3 -- LEON3 Debug Support Unit
366 366 GENERIC MAP (hindex => 0, -- TODO : hindex => 2
367 367 haddr => 16#900#, hmask => 16#F00#,
368 368 ncpu => CFG_NCPU, tbits => 30, tech => memtech,
369 369 irq => 0, kbytes => CFG_ATBSZ)
370 370 PORT MAP (rstn, clkm, ahbmi, ahbsi, ahbso(0),-- TODO :ahbso(2)
371 371 dbgo, dbgi, dsui, dsuo);
372 372 dsui.enable <= '1';
373 373 dsui.break <= '0';
374 374 END GENERATE;
375 375 END GENERATE;
376 376
377 377 nodsu : IF CFG_DSU = 0 GENERATE
378 ahbso(2) <= ahbs_none;
378 ahbso(0) <= ahbs_none;
379 379 dsuo.tstop <= '0';
380 380 dsuo.active <= '0';
381 381 END GENERATE;
382 382
383 383 irqctrl : IF CFG_IRQ3_ENABLE /= 0 GENERATE
384 384 irqctrl0 : irqmp -- interrupt controller
385 385 GENERIC MAP (pindex => 2, paddr => 2, ncpu => CFG_NCPU)
386 386 PORT MAP (rstn, clkm, apbi, apbo(2), irqo, irqi);
387 387 END GENERATE;
388 388 irq3 : IF CFG_IRQ3_ENABLE = 0 GENERATE
389 389 x : FOR i IN 0 TO CFG_NCPU-1 GENERATE
390 390 irqi(i).irl <= "0000";
391 391 END GENERATE;
392 392 apbo(2) <= apb_none;
393 393 END GENERATE;
394 394
395 395 ----------------------------------------------------------------------
396 396 --- Memory controllers ---------------------------------------------
397 397 ----------------------------------------------------------------------
398 398 ESAMEMCT : IF USES_IAP_MEMCTRLR = 0 GENERATE
399 399 memctrlr : mctrl GENERIC MAP (
400 hindex => 0,
400 hindex => 2,
401 401 pindex => 0,
402 402 paddr => 0,
403 403 srbanks => 1
404 404 )
405 PORT MAP (rstn, clkm, memi, memo, ahbsi, ahbso(0), apbi, apbo(0), wpo, sdo);
405 PORT MAP (rstn, clkm, memi, memo, ahbsi, ahbso(2), apbi, apbo(0), wpo, sdo);
406 406 memi.bexcn <= '1';
407 407 memi.brdyn <= '1';
408 408
409 409 nSRAM_CE_s <= NOT (memo.ramsn(1 DOWNTO 0));
410 410 nSRAM_OE_s <= memo.ramoen(0);
411 411 END GENERATE;
412 412
413 413 IAPMEMCT : IF USES_IAP_MEMCTRLR = 1 GENERATE
414 414 memctrlr : srctrle_0ws
415 415 GENERIC MAP(
416 416 hindex => 2, -- TODO : hindex => 0
417 417 pindex => 0,
418 418 paddr => 0,
419 419 srbanks => 2,
420 420 banksz => SRBANKSZ, --512k * 32
421 421 rmw => 1,
422 422 --Aeroflex memory generics:
423 423 mbpedac => BYPASS_EDAC_MEMCTRLR,
424 424 mprog => 1, -- program memory by default values after reset
425 425 mpsrate => 15, -- default scrub rate period
426 426 mpb2s => 14, -- default busy to scrub delay
427 427 mpapb => 1, -- instantiate apb register
428 428 mchipcnt => 2,
429 429 mpenall => 1 -- when 0 program only E1 chip, else program all dies
430 430 )
431 431 PORT MAP (
432 432 rst => rstn,
433 433 clk => clkm,
434 434 ahbsi => ahbsi,
435 435 ahbso => ahbso(2), -- TODO :ahbso(0),
436 436 apbi => apbi,
437 437 apbo => apbo(0),
438 438 sri => memi,
439 439 sro => memo,
440 440 --Aeroflex memory signals:
441 441 ucerr => OPEN, -- uncorrectable error signal
442 442 mbe => mbe, -- enable memory programming
443 443 mbe_drive => mbe_drive -- drive the MBE memory signal
444 444 );
445 445
446 446 memi.brdyn <= nSRAM_READY;
447 447
448 448 mbe_pad : iopad
449 449 GENERIC MAP(tech => padtech, oepol => USES_IAP_MEMCTRLR)
450 450 PORT MAP(pad => SRAM_MBE,
451 451 i => mbe,
452 452 en => mbe_drive,
453 453 o => memi.bexcn);
454 454
455 455 nSRAM_CE_s <= (memo.ramsn(1 DOWNTO 0));
456 456 nSRAM_OE_s <= memo.oen;
457 457
458 458 END GENERATE;
459 459
460 460
461 461 memi.writen <= '1';
462 462 memi.wrn <= "1111";
463 463 memi.bwidth <= "10";
464 464
465 465 bdr : FOR i IN 0 TO 3 GENERATE
466 466 data_pad : iopadv GENERIC MAP (tech => padtech, width => 8, oepol => USES_IAP_MEMCTRLR)
467 467 PORT MAP (
468 468 data(31-i*8 DOWNTO 24-i*8),
469 469 memo.data(31-i*8 DOWNTO 24-i*8),
470 470 memo.bdrive(i),
471 471 memi.data(31-i*8 DOWNTO 24-i*8));
472 472 END GENERATE;
473 473
474 474 addr_pad : outpadv GENERIC MAP (width => ADDRESS_SIZE, tech => padtech)
475 475 PORT MAP (address, memo.address(ADDRESS_SIZE+1 DOWNTO 2));
476 476 rams_pad : outpadv GENERIC MAP (tech => padtech, width => 2) PORT MAP (nSRAM_CE, nSRAM_CE_s);
477 477 oen_pad : outpad GENERIC MAP (tech => padtech) PORT MAP (nSRAM_OE, nSRAM_OE_s);
478 478 nBWE_pad : outpad GENERIC MAP (tech => padtech) PORT MAP (nSRAM_WE, memo.writen);
479 479 nBWa_pad : outpad GENERIC MAP (tech => padtech) PORT MAP (nSRAM_BE0, memo.mben(3));
480 480 nBWb_pad : outpad GENERIC MAP (tech => padtech) PORT MAP (nSRAM_BE1, memo.mben(2));
481 481 nBWc_pad : outpad GENERIC MAP (tech => padtech) PORT MAP (nSRAM_BE2, memo.mben(1));
482 482 nBWd_pad : outpad GENERIC MAP (tech => padtech) PORT MAP (nSRAM_BE3, memo.mben(0));
483 483
484 484
485 485
486 486 ----------------------------------------------------------------------
487 487 --- AHB CONTROLLER -------------------------------------------------
488 488 ----------------------------------------------------------------------
489 489 ahb0 : ahbctrl -- AHB arbiter/multiplexer
490 490 GENERIC MAP (defmast => CFG_DEFMST, split => CFG_SPLIT,
491 491 rrobin => CFG_RROBIN, ioaddr => CFG_AHBIO,
492 ioen => 0, nahbm => maxahbmsp, nahbs => 8)
492 ioen => 0, nahbm => maxahbmsp, nahbs => 8, fixbrst => 0)
493 493 PORT MAP (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso);
494 494
495 495 ----------------------------------------------------------------------
496 496 --- AHB UART -------------------------------------------------------
497 497 ----------------------------------------------------------------------
498 498 dcomgen : IF CFG_AHB_UART = 1 GENERATE
499 499 dcom0 : ahbuart
500 500 GENERIC MAP (hindex => maxahbmsp-1, pindex => 4, paddr => 4)
501 501 PORT MAP (rstn, clkm, ahbuarti, ahbuarto, apbi, apbo(4), ahbmi, ahbmo(maxahbmsp-1));
502 502 dsurx_pad : inpad GENERIC MAP (tech => padtech) PORT MAP (ahbrxd, ahbuarti.rxd);
503 503 dsutx_pad : outpad GENERIC MAP (tech => padtech) PORT MAP (ahbtxd, ahbuarto.txd);
504 504 END GENERATE;
505 505 nouah : IF CFG_AHB_UART = 0 GENERATE apbo(4) <= apb_none; END GENERATE;
506 506
507 507 ----------------------------------------------------------------------
508 508 --- APB Bridge -----------------------------------------------------
509 509 ----------------------------------------------------------------------
510 510 apb0 : apbctrl -- AHB/APB bridge
511 511 GENERIC MAP (hindex => 1, haddr => CFG_APBADDR)
512 512 PORT MAP (rstn, clkm, ahbsi, ahbso(1), apbi, apbo);
513 513
514 514 ----------------------------------------------------------------------
515 515 --- GPT Timer ------------------------------------------------------
516 516 ----------------------------------------------------------------------
517 517 gpt : IF CFG_GPT_ENABLE /= 0 GENERATE
518 518 timer0 : gptimer -- timer unit
519 519 GENERIC MAP (pindex => 3, paddr => 3, pirq => CFG_GPT_IRQ,
520 520 sepirq => CFG_GPT_SEPIRQ, sbits => CFG_GPT_SW, ntimers => CFG_GPT_NTIM,
521 521 nbits => CFG_GPT_TW)
522 522 PORT MAP (rstn, clkm, apbi, apbo(3), gpti, gpto);
523 523 gpti.dhalt <= dsuo.tstop;
524 524 gpti.extclk <= '0';
525 525 END GENERATE;
526 526 notim : IF CFG_GPT_ENABLE = 0 GENERATE apbo(3) <= apb_none; END GENERATE;
527 527
528 528
529 529 ----------------------------------------------------------------------
530 530 --- APB UART -------------------------------------------------------
531 531 ----------------------------------------------------------------------
532 532 ua1 : IF CFG_UART1_ENABLE /= 0 GENERATE
533 533 uart1 : apbuart -- UART 1
534 534 GENERIC MAP (pindex => 1, paddr => 1, pirq => 2, console => dbguart,
535 535 fifosize => CFG_UART1_FIFO)
536 536 PORT MAP (rstn, clkm, apbi, apbo(1), apbuarti, apbuarto);
537 537 apbuarti.rxd <= urxd1;
538 538 apbuarti.extclk <= '0';
539 539 utxd1 <= apbuarto.txd;
540 540 apbuarti.ctsn <= '0';
541 541 END GENERATE;
542 542 noua0 : IF CFG_UART1_ENABLE = 0 GENERATE apbo(1) <= apb_none; END GENERATE;
543 543
544 544 -------------------------------------------------------------------------------
545 545 -- AMBA BUS -------------------------------------------------------------------
546 546 -------------------------------------------------------------------------------
547 547
548 548 -- APB --------------------------------------------------------------------
549 549 apbi_ext <= apbi;
550 550 all_apb : FOR I IN 0 TO NB_APB_SLAVE-1 GENERATE
551 551 max_16_apb : IF I + 5 < 16 GENERATE
552 552 apbo(I+5) <= apbo_ext(I+5);
553 553 END GENERATE max_16_apb;
554 554 END GENERATE all_apb;
555 555 -- AHB_Slave --------------------------------------------------------------
556 556 ahbi_s_ext <= ahbsi;
557 557 all_ahbs : FOR I IN 0 TO NB_AHB_SLAVE-1 GENERATE
558 558 max_16_ahbs : IF I + 3 < 16 GENERATE
559 559 ahbso(I+3) <= ahbo_s_ext(I+3);
560 560 END GENERATE max_16_ahbs;
561 561 END GENERATE all_ahbs;
562 562 -- AHB_Master -------------------------------------------------------------
563 563 ahbi_m_ext <= ahbmi;
564 564 all_ahbm : FOR I IN 0 TO NB_AHB_MASTER-1 GENERATE
565 565 max_16_ahbm : IF I + CFG_NCPU + CFG_AHB_UART < 16 GENERATE
566 566 ahbmo(I + CFG_NCPU) <= ahbo_m_ext(I+CFG_NCPU);
567 567 END GENERATE max_16_ahbm;
568 568 END GENERATE all_ahbm;
569 569
570 570
571 571
572 END Behavioral; No newline at end of file
572 END Behavioral;
General Comments 0
You need to be logged in to leave comments. Login now