##// END OF EJS Templates
Introduced opaque library from Kyle Markley and improved DateTimeRange...
Introduced opaque library from Kyle Markley and improved DateTimeRange class Opaque library allow safer manipulation of numeric values and gives tem a meaning. This should help to prevent stupid mistakes. A first usage in SciQLop is Seconds which are double but have a specific meaning, a DateTimeRange can only be multiplied by a double (-> zoom) but only seconds can be added to it (-> pan). Even a zoom could be an opaque type in the future: Range/Range->Zoom, Range*Zoom->Range, Zoom*Range->Error. DateTimeRange class has now many arithmetic operators implemented this will allow to implement zoom/pan operations in only one place and test them. Signed-off-by: Alexis Jeandet <alexis.jeandet@member.fsf.org>

File last commit:

r4:96a6baa9f92b
r4:96a6baa9f92b
Show More
convert.hpp
381 lines | 13.7 KiB | text/x-c++hdr | CppLexer
#ifndef OPAQUE_CONVERT_HPP
#define OPAQUE_CONVERT_HPP
//
// Copyright (c) 2015, 2016
// Kyle Markley. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// 3. Neither the name of the author nor the names of any contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
#include "type_traits.hpp"
#include "utility.hpp"
#include "data.hpp"
#include <type_traits>
namespace opaque {
/// \addtogroup internal
/// @{
//
// Conversion operations
//
// Convert from one type to a compatible type, avoiding creating a new object
// when possible. The function determines whether the output must be mutable
// or may be const.
//
// The cost model is:
// 0 = free case
// 1 = construction from rvalue reference
// 2 = construction from lvalue reference
//
template <typename T, typename U=T,
bool free = is_cast_free<T, typename std::decay<U>::type>::value>
struct converter;
template <typename T, typename U>
struct converter<T, const U&, true> {
static constexpr T convert_mutable(const U& u) noexcept(
noexcept(static_cast< T >(u))) {
return static_cast< T >(u); }
static constexpr const T& convert( const U& u) noexcept(
noexcept(static_cast<const T& >(u))) {
return static_cast<const T& >(u); }
static constexpr unsigned mutable_cost() noexcept { return 2; }
static constexpr unsigned cost() noexcept { return 0; }
};
template <typename T, typename U>
struct converter<T, U&, true> {
static constexpr T& convert_mutable( U& u) noexcept(
noexcept(static_cast< T& >(u))) {
return static_cast< T& >(u); }
static constexpr T& convert( U& u) noexcept(
noexcept(static_cast< T& >(u))) {
return static_cast< T& >(u); }
static constexpr unsigned mutable_cost() noexcept { return 0; }
static constexpr unsigned cost() noexcept { return 0; }
};
template <typename T, typename U>
struct converter<T, U&&, true> {
static constexpr T&& convert_mutable( U&& u) noexcept(
noexcept(static_cast< T&&>(opaque::move(u)))) {
return static_cast< T&&>(opaque::move(u)); }
static constexpr T&& convert( U&& u) noexcept(
noexcept(static_cast< T&&>(opaque::move(u)))) {
return static_cast< T&&>(opaque::move(u)); }
static constexpr unsigned mutable_cost() noexcept { return 0; }
static constexpr unsigned cost() noexcept { return 0; }
};
template <typename T, typename U>
struct converter<T, U, true> { // same as U&&
static constexpr T&& convert_mutable( U&& u) noexcept(
noexcept(static_cast< T&&>(opaque::move(u)))) {
return static_cast< T&&>(opaque::move(u)); }
static constexpr T&& convert( U&& u) noexcept(
noexcept(static_cast< T&&>(opaque::move(u)))) {
return static_cast< T&&>(opaque::move(u)); }
static constexpr unsigned mutable_cost() noexcept { return 0; }
static constexpr unsigned cost() noexcept { return 0; }
};
template <typename T, typename U>
struct converter<T, const U&, false> {
template <typename R=T>
static constexpr
typename std::enable_if<not std::is_base_of<data<T,U>, U>::value,
R>::type convert_mutable(const U& u) noexcept(
noexcept(static_cast<R>(u))) {
return static_cast<R>(u); }
template <typename R=T>
static constexpr
typename std::enable_if< std::is_base_of<data<T,U>, U>::value,
R>::type convert_mutable(const U& u) noexcept(
noexcept(static_cast<R>(u.value))) {
return static_cast<R>(u.value); }
template <typename R=T>
static constexpr
typename std::enable_if<not std::is_base_of<data<T,U>, U>::value,
R>::type convert( const U& u) noexcept(
noexcept(static_cast<R>(u))) {
return static_cast<R>(u); }
template <typename R=const T&>
static constexpr
typename std::enable_if< std::is_base_of<data<T,U>, U>::value,
R>::type convert( const U& u) noexcept(
noexcept(static_cast<R>(u.value))) {
return static_cast<R>(u.value); }
template <typename R=unsigned>
static constexpr
typename std::enable_if<not std::is_base_of<data<T,U>, U>::value,
R>::type mutable_cost() noexcept { return 2; }
template <typename R=unsigned>
static constexpr
typename std::enable_if< std::is_base_of<data<T,U>, U>::value,
R>::type mutable_cost() noexcept { return 2; }
template <typename R=unsigned>
static constexpr
typename std::enable_if<not std::is_base_of<data<T,U>, U>::value,
R>::type cost() noexcept { return 2; }
template <typename R=unsigned>
static constexpr
typename std::enable_if< std::is_base_of<data<T,U>, U>::value,
R>::type cost() noexcept { return 0; }
};
template <typename T, typename U>
struct converter<T, U&, false> {
template <typename R=T>
static constexpr
typename std::enable_if<not std::is_base_of<data<T,U>, U>::value,
R>::type convert_mutable( U& u) noexcept(
noexcept(static_cast<R>(u))) {
return static_cast<R>(u); }
template <typename R=T&>
static constexpr
typename std::enable_if< std::is_base_of<data<T,U>, U>::value,
R>::type convert_mutable( U& u) noexcept(
noexcept(static_cast<R>(u.value))) {
return static_cast<R>(u.value); }
template <typename R=T>
static constexpr
typename std::enable_if<not std::is_base_of<data<T,U>, U>::value,
R>::type convert( U& u) noexcept(
noexcept(static_cast<R>(u))) {
return static_cast<R>(u); }
template <typename R=T&>
static constexpr
typename std::enable_if< std::is_base_of<data<T,U>, U>::value,
R>::type convert( U& u) noexcept(
noexcept(static_cast<R>(u.value))) {
return static_cast<R>(u.value); }
template <typename R=unsigned>
static constexpr
typename std::enable_if<not std::is_base_of<data<T,U>, U>::value,
R>::type mutable_cost() noexcept { return 2; }
template <typename R=unsigned>
static constexpr
typename std::enable_if< std::is_base_of<data<T,U>, U>::value,
R>::type mutable_cost() noexcept { return 0; }
template <typename R=unsigned>
static constexpr
typename std::enable_if<not std::is_base_of<data<T,U>, U>::value,
R>::type cost() noexcept { return 2; }
template <typename R=unsigned>
static constexpr
typename std::enable_if< std::is_base_of<data<T,U>, U>::value,
R>::type cost() noexcept { return 0; }
};
template <typename T, typename U>
struct converter<T, U&&, false> {
template <typename R=T>
static constexpr
typename std::enable_if<not std::is_base_of<data<T,U>, U>::value,
R>::type convert_mutable( U&& u) noexcept(
noexcept(static_cast<R>(opaque::move(u)))) {
return static_cast<R>(opaque::move(u)); }
template <typename R=T&&>
static constexpr
typename std::enable_if< std::is_base_of<data<T,U>, U>::value,
R>::type convert_mutable( U&& u) noexcept(
noexcept(static_cast<R>(opaque::move(u.value)))) {
return static_cast<R>(opaque::move(u.value)); }
template <typename R=T>
static constexpr
typename std::enable_if<not std::is_base_of<data<T,U>, U>::value,
R>::type convert( U&& u) noexcept(
noexcept(static_cast<R>(opaque::move(u)))) {
return static_cast<R>(opaque::move(u)); }
template <typename R=T&&>
static constexpr
typename std::enable_if< std::is_base_of<data<T,U>, U>::value,
R>::type convert( U&& u) noexcept(
noexcept(static_cast<R>(opaque::move(u.value)))) {
return static_cast<R>(opaque::move(u.value)); }
template <typename R=unsigned>
static constexpr
typename std::enable_if<not std::is_base_of<data<T,U>, U>::value,
R>::type mutable_cost() noexcept { return 1; }
template <typename R=unsigned>
static constexpr
typename std::enable_if< std::is_base_of<data<T,U>, U>::value,
R>::type mutable_cost() noexcept { return 0; }
template <typename R=unsigned>
static constexpr
typename std::enable_if<not std::is_base_of<data<T,U>, U>::value,
R>::type cost() noexcept { return 1; }
template <typename R=unsigned>
static constexpr
typename std::enable_if< std::is_base_of<data<T,U>, U>::value,
R>::type cost() noexcept { return 0; }
};
template <typename T, typename U>
struct converter<T, U, false> { // same as U&&
template <typename R=T>
static constexpr
typename std::enable_if<not std::is_base_of<data<T,U>, U>::value,
R>::type convert_mutable( U&& u) noexcept(
noexcept(static_cast<R>(opaque::move(u)))) {
return static_cast<R>(opaque::move(u)); }
template <typename R=T&&>
static constexpr
typename std::enable_if< std::is_base_of<data<T,U>, U>::value,
R>::type convert_mutable( U&& u) noexcept(
noexcept(static_cast<R>(opaque::move(u.value)))) {
return static_cast<R>(opaque::move(u.value)); }
template <typename R=T>
static constexpr
typename std::enable_if<not std::is_base_of<data<T,U>, U>::value,
R>::type convert( U&& u) noexcept(
noexcept(static_cast<R>(opaque::move(u)))) {
return static_cast<R>(opaque::move(u)); }
template <typename R=T&&>
static constexpr
typename std::enable_if< std::is_base_of<data<T,U>, U>::value,
R>::type convert( U&& u) noexcept(
noexcept(static_cast<R>(opaque::move(u.value)))) {
return static_cast<R>(opaque::move(u.value)); }
template <typename R=unsigned>
static constexpr
typename std::enable_if<not std::is_base_of<data<T,U>, U>::value,
R>::type mutable_cost() noexcept { return 1; }
template <typename R=unsigned>
static constexpr
typename std::enable_if< std::is_base_of<data<T,U>, U>::value,
R>::type mutable_cost() noexcept { return 0; }
template <typename R=unsigned>
static constexpr
typename std::enable_if<not std::is_base_of<data<T,U>, U>::value,
R>::type cost() noexcept { return 1; }
template <typename R=unsigned>
static constexpr
typename std::enable_if< std::is_base_of<data<T,U>, U>::value,
R>::type cost() noexcept { return 0; }
};
///
/// Convert the argument and ensure the result is mutable
///
/// Where possible, the conversion is performed via a no-cost cast (perhaps an
/// up or down cast), but for unrelated or const types, a new object is
/// created.
///
template <typename T, typename U=T>
constexpr auto convert_mutable(U&& u)
noexcept(noexcept(
converter<typename std::decay<T>::type, U>::convert_mutable(
opaque::forward<U>(u)))) -> decltype(
converter<typename std::decay<T>::type, U>::convert_mutable(
opaque::forward<U>(u))) { return
converter<typename std::decay<T>::type, U>::convert_mutable(
opaque::forward<U>(u));
}
///
/// Convert the argument
///
/// Where possible, the conversion is performed via a no-cost cast (perhaps an
/// up or down cast), but for unrelated types, a new object is created.
///
template <typename T, typename U=T>
constexpr auto convert(U&& u)
noexcept(noexcept(
converter<typename std::decay<T>::type, U>::convert(
opaque::forward<U>(u)))) -> decltype(
converter<typename std::decay<T>::type, U>::convert(
opaque::forward<U>(u))) { return
converter<typename std::decay<T>::type, U>::convert(
opaque::forward<U>(u));
}
template <typename T, typename U>
constexpr unsigned convert_mutable_cost() noexcept {
return converter<typename std::decay<T>::type, U&&>::mutable_cost();
}
template <typename T, typename U>
constexpr unsigned convert_mutable_cost(U&&) noexcept {
return converter<typename std::decay<T>::type, U&&>::mutable_cost();
}
template <typename T, typename U>
constexpr unsigned convert_cost() noexcept {
return converter<typename std::decay<T>::type, U&&>::cost();
}
template <typename T, typename U>
constexpr unsigned convert_cost(U&&) noexcept {
return converter<typename std::decay<T>::type, U&&>::cost();
}
/// @}
}
#endif