/** Functions and tasks related to TeleCommand handling. * * @file * @author P. LEROY * * A group of functions to handle TeleCommands:\n * action launching\n * TC parsing\n * ... * */ #include "tc_handler.h" #include "math.h" //*********** // RTEMS TASK rtems_task actn_task( rtems_task_argument unused ) { /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands. * * @param unused is the starting argument of the RTEMS task * * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending * on the incoming TeleCommand. * */ int result; rtems_status_code status; // RTEMS status code ccsdsTelecommandPacket_t __attribute__((aligned(4))) TC; // TC sent to the ACTN task size_t size; // size of the incoming TC packet unsigned char subtype; // subtype of the current TC packet unsigned char time[BYTES_PER_TIME]; rtems_id queue_rcv_id; rtems_id queue_snd_id; memset(&TC, 0, sizeof(ccsdsTelecommandPacket_t)); size = 0; queue_rcv_id = RTEMS_ID_NONE; queue_snd_id = RTEMS_ID_NONE; status = get_message_queue_id_recv( &queue_rcv_id ); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status) } status = get_message_queue_id_send( &queue_snd_id ); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status) } result = LFR_SUCCESSFUL; subtype = 0; // subtype of the current TC packet BOOT_PRINTF("in ACTN *** \n"); while(1) { status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size, RTEMS_WAIT, RTEMS_NO_TIMEOUT); getTime( time ); // set time to the current time if (status!=RTEMS_SUCCESSFUL) { PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status) } else { subtype = TC.serviceSubType; switch(subtype) { case TC_SUBTYPE_RESET: result = action_reset( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id ); break; case TC_SUBTYPE_LOAD_COMM: result = action_load_common_par( &TC ); close_action( &TC, result, queue_snd_id ); break; case TC_SUBTYPE_LOAD_NORM: result = action_load_normal_par( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id ); break; case TC_SUBTYPE_LOAD_BURST: result = action_load_burst_par( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id ); break; case TC_SUBTYPE_LOAD_SBM1: result = action_load_sbm1_par( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id ); break; case TC_SUBTYPE_LOAD_SBM2: result = action_load_sbm2_par( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id ); break; case TC_SUBTYPE_DUMP: result = action_dump_par( &TC, queue_snd_id ); close_action( &TC, result, queue_snd_id ); break; case TC_SUBTYPE_ENTER: result = action_enter_mode( &TC, queue_snd_id ); close_action( &TC, result, queue_snd_id ); break; case TC_SUBTYPE_UPDT_INFO: result = action_update_info( &TC, queue_snd_id ); close_action( &TC, result, queue_snd_id ); break; case TC_SUBTYPE_EN_CAL: result = action_enable_calibration( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id ); break; case TC_SUBTYPE_DIS_CAL: result = action_disable_calibration( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id ); break; case TC_SUBTYPE_LOAD_K: result = action_load_kcoefficients( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id ); break; case TC_SUBTYPE_DUMP_K: result = action_dump_kcoefficients( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id ); break; case TC_SUBTYPE_LOAD_FBINS: result = action_load_fbins_mask( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id ); break; case TC_SUBTYPE_LOAD_FILTER_PAR: result = action_load_filter_par( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id ); break; case TC_SUBTYPE_UPDT_TIME: result = action_update_time( &TC ); close_action( &TC, result, queue_snd_id ); break; default: break; } } } } //*********** // TC ACTIONS int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time) { /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received. * * @param TC points to the TeleCommand packet that is being processed * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver * */ PRINTF("this is the end!!!\n"); exit(0); send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time ); return LFR_DEFAULT; } int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id ) { /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received. * * @param TC points to the TeleCommand packet that is being processed * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver * */ rtems_status_code status; unsigned char requestedMode; unsigned int transitionCoarseTime; unsigned char * bytePosPtr; bytePosPtr = (unsigned char *) &TC->packetID; requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ]; copyInt32ByChar( (char*) &transitionCoarseTime, &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] ); transitionCoarseTime = transitionCoarseTime & COARSE_TIME_MASK; status = check_mode_value( requestedMode ); if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent { send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode ); } else // the mode value is valid, check the transition { status = check_mode_transition(requestedMode); if (status != LFR_SUCCESSFUL) { PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n") send_tm_lfr_tc_exe_not_executable( TC, queue_id ); } } if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date { status = check_transition_date( transitionCoarseTime ); if (status != LFR_SUCCESSFUL) { PRINTF("ERR *** in action_enter_mode *** check_transition_date\n"); send_tm_lfr_tc_exe_not_executable(TC, queue_id ); } } if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode { PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode); switch(requestedMode) { case LFR_MODE_STANDBY: status = enter_mode_standby(); break; case LFR_MODE_NORMAL: status = enter_mode_normal( transitionCoarseTime ); break; case LFR_MODE_BURST: status = enter_mode_burst( transitionCoarseTime ); break; case LFR_MODE_SBM1: status = enter_mode_sbm1( transitionCoarseTime ); break; case LFR_MODE_SBM2: status = enter_mode_sbm2( transitionCoarseTime ); break; default: break; } if (status != RTEMS_SUCCESSFUL) { status = LFR_EXE_ERROR; } } return status; } int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id) { /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received. * * @param TC points to the TeleCommand packet that is being processed * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver * * @return LFR directive status code: * - LFR_DEFAULT * - LFR_SUCCESSFUL * */ unsigned int val; int result; unsigned int status; unsigned char mode; unsigned char * bytePosPtr; bytePosPtr = (unsigned char *) &TC->packetID; // check LFR mode mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & BITS_LFR_MODE) >> SHIFT_LFR_MODE; status = check_update_info_hk_lfr_mode( mode ); if (status == LFR_SUCCESSFUL) // check TDS mode { mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_TDS_MODE) >> SHIFT_TDS_MODE; status = check_update_info_hk_tds_mode( mode ); } if (status == LFR_SUCCESSFUL) // check THR mode { mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_THR_MODE); status = check_update_info_hk_thr_mode( mode ); } if (status == LFR_SUCCESSFUL) // if the parameter check is successful { val = (housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_update_info_tc_cnt[1]; val++; housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE); housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val); } // pa_bia_status_info // => pa_bia_mode_mux_set 3 bits // => pa_bia_mode_hv_enabled 1 bit // => pa_bia_mode_bias1_enabled 1 bit // => pa_bia_mode_bias2_enabled 1 bit // => pa_bia_mode_bias3_enabled 1 bit // => pa_bia_on_off (cp_dpu_bias_on_off) pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & BITS_BIA; // [1111 1110] pa_bia_status_info = pa_bia_status_info | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 1); // REACTION_WHEELS_FREQUENCY, copy the incoming parameters in the local variable (to be copied in HK packets) getReactionWheelsFrequencies( TC ); set_hk_lfr_sc_rw_f_flags(); build_sy_lfr_rw_masks(); // once the masks are built, they have to be merged with the fbins_mask merge_fbins_masks(); result = status; return result; } int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time) { /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received. * * @param TC points to the TeleCommand packet that is being processed * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver * */ int result; result = LFR_DEFAULT; setCalibration( true ); result = LFR_SUCCESSFUL; return result; } int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time) { /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received. * * @param TC points to the TeleCommand packet that is being processed * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver * */ int result; result = LFR_DEFAULT; setCalibration( false ); result = LFR_SUCCESSFUL; return result; } int action_update_time(ccsdsTelecommandPacket_t *TC) { /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received. * * @param TC points to the TeleCommand packet that is being processed * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver * * @return LFR_SUCCESSFUL * */ unsigned int val; time_management_regs->coarse_time_load = (TC->dataAndCRC[BYTE_0] << SHIFT_3_BYTES) + (TC->dataAndCRC[BYTE_1] << SHIFT_2_BYTES) + (TC->dataAndCRC[BYTE_2] << SHIFT_1_BYTE) + TC->dataAndCRC[BYTE_3]; val = (housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_update_time_tc_cnt[1]; val++; housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE); housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val); oneTcLfrUpdateTimeReceived = 1; return LFR_SUCCESSFUL; } //******************* // ENTERING THE MODES int check_mode_value( unsigned char requestedMode ) { int status; status = LFR_DEFAULT; if ( (requestedMode != LFR_MODE_STANDBY) && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST) && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) ) { status = LFR_DEFAULT; } else { status = LFR_SUCCESSFUL; } return status; } int check_mode_transition( unsigned char requestedMode ) { /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE. * * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE * * @return LFR directive status codes: * - LFR_SUCCESSFUL - the transition is authorized * - LFR_DEFAULT - the transition is not authorized * */ int status; switch (requestedMode) { case LFR_MODE_STANDBY: if ( lfrCurrentMode == LFR_MODE_STANDBY ) { status = LFR_DEFAULT; } else { status = LFR_SUCCESSFUL; } break; case LFR_MODE_NORMAL: if ( lfrCurrentMode == LFR_MODE_NORMAL ) { status = LFR_DEFAULT; } else { status = LFR_SUCCESSFUL; } break; case LFR_MODE_BURST: if ( lfrCurrentMode == LFR_MODE_BURST ) { status = LFR_DEFAULT; } else { status = LFR_SUCCESSFUL; } break; case LFR_MODE_SBM1: if ( lfrCurrentMode == LFR_MODE_SBM1 ) { status = LFR_DEFAULT; } else { status = LFR_SUCCESSFUL; } break; case LFR_MODE_SBM2: if ( lfrCurrentMode == LFR_MODE_SBM2 ) { status = LFR_DEFAULT; } else { status = LFR_SUCCESSFUL; } break; default: status = LFR_DEFAULT; break; } return status; } void update_last_valid_transition_date( unsigned int transitionCoarseTime ) { if (transitionCoarseTime == 0) { lastValidEnterModeTime = time_management_regs->coarse_time + 1; PRINTF1("lastValidEnterModeTime = 0x%x (transitionCoarseTime = 0 => coarse_time+1)\n", lastValidEnterModeTime); } else { lastValidEnterModeTime = transitionCoarseTime; PRINTF1("lastValidEnterModeTime = 0x%x\n", transitionCoarseTime); } } int check_transition_date( unsigned int transitionCoarseTime ) { int status; unsigned int localCoarseTime; unsigned int deltaCoarseTime; status = LFR_SUCCESSFUL; if (transitionCoarseTime == 0) // transition time = 0 means an instant transition { status = LFR_SUCCESSFUL; } else { localCoarseTime = time_management_regs->coarse_time & COARSE_TIME_MASK; PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime); if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322 { status = LFR_DEFAULT; PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n"); } if (status == LFR_SUCCESSFUL) { deltaCoarseTime = transitionCoarseTime - localCoarseTime; if ( deltaCoarseTime > MAX_DELTA_COARSE_TIME ) // SSS-CP-EQS-323 { status = LFR_DEFAULT; PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime) } } } return status; } int restart_asm_activities( unsigned char lfrRequestedMode ) { rtems_status_code status; status = stop_spectral_matrices(); thisIsAnASMRestart = 1; status = restart_asm_tasks( lfrRequestedMode ); launch_spectral_matrix(); return status; } int stop_spectral_matrices( void ) { /** This function stops and restarts the current mode average spectral matrices activities. * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - task restarted successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_ALREADY_SUSPENDED - task already suspended * */ rtems_status_code status; status = RTEMS_SUCCESSFUL; // (1) mask interruptions LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // mask spectral matrix interrupt // (2) reset spectral matrices registers set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices reset_sm_status(); // (3) clear interruptions LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt // suspend several tasks if (lfrCurrentMode != LFR_MODE_STANDBY) { status = suspend_asm_tasks(); } if (status != RTEMS_SUCCESSFUL) { PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status) } return status; } int stop_current_mode( void ) { /** This function stops the current mode by masking interrupt lines and suspending science tasks. * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - task restarted successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_ALREADY_SUSPENDED - task already suspended * */ rtems_status_code status; status = RTEMS_SUCCESSFUL; // (1) mask interruptions LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt // (2) reset waveform picker registers reset_wfp_burst_enable(); // reset burst and enable bits reset_wfp_status(); // reset all the status bits // (3) reset spectral matrices registers set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices reset_sm_status(); // reset lfr VHDL module reset_lfr(); reset_extractSWF(); // reset the extractSWF flag to false // (4) clear interruptions LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt // suspend several tasks if (lfrCurrentMode != LFR_MODE_STANDBY) { status = suspend_science_tasks(); } if (status != RTEMS_SUCCESSFUL) { PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status) } return status; } int enter_mode_standby( void ) { /** This function is used to put LFR in the STANDBY mode. * * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - task restarted successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_INCORRECT_STATE - task never started * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task * * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE * is immediate. * */ int status; status = stop_current_mode(); // STOP THE CURRENT MODE #ifdef PRINT_TASK_STATISTICS rtems_cpu_usage_report(); #endif #ifdef PRINT_STACK_REPORT PRINTF("stack report selected\n") rtems_stack_checker_report_usage(); #endif return status; } int enter_mode_normal( unsigned int transitionCoarseTime ) { /** This function is used to start the NORMAL mode. * * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - task restarted successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_INCORRECT_STATE - task never started * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task * * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2, * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. * */ int status; #ifdef PRINT_TASK_STATISTICS rtems_cpu_usage_reset(); #endif status = RTEMS_UNSATISFIED; switch( lfrCurrentMode ) { case LFR_MODE_STANDBY: status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules { launch_spectral_matrix( ); launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime ); } break; case LFR_MODE_BURST: status = stop_current_mode(); // stop the current mode status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules { launch_spectral_matrix( ); launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime ); } break; case LFR_MODE_SBM1: status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action update_last_valid_transition_date( transitionCoarseTime ); break; case LFR_MODE_SBM2: status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action update_last_valid_transition_date( transitionCoarseTime ); break; default: break; } if (status != RTEMS_SUCCESSFUL) { PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status) status = RTEMS_UNSATISFIED; } return status; } int enter_mode_burst( unsigned int transitionCoarseTime ) { /** This function is used to start the BURST mode. * * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - task restarted successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_INCORRECT_STATE - task never started * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task * * The way the BURST mode is started does not depend on the LFR current mode. * */ int status; #ifdef PRINT_TASK_STATISTICS rtems_cpu_usage_reset(); #endif status = stop_current_mode(); // stop the current mode status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules { launch_spectral_matrix( ); launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime ); } if (status != RTEMS_SUCCESSFUL) { PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status) status = RTEMS_UNSATISFIED; } return status; } int enter_mode_sbm1( unsigned int transitionCoarseTime ) { /** This function is used to start the SBM1 mode. * * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - task restarted successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_INCORRECT_STATE - task never started * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task * * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2, * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other * cases, the acquisition is completely restarted. * */ int status; #ifdef PRINT_TASK_STATISTICS rtems_cpu_usage_reset(); #endif status = RTEMS_UNSATISFIED; switch( lfrCurrentMode ) { case LFR_MODE_STANDBY: status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules { launch_spectral_matrix( ); launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime ); } break; case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action status = restart_asm_activities( LFR_MODE_SBM1 ); status = LFR_SUCCESSFUL; update_last_valid_transition_date( transitionCoarseTime ); break; case LFR_MODE_BURST: status = stop_current_mode(); // stop the current mode status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules { launch_spectral_matrix( ); launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime ); } break; case LFR_MODE_SBM2: status = restart_asm_activities( LFR_MODE_SBM1 ); status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action update_last_valid_transition_date( transitionCoarseTime ); break; default: break; } if (status != RTEMS_SUCCESSFUL) { PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status); status = RTEMS_UNSATISFIED; } return status; } int enter_mode_sbm2( unsigned int transitionCoarseTime ) { /** This function is used to start the SBM2 mode. * * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - task restarted successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_INCORRECT_STATE - task never started * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task * * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1, * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other * cases, the acquisition is completely restarted. * */ int status; #ifdef PRINT_TASK_STATISTICS rtems_cpu_usage_reset(); #endif status = RTEMS_UNSATISFIED; switch( lfrCurrentMode ) { case LFR_MODE_STANDBY: status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules { launch_spectral_matrix( ); launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime ); } break; case LFR_MODE_NORMAL: status = restart_asm_activities( LFR_MODE_SBM2 ); status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action update_last_valid_transition_date( transitionCoarseTime ); break; case LFR_MODE_BURST: status = stop_current_mode(); // stop the current mode status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules { launch_spectral_matrix( ); launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime ); } break; case LFR_MODE_SBM1: status = restart_asm_activities( LFR_MODE_SBM2 ); status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action update_last_valid_transition_date( transitionCoarseTime ); break; default: break; } if (status != RTEMS_SUCCESSFUL) { PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status) status = RTEMS_UNSATISFIED; } return status; } int restart_science_tasks( unsigned char lfrRequestedMode ) { /** This function is used to restart all science tasks. * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - task restarted successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_INCORRECT_STATE - task never started * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task * * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1 * */ rtems_status_code status[NB_SCIENCE_TASKS]; rtems_status_code ret; ret = RTEMS_SUCCESSFUL; status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode ); if (status[STATUS_0] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0]) } status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode ); if (status[STATUS_1] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1]) } status[STATUS_2] = rtems_task_restart( Task_id[TASKID_WFRM],1 ); if (status[STATUS_2] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[STATUS_2]) } status[STATUS_3] = rtems_task_restart( Task_id[TASKID_CWF3],1 ); if (status[STATUS_3] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[STATUS_3]) } status[STATUS_4] = rtems_task_restart( Task_id[TASKID_CWF2],1 ); if (status[STATUS_4] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[STATUS_4]) } status[STATUS_5] = rtems_task_restart( Task_id[TASKID_CWF1],1 ); if (status[STATUS_5] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[STATUS_5]) } status[STATUS_6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode ); if (status[STATUS_6] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_6]) } status[STATUS_7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode ); if (status[STATUS_7] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_7]) } status[STATUS_8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 ); if (status[STATUS_8] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_8]) } status[STATUS_9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 ); if (status[STATUS_9] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_9]) } if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) || (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) || (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) || (status[STATUS_6] != RTEMS_SUCCESSFUL) || (status[STATUS_7] != RTEMS_SUCCESSFUL) || (status[STATUS_8] != RTEMS_SUCCESSFUL) || (status[STATUS_9] != RTEMS_SUCCESSFUL) ) { ret = RTEMS_UNSATISFIED; } return ret; } int restart_asm_tasks( unsigned char lfrRequestedMode ) { /** This function is used to restart average spectral matrices tasks. * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - task restarted successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_INCORRECT_STATE - task never started * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task * * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2 * */ rtems_status_code status[NB_ASM_TASKS]; rtems_status_code ret; ret = RTEMS_SUCCESSFUL; status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode ); if (status[STATUS_0] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0]) } status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode ); if (status[STATUS_1] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1]) } status[STATUS_2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode ); if (status[STATUS_2] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_2]) } status[STATUS_3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode ); if (status[STATUS_3] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_3]) } status[STATUS_4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 ); if (status[STATUS_4] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_4]) } status[STATUS_5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 ); if (status[STATUS_5] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_5]) } if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) || (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) || (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) ) { ret = RTEMS_UNSATISFIED; } return ret; } int suspend_science_tasks( void ) { /** This function suspends the science tasks. * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - task restarted successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_ALREADY_SUSPENDED - task already suspended * */ rtems_status_code status; PRINTF("in suspend_science_tasks\n") status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) { PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status) } else { status = RTEMS_SUCCESSFUL; } if (status == RTEMS_SUCCESSFUL) // suspend PRC0 { status = rtems_task_suspend( Task_id[TASKID_PRC0] ); if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) { PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status) } else { status = RTEMS_SUCCESSFUL; } } if (status == RTEMS_SUCCESSFUL) // suspend AVF1 { status = rtems_task_suspend( Task_id[TASKID_AVF1] ); if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) { PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status) } else { status = RTEMS_SUCCESSFUL; } } if (status == RTEMS_SUCCESSFUL) // suspend PRC1 { status = rtems_task_suspend( Task_id[TASKID_PRC1] ); if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) { PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status) } else { status = RTEMS_SUCCESSFUL; } } if (status == RTEMS_SUCCESSFUL) // suspend AVF2 { status = rtems_task_suspend( Task_id[TASKID_AVF2] ); if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) { PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status) } else { status = RTEMS_SUCCESSFUL; } } if (status == RTEMS_SUCCESSFUL) // suspend PRC2 { status = rtems_task_suspend( Task_id[TASKID_PRC2] ); if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) { PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status) } else { status = RTEMS_SUCCESSFUL; } } if (status == RTEMS_SUCCESSFUL) // suspend WFRM { status = rtems_task_suspend( Task_id[TASKID_WFRM] ); if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) { PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status) } else { status = RTEMS_SUCCESSFUL; } } if (status == RTEMS_SUCCESSFUL) // suspend CWF3 { status = rtems_task_suspend( Task_id[TASKID_CWF3] ); if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) { PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status) } else { status = RTEMS_SUCCESSFUL; } } if (status == RTEMS_SUCCESSFUL) // suspend CWF2 { status = rtems_task_suspend( Task_id[TASKID_CWF2] ); if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) { PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status) } else { status = RTEMS_SUCCESSFUL; } } if (status == RTEMS_SUCCESSFUL) // suspend CWF1 { status = rtems_task_suspend( Task_id[TASKID_CWF1] ); if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) { PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status) } else { status = RTEMS_SUCCESSFUL; } } return status; } int suspend_asm_tasks( void ) { /** This function suspends the science tasks. * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - task restarted successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_ALREADY_SUSPENDED - task already suspended * */ rtems_status_code status; PRINTF("in suspend_science_tasks\n") status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) { PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status) } else { status = RTEMS_SUCCESSFUL; } if (status == RTEMS_SUCCESSFUL) // suspend PRC0 { status = rtems_task_suspend( Task_id[TASKID_PRC0] ); if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) { PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status) } else { status = RTEMS_SUCCESSFUL; } } if (status == RTEMS_SUCCESSFUL) // suspend AVF1 { status = rtems_task_suspend( Task_id[TASKID_AVF1] ); if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) { PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status) } else { status = RTEMS_SUCCESSFUL; } } if (status == RTEMS_SUCCESSFUL) // suspend PRC1 { status = rtems_task_suspend( Task_id[TASKID_PRC1] ); if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) { PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status) } else { status = RTEMS_SUCCESSFUL; } } if (status == RTEMS_SUCCESSFUL) // suspend AVF2 { status = rtems_task_suspend( Task_id[TASKID_AVF2] ); if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) { PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status) } else { status = RTEMS_SUCCESSFUL; } } if (status == RTEMS_SUCCESSFUL) // suspend PRC2 { status = rtems_task_suspend( Task_id[TASKID_PRC2] ); if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) { PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status) } else { status = RTEMS_SUCCESSFUL; } } return status; } void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime ) { WFP_reset_current_ring_nodes(); reset_waveform_picker_regs(); set_wfp_burst_enable_register( mode ); LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER ); if (transitionCoarseTime == 0) { // instant transition means transition on the next valid date // this is mandatory to have a good snapshot period and a good correction of the snapshot period waveform_picker_regs->start_date = time_management_regs->coarse_time + 1; } else { waveform_picker_regs->start_date = transitionCoarseTime; } update_last_valid_transition_date(waveform_picker_regs->start_date); } void launch_spectral_matrix( void ) { SM_reset_current_ring_nodes(); reset_spectral_matrix_regs(); reset_nb_sm(); set_sm_irq_onNewMatrix( 1 ); LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX ); } void set_sm_irq_onNewMatrix( unsigned char value ) { if (value == 1) { spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_NEW_MATRIX; } else { spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_NEW_MATRIX; // 1110 } } void set_sm_irq_onError( unsigned char value ) { if (value == 1) { spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_ERROR; } else { spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_ERROR; // 1101 } } //***************************** // CONFIGURE CALIBRATION SIGNAL void setCalibrationPrescaler( unsigned int prescaler ) { // prescaling of the master clock (25 MHz) // master clock is divided by 2^prescaler time_management_regs->calPrescaler = prescaler; } void setCalibrationDivisor( unsigned int divisionFactor ) { // division of the prescaled clock by the division factor time_management_regs->calDivisor = divisionFactor; } void setCalibrationData( void ) { /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal * * @param void * * @return void * */ unsigned int k; unsigned short data; float val; float Ts; time_management_regs->calDataPtr = INIT_CHAR; Ts = 1 / CAL_FS; // build the signal for the SCM calibration for (k = 0; k < CAL_NB_PTS; k++) { val = CAL_A0 * sin( CAL_W0 * k * Ts ) + CAL_A1 * sin( CAL_W1 * k * Ts ); data = (unsigned short) ((val * CAL_SCALE_FACTOR) + CONST_2048); time_management_regs->calData = data & CAL_DATA_MASK; } } void setCalibrationDataInterleaved( void ) { /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal * * @param void * * @return void * * In interleaved mode, one can store more values than in normal mode. * The data are stored in bunch of 18 bits, 12 bits from one sample and 6 bits from another sample. * T store 3 values, one need two write operations. * s1 [ b11 b10 b9 b8 b7 b6 ] s0 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ] * s1 [ b5 b4 b3 b2 b1 b0 ] s2 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ] * */ unsigned int k; float val; float Ts; unsigned short data[CAL_NB_PTS_INTER]; unsigned char *dataPtr; Ts = 1 / CAL_FS_INTER; time_management_regs->calDataPtr = INIT_CHAR; // build the signal for the SCM calibration for (k=0; kcalData = ( data[ k * BYTES_FOR_2_SAMPLES ] & CAL_DATA_MASK ) + ( (dataPtr[0] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER); time_management_regs->calData = ( data[(k * BYTES_FOR_2_SAMPLES) + 1] & CAL_DATA_MASK ) + ( (dataPtr[1] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER); } } void setCalibrationReload( bool state) { if (state == true) { time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_RELOAD; // [0001 0000] } else { time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_RELOAD; // [1110 1111] } } void setCalibrationEnable( bool state ) { // this bit drives the multiplexer if (state == true) { time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_ENABLE; // [0100 0000] } else { time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_ENABLE; // [1011 1111] } } void setCalibrationInterleaved( bool state ) { // this bit drives the multiplexer if (state == true) { time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_SET_INTERLEAVED; // [0010 0000] } else { time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_SET_INTERLEAVED; // [1101 1111] } } void setCalibration( bool state ) { if (state == true) { setCalibrationEnable( true ); setCalibrationReload( false ); set_hk_lfr_calib_enable( true ); } else { setCalibrationEnable( false ); setCalibrationReload( true ); set_hk_lfr_calib_enable( false ); } } void configureCalibration( bool interleaved ) { setCalibration( false ); if ( interleaved == true ) { setCalibrationInterleaved( true ); setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000 setCalibrationDivisor( CAL_F_DIVISOR_INTER ); // => 240 384 setCalibrationDataInterleaved(); } else { setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000 setCalibrationDivisor( CAL_F_DIVISOR ); // => 160 256 (39 - 1) setCalibrationData(); } } //**************** // CLOSING ACTIONS void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time ) { /** This function is used to update the HK packets statistics after a successful TC execution. * * @param TC points to the TC being processed * @param time is the time used to date the TC execution * */ unsigned int val; housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0]; housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1]; housekeeping_packet.hk_lfr_last_exe_tc_type[0] = INIT_CHAR; housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType; housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = INIT_CHAR; housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType; housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_0] = time[BYTE_0]; housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_1] = time[BYTE_1]; housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_2] = time[BYTE_2]; housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_3] = time[BYTE_3]; housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_4] = time[BYTE_4]; housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_5] = time[BYTE_5]; val = (housekeeping_packet.hk_lfr_exe_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_exe_tc_cnt[1]; val++; housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE); housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val); } void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time ) { /** This function is used to update the HK packets statistics after a TC rejection. * * @param TC points to the TC being processed * @param time is the time used to date the TC rejection * */ unsigned int val; housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0]; housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1]; housekeeping_packet.hk_lfr_last_rej_tc_type[0] = INIT_CHAR; housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType; housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = INIT_CHAR; housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType; housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_0] = time[BYTE_0]; housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_1] = time[BYTE_1]; housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_2] = time[BYTE_2]; housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_3] = time[BYTE_3]; housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_4] = time[BYTE_4]; housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_5] = time[BYTE_5]; val = (housekeeping_packet.hk_lfr_rej_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_rej_tc_cnt[1]; val++; housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE); housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val); } void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id ) { /** This function is the last step of the TC execution workflow. * * @param TC points to the TC being processed * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT) * @param queue_id is the id of the RTEMS message queue used to send TM packets * @param time is the time used to date the TC execution * */ unsigned char requestedMode; if (result == LFR_SUCCESSFUL) { if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) ) & !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO)) ) { send_tm_lfr_tc_exe_success( TC, queue_id ); } if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) ) { //********************************** // UPDATE THE LFRMODE LOCAL VARIABLE requestedMode = TC->dataAndCRC[1]; updateLFRCurrentMode( requestedMode ); } } else if (result == LFR_EXE_ERROR) { send_tm_lfr_tc_exe_error( TC, queue_id ); } } //*************************** // Interrupt Service Routines rtems_isr commutation_isr1( rtems_vector_number vector ) { if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) { PRINTF("In commutation_isr1 *** Error sending event to DUMB\n") } } rtems_isr commutation_isr2( rtems_vector_number vector ) { if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) { PRINTF("In commutation_isr2 *** Error sending event to DUMB\n") } } //**************** // OTHER FUNCTIONS void updateLFRCurrentMode( unsigned char requestedMode ) { /** This function updates the value of the global variable lfrCurrentMode. * * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running. * */ // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure housekeeping_packet.lfr_status_word[0] = (housekeeping_packet.lfr_status_word[0] & STATUS_WORD_LFR_MODE_MASK) + (unsigned char) ( requestedMode << STATUS_WORD_LFR_MODE_SHIFT ); lfrCurrentMode = requestedMode; } void set_lfr_soft_reset( unsigned char value ) { if (value == 1) { time_management_regs->ctrl = time_management_regs->ctrl | BIT_SOFT_RESET; // [0100] } else { time_management_regs->ctrl = time_management_regs->ctrl & MASK_SOFT_RESET; // [1011] } } void reset_lfr( void ) { set_lfr_soft_reset( 1 ); set_lfr_soft_reset( 0 ); set_hk_lfr_sc_potential_flag( true ); }