mt48lc16m16a2.vhd
1550 lines
| 67.7 KiB
| text/x-vhdl
|
VhdlLexer
r681 | ||||
--***************************************************************************** | ||||
-- | ||||
-- Micron Semiconductor Products, Inc. | ||||
-- | ||||
-- Copyright 1997, Micron Semiconductor Products, Inc. | ||||
-- All rights reserved. | ||||
-- | ||||
--***************************************************************************** | ||||
-- pragma translate_off | ||||
library ieee; | ||||
use ieee.std_logic_1164.ALL; | ||||
use std.textio.all; | ||||
PACKAGE mti_pkg IS | ||||
FUNCTION To_StdLogic (s : BIT) RETURN STD_LOGIC; | ||||
FUNCTION TO_INTEGER (input : STD_LOGIC) RETURN INTEGER; | ||||
FUNCTION TO_INTEGER (input : BIT_VECTOR) RETURN INTEGER; | ||||
FUNCTION TO_INTEGER (input : STD_LOGIC_VECTOR) RETURN INTEGER; | ||||
PROCEDURE TO_BITVECTOR (VARIABLE input : IN INTEGER; VARIABLE output : OUT BIT_VECTOR); | ||||
END mti_pkg; | ||||
PACKAGE BODY mti_pkg IS | ||||
-- Convert BIT to STD_LOGIC | ||||
FUNCTION To_StdLogic (s : BIT) RETURN STD_LOGIC IS | ||||
BEGIN | ||||
CASE s IS | ||||
WHEN '0' => RETURN ('0'); | ||||
WHEN '1' => RETURN ('1'); | ||||
WHEN OTHERS => RETURN ('0'); | ||||
END CASE; | ||||
END; | ||||
-- Convert STD_LOGIC to INTEGER | ||||
FUNCTION TO_INTEGER (input : STD_LOGIC) RETURN INTEGER IS | ||||
VARIABLE result : INTEGER := 0; | ||||
VARIABLE weight : INTEGER := 1; | ||||
BEGIN | ||||
IF input = '1' THEN | ||||
result := weight; | ||||
ELSE | ||||
result := 0; -- if unknowns, default to logic 0 | ||||
END IF; | ||||
RETURN result; | ||||
END TO_INTEGER; | ||||
-- Convert BIT_VECTOR to INTEGER | ||||
FUNCTION TO_INTEGER (input : BIT_VECTOR) RETURN INTEGER IS | ||||
VARIABLE result : INTEGER := 0; | ||||
VARIABLE weight : INTEGER := 1; | ||||
BEGIN | ||||
FOR i IN input'LOW TO input'HIGH LOOP | ||||
IF input(i) = '1' THEN | ||||
result := result + weight; | ||||
ELSE | ||||
result := result + 0; -- if unknowns, default to logic 0 | ||||
END IF; | ||||
weight := weight * 2; | ||||
END LOOP; | ||||
RETURN result; | ||||
END TO_INTEGER; | ||||
-- Convert STD_LOGIC_VECTOR to INTEGER | ||||
FUNCTION TO_INTEGER (input : STD_LOGIC_VECTOR) RETURN INTEGER IS | ||||
VARIABLE result : INTEGER := 0; | ||||
VARIABLE weight : INTEGER := 1; | ||||
BEGIN | ||||
FOR i IN input'LOW TO input'HIGH LOOP | ||||
IF input(i) = '1' THEN | ||||
result := result + weight; | ||||
ELSE | ||||
result := result + 0; -- if unknowns, default to logic 0 | ||||
END IF; | ||||
weight := weight * 2; | ||||
END LOOP; | ||||
RETURN result; | ||||
END TO_INTEGER; | ||||
-- Conver INTEGER to BIT_VECTOR | ||||
PROCEDURE TO_BITVECTOR (VARIABLE input : IN INTEGER; VARIABLE output : OUT BIT_VECTOR) IS | ||||
VARIABLE work,offset,outputlen,j : INTEGER := 0; | ||||
BEGIN | ||||
--length of vector | ||||
IF output'LENGTH > 32 THEN --' | ||||
outputlen := 32; | ||||
offset := output'LENGTH - 32; --' | ||||
IF input >= 0 THEN | ||||
FOR i IN offset-1 DOWNTO 0 LOOP | ||||
output(output'HIGH - i) := '0'; --' | ||||
END LOOP; | ||||
ELSE | ||||
FOR i IN offset-1 DOWNTO 0 LOOP | ||||
output(output'HIGH - i) := '1'; --' | ||||
END LOOP; | ||||
END IF; | ||||
ELSE | ||||
outputlen := output'LENGTH; --' | ||||
END IF; | ||||
--positive value | ||||
IF (input >= 0) THEN | ||||
work := input; | ||||
j := outputlen - 1; | ||||
FOR i IN 1 to 32 LOOP | ||||
IF j >= 0 then | ||||
IF (work MOD 2) = 0 THEN | ||||
output(output'HIGH-j-offset) := '0'; --' | ||||
ELSE | ||||
output(output'HIGH-j-offset) := '1'; --' | ||||
END IF; | ||||
END IF; | ||||
work := work / 2; | ||||
j := j - 1; | ||||
END LOOP; | ||||
IF outputlen = 32 THEN | ||||
output(output'HIGH) := '0'; --' | ||||
END IF; | ||||
--negative value | ||||
ELSE | ||||
work := (-input) - 1; | ||||
j := outputlen - 1; | ||||
FOR i IN 1 TO 32 LOOP | ||||
IF j>= 0 THEN | ||||
IF (work MOD 2) = 0 THEN | ||||
output(output'HIGH-j-offset) := '1'; --' | ||||
ELSE | ||||
output(output'HIGH-j-offset) := '0'; --' | ||||
END IF; | ||||
END IF; | ||||
work := work / 2; | ||||
j := j - 1; | ||||
END LOOP; | ||||
IF outputlen = 32 THEN | ||||
output(output'HIGH) := '1'; --' | ||||
END IF; | ||||
END IF; | ||||
END TO_BITVECTOR; | ||||
END mti_pkg; | ||||
----------------------------------------------------------------------------------------- | ||||
-- | ||||
-- File Name: MT48LC16M16A2.VHD | ||||
-- Version: 0.0g | ||||
-- Date: June 29th, 2000 | ||||
-- Model: Behavioral | ||||
-- Simulator: Model Technology (PC version 5.3 PE) | ||||
-- | ||||
-- Dependencies: None | ||||
-- | ||||
-- Author: Son P. Huynh | ||||
-- Email: sphuynh@micron.com | ||||
-- Phone: (208) 368-3825 | ||||
-- Company: Micron Technology, Inc. | ||||
-- Part Number: MT48LC16M16A2 (4Mb x 16 x 4 Banks) | ||||
-- | ||||
-- Description: Micron 256Mb SDRAM | ||||
-- | ||||
-- Limitation: - Doesn't check for 4096-cycle refresh --' | ||||
-- | ||||
-- Note: - Set simulator resolution to "ps" accuracy | ||||
-- | ||||
-- Disclaimer: THESE DESIGNS ARE PROVIDED "AS IS" WITH NO WARRANTY | ||||
-- WHATSOEVER AND MICRON SPECIFICALLY DISCLAIMS ANY | ||||
-- IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR | ||||
-- A PARTICULAR PURPOSE, OR AGAINST INFRINGEMENT. | ||||
-- | ||||
-- Copyright (c) 1998 Micron Semiconductor Products, Inc. | ||||
-- All rights researved | ||||
-- | ||||
-- Rev Author Phone Date Changes | ||||
-- ---- ---------------------------- ---------- ------------------------------------- | ||||
-- 0.0g Son Huynh 208-368-3825 06/29/2000 Add Load/Dump memory array | ||||
-- Micron Technology Inc. Modify tWR + tRAS timing check | ||||
-- | ||||
-- 0.0f Son Huynh 208-368-3825 07/08/1999 Fix tWR = 1 Clk + 7.5 ns (Auto) | ||||
-- Micron Technology Inc. Fix tWR = 15 ns (Manual) | ||||
-- Fix tRP (Autoprecharge to AutoRefresh) | ||||
-- | ||||
-- 0.0c Son P. Huynh 208-368-3825 04/08/1999 Fix tWR + tRP in Write with AP | ||||
-- Micron Technology Inc. Fix tRC check in Load Mode Register | ||||
-- | ||||
-- 0.0b Son P. Huynh 208-368-3825 01/06/1998 Derive from 64Mb SDRAM model | ||||
-- Micron Technology Inc. | ||||
-- | ||||
----------------------------------------------------------------------------------------- | ||||
LIBRARY STD; | ||||
USE STD.TEXTIO.ALL; | ||||
LIBRARY IEEE; | ||||
USE IEEE.STD_LOGIC_1164.ALL; | ||||
LIBRARY WORK; | ||||
USE WORK.MTI_PKG.ALL; | ||||
use std.textio.all; | ||||
library grlib; | ||||
use grlib.stdlib.all; | ||||
use grlib.stdio.all; | ||||
ENTITY mt48lc16m16a2 IS | ||||
GENERIC ( | ||||
-- Timing Parameters for -75 (PC133) and CAS Latency = 2 | ||||
tAC : TIME := 6.0 ns; | ||||
tHZ : TIME := 7.0 ns; | ||||
tOH : TIME := 2.7 ns; | ||||
tMRD : INTEGER := 2; -- 2 Clk Cycles | ||||
tRAS : TIME := 44.0 ns; | ||||
tRC : TIME := 66.0 ns; | ||||
tRCD : TIME := 20.0 ns; | ||||
tRP : TIME := 20.0 ns; | ||||
tRRD : TIME := 15.0 ns; | ||||
tWRa : TIME := 7.5 ns; -- A2 Version - Auto precharge mode only (1 Clk + 7.5 ns) | ||||
tWRp : TIME := 15.0 ns; -- A2 Version - Precharge mode only (15 ns) | ||||
tAH : TIME := 0.8 ns; | ||||
tAS : TIME := 1.5 ns; | ||||
tCH : TIME := 2.5 ns; | ||||
tCL : TIME := 2.5 ns; | ||||
tCK : TIME := 10.0 ns; | ||||
tDH : TIME := 0.8 ns; | ||||
tDS : TIME := 1.5 ns; | ||||
tCKH : TIME := 0.8 ns; | ||||
tCKS : TIME := 1.5 ns; | ||||
tCMH : TIME := 0.8 ns; | ||||
tCMS : TIME := 1.5 ns; | ||||
addr_bits : INTEGER := 13; | ||||
data_bits : INTEGER := 16; | ||||
col_bits : INTEGER := 9; | ||||
index : INTEGER := 0; | ||||
fname : string := "ram.srec" -- File to read from | ||||
); | ||||
PORT ( | ||||
Dq : INOUT STD_LOGIC_VECTOR (data_bits - 1 DOWNTO 0) := (OTHERS => 'Z'); | ||||
Addr : IN STD_LOGIC_VECTOR (addr_bits - 1 DOWNTO 0) := (OTHERS => '0'); | ||||
Ba : IN STD_LOGIC_VECTOR := "00"; | ||||
Clk : IN STD_LOGIC := '0'; | ||||
Cke : IN STD_LOGIC := '1'; | ||||
Cs_n : IN STD_LOGIC := '1'; | ||||
Ras_n : IN STD_LOGIC := '1'; | ||||
Cas_n : IN STD_LOGIC := '1'; | ||||
We_n : IN STD_LOGIC := '1'; | ||||
Dqm : IN STD_LOGIC_VECTOR (1 DOWNTO 0) := "00" | ||||
); | ||||
END mt48lc16m16a2; | ||||
ARCHITECTURE behave OF mt48lc16m16a2 IS | ||||
TYPE State IS (ACT, A_REF, BST, LMR, NOP, PRECH, READ, READ_A, WRITE, WRITE_A, LOAD_FILE, DUMP_FILE); | ||||
TYPE Array4xI IS ARRAY (3 DOWNTO 0) OF INTEGER; | ||||
TYPE Array4xT IS ARRAY (3 DOWNTO 0) OF TIME; | ||||
TYPE Array4xB IS ARRAY (3 DOWNTO 0) OF BIT; | ||||
TYPE Array4x2BV IS ARRAY (3 DOWNTO 0) OF BIT_VECTOR (1 DOWNTO 0); | ||||
TYPE Array4xCBV IS ARRAY (4 DOWNTO 0) OF BIT_VECTOR (Col_bits - 1 DOWNTO 0); | ||||
TYPE Array_state IS ARRAY (4 DOWNTO 0) OF State; | ||||
SIGNAL Operation : State := NOP; | ||||
SIGNAL Mode_reg : BIT_VECTOR (addr_bits - 1 DOWNTO 0) := (OTHERS => '0'); | ||||
SIGNAL Active_enable, Aref_enable, Burst_term : BIT := '0'; | ||||
SIGNAL Mode_reg_enable, Prech_enable, Read_enable, Write_enable : BIT := '0'; | ||||
SIGNAL Burst_length_1, Burst_length_2, Burst_length_4, Burst_length_8 : BIT := '0'; | ||||
SIGNAL Cas_latency_2, Cas_latency_3 : BIT := '0'; | ||||
SIGNAL Ras_in, Cas_in, We_in : BIT := '0'; | ||||
SIGNAL Write_burst_mode : BIT := '0'; | ||||
SIGNAL RAS_clk, Sys_clk, CkeZ : BIT := '0'; | ||||
-- Checking internal wires | ||||
SIGNAL Pre_chk : BIT_VECTOR (3 DOWNTO 0) := "0000"; | ||||
SIGNAL Act_chk : BIT_VECTOR (3 DOWNTO 0) := "0000"; | ||||
SIGNAL Dq_in_chk, Dq_out_chk : BIT := '0'; | ||||
SIGNAL Bank_chk : BIT_VECTOR (1 DOWNTO 0) := "00"; | ||||
SIGNAL Row_chk : BIT_VECTOR (addr_bits - 1 DOWNTO 0) := (OTHERS => '0'); | ||||
SIGNAL Col_chk : BIT_VECTOR (col_bits - 1 DOWNTO 0) := (OTHERS => '0'); | ||||
BEGIN | ||||
-- CS# Decode | ||||
WITH Cs_n SELECT | ||||
Cas_in <= TO_BIT (Cas_n, '1') WHEN '0', | ||||
'1' WHEN '1', | ||||
'1' WHEN OTHERS; | ||||
WITH Cs_n SELECT | ||||
Ras_in <= TO_BIT (Ras_n, '1') WHEN '0', | ||||
'1' WHEN '1', | ||||
'1' WHEN OTHERS; | ||||
WITH Cs_n SELECT | ||||
We_in <= TO_BIT (We_n, '1') WHEN '0', | ||||
'1' WHEN '1', | ||||
'1' WHEN OTHERS; | ||||
-- Commands Decode | ||||
Active_enable <= NOT(Ras_in) AND Cas_in AND We_in; | ||||
Aref_enable <= NOT(Ras_in) AND NOT(Cas_in) AND We_in; | ||||
Burst_term <= Ras_in AND Cas_in AND NOT(We_in); | ||||
Mode_reg_enable <= NOT(Ras_in) AND NOT(Cas_in) AND NOT(We_in); | ||||
Prech_enable <= NOT(Ras_in) AND Cas_in AND NOT(We_in); | ||||
Read_enable <= Ras_in AND NOT(Cas_in) AND We_in; | ||||
Write_enable <= Ras_in AND NOT(Cas_in) AND NOT(We_in); | ||||
-- Burst Length Decode | ||||
Burst_length_1 <= NOT(Mode_reg(2)) AND NOT(Mode_reg(1)) AND NOT(Mode_reg(0)); | ||||
Burst_length_2 <= NOT(Mode_reg(2)) AND NOT(Mode_reg(1)) AND Mode_reg(0); | ||||
Burst_length_4 <= NOT(Mode_reg(2)) AND Mode_reg(1) AND NOT(Mode_reg(0)); | ||||
Burst_length_8 <= NOT(Mode_reg(2)) AND Mode_reg(1) AND Mode_reg(0); | ||||
-- CAS Latency Decode | ||||
Cas_latency_2 <= NOT(Mode_reg(6)) AND Mode_reg(5) AND NOT(Mode_reg(4)); | ||||
Cas_latency_3 <= NOT(Mode_reg(6)) AND Mode_reg(5) AND Mode_reg(4); | ||||
-- Write Burst Mode | ||||
Write_burst_mode <= Mode_reg(9); | ||||
-- RAS Clock for checking tWR and tRP | ||||
PROCESS | ||||
variable Clk0, Clk1 : integer := 0; | ||||
begin | ||||
RAS_clk <= '1'; | ||||
wait for 0.5 ns; | ||||
RAS_clk <= '0'; | ||||
wait for 0.5 ns; | ||||
if Clk0 > 100 or Clk1 > 100 then | ||||
wait; | ||||
else | ||||
if Clk = '1' and Cke = '1' then | ||||
Clk0 := 0; | ||||
Clk1 := Clk1 + 1; | ||||
elsif Clk = '0' and Cke = '1' then | ||||
Clk0 := Clk0 + 1; | ||||
Clk1 := 0; | ||||
end if; | ||||
end if; | ||||
END PROCESS; | ||||
-- System Clock | ||||
int_clk : PROCESS (Clk) | ||||
begin | ||||
IF Clk'LAST_VALUE = '0' AND Clk = '1' THEN --' | ||||
CkeZ <= TO_BIT(Cke, '1'); | ||||
END IF; | ||||
Sys_clk <= CkeZ AND TO_BIT(Clk, '0'); | ||||
END PROCESS; | ||||
state_register : PROCESS | ||||
-- NOTE: The extra bits in RAM_TYPE is for checking memory access. A logic 1 means | ||||
-- the location is in use. This will be checked when doing memory DUMP. | ||||
TYPE ram_type IS ARRAY (2**col_bits - 1 DOWNTO 0) OF BIT_VECTOR (data_bits DOWNTO 0); | ||||
TYPE ram_pntr IS ACCESS ram_type; | ||||
TYPE ram_stor IS ARRAY (2**addr_bits - 1 DOWNTO 0) OF ram_pntr; | ||||
VARIABLE Bank0 : ram_stor; | ||||
VARIABLE Bank1 : ram_stor; | ||||
VARIABLE Bank2 : ram_stor; | ||||
VARIABLE Bank3 : ram_stor; | ||||
VARIABLE Row_index, Col_index : INTEGER := 0; | ||||
VARIABLE Dq_temp : BIT_VECTOR (data_bits DOWNTO 0) := (OTHERS => '0'); | ||||
VARIABLE Col_addr : Array4xCBV; | ||||
VARIABLE Bank_addr : Array4x2BV; | ||||
VARIABLE Dqm_reg0, Dqm_reg1 : BIT_VECTOR (1 DOWNTO 0) := "00"; | ||||
VARIABLE Bank, Previous_bank : BIT_VECTOR (1 DOWNTO 0) := "00"; | ||||
VARIABLE B0_row_addr, B1_row_addr, B2_row_addr, B3_row_addr : BIT_VECTOR (addr_bits - 1 DOWNTO 0) := (OTHERS => '0'); | ||||
VARIABLE Col_brst : BIT_VECTOR (col_bits - 1 DOWNTO 0) := (OTHERS => '0'); | ||||
VARIABLE Row : BIT_VECTOR (addr_bits - 1 DOWNTO 0) := (OTHERS => '0'); | ||||
VARIABLE Col : BIT_VECTOR (col_bits - 1 DOWNTO 0) := (OTHERS => '0'); | ||||
VARIABLE Burst_counter : INTEGER := 0; | ||||
VARIABLE Command : Array_state; | ||||
VARIABLE Bank_precharge : Array4x2BV; | ||||
VARIABLE A10_precharge : Array4xB := ('0' & '0' & '0' & '0'); | ||||
VARIABLE Auto_precharge : Array4xB := ('0' & '0' & '0' & '0'); | ||||
VARIABLE Read_precharge : Array4xB := ('0' & '0' & '0' & '0'); | ||||
VARIABLE Write_precharge : Array4xB := ('0' & '0' & '0' & '0'); | ||||
VARIABLE RW_interrupt_read : Array4xB := ('0' & '0' & '0' & '0'); | ||||
VARIABLE RW_interrupt_write : Array4xB := ('0' & '0' & '0' & '0'); | ||||
VARIABLE RW_interrupt_bank : BIT_VECTOR (1 DOWNTO 0) := "00"; | ||||
VARIABLE Count_time : Array4xT := (0 ns & 0 ns & 0 ns & 0 ns); | ||||
VARIABLE Count_precharge : Array4xI := (0 & 0 & 0 & 0); | ||||
VARIABLE Data_in_enable, Data_out_enable : BIT := '0'; | ||||
VARIABLE Pc_b0, Pc_b1, Pc_b2, Pc_b3 : BIT := '0'; | ||||
VARIABLE Act_b0, Act_b1, Act_b2, Act_b3 : BIT := '0'; | ||||
-- Timing Check | ||||
VARIABLE MRD_chk : INTEGER := 0; | ||||
VARIABLE WR_counter : Array4xI := (0 & 0 & 0 & 0); | ||||
VARIABLE WR_time : Array4xT := (0 ns & 0 ns & 0 ns & 0 ns); | ||||
VARIABLE WR_chkp : Array4xT := (0 ns & 0 ns & 0 ns & 0 ns); | ||||
VARIABLE RC_chk, RRD_chk : TIME := 0 ns; | ||||
VARIABLE RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3 : TIME := 0 ns; | ||||
VARIABLE RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3 : TIME := 0 ns; | ||||
VARIABLE RP_chk0, RP_chk1, RP_chk2, RP_chk3 : TIME := 0 ns; | ||||
-- Load and Dumb variables | ||||
FILE file_load : TEXT open read_mode is fname; -- Data load | ||||
FILE file_dump : TEXT open write_mode is "dumpdata.txt"; -- Data dump | ||||
VARIABLE bank_load : bit_vector ( 1 DOWNTO 0); | ||||
VARIABLE rows_load : BIT_VECTOR (12 DOWNTO 0); | ||||
VARIABLE cols_load : BIT_VECTOR ( 8 DOWNTO 0); | ||||
VARIABLE data_load : BIT_VECTOR (15 DOWNTO 0); | ||||
VARIABLE i, j : INTEGER; | ||||
VARIABLE good_load : BOOLEAN; | ||||
VARIABLE l : LINE; | ||||
variable load : std_logic := '1'; | ||||
variable dump : std_logic := '0'; | ||||
variable ch : character; | ||||
variable rectype : bit_vector(3 downto 0); | ||||
variable recaddr : bit_vector(31 downto 0); | ||||
variable reclen : bit_vector(7 downto 0); | ||||
variable recdata : bit_vector(0 to 16*8-1); | ||||
-- Initialize empty rows | ||||
PROCEDURE Init_mem (Bank : bit_vector (1 DOWNTO 0); Row_index : INTEGER) IS | ||||
VARIABLE i, j : INTEGER := 0; | ||||
BEGIN | ||||
IF Bank = "00" THEN | ||||
IF Bank0 (Row_index) = NULL THEN -- Check to see if row empty | ||||
Bank0 (Row_index) := NEW ram_type; -- Open new row for access | ||||
FOR i IN (2**col_bits - 1) DOWNTO 0 LOOP -- Filled row with zeros | ||||
FOR j IN (data_bits) DOWNTO 0 LOOP | ||||
Bank0 (Row_index) (i) (j) := '0'; | ||||
END LOOP; | ||||
END LOOP; | ||||
END IF; | ||||
ELSIF Bank = "01" THEN | ||||
IF Bank1 (Row_index) = NULL THEN | ||||
Bank1 (Row_index) := NEW ram_type; | ||||
FOR i IN (2**col_bits - 1) DOWNTO 0 LOOP | ||||
FOR j IN (data_bits) DOWNTO 0 LOOP | ||||
Bank1 (Row_index) (i) (j) := '0'; | ||||
END LOOP; | ||||
END LOOP; | ||||
END IF; | ||||
ELSIF Bank = "10" THEN | ||||
IF Bank2 (Row_index) = NULL THEN | ||||
Bank2 (Row_index) := NEW ram_type; | ||||
FOR i IN (2**col_bits - 1) DOWNTO 0 LOOP | ||||
FOR j IN (data_bits) DOWNTO 0 LOOP | ||||
Bank2 (Row_index) (i) (j) := '0'; | ||||
END LOOP; | ||||
END LOOP; | ||||
END IF; | ||||
ELSIF Bank = "11" THEN | ||||
IF Bank3 (Row_index) = NULL THEN | ||||
Bank3 (Row_index) := NEW ram_type; | ||||
FOR i IN (2**col_bits - 1) DOWNTO 0 LOOP | ||||
FOR j IN (data_bits) DOWNTO 0 LOOP | ||||
Bank3 (Row_index) (i) (j) := '0'; | ||||
END LOOP; | ||||
END LOOP; | ||||
END IF; | ||||
END IF; | ||||
END; | ||||
-- Burst Counter | ||||
PROCEDURE Burst_decode IS | ||||
VARIABLE Col_int : INTEGER := 0; | ||||
VARIABLE Col_vec, Col_temp : BIT_VECTOR (col_bits - 1 DOWNTO 0) := (OTHERS => '0'); | ||||
BEGIN | ||||
-- Advance Burst Counter | ||||
Burst_counter := Burst_counter + 1; | ||||
-- Burst Type | ||||
IF Mode_reg (3) = '0' THEN | ||||
Col_int := TO_INTEGER(Col); | ||||
Col_int := Col_int + 1; | ||||
TO_BITVECTOR (Col_int, Col_temp); | ||||
ELSIF Mode_reg (3) = '1' THEN | ||||
TO_BITVECTOR (Burst_counter, Col_vec); | ||||
Col_temp (2) := Col_vec (2) XOR Col_brst (2); | ||||
Col_temp (1) := Col_vec (1) XOR Col_brst (1); | ||||
Col_temp (0) := Col_vec (0) XOR Col_brst (0); | ||||
END IF; | ||||
-- Burst Length | ||||
IF Burst_length_2 = '1' THEN | ||||
Col (0) := Col_temp (0); | ||||
ELSIF Burst_length_4 = '1' THEN | ||||
Col (1 DOWNTO 0) := Col_temp (1 DOWNTO 0); | ||||
ELSIF Burst_length_8 = '1' THEN | ||||
Col (2 DOWNTO 0) := Col_temp (2 DOWNTO 0); | ||||
ELSE | ||||
Col := Col_temp; | ||||
END IF; | ||||
-- Burst Read Single Write | ||||
IF Write_burst_mode = '1' AND Data_in_enable = '1' THEN | ||||
Data_in_enable := '0'; | ||||
END IF; | ||||
-- Data counter | ||||
IF Burst_length_1 = '1' THEN | ||||
IF Burst_counter >= 1 THEN | ||||
IF Data_in_enable = '1' THEN | ||||
Data_in_enable := '0'; | ||||
ELSIF Data_out_enable = '1' THEN | ||||
Data_out_enable := '0'; | ||||
END IF; | ||||
END IF; | ||||
ELSIF Burst_length_2 = '1' THEN | ||||
IF Burst_counter >= 2 THEN | ||||
IF Data_in_enable = '1' THEN | ||||
Data_in_enable := '0'; | ||||
ELSIF Data_out_enable = '1' THEN | ||||
Data_out_enable := '0'; | ||||
END IF; | ||||
END IF; | ||||
ELSIF Burst_length_4 = '1' THEN | ||||
IF Burst_counter >= 4 THEN | ||||
IF Data_in_enable = '1' THEN | ||||
Data_in_enable := '0'; | ||||
ELSIF Data_out_enable = '1' THEN | ||||
Data_out_enable := '0'; | ||||
END IF; | ||||
END IF; | ||||
ELSIF Burst_length_8 = '1' THEN | ||||
IF Burst_counter >= 8 THEN | ||||
IF Data_in_enable = '1' THEN | ||||
Data_in_enable := '0'; | ||||
ELSIF Data_out_enable = '1' THEN | ||||
Data_out_enable := '0'; | ||||
END IF; | ||||
END IF; | ||||
END IF; | ||||
END; | ||||
BEGIN | ||||
WAIT ON Sys_clk, RAS_clk; | ||||
IF Sys_clk'event AND Sys_clk = '1' AND Load = '0' AND Dump = '0' THEN --' | ||||
-- Internal Command Pipeline | ||||
Command(0) := Command(1); | ||||
Command(1) := Command(2); | ||||
Command(2) := Command(3); | ||||
Command(3) := NOP; | ||||
Col_addr(0) := Col_addr(1); | ||||
Col_addr(1) := Col_addr(2); | ||||
Col_addr(2) := Col_addr(3); | ||||
Col_addr(3) := (OTHERS => '0'); | ||||
Bank_addr(0) := Bank_addr(1); | ||||
Bank_addr(1) := Bank_addr(2); | ||||
Bank_addr(2) := Bank_addr(3); | ||||
Bank_addr(3) := "00"; | ||||
Bank_precharge(0) := Bank_precharge(1); | ||||
Bank_precharge(1) := Bank_precharge(2); | ||||
Bank_precharge(2) := Bank_precharge(3); | ||||
Bank_precharge(3) := "00"; | ||||
A10_precharge(0) := A10_precharge(1); | ||||
A10_precharge(1) := A10_precharge(2); | ||||
A10_precharge(2) := A10_precharge(3); | ||||
A10_precharge(3) := '0'; | ||||
-- Operation Decode (Optional for showing current command on posedge clock / debug feature) | ||||
IF Active_enable = '1' THEN | ||||
Operation <= ACT; | ||||
ELSIF Aref_enable = '1' THEN | ||||
Operation <= A_REF; | ||||
ELSIF Burst_term = '1' THEN | ||||
Operation <= BST; | ||||
ELSIF Mode_reg_enable = '1' THEN | ||||
Operation <= LMR; | ||||
ELSIF Prech_enable = '1' THEN | ||||
Operation <= PRECH; | ||||
ELSIF Read_enable = '1' THEN | ||||
IF Addr(10) = '0' THEN | ||||
Operation <= READ; | ||||
ELSE | ||||
Operation <= READ_A; | ||||
END IF; | ||||
ELSIF Write_enable = '1' THEN | ||||
IF Addr(10) = '0' THEN | ||||
Operation <= WRITE; | ||||
ELSE | ||||
Operation <= WRITE_A; | ||||
END IF; | ||||
ELSE | ||||
Operation <= NOP; | ||||
END IF; | ||||
-- Dqm pipeline for Read | ||||
Dqm_reg0 := Dqm_reg1; | ||||
Dqm_reg1 := TO_BITVECTOR(Dqm); | ||||
-- Read or Write with Auto Precharge Counter | ||||
IF Auto_precharge (0) = '1' THEN | ||||
Count_precharge (0) := Count_precharge (0) + 1; | ||||
END IF; | ||||
IF Auto_precharge (1) = '1' THEN | ||||
Count_precharge (1) := Count_precharge (1) + 1; | ||||
END IF; | ||||
IF Auto_precharge (2) = '1' THEN | ||||
Count_precharge (2) := Count_precharge (2) + 1; | ||||
END IF; | ||||
IF Auto_precharge (3) = '1' THEN | ||||
Count_precharge (3) := Count_precharge (3) + 1; | ||||
END IF; | ||||
-- Auto Precharge Timer for tWR | ||||
if (Burst_length_1 = '1' OR Write_burst_mode = '1') then | ||||
if (Count_precharge(0) = 1) then | ||||
Count_time(0) := NOW; | ||||
end if; | ||||
if (Count_precharge(1) = 1) then | ||||
Count_time(1) := NOW; | ||||
end if; | ||||
if (Count_precharge(2) = 1) then | ||||
Count_time(2) := NOW; | ||||
end if; | ||||
if (Count_precharge(3) = 1) then | ||||
Count_time(3) := NOW; | ||||
end if; | ||||
elsif (Burst_length_2 = '1') then | ||||
if (Count_precharge(0) = 2) then | ||||
Count_time(0) := NOW; | ||||
end if; | ||||
if (Count_precharge(1) = 2) then | ||||
Count_time(1) := NOW; | ||||
end if; | ||||
if (Count_precharge(2) = 2) then | ||||
Count_time(2) := NOW; | ||||
end if; | ||||
if (Count_precharge(3) = 2) then | ||||
Count_time(3) := NOW; | ||||
end if; | ||||
elsif (Burst_length_4 = '1') then | ||||
if (Count_precharge(0) = 4) then | ||||
Count_time(0) := NOW; | ||||
end if; | ||||
if (Count_precharge(1) = 4) then | ||||
Count_time(1) := NOW; | ||||
end if; | ||||
if (Count_precharge(2) = 4) then | ||||
Count_time(2) := NOW; | ||||
end if; | ||||
if (Count_precharge(3) = 4) then | ||||
Count_time(3) := NOW; | ||||
end if; | ||||
elsif (Burst_length_8 = '1') then | ||||
if (Count_precharge(0) = 8) then | ||||
Count_time(0) := NOW; | ||||
end if; | ||||
if (Count_precharge(1) = 8) then | ||||
Count_time(1) := NOW; | ||||
end if; | ||||
if (Count_precharge(2) = 8) then | ||||
Count_time(2) := NOW; | ||||
end if; | ||||
if (Count_precharge(3) = 8) then | ||||
Count_time(3) := NOW; | ||||
end if; | ||||
end if; | ||||
-- tMRD Counter | ||||
MRD_chk := MRD_chk + 1; | ||||
-- tWR Counter | ||||
WR_counter(0) := WR_counter(0) + 1; | ||||
WR_counter(1) := WR_counter(1) + 1; | ||||
WR_counter(2) := WR_counter(2) + 1; | ||||
WR_counter(3) := WR_counter(3) + 1; | ||||
-- Auto Refresh | ||||
IF Aref_enable = '1' THEN | ||||
-- Auto Refresh to Auto Refresh | ||||
ASSERT (NOW - RC_chk >= tRC) | ||||
REPORT "tRC violation during Auto Refresh" | ||||
SEVERITY WARNING; | ||||
-- Precharge to Auto Refresh | ||||
ASSERT (NOW - RP_chk0 >= tRP OR NOW - RP_chk1 >= tRP OR NOW - RP_chk2 >= tRP OR NOW - RP_chk3 >= tRP) | ||||
REPORT "tRP violation during Auto Refresh" | ||||
SEVERITY WARNING; | ||||
-- All banks must be idle before refresh | ||||
IF (Pc_b3 ='0' OR Pc_b2 = '0' OR Pc_b1 ='0' OR Pc_b0 = '0') THEN | ||||
ASSERT (FALSE) | ||||
REPORT "All banks must be Precharge before Auto Refresh" | ||||
SEVERITY WARNING; | ||||
END IF; | ||||
-- Record current tRC time | ||||
RC_chk := NOW; | ||||
END IF; | ||||
-- Load Mode Register | ||||
IF Mode_reg_enable = '1' THEN | ||||
Mode_reg <= TO_BITVECTOR (Addr); | ||||
IF (Pc_b3 ='0' OR Pc_b2 = '0' OR Pc_b1 ='0' OR Pc_b0 = '0') THEN | ||||
ASSERT (FALSE) | ||||
REPORT "All bank must be Precharge before Load Mode Register" | ||||
SEVERITY WARNING; | ||||
END IF; | ||||
-- REF to LMR | ||||
ASSERT (NOW - RC_chk >= tRC) | ||||
REPORT "tRC violation during Load Mode Register" | ||||
SEVERITY WARNING; | ||||
-- LMR to LMR | ||||
ASSERT (MRD_chk >= tMRD) | ||||
REPORT "tMRD violation during Load Mode Register" | ||||
SEVERITY WARNING; | ||||
-- Record current tMRD time | ||||
MRD_chk := 0; | ||||
END IF; | ||||
-- Active Block (latch Bank and Row Address) | ||||
IF Active_enable = '1' THEN | ||||
IF Ba = "00" AND Pc_b0 = '1' THEN | ||||
Act_b0 := '1'; | ||||
Pc_b0 := '0'; | ||||
B0_row_addr := TO_BITVECTOR (Addr); | ||||
RCD_chk0 := NOW; | ||||
RAS_chk0 := NOW; | ||||
-- Precharge to Active Bank 0 | ||||
ASSERT (NOW - RP_chk0 >= tRP) | ||||
REPORT "tRP violation during Activate Bank 0" | ||||
SEVERITY WARNING; | ||||
ELSIF Ba = "01" AND Pc_b1 = '1' THEN | ||||
Act_b1 := '1'; | ||||
Pc_b1 := '0'; | ||||
B1_row_addr := TO_BITVECTOR (Addr); | ||||
RCD_chk1 := NOW; | ||||
RAS_chk1 := NOW; | ||||
-- Precharge to Active Bank 1 | ||||
ASSERT (NOW - RP_chk1 >= tRP) | ||||
REPORT "tRP violation during Activate Bank 1" | ||||
SEVERITY WARNING; | ||||
ELSIF Ba = "10" AND Pc_b2 = '1' THEN | ||||
Act_b2 := '1'; | ||||
Pc_b2 := '0'; | ||||
B2_row_addr := TO_BITVECTOR (Addr); | ||||
RCD_chk2 := NOW; | ||||
RAS_chk2 := NOW; | ||||
-- Precharge to Active Bank 2 | ||||
ASSERT (NOW - RP_chk2 >= tRP) | ||||
REPORT "tRP violation during Activate Bank 2" | ||||
SEVERITY WARNING; | ||||
ELSIF Ba = "11" AND Pc_b3 = '1' THEN | ||||
Act_b3 := '1'; | ||||
Pc_b3 := '0'; | ||||
B3_row_addr := TO_BITVECTOR (Addr); | ||||
RCD_chk3 := NOW; | ||||
RAS_chk3 := NOW; | ||||
-- Precharge to Active Bank 3 | ||||
ASSERT (NOW - RP_chk3 >= tRP) | ||||
REPORT "tRP violation during Activate Bank 3" | ||||
SEVERITY WARNING; | ||||
ELSIF Ba = "00" AND Pc_b0 = '0' THEN | ||||
ASSERT (FALSE) | ||||
REPORT "Bank 0 is not Precharged" | ||||
SEVERITY WARNING; | ||||
ELSIF Ba = "01" AND Pc_b1 = '0' THEN | ||||
ASSERT (FALSE) | ||||
REPORT "Bank 1 is not Precharged" | ||||
SEVERITY WARNING; | ||||
ELSIF Ba = "10" AND Pc_b2 = '0' THEN | ||||
ASSERT (FALSE) | ||||
REPORT "Bank 2 is not Precharged" | ||||
SEVERITY WARNING; | ||||
ELSIF Ba = "11" AND Pc_b3 = '0' THEN | ||||
ASSERT (FALSE) | ||||
REPORT "Bank 3 is not Precharged" | ||||
SEVERITY WARNING; | ||||
END IF; | ||||
-- Active Bank A to Active Bank B | ||||
IF ((Previous_bank /= TO_BITVECTOR (Ba)) AND (NOW - RRD_chk < tRRD)) THEN | ||||
ASSERT (FALSE) | ||||
REPORT "tRRD violation during Activate" | ||||
SEVERITY WARNING; | ||||
END IF; | ||||
-- LMR to ACT | ||||
ASSERT (MRD_chk >= tMRD) | ||||
REPORT "tMRD violation during Activate" | ||||
SEVERITY WARNING; | ||||
-- AutoRefresh to Activate | ||||
ASSERT (NOW - RC_chk >= tRC) | ||||
REPORT "tRC violation during Activate" | ||||
SEVERITY WARNING; | ||||
-- Record variable for checking violation | ||||
RRD_chk := NOW; | ||||
Previous_bank := TO_BITVECTOR (Ba); | ||||
END IF; | ||||
-- Precharge Block | ||||
IF Prech_enable = '1' THEN | ||||
IF Addr(10) = '1' THEN | ||||
Pc_b0 := '1'; | ||||
Pc_b1 := '1'; | ||||
Pc_b2 := '1'; | ||||
Pc_b3 := '1'; | ||||
Act_b0 := '0'; | ||||
Act_b1 := '0'; | ||||
Act_b2 := '0'; | ||||
Act_b3 := '0'; | ||||
RP_chk0 := NOW; | ||||
RP_chk1 := NOW; | ||||
RP_chk2 := NOW; | ||||
RP_chk3 := NOW; | ||||
-- Activate to Precharge all banks | ||||
ASSERT ((NOW - RAS_chk0 >= tRAS) OR (NOW - RAS_chk1 >= tRAS)) | ||||
REPORT "tRAS violation during Precharge all banks" | ||||
SEVERITY WARNING; | ||||
-- tWR violation check for Write | ||||
IF ((NOW - WR_chkp(0) < tWRp) OR (NOW - WR_chkp(1) < tWRp) OR | ||||
(NOW - WR_chkp(2) < tWRp) OR (NOW - WR_chkp(3) < tWRp)) THEN | ||||
ASSERT (FALSE) | ||||
REPORT "tWR violation during Precharge ALL banks" | ||||
SEVERITY WARNING; | ||||
END IF; | ||||
ELSIF Addr(10) = '0' THEN | ||||
IF Ba = "00" THEN | ||||
Pc_b0 := '1'; | ||||
Act_b0 := '0'; | ||||
RP_chk0 := NOW; | ||||
-- Activate to Precharge bank 0 | ||||
ASSERT (NOW - RAS_chk0 >= tRAS) | ||||
REPORT "tRAS violation during Precharge bank 0" | ||||
SEVERITY WARNING; | ||||
ELSIF Ba = "01" THEN | ||||
Pc_b1 := '1'; | ||||
Act_b1 := '0'; | ||||
RP_chk1 := NOW; | ||||
-- Activate to Precharge bank 1 | ||||
ASSERT (NOW - RAS_chk1 >= tRAS) | ||||
REPORT "tRAS violation during Precharge bank 1" | ||||
SEVERITY WARNING; | ||||
ELSIF Ba = "10" THEN | ||||
Pc_b2 := '1'; | ||||
Act_b2 := '0'; | ||||
RP_chk2 := NOW; | ||||
-- Activate to Precharge bank 2 | ||||
ASSERT (NOW - RAS_chk2 >= tRAS) | ||||
REPORT "tRAS violation during Precharge bank 2" | ||||
SEVERITY WARNING; | ||||
ELSIF Ba = "11" THEN | ||||
Pc_b3 := '1'; | ||||
Act_b3 := '0'; | ||||
RP_chk3 := NOW; | ||||
-- Activate to Precharge bank 3 | ||||
ASSERT (NOW - RAS_chk3 >= tRAS) | ||||
REPORT "tRAS violation during Precharge bank 3" | ||||
SEVERITY WARNING; | ||||
END IF; | ||||
-- tWR violation check for Write | ||||
ASSERT (NOW - WR_chkp(TO_INTEGER(Ba)) >= tWRp) | ||||
REPORT "tWR violation during Precharge" | ||||
SEVERITY WARNING; | ||||
END IF; | ||||
-- Terminate a Write Immediately (if same bank or all banks) | ||||
IF (Data_in_enable = '1' AND (Bank = TO_BITVECTOR(Ba) OR Addr(10) = '1')) THEN | ||||
Data_in_enable := '0'; | ||||
END IF; | ||||
-- Precharge Command Pipeline for READ | ||||
IF CAS_latency_3 = '1' THEN | ||||
Command(2) := PRECH; | ||||
Bank_precharge(2) := TO_BITVECTOR (Ba); | ||||
A10_precharge(2) := TO_BIT(Addr(10)); | ||||
ELSIF CAS_latency_2 = '1' THEN | ||||
Command(1) := PRECH; | ||||
Bank_precharge(1) := TO_BITVECTOR (Ba); | ||||
A10_precharge(1) := TO_BIT(Addr(10)); | ||||
END IF; | ||||
END IF; | ||||
-- Burst Terminate | ||||
IF Burst_term = '1' THEN | ||||
-- Terminate a Write immediately | ||||
IF Data_in_enable = '1' THEN | ||||
Data_in_enable := '0'; | ||||
END IF; | ||||
-- Terminate a Read depend on CAS Latency | ||||
IF CAS_latency_3 = '1' THEN | ||||
Command(2) := BST; | ||||
ELSIF CAS_latency_2 = '1' THEN | ||||
Command(1) := BST; | ||||
END IF; | ||||
END IF; | ||||
-- Read, Write, Column Latch | ||||
IF Read_enable = '1' OR Write_enable = '1' THEN | ||||
-- Check to see if bank is open (ACT) for Read or Write | ||||
IF ((Ba="00" AND Pc_b0='1') OR (Ba="01" AND Pc_b1='1') OR (Ba="10" AND Pc_b2='1') OR (Ba="11" AND Pc_b3='1')) THEN | ||||
ASSERT (FALSE) | ||||
REPORT "Cannot Read or Write - Bank is not Activated" | ||||
SEVERITY WARNING; | ||||
END IF; | ||||
-- Activate to Read or Write | ||||
IF Ba = "00" THEN | ||||
ASSERT (NOW - RCD_chk0 >= tRCD) | ||||
REPORT "tRCD violation during Read or Write to Bank 0" | ||||
SEVERITY WARNING; | ||||
ELSIF Ba = "01" THEN | ||||
ASSERT (NOW - RCD_chk1 >= tRCD) | ||||
REPORT "tRCD violation during Read or Write to Bank 1" | ||||
SEVERITY WARNING; | ||||
ELSIF Ba = "10" THEN | ||||
ASSERT (NOW - RCD_chk2 >= tRCD) | ||||
REPORT "tRCD violation during Read or Write to Bank 2" | ||||
SEVERITY WARNING; | ||||
ELSIF Ba = "11" THEN | ||||
ASSERT (NOW - RCD_chk3 >= tRCD) | ||||
REPORT "tRCD violation during Read or Write to Bank 3" | ||||
SEVERITY WARNING; | ||||
END IF; | ||||
-- Read Command | ||||
IF Read_enable = '1' THEN | ||||
-- CAS Latency Pipeline | ||||
IF Cas_latency_3 = '1' THEN | ||||
IF Addr(10) = '1' THEN | ||||
Command(2) := READ_A; | ||||
ELSE | ||||
Command(2) := READ; | ||||
END IF; | ||||
Col_addr (2) := TO_BITVECTOR (Addr(col_bits - 1 DOWNTO 0)); | ||||
Bank_addr (2) := TO_BITVECTOR (Ba); | ||||
ELSIF Cas_latency_2 = '1' THEN | ||||
IF Addr(10) = '1' THEN | ||||
Command(1) := READ_A; | ||||
ELSE | ||||
Command(1) := READ; | ||||
END IF; | ||||
Col_addr (1) := TO_BITVECTOR (Addr(col_bits - 1 DOWNTO 0)); | ||||
Bank_addr (1) := TO_BITVECTOR (Ba); | ||||
END IF; | ||||
-- Read intterupt a Write (terminate Write immediately) | ||||
IF Data_in_enable = '1' THEN | ||||
Data_in_enable := '0'; | ||||
END IF; | ||||
-- Write Command | ||||
ELSIF Write_enable = '1' THEN | ||||
IF Addr(10) = '1' THEN | ||||
Command(0) := WRITE_A; | ||||
ELSE | ||||
Command(0) := WRITE; | ||||
END IF; | ||||
Col_addr (0) := TO_BITVECTOR (Addr(col_bits - 1 DOWNTO 0)); | ||||
Bank_addr (0) := TO_BITVECTOR (Ba); | ||||
-- Write intterupt a Write (terminate Write immediately) | ||||
IF Data_in_enable = '1' THEN | ||||
Data_in_enable := '0'; | ||||
END IF; | ||||
-- Write interrupt a Read (terminate Read immediately) | ||||
IF Data_out_enable = '1' THEN | ||||
Data_out_enable := '0'; | ||||
END IF; | ||||
END IF; | ||||
-- Interrupt a Write with Auto Precharge | ||||
IF Auto_precharge(TO_INTEGER(RW_Interrupt_Bank)) = '1' AND Write_precharge(TO_INTEGER(RW_Interrupt_Bank)) = '1' THEN | ||||
RW_interrupt_write(TO_INTEGER(RW_Interrupt_Bank)) := '1'; | ||||
END IF; | ||||
-- Interrupt a Read with Auto Precharge | ||||
IF Auto_precharge(TO_INTEGER(RW_Interrupt_Bank)) = '1' AND Read_precharge(TO_INTEGER(RW_Interrupt_Bank)) = '1' THEN | ||||
RW_interrupt_read(TO_INTEGER(RW_Interrupt_Bank)) := '1'; | ||||
END IF; | ||||
-- Read or Write with Auto Precharge | ||||
IF Addr(10) = '1' THEN | ||||
Auto_precharge (TO_INTEGER(Ba)) := '1'; | ||||
Count_precharge (TO_INTEGER(Ba)) := 0; | ||||
RW_Interrupt_Bank := TO_BitVector(Ba); | ||||
IF Read_enable = '1' THEN | ||||
Read_precharge (TO_INTEGER(Ba)) := '1'; | ||||
ELSIF Write_enable = '1' THEN | ||||
Write_precharge (TO_INTEGER(Ba)) := '1'; | ||||
END IF; | ||||
END IF; | ||||
END IF; | ||||
-- Read with AutoPrecharge Calculation | ||||
-- The device start internal precharge when: | ||||
-- 1. BL/2 cycles after command | ||||
-- and 2. Meet tRAS requirement | ||||
-- or 3. Interrupt by a Read or Write (with or without Auto Precharge) | ||||
IF ((Auto_precharge(0) = '1') AND (Read_precharge(0) = '1')) THEN | ||||
IF (((NOW - RAS_chk0 >= tRAS) AND | ||||
((Burst_length_1 = '1' AND Count_precharge(0) >= 1) OR | ||||
(Burst_length_2 = '1' AND Count_precharge(0) >= 2) OR | ||||
(Burst_length_4 = '1' AND Count_precharge(0) >= 4) OR | ||||
(Burst_length_8 = '1' AND Count_precharge(0) >= 8))) OR | ||||
(RW_interrupt_read(0) = '1')) THEN | ||||
Pc_b0 := '1'; | ||||
Act_b0 := '0'; | ||||
RP_chk0 := NOW; | ||||
Auto_precharge(0) := '0'; | ||||
Read_precharge(0) := '0'; | ||||
RW_interrupt_read(0) := '0'; | ||||
END IF; | ||||
END IF; | ||||
IF ((Auto_precharge(1) = '1') AND (Read_precharge(1) = '1')) THEN | ||||
IF (((NOW - RAS_chk1 >= tRAS) AND | ||||
((Burst_length_1 = '1' AND Count_precharge(1) >= 1) OR | ||||
(Burst_length_2 = '1' AND Count_precharge(1) >= 2) OR | ||||
(Burst_length_4 = '1' AND Count_precharge(1) >= 4) OR | ||||
(Burst_length_8 = '1' AND Count_precharge(1) >= 8))) OR | ||||
(RW_interrupt_read(1) = '1')) THEN | ||||
Pc_b1 := '1'; | ||||
Act_b1 := '0'; | ||||
RP_chk1 := NOW; | ||||
Auto_precharge(1) := '0'; | ||||
Read_precharge(1) := '0'; | ||||
RW_interrupt_read(1) := '0'; | ||||
END IF; | ||||
END IF; | ||||
IF ((Auto_precharge(2) = '1') AND (Read_precharge(2) = '1')) THEN | ||||
IF (((NOW - RAS_chk2 >= tRAS) AND | ||||
((Burst_length_1 = '1' AND Count_precharge(2) >= 1) OR | ||||
(Burst_length_2 = '1' AND Count_precharge(2) >= 2) OR | ||||
(Burst_length_4 = '1' AND Count_precharge(2) >= 4) OR | ||||
(Burst_length_8 = '1' AND Count_precharge(2) >= 8))) OR | ||||
(RW_interrupt_read(2) = '1')) THEN | ||||
Pc_b2 := '1'; | ||||
Act_b2 := '0'; | ||||
RP_chk2 := NOW; | ||||
Auto_precharge(2) := '0'; | ||||
Read_precharge(2) := '0'; | ||||
RW_interrupt_read(2) := '0'; | ||||
END IF; | ||||
END IF; | ||||
IF ((Auto_precharge(3) = '1') AND (Read_precharge(3) = '1')) THEN | ||||
IF (((NOW - RAS_chk3 >= tRAS) AND | ||||
((Burst_length_1 = '1' AND Count_precharge(3) >= 1) OR | ||||
(Burst_length_2 = '1' AND Count_precharge(3) >= 2) OR | ||||
(Burst_length_4 = '1' AND Count_precharge(3) >= 4) OR | ||||
(Burst_length_8 = '1' AND Count_precharge(3) >= 8))) OR | ||||
(RW_interrupt_read(3) = '1')) THEN | ||||
Pc_b3 := '1'; | ||||
Act_b3 := '0'; | ||||
RP_chk3 := NOW; | ||||
Auto_precharge(3) := '0'; | ||||
Read_precharge(3) := '0'; | ||||
RW_interrupt_read(3) := '0'; | ||||
END IF; | ||||
END IF; | ||||
-- Internal Precharge or Bst | ||||
IF Command(0) = PRECH THEN -- PRECH terminate a read if same bank or all banks | ||||
IF Bank_precharge(0) = Bank OR A10_precharge(0) = '1' THEN | ||||
IF Data_out_enable = '1' THEN | ||||
Data_out_enable := '0'; | ||||
END IF; | ||||
END IF; | ||||
ELSIF Command(0) = BST THEN -- BST terminate a read regardless of bank | ||||
IF Data_out_enable = '1' THEN | ||||
Data_out_enable := '0'; | ||||
END IF; | ||||
END IF; | ||||
IF Data_out_enable = '0' THEN | ||||
Dq <= TRANSPORT (OTHERS => 'Z') AFTER tOH; | ||||
END IF; | ||||
-- Detect Read or Write Command | ||||
IF Command(0) = READ OR Command(0) = READ_A THEN | ||||
Bank := Bank_addr (0); | ||||
Col := Col_addr (0); | ||||
Col_brst := Col_addr (0); | ||||
IF Bank_addr (0) = "00" THEN | ||||
Row := B0_row_addr; | ||||
ELSIF Bank_addr (0) = "01" THEN | ||||
Row := B1_row_addr; | ||||
ELSIF Bank_addr (0) = "10" THEN | ||||
Row := B2_row_addr; | ||||
ELSE | ||||
Row := B3_row_addr; | ||||
END IF; | ||||
Burst_counter := 0; | ||||
Data_in_enable := '0'; | ||||
Data_out_enable := '1'; | ||||
ELSIF Command(0) = WRITE OR Command(0) = WRITE_A THEN | ||||
Bank := Bank_addr(0); | ||||
Col := Col_addr(0); | ||||
Col_brst := Col_addr(0); | ||||
IF Bank_addr (0) = "00" THEN | ||||
Row := B0_row_addr; | ||||
ELSIF Bank_addr (0) = "01" THEN | ||||
Row := B1_row_addr; | ||||
ELSIF Bank_addr (0) = "10" THEN | ||||
Row := B2_row_addr; | ||||
ELSE | ||||
Row := B3_row_addr; | ||||
END IF; | ||||
Burst_counter := 0; | ||||
Data_in_enable := '1'; | ||||
Data_out_enable := '0'; | ||||
END IF; | ||||
-- DQ (Driver / Receiver) | ||||
Row_index := TO_INTEGER (Row); | ||||
Col_index := TO_INTEGER (Col); | ||||
IF Data_in_enable = '1' THEN | ||||
IF Dqm /= "11" THEN | ||||
Init_mem (Bank, Row_index); | ||||
IF Bank = "00" THEN | ||||
Dq_temp := Bank0 (Row_index) (Col_index); | ||||
IF Dqm = "01" THEN | ||||
Dq_temp (15 DOWNTO 8) := TO_BITVECTOR (Dq (15 DOWNTO 8)); | ||||
ELSIF Dqm = "10" THEN | ||||
Dq_temp (7 DOWNTO 0) := TO_BITVECTOR (Dq (7 DOWNTO 0)); | ||||
ELSE | ||||
Dq_temp (15 DOWNTO 0) := TO_BITVECTOR (Dq (15 DOWNTO 0)); | ||||
END IF; | ||||
Bank0 (Row_index) (Col_index) := ('1' & Dq_temp(data_bits - 1 DOWNTO 0)); | ||||
ELSIF Bank = "01" THEN | ||||
Dq_temp := Bank1 (Row_index) (Col_index); | ||||
IF Dqm = "01" THEN | ||||
Dq_temp (15 DOWNTO 8) := TO_BITVECTOR (Dq (15 DOWNTO 8)); | ||||
ELSIF Dqm = "10" THEN | ||||
Dq_temp (7 DOWNTO 0) := TO_BITVECTOR (Dq (7 DOWNTO 0)); | ||||
ELSE | ||||
Dq_temp (15 DOWNTO 0) := TO_BITVECTOR (Dq (15 DOWNTO 0)); | ||||
END IF; | ||||
Bank1 (Row_index) (Col_index) := ('1' & Dq_temp(data_bits - 1 DOWNTO 0)); | ||||
ELSIF Bank = "10" THEN | ||||
Dq_temp := Bank2 (Row_index) (Col_index); | ||||
IF Dqm = "01" THEN | ||||
Dq_temp (15 DOWNTO 8) := TO_BITVECTOR (Dq (15 DOWNTO 8)); | ||||
ELSIF Dqm = "10" THEN | ||||
Dq_temp (7 DOWNTO 0) := TO_BITVECTOR (Dq (7 DOWNTO 0)); | ||||
ELSE | ||||
Dq_temp (15 DOWNTO 0) := TO_BITVECTOR (Dq (15 DOWNTO 0)); | ||||
END IF; | ||||
Bank2 (Row_index) (Col_index) := ('1' & Dq_temp(data_bits - 1 DOWNTO 0)); | ||||
ELSIF Bank = "11" THEN | ||||
Dq_temp := Bank3 (Row_index) (Col_index); | ||||
IF Dqm = "01" THEN | ||||
Dq_temp (15 DOWNTO 8) := TO_BITVECTOR (Dq (15 DOWNTO 8)); | ||||
ELSIF Dqm = "10" THEN | ||||
Dq_temp (7 DOWNTO 0) := TO_BITVECTOR (Dq (7 DOWNTO 0)); | ||||
ELSE | ||||
Dq_temp (15 DOWNTO 0) := TO_BITVECTOR (Dq (15 DOWNTO 0)); | ||||
END IF; | ||||
Bank3 (Row_index) (Col_index) := ('1' & Dq_temp(data_bits - 1 DOWNTO 0)); | ||||
END IF; | ||||
WR_chkp(TO_INTEGER(Bank)) := NOW; | ||||
WR_counter(TO_INTEGER(Bank)) := 0; | ||||
END IF; | ||||
Burst_decode; | ||||
ELSIF Data_out_enable = '1' THEN | ||||
IF Dqm_reg0 /= "11" THEN | ||||
Init_mem (Bank, Row_index); | ||||
IF Bank = "00" THEN | ||||
Dq_temp := Bank0 (Row_index) (Col_index); | ||||
IF Dqm_reg0 = "00" THEN | ||||
Dq (15 DOWNTO 0) <= TRANSPORT TO_STDLOGICVECTOR (Dq_temp (15 DOWNTO 0)) AFTER tAC; | ||||
ELSIF Dqm_reg0 = "01" THEN | ||||
Dq (15 DOWNTO 8) <= TRANSPORT TO_STDLOGICVECTOR (Dq_temp (15 DOWNTO 8)) AFTER tAC; | ||||
Dq (7 DOWNTO 0) <= TRANSPORT (OTHERS => 'Z') AFTER tAC; | ||||
ELSIF Dqm_reg0 = "10" THEN | ||||
Dq (15 DOWNTO 8) <= TRANSPORT (OTHERS => 'Z') AFTER tAC; | ||||
Dq (7 DOWNTO 0) <= TRANSPORT TO_STDLOGICVECTOR (Dq_temp (7 DOWNTO 0)) AFTER tAC; | ||||
END IF; | ||||
ELSIF Bank = "01" THEN | ||||
Dq_temp := Bank1 (Row_index) (Col_index); | ||||
IF Dqm_reg0 = "00" THEN | ||||
Dq (15 DOWNTO 0) <= TRANSPORT TO_STDLOGICVECTOR (Dq_temp (15 DOWNTO 0)) AFTER tAC; | ||||
ELSIF Dqm_reg0 = "01" THEN | ||||
Dq (15 DOWNTO 8) <= TRANSPORT TO_STDLOGICVECTOR (Dq_temp (15 DOWNTO 8)) AFTER tAC; | ||||
Dq (7 DOWNTO 0) <= TRANSPORT (OTHERS => 'Z') AFTER tAC; | ||||
ELSIF Dqm_reg0 = "10" THEN | ||||
Dq (15 DOWNTO 8) <= TRANSPORT (OTHERS => 'Z') AFTER tAC; | ||||
Dq (7 DOWNTO 0) <= TRANSPORT TO_STDLOGICVECTOR (Dq_temp (7 DOWNTO 0)) AFTER tAC; | ||||
END IF; | ||||
ELSIF Bank = "10" THEN | ||||
Dq_temp := Bank2 (Row_index) (Col_index); | ||||
IF Dqm_reg0 = "00" THEN | ||||
Dq (15 DOWNTO 0) <= TRANSPORT TO_STDLOGICVECTOR (Dq_temp (15 DOWNTO 0)) AFTER tAC; | ||||
ELSIF Dqm_reg0 = "01" THEN | ||||
Dq (15 DOWNTO 8) <= TRANSPORT TO_STDLOGICVECTOR (Dq_temp (15 DOWNTO 8)) AFTER tAC; | ||||
Dq (7 DOWNTO 0) <= TRANSPORT (OTHERS => 'Z') AFTER tAC; | ||||
ELSIF Dqm_reg0 = "10" THEN | ||||
Dq (15 DOWNTO 8) <= TRANSPORT (OTHERS => 'Z') AFTER tAC; | ||||
Dq (7 DOWNTO 0) <= TRANSPORT TO_STDLOGICVECTOR (Dq_temp (7 DOWNTO 0)) AFTER tAC; | ||||
END IF; | ||||
ELSIF Bank = "11" THEN | ||||
Dq_temp := Bank3 (Row_index) (Col_index); | ||||
IF Dqm_reg0 = "00" THEN | ||||
Dq (15 DOWNTO 0) <= TRANSPORT TO_STDLOGICVECTOR (Dq_temp (15 DOWNTO 0)) AFTER tAC; | ||||
ELSIF Dqm_reg0 = "01" THEN | ||||
Dq (15 DOWNTO 8) <= TRANSPORT TO_STDLOGICVECTOR (Dq_temp (15 DOWNTO 8)) AFTER tAC; | ||||
Dq (7 DOWNTO 0) <= TRANSPORT (OTHERS => 'Z') AFTER tAC; | ||||
ELSIF Dqm_reg0 = "10" THEN | ||||
Dq (15 DOWNTO 8) <= TRANSPORT (OTHERS => 'Z') AFTER tAC; | ||||
Dq (7 DOWNTO 0) <= TRANSPORT TO_STDLOGICVECTOR (Dq_temp (7 DOWNTO 0)) AFTER tAC; | ||||
END IF; | ||||
END IF; | ||||
ELSE | ||||
Dq <= TRANSPORT (OTHERS => 'Z') AFTER tHZ; | ||||
END IF; | ||||
Burst_decode; | ||||
END IF; | ||||
ELSIF Sys_clk'event AND Sys_clk = '1' AND Load = '1' AND Dump = '0' THEN --' | ||||
Operation <= LOAD_FILE; | ||||
load := '0'; | ||||
-- ASSERT (FALSE) REPORT "Reading memory array from file. This operation may take several minutes. Please wait..." | ||||
-- SEVERITY NOTE; | ||||
WHILE NOT endfile(file_load) LOOP | ||||
readline(file_load, l); | ||||
read(l, ch); | ||||
if (ch /= 'S') or (ch /= 's') then | ||||
hread(l, rectype); | ||||
hread(l, reclen); | ||||
recaddr := (others => '0'); | ||||
case rectype is | ||||
when "0001" => | ||||
hread(l, recaddr(15 downto 0)); | ||||
when "0010" => | ||||
hread(l, recaddr(23 downto 0)); | ||||
when "0011" => | ||||
hread(l, recaddr); | ||||
recaddr(31 downto 24) := (others => '0'); | ||||
when others => next; | ||||
end case; | ||||
hread(l, recdata); | ||||
if index < 32 then | ||||
Bank_Load := recaddr(25 downto 24); | ||||
Rows_Load := recaddr(23 downto 11); | ||||
Cols_Load := recaddr(10 downto 2); | ||||
Init_Mem (Bank_Load, To_Integer(Rows_Load)); | ||||
IF Bank_Load = "00" THEN | ||||
for i in 0 to 3 loop | ||||
Bank0 (To_Integer(Rows_Load)) (To_Integer(Cols_Load)+i) := ('1' & recdata(i*32+index to i*32+index+15)); | ||||
end loop; | ||||
ELSIF Bank_Load = "01" THEN | ||||
for i in 0 to 3 loop | ||||
Bank1 (To_Integer(Rows_Load)) (To_Integer(Cols_Load)+i) := ('1' & recdata(i*32+index to i*32+index+15)); | ||||
end loop; | ||||
ELSIF Bank_Load = "10" THEN | ||||
for i in 0 to 3 loop | ||||
Bank2 (To_Integer(Rows_Load)) (To_Integer(Cols_Load)+i) := ('1' & recdata(i*32+index to i*32+index+15)); | ||||
end loop; | ||||
ELSIF Bank_Load = "11" THEN | ||||
for i in 0 to 3 loop | ||||
Bank3 (To_Integer(Rows_Load)) (To_Integer(Cols_Load)+i) := ('1' & recdata(i*32+index to i*32+index+15)); | ||||
end loop; | ||||
END IF; | ||||
elsif(index < 1024) then | ||||
Bank_Load := recaddr(26 downto 25); | ||||
Rows_Load := recaddr(24 downto 12); | ||||
Cols_Load := recaddr(11 downto 3); | ||||
Init_Mem (Bank_Load, To_Integer(Rows_Load)); | ||||
IF Bank_Load = "00" THEN | ||||
for i in 0 to 1 loop | ||||
Bank0 (To_Integer(Rows_Load)) (To_Integer(Cols_Load)+i) := ('1' & recdata(i*64+index-32 to i*64+index-32+15)); | ||||
end loop; | ||||
ELSIF Bank_Load = "01" THEN | ||||
for i in 0 to 1 loop | ||||
Bank1 (To_Integer(Rows_Load)) (To_Integer(Cols_Load)+i) := ('1' & recdata(i*64+index-32 to i*64+index-32+15)); | ||||
end loop; | ||||
ELSIF Bank_Load = "10" THEN | ||||
for i in 0 to 1 loop | ||||
Bank2 (To_Integer(Rows_Load)) (To_Integer(Cols_Load)+i) := ('1' & recdata(i*64+index-32 to i*64+index-32+15)); | ||||
end loop; | ||||
ELSIF Bank_Load = "11" THEN | ||||
for i in 0 to 1 loop | ||||
Bank3 (To_Integer(Rows_Load)) (To_Integer(Cols_Load)+i) := ('1' & recdata(i*64+index-32 to i*64+index-32+15)); | ||||
end loop; | ||||
END IF; | ||||
else | ||||
Bank_Load := recaddr(22 downto 21); | ||||
Rows_Load := '0' & recaddr(20 downto 9); | ||||
Cols_Load := '0' & recaddr(8 downto 1); | ||||
Init_Mem (Bank_Load, To_Integer(Rows_Load)); | ||||
IF Bank_Load = "00" THEN | ||||
for i in 0 to 7 loop | ||||
Bank0 (To_Integer(Rows_Load)) (To_Integer(Cols_Load)+i) := ('1' & recdata(i*16 to i*16+15)); | ||||
end loop; | ||||
ELSIF Bank_Load = "01" THEN | ||||
for i in 0 to 7 loop | ||||
Bank1 (To_Integer(Rows_Load)) (To_Integer(Cols_Load)+i) := ('1' & recdata(i*16 to i*16+15)); | ||||
end loop; | ||||
ELSIF Bank_Load = "10" THEN | ||||
for i in 0 to 7 loop | ||||
Bank2 (To_Integer(Rows_Load)) (To_Integer(Cols_Load)+i) := ('1' & recdata(i*16 to i*16+15)); | ||||
end loop; | ||||
ELSIF Bank_Load = "11" THEN | ||||
for i in 0 to 7 loop | ||||
Bank3 (To_Integer(Rows_Load)) (To_Integer(Cols_Load)+i) := ('1' & recdata(i*16 to i*16+15)); | ||||
end loop; | ||||
END IF; | ||||
END IF; | ||||
END IF; | ||||
END LOOP; | ||||
ELSIF Sys_clk'event AND Sys_clk = '1' AND Load = '0' AND Dump = '1' THEN --' | ||||
Operation <= DUMP_FILE; | ||||
ASSERT (FALSE) REPORT "Writing memory array to file. This operation may take several minutes. Please wait..." | ||||
SEVERITY NOTE; | ||||
WRITE (l, string'("# Micron Technology, Inc. (FILE DUMP / MEMORY DUMP)")); --' | ||||
WRITELINE (file_dump, l); | ||||
WRITE (l, string'("# BA ROWS COLS DQ")); --' | ||||
WRITELINE (file_dump, l); | ||||
WRITE (l, string'("# -- ------------- --------- ----------------")); --' | ||||
WRITELINE (file_dump, l); | ||||
-- Dumping Bank 0 | ||||
FOR i IN 0 TO 2**addr_bits -1 LOOP | ||||
-- Check if ROW is NULL | ||||
IF Bank0 (i) /= NULL THEN | ||||
For j IN 0 TO 2**col_bits - 1 LOOP | ||||
-- Check if COL is NULL | ||||
NEXT WHEN Bank0 (i) (j) (data_bits) = '0'; | ||||
WRITE (l, string'("00"), right, 4); --' | ||||
WRITE (l, To_BitVector(Conv_Std_Logic_Vector(i, addr_bits)), right, addr_bits+1); | ||||
WRITE (l, To_BitVector(Conv_std_Logic_Vector(j, col_bits)), right, col_bits+1); | ||||
WRITE (l, Bank0 (i) (j) (data_bits -1 DOWNTO 0), right, data_bits+1); | ||||
WRITELINE (file_dump, l); | ||||
END LOOP; | ||||
END IF; | ||||
END LOOP; | ||||
-- Dumping Bank 1 | ||||
FOR i IN 0 TO 2**addr_bits -1 LOOP | ||||
-- Check if ROW is NULL | ||||
IF Bank1 (i) /= NULL THEN | ||||
For j IN 0 TO 2**col_bits - 1 LOOP | ||||
-- Check if COL is NULL | ||||
NEXT WHEN Bank1 (i) (j) (data_bits) = '0'; | ||||
WRITE (l, string'("01"), right, 4); --' | ||||
WRITE (l, To_BitVector(Conv_Std_Logic_Vector(i, addr_bits)), right, addr_bits+1); | ||||
WRITE (l, To_BitVector(Conv_std_Logic_Vector(j, col_bits)), right, col_bits+1); | ||||
WRITE (l, Bank1 (i) (j) (data_bits -1 DOWNTO 0), right, data_bits+1); | ||||
WRITELINE (file_dump, l); | ||||
END LOOP; | ||||
END IF; | ||||
END LOOP; | ||||
-- Dumping Bank 2 | ||||
FOR i IN 0 TO 2**addr_bits -1 LOOP | ||||
-- Check if ROW is NULL | ||||
IF Bank2 (i) /= NULL THEN | ||||
For j IN 0 TO 2**col_bits - 1 LOOP | ||||
-- Check if COL is NULL | ||||
NEXT WHEN Bank2 (i) (j) (data_bits) = '0'; | ||||
WRITE (l, string'("10"), right, 4); --' | ||||
WRITE (l, To_BitVector(Conv_Std_Logic_Vector(i, addr_bits)), right, addr_bits+1); | ||||
WRITE (l, To_BitVector(Conv_std_Logic_Vector(j, col_bits)), right, col_bits+1); | ||||
WRITE (l, Bank2 (i) (j) (data_bits -1 DOWNTO 0), right, data_bits+1); | ||||
WRITELINE (file_dump, l); | ||||
END LOOP; | ||||
END IF; | ||||
END LOOP; | ||||
-- Dumping Bank 3 | ||||
FOR i IN 0 TO 2**addr_bits -1 LOOP | ||||
-- Check if ROW is NULL | ||||
IF Bank3 (i) /= NULL THEN | ||||
For j IN 0 TO 2**col_bits - 1 LOOP | ||||
-- Check if COL is NULL | ||||
NEXT WHEN Bank3 (i) (j) (data_bits) = '0'; | ||||
WRITE (l, string'("11"), right, 4); --' | ||||
WRITE (l, To_BitVector(Conv_Std_Logic_Vector(i, addr_bits)), right, addr_bits+1); | ||||
WRITE (l, To_BitVector(Conv_std_Logic_Vector(j, col_bits)), right, col_bits+1); | ||||
WRITE (l, Bank3 (i) (j) (data_bits -1 DOWNTO 0), right, data_bits+1); | ||||
WRITELINE (file_dump, l); | ||||
END LOOP; | ||||
END IF; | ||||
END LOOP; | ||||
END IF; | ||||
-- Write with AutoPrecharge Calculation | ||||
-- The device start internal precharge when: | ||||
-- 1. tWR cycles after command | ||||
-- and 2. Meet tRAS requirement | ||||
-- or 3. Interrupt by a Read or Write (with or without Auto Precharge) | ||||
IF ((Auto_precharge(0) = '1') AND (Write_precharge(0) = '1')) THEN | ||||
IF (((NOW - RAS_chk0 >= tRAS) AND | ||||
(((Burst_length_1 = '1' OR Write_burst_mode = '1' ) AND Count_precharge(0) >= 1 AND NOW - Count_time(0) >= tWRa) OR | ||||
(Burst_length_2 = '1' AND Count_precharge(0) >= 2 AND NOW - Count_time(0) >= tWRa) OR | ||||
(Burst_length_4 = '1' AND Count_precharge(0) >= 4 AND NOW - Count_time(0) >= tWRa) OR | ||||
(Burst_length_8 = '1' AND Count_precharge(0) >= 8 AND NOW - Count_time(0) >= tWRa))) OR | ||||
(RW_interrupt_write(0) = '1' AND WR_counter(0) >= 1 AND NOW - WR_time(0) >= tWRa)) THEN | ||||
Auto_precharge(0) := '0'; | ||||
Write_precharge(0) := '0'; | ||||
RW_interrupt_write(0) := '0'; | ||||
Pc_b0 := '1'; | ||||
Act_b0 := '0'; | ||||
RP_chk0 := NOW; | ||||
ASSERT FALSE REPORT "Start Internal Precharge Bank 0" SEVERITY NOTE; | ||||
END IF; | ||||
END IF; | ||||
IF ((Auto_precharge(1) = '1') AND (Write_precharge(1) = '1')) THEN | ||||
IF (((NOW - RAS_chk1 >= tRAS) AND | ||||
(((Burst_length_1 = '1' OR Write_burst_mode = '1' ) AND Count_precharge(1) >= 1 AND NOW - Count_time(1) >= tWRa) OR | ||||
(Burst_length_2 = '1' AND Count_precharge(1) >= 2 AND NOW - Count_time(1) >= tWRa) OR | ||||
(Burst_length_4 = '1' AND Count_precharge(1) >= 4 AND NOW - Count_time(1) >= tWRa) OR | ||||
(Burst_length_8 = '1' AND Count_precharge(1) >= 8 AND NOW - Count_time(1) >= tWRa))) OR | ||||
(RW_interrupt_write(1) = '1' AND WR_counter(1) >= 1 AND NOW - WR_time(1) >= tWRa)) THEN | ||||
Auto_precharge(1) := '0'; | ||||
Write_precharge(1) := '0'; | ||||
RW_interrupt_write(1) := '0'; | ||||
Pc_b1 := '1'; | ||||
Act_b1 := '0'; | ||||
RP_chk1 := NOW; | ||||
END IF; | ||||
END IF; | ||||
IF ((Auto_precharge(2) = '1') AND (Write_precharge(2) = '1')) THEN | ||||
IF (((NOW - RAS_chk2 >= tRAS) AND | ||||
(((Burst_length_1 = '1' OR Write_burst_mode = '1' ) AND Count_precharge(2) >= 1 AND NOW - Count_time(2) >= tWRa) OR | ||||
(Burst_length_2 = '1' AND Count_precharge(2) >= 2 AND NOW - Count_time(2) >= tWRa) OR | ||||
(Burst_length_4 = '1' AND Count_precharge(2) >= 4 AND NOW - Count_time(2) >= tWRa) OR | ||||
(Burst_length_8 = '1' AND Count_precharge(2) >= 8 AND NOW - Count_time(2) >= tWRa))) OR | ||||
(RW_interrupt_write(2) = '1' AND WR_counter(2) >= 1 AND NOW - WR_time(2) >= tWRa)) THEN | ||||
Auto_precharge(2) := '0'; | ||||
Write_precharge(2) := '0'; | ||||
RW_interrupt_write(2) := '0'; | ||||
Pc_b2 := '1'; | ||||
Act_b2 := '0'; | ||||
RP_chk2 := NOW; | ||||
END IF; | ||||
END IF; | ||||
IF ((Auto_precharge(3) = '1') AND (Write_precharge(3) = '1')) THEN | ||||
IF (((NOW - RAS_chk3 >= tRAS) AND | ||||
(((Burst_length_1 = '1' OR Write_burst_mode = '1' ) AND Count_precharge(3) >= 1 AND NOW - Count_time(3) >= tWRa) OR | ||||
(Burst_length_2 = '1' AND Count_precharge(3) >= 2 AND NOW - Count_time(3) >= tWRa) OR | ||||
(Burst_length_4 = '1' AND Count_precharge(3) >= 4 AND NOW - Count_time(3) >= tWRa) OR | ||||
(Burst_length_8 = '1' AND Count_precharge(3) >= 8 AND NOW - Count_time(3) >= tWRa))) OR | ||||
(RW_interrupt_write(0) = '1' AND WR_counter(0) >= 1 AND NOW - WR_time(3) >= tWRa)) THEN | ||||
Auto_precharge(3) := '0'; | ||||
Write_precharge(3) := '0'; | ||||
RW_interrupt_write(3) := '0'; | ||||
Pc_b3 := '1'; | ||||
Act_b3 := '0'; | ||||
RP_chk3 := NOW; | ||||
END IF; | ||||
END IF; | ||||
-- Checking internal wires (Optional for debug purpose) | ||||
Pre_chk (0) <= Pc_b0; | ||||
Pre_chk (1) <= Pc_b1; | ||||
Pre_chk (2) <= Pc_b2; | ||||
Pre_chk (3) <= Pc_b3; | ||||
Act_chk (0) <= Act_b0; | ||||
Act_chk (1) <= Act_b1; | ||||
Act_chk (2) <= Act_b2; | ||||
Act_chk (3) <= Act_b3; | ||||
Dq_in_chk <= Data_in_enable; | ||||
Dq_out_chk <= Data_out_enable; | ||||
Bank_chk <= Bank; | ||||
Row_chk <= Row; | ||||
Col_chk <= Col; | ||||
END PROCESS; | ||||
-- Clock timing checks | ||||
-- Clock_check : PROCESS | ||||
-- VARIABLE Clk_low, Clk_high : TIME := 0 ns; | ||||
-- BEGIN | ||||
-- WAIT ON Clk; | ||||
-- IF (Clk = '1' AND NOW >= 10 ns) THEN | ||||
-- ASSERT (NOW - Clk_low >= tCL) | ||||
-- REPORT "tCL violation" | ||||
-- SEVERITY WARNING; | ||||
-- ASSERT (NOW - Clk_high >= tCK) | ||||
-- REPORT "tCK violation" | ||||
-- SEVERITY WARNING; | ||||
-- Clk_high := NOW; | ||||
-- ELSIF (Clk = '0' AND NOW /= 0 ns) THEN | ||||
-- ASSERT (NOW - Clk_high >= tCH) | ||||
-- REPORT "tCH violation" | ||||
-- SEVERITY WARNING; | ||||
-- Clk_low := NOW; | ||||
-- END IF; | ||||
-- END PROCESS; | ||||
-- Setup timing checks | ||||
Setup_check : PROCESS | ||||
BEGIN | ||||
wait; | ||||
WAIT ON Clk; | ||||
IF Clk = '1' THEN | ||||
ASSERT(Cke'LAST_EVENT >= tCKS) --' | ||||
REPORT "CKE Setup time violation -- tCKS" | ||||
SEVERITY WARNING; | ||||
ASSERT(Cs_n'LAST_EVENT >= tCMS) --' | ||||
REPORT "CS# Setup time violation -- tCMS" | ||||
SEVERITY WARNING; | ||||
ASSERT(Cas_n'LAST_EVENT >= tCMS) --' | ||||
REPORT "CAS# Setup time violation -- tCMS" | ||||
SEVERITY WARNING; | ||||
ASSERT(Ras_n'LAST_EVENT >= tCMS) --' | ||||
REPORT "RAS# Setup time violation -- tCMS" | ||||
SEVERITY WARNING; | ||||
ASSERT(We_n'LAST_EVENT >= tCMS) --' | ||||
REPORT "WE# Setup time violation -- tCMS" | ||||
SEVERITY WARNING; | ||||
ASSERT(Dqm'LAST_EVENT >= tCMS) --' | ||||
REPORT "Dqm Setup time violation -- tCMS" | ||||
SEVERITY WARNING; | ||||
ASSERT(Addr'LAST_EVENT >= tAS) --' | ||||
REPORT "ADDR Setup time violation -- tAS" | ||||
SEVERITY WARNING; | ||||
ASSERT(Ba'LAST_EVENT >= tAS) --' | ||||
REPORT "BA Setup time violation -- tAS" | ||||
SEVERITY WARNING; | ||||
ASSERT(Dq'LAST_EVENT >= tDS) --' | ||||
REPORT "Dq Setup time violation -- tDS" | ||||
SEVERITY WARNING; | ||||
END IF; | ||||
END PROCESS; | ||||
-- Hold timing checks | ||||
Hold_check : PROCESS | ||||
BEGIN | ||||
wait; | ||||
WAIT ON Clk'DELAYED (tCKH), Clk'DELAYED (tCMH), Clk'DELAYED (tAH), Clk'DELAYED (tDH); | ||||
IF Clk'DELAYED (tCKH) = '1' THEN --' | ||||
ASSERT(Cke'LAST_EVENT > tCKH) --' | ||||
REPORT "CKE Hold time violation -- tCKH" | ||||
SEVERITY WARNING; | ||||
END IF; | ||||
IF Clk'DELAYED (tCMH) = '1' THEN --' | ||||
ASSERT(Cs_n'LAST_EVENT > tCMH) --' | ||||
REPORT "CS# Hold time violation -- tCMH" | ||||
SEVERITY WARNING; | ||||
ASSERT(Cas_n'LAST_EVENT > tCMH) --' | ||||
REPORT "CAS# Hold time violation -- tCMH" | ||||
SEVERITY WARNING; | ||||
ASSERT(Ras_n'LAST_EVENT > tCMH) --' | ||||
REPORT "RAS# Hold time violation -- tCMH" | ||||
SEVERITY WARNING; | ||||
ASSERT(We_n'LAST_EVENT > tCMH) --' | ||||
REPORT "WE# Hold time violation -- tCMH" | ||||
SEVERITY WARNING; | ||||
ASSERT(Dqm'LAST_EVENT > tCMH) --' | ||||
REPORT "Dqm Hold time violation -- tCMH" | ||||
SEVERITY WARNING; | ||||
END IF; | ||||
IF Clk'DELAYED (tAH) = '1' THEN --' | ||||
ASSERT(Addr'LAST_EVENT > tAH) --' | ||||
REPORT "ADDR Hold time violation -- tAH" | ||||
SEVERITY WARNING; | ||||
ASSERT(Ba'LAST_EVENT > tAH) --' | ||||
REPORT "BA Hold time violation -- tAH" | ||||
SEVERITY WARNING; | ||||
END IF; | ||||
IF Clk'DELAYED (tDH) = '1' THEN --' | ||||
ASSERT(Dq'LAST_EVENT > tDH) --' | ||||
REPORT "Dq Hold time violation -- tDH" | ||||
SEVERITY WARNING; | ||||
END IF; | ||||
END PROCESS; | ||||
END behave; | ||||
-- pragma translate_on | ||||