|
|
#include "qsplineseries.h"
|
|
|
|
|
|
QTCOMMERCIALCHART_BEGIN_NAMESPACE
|
|
|
|
|
|
QSplineSeries::QSplineSeries(QObject *parent) :
|
|
|
QLineSeries(parent)
|
|
|
{
|
|
|
connect(this,SIGNAL(pointAdded(int)), this, SLOT(updateControlPoints()));
|
|
|
connect(this,SIGNAL(pointRemoved(int)), this, SLOT(updateControlPoints()));
|
|
|
connect(this,SIGNAL(pointReplaced(int)), this, SLOT(updateControlPoints()));
|
|
|
}
|
|
|
|
|
|
void QSplineSeries::calculateControlPoints()
|
|
|
{
|
|
|
|
|
|
// Based on http://www.codeproject.com/Articles/31859/Draw-a-Smooth-Curve-through-a-Set-of-2D-Points-wit
|
|
|
// CPOL Licence
|
|
|
|
|
|
int n = m_x.size() - 1;
|
|
|
if (n == 1)
|
|
|
{ // Special case: Bezier curve should be a straight line.
|
|
|
// firstControlPoints = new Point[1];
|
|
|
// 3P1 = 2P0 + P3
|
|
|
m_controlPoints.append(QPointF((2 * m_x[0] + m_x[1]) / 3, (2 * m_y[0] + m_y[1]) / 3));
|
|
|
|
|
|
// P2 = 2P1 P0
|
|
|
m_controlPoints.append(QPointF(2 * m_controlPoints[0].x() - m_x[0], 2 * m_controlPoints[0].y() - m_y[0]));
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
// Calculate first Bezier control points
|
|
|
// Right hand side vector
|
|
|
// Set of equations for P0 to Pn points.
|
|
|
//
|
|
|
// | 2 1 0 0 ... 0 0 0 ... 0 0 0 | | P1_1 | | P0 + 2 * P1 |
|
|
|
// | 1 4 1 0 ... 0 0 0 ... 0 0 0 | | P1_2 | | 4 * P1 + 2 * P2 |
|
|
|
// | 0 1 4 1 ... 0 0 0 ... 0 0 0 | | P1_3 | | 4 * P2 + 2 * P3 |
|
|
|
// | . . . . . . . . . . . . | | ... | | ... |
|
|
|
// | 0 0 0 0 ... 1 4 1 ... 0 0 0 | * | P1_i | = | 4 * P(i-1) + 2 * Pi |
|
|
|
// | . . . . . . . . . . . . | | ... | | ... |
|
|
|
// | 0 0 0 0 0 0 0 0 ... 1 4 1 | | P1_(n-1)| | 4 * P(n-2) + 2 * P(n-1) |
|
|
|
// | 0 0 0 0 0 0 0 0 ... 0 2 7 | | P1_n | | 8 * P(n-1) + Pn |
|
|
|
//
|
|
|
QList<qreal> rhs;
|
|
|
rhs.append(m_x[0] + 2 * m_x[1]);
|
|
|
|
|
|
// Set right hand side X values
|
|
|
for (int i = 1; i < n - 1; ++i)
|
|
|
rhs.append(4 * m_x[i] + 2 * m_x[i + 1]);
|
|
|
|
|
|
rhs.append((8 * m_x[n - 1] + m_x[n]) / 2.0);
|
|
|
// Get first control points X-values
|
|
|
QList<qreal> x = getFirstControlPoints(rhs);
|
|
|
rhs[0] = m_y[0] + 2 * m_y[1];
|
|
|
|
|
|
// Set right hand side Y values
|
|
|
for (int i = 1; i < n - 1; ++i)
|
|
|
rhs[i] = 4 * m_y[i] + 2 * m_y[i + 1];
|
|
|
|
|
|
rhs[n - 1] = (8 * m_y[n - 1] + m_y[n]) / 2.0;
|
|
|
// Get first control points Y-values
|
|
|
QList<qreal> y = getFirstControlPoints(rhs);
|
|
|
|
|
|
// Fill output arrays.
|
|
|
for (int i = 0; i < n; ++i)
|
|
|
{
|
|
|
// First control point
|
|
|
m_controlPoints.append(QPointF(x[i], y[i]));
|
|
|
// Second control point
|
|
|
if (i < n - 1)
|
|
|
m_controlPoints.append(QPointF(2 * m_x[i + 1] - x[i + 1], 2 * m_y[i + 1] - y[i + 1]));
|
|
|
else
|
|
|
m_controlPoints.append(QPointF((m_x[n] + x[n - 1]) / 2, (m_y[n] + y[n - 1]) / 2));
|
|
|
}
|
|
|
}
|
|
|
|
|
|
QList<qreal> QSplineSeries::getFirstControlPoints(QList<qreal> rhs)
|
|
|
{
|
|
|
QList<qreal> x; // Solution vector.
|
|
|
QList<qreal> tmp; // Temp workspace.
|
|
|
|
|
|
qreal b = 2.0;
|
|
|
x.append(rhs[0] / b);
|
|
|
tmp.append(0);
|
|
|
for (int i = 1; i < rhs.size(); i++) // Decomposition and forward substitution.
|
|
|
{
|
|
|
tmp.append(1 / b);
|
|
|
b = (i < rhs.size() - 1 ? 4.0 : 3.5) - tmp[i];
|
|
|
x.append((rhs[i] - x[i - 1]) / b);
|
|
|
}
|
|
|
for (int i = 1; i < rhs.size(); i++)
|
|
|
x[rhs.size() - i - 1] -= tmp[rhs.size() - i] * x[rhs.size() - i]; // Backsubstitution.
|
|
|
|
|
|
return x;
|
|
|
}
|
|
|
|
|
|
void QSplineSeries::updateControlPoints()
|
|
|
{
|
|
|
if(m_x.size() > 1)
|
|
|
{
|
|
|
m_controlPoints.clear();
|
|
|
calculateControlPoints();
|
|
|
}
|
|
|
}
|
|
|
|
|
|
#include "moc_qsplineseries.cpp"
|
|
|
|
|
|
QTCOMMERCIALCHART_END_NAMESPACE
|
|
|
|