#include "qsplineseries.h" /*! \class QSplineSeries \brief Series type used to store data needed to draw a spline. QSplineSeries stores the data points along with the segment control points needed by QPainterPath to draw spline Control points are automatically calculated when data changes. The algorithm computes the points so that the normal spline can be drawn. */ /*! \fn QSeriesType QSplineSeries::type() const Returns the type of the series */ /*! \fn QSeriesType QSplineSeries::controlPoint(int index) const Returns the control point specified by \a index */ QTCOMMERCIALCHART_BEGIN_NAMESPACE /*! Constructs empty series object which is a child of \a parent. When series object is added to QChartView or QChart instance then the ownerships is transfered. */ QSplineSeries::QSplineSeries(QObject *parent) : QLineSeries(parent) { connect(this,SIGNAL(pointAdded(int)), this, SLOT(updateControlPoints())); connect(this,SIGNAL(pointRemoved(int)), this, SLOT(updateControlPoints())); connect(this,SIGNAL(pointReplaced(int)), this, SLOT(updateControlPoints())); } /*! \internal Calculates control points which are needed by QPainterPath.cubicTo function to draw the cubic Bezier cureve between two points. */ void QSplineSeries::calculateControlPoints() { // Based on http://www.codeproject.com/Articles/31859/Draw-a-Smooth-Curve-through-a-Set-of-2D-Points-wit // CPOL License int n = count() - 1; if (n == 1) { // Special case: Bezier curve should be a straight line. // firstControlPoints = new Point[1]; // 3P1 = 2P0 + P3 m_controlPoints.append(QPointF((2 * x(0) + x(1)) / 3, (2 * y(0) + y(1)) / 3)); // P2 = 2P1 P0 m_controlPoints.append(QPointF(2 * m_controlPoints[0].x() - x(0), 2 * m_controlPoints[0].y() - y(0))); return; } // Calculate first Bezier control points // Right hand side vector // Set of equations for P0 to Pn points. // // | 2 1 0 0 ... 0 0 0 ... 0 0 0 | | P1_1 | | P0 + 2 * P1 | // | 1 4 1 0 ... 0 0 0 ... 0 0 0 | | P1_2 | | 4 * P1 + 2 * P2 | // | 0 1 4 1 ... 0 0 0 ... 0 0 0 | | P1_3 | | 4 * P2 + 2 * P3 | // | . . . . . . . . . . . . | | ... | | ... | // | 0 0 0 0 ... 1 4 1 ... 0 0 0 | * | P1_i | = | 4 * P(i-1) + 2 * Pi | // | . . . . . . . . . . . . | | ... | | ... | // | 0 0 0 0 0 0 0 0 ... 1 4 1 | | P1_(n-1)| | 4 * P(n-2) + 2 * P(n-1) | // | 0 0 0 0 0 0 0 0 ... 0 2 7 | | P1_n | | 8 * P(n-1) + Pn | // QList rhs; rhs.append(x(0) + 2 * x(1)); // Set right hand side X values for (int i = 1; i < n - 1; ++i) rhs.append(4 * x(i) + 2 * x(i + 1)); rhs.append((8 * x(n - 1) + x(n)) / 2.0); // Get first control points X-values QList xControl = getFirstControlPoints(rhs); rhs[0] = y(0) + 2 * y(1); // Set right hand side Y values for (int i = 1; i < n - 1; ++i) rhs[i] = 4 * y(i) + 2 * y(i + 1); rhs[n - 1] = (8 * y(n - 1) + y(n)) / 2.0; // Get first control points Y-values QList yControl = getFirstControlPoints(rhs); // Fill output arrays. for (int i = 0; i < n; ++i) { // First control point m_controlPoints.append(QPointF(xControl[i], yControl[i])); // Second control point if (i < n - 1) m_controlPoints.append(QPointF(2 * x(i + 1) - xControl[i + 1], 2 * y(i + 1) - yControl[i + 1])); else m_controlPoints.append(QPointF((x(n) + xControl[n - 1]) / 2, (y(n) + yControl[n - 1]) / 2)); } } /*! \internal */ QList QSplineSeries::getFirstControlPoints(QList rhs) { QList x; // Solution vector. QList tmp; // Temp workspace. qreal b = 2.0; x.append(rhs[0] / b); tmp.append(0); for (int i = 1; i < rhs.size(); i++) // Decomposition and forward substitution. { tmp.append(1 / b); b = (i < rhs.size() - 1 ? 4.0 : 3.5) - tmp[i]; x.append((rhs[i] - x[i - 1]) / b); } for (int i = 1; i < rhs.size(); i++) x[rhs.size() - i - 1] -= tmp[rhs.size() - i] * x[rhs.size() - i]; // Backsubstitution. return x; } /*! \internal Updates the control points, besed on currently avaiable knots. */ void QSplineSeries::updateControlPoints() { if(count() > 1) { m_controlPoints.clear(); calculateControlPoints(); } } bool QSplineSeries::setModel(QAbstractItemModel* model) { QXYSeries::setModel(model); // calculateControlPoints(); return true; } void QSplineSeries::setModelMapping(int modelX, int modelY, Qt::Orientation orientation) { QLineSeries::setModelMapping(modelX, modelY, orientation); // calculateControlPoints(); } void QSplineSeries::setModelMappingShift(int first, int count) { QLineSeries::setModelMappingShift(first, count); calculateControlPoints(); } #include "moc_qsplineseries.cpp" QTCOMMERCIALCHART_END_NAMESPACE