/*------------------------------------------------------------------------------ -- Solar Orbiter's Low Frequency Receiver Flight Software (LFR FSW), -- This file is a part of the LFR FSW -- Copyright (C) 2012-2018, Plasma Physics Laboratory - CNRS -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -------------------------------------------------------------------------------*/ /*-- Author : Paul Leroy -- Contact : Alexis Jeandet -- Mail : alexis.jeandet@lpp.polytechnique.fr ----------------------------------------------------------------------------*/ /** General usage functions and RTEMS tasks. * * @file * @author P. LEROY * */ #include "fsw_misc.h" int16_t hk_lfr_sc_v_f3_as_int16 = 0; int16_t hk_lfr_sc_e1_f3_as_int16 = 0; int16_t hk_lfr_sc_e2_f3_as_int16 = 0; void timer_configure(unsigned char timer, unsigned int clock_divider, unsigned char interrupt_level, rtems_isr (*timer_isr)() ) { /** This function configures a GPTIMER timer instantiated in the VHDL design. * * @param gptimer_regs points to the APB registers of the GPTIMER IP core. * @param timer is the number of the timer in the IP core (several timers can be instantiated). * @param clock_divider is the divider of the 1 MHz clock that will be configured. * @param interrupt_level is the interrupt level that the timer drives. * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer. * * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76 * */ rtems_status_code status; rtems_isr_entry old_isr_handler; old_isr_handler = NULL; gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels if (status!=RTEMS_SUCCESSFUL) { PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n") } timer_set_clock_divider( timer, clock_divider); } void timer_start(unsigned char timer) { /** This function starts a GPTIMER timer. * * @param gptimer_regs points to the APB registers of the GPTIMER IP core. * @param timer is the number of the timer in the IP core (several timers can be instantiated). * */ gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ; gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD; gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN; gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS; gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE; } void timer_stop(unsigned char timer) { /** This function stops a GPTIMER timer. * * @param gptimer_regs points to the APB registers of the GPTIMER IP core. * @param timer is the number of the timer in the IP core (several timers can be instantiated). * */ gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK; gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK; gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ; } void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider) { /** This function sets the clock divider of a GPTIMER timer. * * @param gptimer_regs points to the APB registers of the GPTIMER IP core. * @param timer is the number of the timer in the IP core (several timers can be instantiated). * @param clock_divider is the divider of the 1 MHz clock that will be configured. * */ gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz } // WATCHDOG, this ISR should never be triggered. rtems_isr watchdog_isr( rtems_vector_number vector ) { rtems_status_code status_code; status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 ); PRINTF("watchdog_isr *** this is the end, exit(0)\n"); exit(0); } void watchdog_configure(void) { /** This function configure the watchdog. * * @param gptimer_regs points to the APB registers of the GPTIMER IP core. * @param timer is the number of the timer in the IP core (several timers can be instantiated). * * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB. * */ LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr ); LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt } void watchdog_stop(void) { LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line timer_stop( TIMER_WATCHDOG ); LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt } void watchdog_reload(void) { /** This function reloads the watchdog timer counter with the timer reload value. * * @param void * * @return void * */ gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD; } void watchdog_start(void) { /** This function starts the watchdog timer. * * @param gptimer_regs points to the APB registers of the GPTIMER IP core. * @param timer is the number of the timer in the IP core (several timers can be instantiated). * */ LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ; gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD; gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN; gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE; LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG ); } int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register { struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART; apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE; return 0; } void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value) { /** This function sets the scaler reload register of the apbuart module * * @param regs is the address of the apbuart registers in memory * @param value is the value that will be stored in the scaler register * * The value shall be set by the software to get data on the serial interface. * */ struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs; apbuart_regs->scaler = value; BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value) } /** * @brief load_task starts and keeps the watchdog alive. * @param argument * @return */ rtems_task load_task(rtems_task_argument argument) { BOOT_PRINTF("in LOAD *** \n") rtems_status_code status; unsigned int i; unsigned int j; rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic rtems_id watchdog_period_id; // id of the watchdog rate monotonic period watchdog_period_id = RTEMS_ID_NONE; name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' ); status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id ); if( status != RTEMS_SUCCESSFUL ) { PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status ) } i = 0; j = 0; watchdog_configure(); watchdog_start(); set_sy_lfr_watchdog_enabled( true ); while(1){ status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD ); watchdog_reload(); i = i + 1; if ( i == WATCHDOG_LOOP_PRINTF ) { i = 0; j = j + 1; PRINTF1("%d\n", j) } #ifdef DEBUG_WATCHDOG if (j == WATCHDOG_LOOP_DEBUG ) { status = rtems_task_delete(RTEMS_SELF); } #endif } } /** * @brief hous_task produces and sends HK each seconds * @param argument * @return */ rtems_task hous_task(rtems_task_argument argument) { rtems_status_code status; rtems_status_code spare_status; rtems_id queue_id; rtems_rate_monotonic_period_status period_status; bool isSynchronized; queue_id = RTEMS_ID_NONE; memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status)); isSynchronized = false; status = get_message_queue_id_send( &queue_id ); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status) } BOOT_PRINTF("in HOUS ***\n"); if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) { status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id ); if( status != RTEMS_SUCCESSFUL ) { PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status ); } } status = rtems_rate_monotonic_cancel(HK_id); if( status != RTEMS_SUCCESSFUL ) { PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status ); } else { DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n"); } // startup phase status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks ); status = rtems_rate_monotonic_get_status( HK_id, &period_status ); DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state) while( (period_status.state != RATE_MONOTONIC_EXPIRED) && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway { if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization { isSynchronized = true; } else { status = rtems_rate_monotonic_get_status( HK_id, &period_status ); status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms } } status = rtems_rate_monotonic_cancel(HK_id); DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state) set_hk_lfr_reset_cause( POWER_ON ); while(1){ // launch the rate monotonic task status = rtems_rate_monotonic_period( HK_id, HK_PERIOD ); if ( status != RTEMS_SUCCESSFUL ) { PRINTF1( "in HOUS *** ERR period: %d\n", status); spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 ); } else { housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE); housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK ); increment_seq_counter( &sequenceCounterHK ); housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES); housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES); housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE); housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time); housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE); housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time); spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] ); spacewire_read_statistics(); update_hk_with_grspw_stats(); set_hk_lfr_time_not_synchro(); housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max; housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max; housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max; housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max; housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max; housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare; housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters; get_temperatures( housekeeping_packet.hk_lfr_temp_scm ); get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 ); get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load ); hk_lfr_le_me_he_update(); // SEND PACKET status = rtems_message_queue_send( queue_id, &housekeeping_packet, PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in HOUS *** ERR send: %d\n", status) } } } PRINTF("in HOUS *** deleting task\n") status = rtems_task_delete( RTEMS_SELF ); // should not return return; } /** * @brief filter is a Direct-Form-II filter implementation, mostly used to filter electric field for HK * @param x, new sample * @param ctx, filter context, used to store previous input and output samples * @return a new filtered sample */ int filter( int x, filter_ctx* ctx ) { static const int b[NB_COEFFS][NB_COEFFS]={ {B00, B01, B02}, {B10, B11, B12}, {B20, B21, B22} }; static const int a[NB_COEFFS][NB_COEFFS]={ {A00, A01, A02}, {A10, A11, A12}, {A20, A21, A22} }; static const int b_gain[NB_COEFFS]={GAIN_B0, GAIN_B1, GAIN_B2}; static const int a_gain[NB_COEFFS]={GAIN_A0, GAIN_A1, GAIN_A2}; int_fast32_t W; int i; W = INIT_INT; i = INIT_INT; //Direct-Form-II for ( i = 0; i < NB_COEFFS; i++ ) { x = x << a_gain[i]; W = (x - ( a[i][COEFF1] * ctx->W[i][COEFF0] ) - ( a[i][COEFF2] * ctx->W[i][COEFF1] ) ) >> a_gain[i]; x = ( b[i][COEFF0] * W ) + ( b[i][COEFF1] * ctx->W[i][COEFF0] ) + ( b[i][COEFF2] * ctx->W[i][COEFF1] ); x = x >> b_gain[i]; ctx->W[i][1] = ctx->W[i][0]; ctx->W[i][0] = W; } return x; } /** * @brief avgv_task pruduces HK rate elctrical field from F3 data * @param argument * @return */ rtems_task avgv_task(rtems_task_argument argument) { #define MOVING_AVERAGE 16 rtems_status_code status; static int32_t v[MOVING_AVERAGE] = {0}; static int32_t e1[MOVING_AVERAGE] = {0}; static int32_t e2[MOVING_AVERAGE] = {0}; static int old_v = 0; static int old_e1 = 0; static int old_e2 = 0; int32_t current_v; int32_t current_e1; int32_t current_e2; int32_t average_v; int32_t average_e1; int32_t average_e2; int32_t newValue_v; int32_t newValue_e1; int32_t newValue_e2; unsigned char k; unsigned char indexOfOldValue; static filter_ctx ctx_v = { { {0,0,0}, {0,0,0}, {0,0,0} } }; static filter_ctx ctx_e1 = { { {0,0,0}, {0,0,0}, {0,0,0} } }; static filter_ctx ctx_e2 = { { {0,0,0}, {0,0,0}, {0,0,0} } }; BOOT_PRINTF("in AVGV ***\n"); if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &AVGV_id) != RTEMS_SUCCESSFUL) { status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id ); if( status != RTEMS_SUCCESSFUL ) { PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status ); } } status = rtems_rate_monotonic_cancel(AVGV_id); if( status != RTEMS_SUCCESSFUL ) { PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status ); } else { DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n"); } // initialize values indexOfOldValue = MOVING_AVERAGE - 1; current_v = 0; current_e1 = 0; current_e2 = 0; average_v = 0; average_e1 = 0; average_e2 = 0; newValue_v = 0; newValue_e1 = 0; newValue_e2 = 0; k = INIT_CHAR; while(1) { // launch the rate monotonic task status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD ); if ( status != RTEMS_SUCCESSFUL ) { PRINTF1( "in AVGV *** ERR period: %d\n", status); } else { current_v = waveform_picker_regs->v; current_e1 = waveform_picker_regs->e1; current_e2 = waveform_picker_regs->e2; if ( (current_v != old_v) || (current_e1 != old_e1) || (current_e2 != old_e2)) { average_v = filter( current_v, &ctx_v ); average_e1 = filter( current_e1, &ctx_e1 ); average_e2 = filter( current_e2, &ctx_e2 ); //update int16 values hk_lfr_sc_v_f3_as_int16 = (int16_t) average_v; hk_lfr_sc_e1_f3_as_int16 = (int16_t) average_e1; hk_lfr_sc_e2_f3_as_int16 = (int16_t) average_e2; } old_v = current_v; old_e1 = current_e1; old_e2 = current_e2; } } PRINTF("in AVGV *** deleting task\n"); status = rtems_task_delete( RTEMS_SELF ); // should not return return; } rtems_task dumb_task( rtems_task_argument unused ) { /** This RTEMS taks is used to print messages without affecting the general behaviour of the software. * * @param unused is the starting argument of the RTEMS task * * The DUMB taks waits for RTEMS events and print messages depending on the incoming events. * */ unsigned int i; unsigned int intEventOut; unsigned int coarse_time = 0; unsigned int fine_time = 0; rtems_event_set event_out; event_out = EVENT_SETS_NONE_PENDING; BOOT_PRINTF("in DUMB *** \n") while(1){ rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13 | RTEMS_EVENT_14, RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT intEventOut = (unsigned int) event_out; for ( i=0; i> i) & 1) != 0) { coarse_time = time_management_regs->coarse_time; fine_time = time_management_regs->fine_time; if (i==EVENT_12) { PRINTF1("%s\n", DUMB_MESSAGE_12) } if (i==EVENT_13) { PRINTF1("%s\n", DUMB_MESSAGE_13) } if (i==EVENT_14) { PRINTF1("%s\n", DUMB_MESSAGE_1) } } } } } rtems_task scrubbing_task( rtems_task_argument unused ) { /** This RTEMS taks is used to avoid entering IDLE task and also scrub memory to increase scubbing frequency. * * @param unused is the starting argument of the RTEMS task * * The scrubbing reads continuously memory when no other tasks are ready. * */ BOOT_PRINTF("in SCRUBBING *** \n"); volatile int i=0; volatile float valuef = 1.; volatile uint32_t* RAM=(uint32_t*)0x40000000; volatile uint32_t value; #ifdef ENABLE_SCRUBBING_COUNTER housekeeping_packet.lfr_fpga_version[BYTE_0] = 0; #endif while(1){ i=(i+1)%(1024*1024); valuef += 10.f*(float)RAM[i]; #ifdef ENABLE_SCRUBBING_COUNTER if(i==0) { housekeeping_packet.lfr_fpga_version[BYTE_0] += 1; } #endif } } rtems_task calibration_sweep_task( rtems_task_argument unused ) { /** This RTEMS taks is used to change calibration signal smapling frequency between snapshots. * * @param unused is the starting argument of the RTEMS task * * If calibration is enabled, this task will divide by two the calibration signal smapling frequency between snapshots. * When minimum sampling frequency is reach it will jump to maximum sampling frequency to loop indefinitely. * */ rtems_event_set event_out; BOOT_PRINTF("in calibration sweep *** \n"); rtems_interval ticks_per_seconds = rtems_clock_get_ticks_per_second(); while(1){ // Waiting for next F0 snapshot rtems_event_receive(RTEMS_EVENT_CAL_SWEEP_WAKE, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); if(time_management_regs->calDACCtrl & BIT_CAL_ENABLE) { unsigned int delta_snapshot; delta_snapshot = (parameter_dump_packet.sy_lfr_n_swf_p[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_p[1]; // We are woken almost in the center of a snapshot -> let's wait for sy_lfr_n_swf_p / 2 rtems_task_wake_after( ticks_per_seconds * delta_snapshot / 2); if(time_management_regs->calDivisor >= CAL_F_DIVISOR_MAX){ time_management_regs->calDivisor = CAL_F_DIVISOR_MIN; } else{ time_management_regs->calDivisor *= 2; } } } } //***************************** // init housekeeping parameters void init_housekeeping_parameters( void ) { /** This function initialize the housekeeping_packet global variable with default values. * */ unsigned int i = 0; unsigned char *parameters; unsigned char sizeOfHK; sizeOfHK = sizeof( Packet_TM_LFR_HK_t ); parameters = (unsigned char*) &housekeeping_packet; for(i = 0; i< sizeOfHK; i++) { parameters[i] = INIT_CHAR; } housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID; housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID; housekeeping_packet.reserved = DEFAULT_RESERVED; housekeeping_packet.userApplication = CCSDS_USER_APP; housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE); housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK); housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE; housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT; housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE); housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK ); housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2; housekeeping_packet.serviceType = TM_TYPE_HK; housekeeping_packet.serviceSubType = TM_SUBTYPE_HK; housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND; housekeeping_packet.sid = SID_HK; // init status word housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0; housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1; // init software version housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1; housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2; housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3; housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4; // init fpga version parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION); housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND; housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV; housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0; housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1; housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2; } void increment_seq_counter( unsigned short *packetSequenceControl ) { /** This function increment the sequence counter passes in argument. * * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0. * */ unsigned short segmentation_grouping_flag; unsigned short sequence_cnt; segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111] if ( sequence_cnt < SEQ_CNT_MAX) { sequence_cnt = sequence_cnt + 1; } else { sequence_cnt = 0; } *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ; } void getTime( unsigned char *time) { /** This function write the current local time in the time buffer passed in argument. * */ time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES); time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES); time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE); time[3] = (unsigned char) (time_management_regs->coarse_time); time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE); time[5] = (unsigned char) (time_management_regs->fine_time); } unsigned long long int getTimeAsUnsignedLongLongInt( ) { /** This function write the current local time in the time buffer passed in argument. * */ unsigned long long int time; time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES ) + time_management_regs->fine_time; return time; } void get_temperatures( unsigned char *temperatures ) { unsigned char* temp_scm_ptr; unsigned char* temp_pcb_ptr; unsigned char* temp_fpga_ptr; // SEL1 SEL0 // 0 0 => PCB // 0 1 => FPGA // 1 0 => SCM temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm; temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb; temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga; temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ]; temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ]; temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ]; temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ]; temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ]; temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ]; } void get_v_e1_e2_f3( unsigned char *spacecraft_potential ) { unsigned char* v_ptr; unsigned char* e1_ptr; unsigned char* e2_ptr; v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16; e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16; e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16; spacecraft_potential[BYTE_0] = v_ptr[0]; spacecraft_potential[BYTE_1] = v_ptr[1]; spacecraft_potential[BYTE_2] = e1_ptr[0]; spacecraft_potential[BYTE_3] = e1_ptr[1]; spacecraft_potential[BYTE_4] = e2_ptr[0]; spacecraft_potential[BYTE_5] = e2_ptr[1]; } /** * @brief get_cpu_load, computes CPU load, CPU load average and CPU load max * @param resource_statistics stores: * - CPU load at index 0 * - CPU load max at index 1 * - CPU load average at index 2 * * The CPU load average is computed on the last 60 values with a simple moving average. */ void get_cpu_load( unsigned char *resource_statistics ) { #define LOAD_AVG_SIZE 60 static unsigned char cpu_load_hist[LOAD_AVG_SIZE]={0}; static char old_avg_pos=0; static unsigned int cpu_load_avg; unsigned char cpu_load; cpu_load = lfr_rtems_cpu_usage_report(); // HK_LFR_CPU_LOAD resource_statistics[BYTE_0] = cpu_load; // HK_LFR_CPU_LOAD_MAX if (cpu_load > resource_statistics[BYTE_1]) { resource_statistics[BYTE_1] = cpu_load; } cpu_load_avg = cpu_load_avg - (unsigned int)cpu_load_hist[(int)old_avg_pos] + (unsigned int)cpu_load; cpu_load_hist[(int)old_avg_pos] = cpu_load; old_avg_pos += 1; old_avg_pos %= LOAD_AVG_SIZE; // CPU_LOAD_AVE resource_statistics[BYTE_2] = (unsigned char)(cpu_load_avg / LOAD_AVG_SIZE); // this will change the way LFR compute usage #ifndef PRINT_TASK_STATISTICS rtems_cpu_usage_reset(); #endif } void set_hk_lfr_sc_potential_flag( bool state ) { if (state == true) { housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000] } else { housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111] } } void set_sy_lfr_pas_filter_enabled( bool state ) { if (state == true) { housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000] } else { housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111] } } void set_sy_lfr_watchdog_enabled( bool state ) { if (state == true) { housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000] } else { housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111] } } void set_hk_lfr_calib_enable( bool state ) { if (state == true) { housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000] } else { housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111] } } void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause ) { housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000] housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111] } void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter ) { int delta; delta = 0; if (newValue >= oldValue) { delta = newValue - oldValue; } else { delta = (CONST_256 - oldValue) + newValue; } *counter = *counter + delta; } // Low severity error counters update void hk_lfr_le_update( void ) { static hk_lfr_le_t old_hk_lfr_le = {0}; hk_lfr_le_t new_hk_lfr_le; unsigned int counter; counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1]; // DPU new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity; new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect; new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape; new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit; new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync; // TIMECODE new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous; new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing; new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid; // TIME new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it; new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro; new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr; //AHB new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable; // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver // update the le counter // DPU increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter ); increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter ); increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter ); increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter ); increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter ); // TIMECODE increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter ); increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter ); increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter ); // TIME increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter ); increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter ); increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter ); // AHB increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter ); // DPU old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity; old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect; old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape; old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit; old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync; // TIMECODE old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous; old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing; old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid; // TIME old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it; old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro; old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr; //AHB old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable; // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers // LE housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE); housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK); } // Medium severity error counters update void hk_lfr_me_update( void ) { static hk_lfr_me_t old_hk_lfr_me = {0}; hk_lfr_me_t new_hk_lfr_me; unsigned int counter; counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1]; // get the current values new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop; new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr; new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep; new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big; // update the me counter increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter ); increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter ); increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter ); increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter ); // store the counters for the next time old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop; old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr; old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep; old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big; // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers // ME housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE); housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK); } // High severity error counters update void hk_lfr_le_me_he_update() { unsigned int hk_lfr_he_cnt; hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1]; //update the low severity error counter hk_lfr_le_update( ); //update the medium severity error counter hk_lfr_me_update(); //update the high severity error counter hk_lfr_he_cnt = 0; // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers // HE housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE); housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK); } void set_hk_lfr_time_not_synchro() { static unsigned char synchroLost = 1; int synchronizationBit; // get the synchronization bit synchronizationBit = (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000 switch (synchronizationBit) { case 0: if (synchroLost == 1) { synchroLost = 0; } break; case 1: if (synchroLost == 0 ) { synchroLost = 1; increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro); update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO ); } break; default: PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit); break; } } void set_hk_lfr_ahb_correctable() // CRITICITY L { /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the * detected errors in the cache, in the integer unit and in the floating point unit. * * @param void * * @return void * * All errors are summed to set the value of the hk_lfr_ahb_correctable counter. * */ unsigned int ahb_correctable; unsigned int instructionErrorCounter; unsigned int dataErrorCounter; unsigned int fprfErrorCounter; unsigned int iurfErrorCounter; instructionErrorCounter = 0; dataErrorCounter = 0; fprfErrorCounter = 0; iurfErrorCounter = 0; CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter); ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter); ahb_correctable = instructionErrorCounter + dataErrorCounter + fprfErrorCounter + iurfErrorCounter + housekeeping_packet.hk_lfr_ahb_correctable; housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111] }