|
|
#include "qsplineseries.h"
|
|
|
|
|
|
/*!
|
|
|
\class QSplineSeries
|
|
|
\brief Series type used to store data needed to draw a spline.
|
|
|
|
|
|
QSplineSeries stores the data points along with the segment control points needed by QPainterPath to draw spline
|
|
|
Control points are automatically calculated when data changes. The algorithm computes the points so that the normal spline can be drawn.
|
|
|
*/
|
|
|
|
|
|
/*!
|
|
|
\fn QSeriesType QSplineSeries::type() const
|
|
|
Returns the type of the series
|
|
|
*/
|
|
|
|
|
|
/*!
|
|
|
\fn QSeriesType QSplineSeries::controlPoint(int index) const
|
|
|
Returns the control point specified by \a index
|
|
|
*/
|
|
|
|
|
|
QTCOMMERCIALCHART_BEGIN_NAMESPACE
|
|
|
|
|
|
/*!
|
|
|
Constructs empty series object which is a child of \a parent.
|
|
|
When series object is added to QChartView or QChart instance then the ownerships is transfered.
|
|
|
*/
|
|
|
|
|
|
QSplineSeries::QSplineSeries(QObject *parent) :
|
|
|
QLineSeries(parent)
|
|
|
{
|
|
|
connect(this,SIGNAL(pointAdded(int)), this, SLOT(updateControlPoints()));
|
|
|
connect(this,SIGNAL(pointRemoved(int)), this, SLOT(updateControlPoints()));
|
|
|
connect(this,SIGNAL(pointReplaced(int)), this, SLOT(updateControlPoints()));
|
|
|
}
|
|
|
|
|
|
/*!
|
|
|
\internal
|
|
|
Calculates control points which are needed by QPainterPath.cubicTo function to draw the cubic Bezier cureve between two points.
|
|
|
*/
|
|
|
void QSplineSeries::calculateControlPoints()
|
|
|
{
|
|
|
|
|
|
// Based on http://www.codeproject.com/Articles/31859/Draw-a-Smooth-Curve-through-a-Set-of-2D-Points-wit
|
|
|
// CPOL License
|
|
|
|
|
|
int n = count() - 1;
|
|
|
if (n == 1)
|
|
|
{ // Special case: Bezier curve should be a straight line.
|
|
|
// firstControlPoints = new Point[1];
|
|
|
// 3P1 = 2P0 + P3
|
|
|
m_controlPoints.append(QPointF((2 * x(0) + x(1)) / 3, (2 * y(0) + y(1)) / 3));
|
|
|
|
|
|
// P2 = 2P1 P0
|
|
|
m_controlPoints.append(QPointF(2 * m_controlPoints[0].x() - x(0), 2 * m_controlPoints[0].y() - y(0)));
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
// Calculate first Bezier control points
|
|
|
// Right hand side vector
|
|
|
// Set of equations for P0 to Pn points.
|
|
|
//
|
|
|
// | 2 1 0 0 ... 0 0 0 ... 0 0 0 | | P1_1 | | P0 + 2 * P1 |
|
|
|
// | 1 4 1 0 ... 0 0 0 ... 0 0 0 | | P1_2 | | 4 * P1 + 2 * P2 |
|
|
|
// | 0 1 4 1 ... 0 0 0 ... 0 0 0 | | P1_3 | | 4 * P2 + 2 * P3 |
|
|
|
// | . . . . . . . . . . . . | | ... | | ... |
|
|
|
// | 0 0 0 0 ... 1 4 1 ... 0 0 0 | * | P1_i | = | 4 * P(i-1) + 2 * Pi |
|
|
|
// | . . . . . . . . . . . . | | ... | | ... |
|
|
|
// | 0 0 0 0 0 0 0 0 ... 1 4 1 | | P1_(n-1)| | 4 * P(n-2) + 2 * P(n-1) |
|
|
|
// | 0 0 0 0 0 0 0 0 ... 0 2 7 | | P1_n | | 8 * P(n-1) + Pn |
|
|
|
//
|
|
|
QList<qreal> rhs;
|
|
|
rhs.append(x(0) + 2 * x(1));
|
|
|
|
|
|
// Set right hand side X values
|
|
|
for (int i = 1; i < n - 1; ++i)
|
|
|
rhs.append(4 * x(i) + 2 * x(i + 1));
|
|
|
|
|
|
rhs.append((8 * x(n - 1) + x(n)) / 2.0);
|
|
|
// Get first control points X-values
|
|
|
QList<qreal> xControl = getFirstControlPoints(rhs);
|
|
|
rhs[0] = y(0) + 2 * y(1);
|
|
|
|
|
|
// Set right hand side Y values
|
|
|
for (int i = 1; i < n - 1; ++i)
|
|
|
rhs[i] = 4 * y(i) + 2 * y(i + 1);
|
|
|
|
|
|
rhs[n - 1] = (8 * y(n - 1) + y(n)) / 2.0;
|
|
|
// Get first control points Y-values
|
|
|
QList<qreal> yControl = getFirstControlPoints(rhs);
|
|
|
|
|
|
// Fill output arrays.
|
|
|
for (int i = 0; i < n; ++i)
|
|
|
{
|
|
|
// First control point
|
|
|
m_controlPoints.append(QPointF(xControl[i], yControl[i]));
|
|
|
// Second control point
|
|
|
if (i < n - 1)
|
|
|
m_controlPoints.append(QPointF(2 * x(i + 1) - xControl[i + 1], 2 * y(i + 1) - yControl[i + 1]));
|
|
|
else
|
|
|
m_controlPoints.append(QPointF((x(n) + xControl[n - 1]) / 2, (y(n) + yControl[n - 1]) / 2));
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/*!
|
|
|
\internal
|
|
|
*/
|
|
|
QList<qreal> QSplineSeries::getFirstControlPoints(QList<qreal> rhs)
|
|
|
{
|
|
|
QList<qreal> x; // Solution vector.
|
|
|
QList<qreal> tmp; // Temp workspace.
|
|
|
|
|
|
qreal b = 2.0;
|
|
|
x.append(rhs[0] / b);
|
|
|
tmp.append(0);
|
|
|
for (int i = 1; i < rhs.size(); i++) // Decomposition and forward substitution.
|
|
|
{
|
|
|
tmp.append(1 / b);
|
|
|
b = (i < rhs.size() - 1 ? 4.0 : 3.5) - tmp[i];
|
|
|
x.append((rhs[i] - x[i - 1]) / b);
|
|
|
}
|
|
|
for (int i = 1; i < rhs.size(); i++)
|
|
|
x[rhs.size() - i - 1] -= tmp[rhs.size() - i] * x[rhs.size() - i]; // Backsubstitution.
|
|
|
|
|
|
return x;
|
|
|
}
|
|
|
|
|
|
/*!
|
|
|
\internal
|
|
|
Updates the control points, besed on currently avaiable knots.
|
|
|
*/
|
|
|
void QSplineSeries::updateControlPoints()
|
|
|
{
|
|
|
if(count() > 1)
|
|
|
{
|
|
|
m_controlPoints.clear();
|
|
|
calculateControlPoints();
|
|
|
}
|
|
|
}
|
|
|
|
|
|
bool QSplineSeries::setModel(QAbstractItemModel* model)
|
|
|
{
|
|
|
QXYSeries::setModel(model);
|
|
|
// calculateControlPoints();
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
void QSplineSeries::setModelMapping(int modelX, int modelY, Qt::Orientation orientation)
|
|
|
{
|
|
|
QLineSeries::setModelMapping(modelX, modelY, orientation);
|
|
|
calculateControlPoints();
|
|
|
}
|
|
|
|
|
|
#include "moc_qsplineseries.cpp"
|
|
|
|
|
|
QTCOMMERCIALCHART_END_NAMESPACE
|
|
|
|