/** Functions related to data processing. * * @file * @author P. LEROY * * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation. * */ #include #include "fsw_processing_globals.c" //************************ // spectral matrices rings ring_node_sm sm_ring_f0[ NB_RING_NODES_ASM_F0 ]; ring_node_sm sm_ring_f1[ NB_RING_NODES_ASM_F1 ]; ring_node_sm sm_ring_f2[ NB_RING_NODES_ASM_F2 ]; ring_node_sm *current_ring_node_sm_f0; ring_node_sm *ring_node_for_averaging_sm_f0; ring_node_sm *current_ring_node_sm_f1; ring_node_sm *current_ring_node_sm_f2; //********************** // basic parameter rings ring_node_bp *current_node_sbm1_bp1_f0; ring_node_bp *current_node_sbm1_bp2_f0; ring_node_bp bp_ring_sbm1_bp1[ NB_RING_NODES_SBM1_BP1 ]; ring_node_bp bp_ring_sbm1_bp2[ NB_RING_NODES_SBM1_BP2 ]; //***** // NORM // F0 float asm_norm_f0 [ TIME_OFFSET + TOTAL_SIZE_SM ]; float asm_f0_reorganized [ TIME_OFFSET + TOTAL_SIZE_SM ]; char asm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ]; float compressed_sm_norm_f0[ TIME_OFFSET + TOTAL_SIZE_COMPRESSED_ASM_F0 ]; //***** // SBM1 float asm_sbm1_f0 [ TIME_OFFSET + TOTAL_SIZE_SM ]; float compressed_sm_sbm1[ TIME_OFFSET + TOTAL_SIZE_COMPRESSED_ASM_SBM1 ]; unsigned char LFR_BP1_F0[ TIME_OFFSET_IN_BYTES + TOTAL_SIZE_NORM_BP1_F0 * 2 ]; unsigned char LFR_BP1_F1[ TIME_OFFSET_IN_BYTES + TOTAL_SIZE_NORM_BP1_F1 ]; unsigned char LFR_BP1_F2[ TIME_OFFSET_IN_BYTES + TOTAL_SIZE_NORM_BP1_F2 ]; unsigned int nb_sm_f0; void init_sm_rings( void ) { unsigned char i; // F0 RING sm_ring_f0[0].next = (ring_node_sm*) &sm_ring_f0[1]; sm_ring_f0[0].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_ASM_F0-1]; sm_ring_f0[0].buffer_address = (int) &sm_f0[ 0 ]; sm_ring_f0[NB_RING_NODES_ASM_F0-1].next = (ring_node_sm*) &sm_ring_f0[0]; sm_ring_f0[NB_RING_NODES_ASM_F0-1].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_ASM_F0-2]; sm_ring_f0[NB_RING_NODES_ASM_F0-1].buffer_address = (int) &sm_f0[ (NB_RING_NODES_ASM_F0-1) * TOTAL_SIZE_SM ]; for(i=1; imatrixF0_Address0 = sm_ring_f0[0].buffer_address; DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->matrixF0_Address0) } void reset_current_sm_ring_nodes( void ) { current_ring_node_sm_f0 = sm_ring_f0; current_ring_node_sm_f1 = sm_ring_f1; current_ring_node_sm_f2 = sm_ring_f2; ring_node_for_averaging_sm_f0 = sm_ring_f0; } void reset_current_bp_ring_nodes( void ) { current_node_sbm1_bp1_f0 = bp_ring_sbm1_bp1; current_node_sbm1_bp2_f0 = bp_ring_sbm1_bp2; } //*********************************************************** // Interrupt Service Routine for spectral matrices processing void reset_nb_sm_f0( void ) { nb_sm_f0 = 0; } rtems_isr spectral_matrices_isr( rtems_vector_number vector ) { rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 ); if ( (spectral_matrix_regs->status & 0x1) == 0x01) { current_ring_node_sm_f0 = current_ring_node_sm_f0->next; spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address; spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe; // 1110 nb_sm_f0 = nb_sm_f0 + 1; } else if ( (spectral_matrix_regs->status & 0x2) == 0x02) { current_ring_node_sm_f0 = current_ring_node_sm_f0->next; spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address; spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // 1101 nb_sm_f0 = nb_sm_f0 + 1; } if ( (spectral_matrix_regs->status & 0x30) != 0x00) { rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 ); spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // 1100 1111 } spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff3; // 0011 if (nb_sm_f0 == (NB_SM_BEFORE_AVF0-1) ) { ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0; if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) { rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 ); } nb_sm_f0 = 0; } else { nb_sm_f0 = nb_sm_f0 + 1; } } rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector ) { if (nb_sm_f0 == (NB_SM_BEFORE_AVF0-1) ) { ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0; if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) { rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 ); } nb_sm_f0 = 0; } else { nb_sm_f0 = nb_sm_f0 + 1; } } //************ // RTEMS TASKS rtems_task smiq_task(rtems_task_argument argument) // process the Spectral Matrices IRQ { rtems_event_set event_out; BOOT_PRINTF("in SMIQ *** \n") while(1){ rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0 } } rtems_task avf0_task(rtems_task_argument argument) { int i; static unsigned int nb_sm_norm_bp1_f0; static unsigned int nb_sm_norm_bp2_f0; static unsigned int nb_sm_norm_asm_f0; static unsigned int nb_sm_sbm1_bp1_f0; static unsigned int nb_sm_sbm1_bp2_f0; rtems_event_set event_out; rtems_event_set event_for_matr; rtems_status_code status; ring_node_sm *ring_node_tab[8]; nb_sm_norm_bp1_f0 = 0; nb_sm_norm_bp2_f0 = 0; nb_sm_norm_asm_f0 = 0; nb_sm_sbm1_bp1_f0 = 0; nb_sm_sbm1_bp2_f0 = 0; BOOT_PRINTF("in AVFO *** \n") while(1){ rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0 ring_node_tab[NB_SM_BEFORE_AVF0-1] = ring_node_for_averaging_sm_f0; for ( i = 2; i < (NB_SM_BEFORE_AVF0+1); i++ ) { ring_node_for_averaging_sm_f0 = ring_node_for_averaging_sm_f0->previous; ring_node_tab[NB_SM_BEFORE_AVF0-i] = ring_node_for_averaging_sm_f0; } // copy time information in the asm_f0 buffer asm_norm_f0[0] = ring_node_tab[7]->coarseTime; asm_norm_f0[1] = ring_node_tab[7]->fineTime; asm_sbm1_f0[0] = ring_node_tab[7]->coarseTime; asm_sbm1_f0[1] = ring_node_tab[7]->fineTime; // compute the average and store it in the averaged_sm_f1 buffer SM_average( asm_norm_f0, asm_sbm1_f0, ring_node_tab, nb_sm_norm_bp1_f0, nb_sm_sbm1_bp1_f0 ); // update nb_average nb_sm_norm_bp1_f0 = nb_sm_norm_bp1_f0 + NB_SM_BEFORE_AVF0; nb_sm_norm_bp2_f0 = nb_sm_norm_bp2_f0 + NB_SM_BEFORE_AVF0; nb_sm_norm_asm_f0 = nb_sm_norm_asm_f0 + NB_SM_BEFORE_AVF0; nb_sm_sbm1_bp1_f0 = nb_sm_sbm1_bp1_f0 + NB_SM_BEFORE_AVF0; nb_sm_sbm1_bp2_f0 = nb_sm_sbm1_bp2_f0 + NB_SM_BEFORE_AVF0; //*********************************************************** // build a composite event that will be sent to the MATR task event_for_matr = 0x00; if (nb_sm_sbm1_bp1_f0 == NB_SM_BEFORE_SBM1_BP1_F0) { nb_sm_sbm1_bp1_f0 = 0; if (lfrCurrentMode == LFR_MODE_SBM1) { event_for_matr = event_for_matr | RTEMS_EVENT_SBM1_BP1_F0; } } if (nb_sm_sbm1_bp2_f0 == NB_SM_BEFORE_SBM1_BP2_F0) { nb_sm_sbm1_bp2_f0 = 0; if (lfrCurrentMode == LFR_MODE_SBM1) { event_for_matr = event_for_matr | RTEMS_EVENT_SBM1_BP2_F0; } } if (nb_sm_norm_bp1_f0 == NB_SM_BEFORE_NORM_BP1_F0) { nb_sm_norm_bp1_f0 = 0; if (lfrCurrentMode == LFR_MODE_NORMAL) { event_for_matr = event_for_matr | RTEMS_EVENT_NORM_BP1_F0; } } if (nb_sm_norm_bp2_f0 == NB_SM_BEFORE_NORM_BP2_F0) { nb_sm_norm_bp2_f0 = 0; if (lfrCurrentMode == LFR_MODE_NORMAL) { event_for_matr = event_for_matr | RTEMS_EVENT_NORM_BP2_F0; } } if (nb_sm_norm_asm_f0 == NB_SM_BEFORE_NORM_ASM_F0) { nb_sm_norm_asm_f0 = 0; if (lfrCurrentMode == LFR_MODE_NORMAL) { event_for_matr = event_for_matr | RTEMS_EVENT_NORM_ASM_F0; } } //********************************* // send the composite event to MATR status = rtems_event_send( Task_id[TASKID_MATR], event_for_matr ); if (status != RTEMS_SUCCESSFUL) { printf("in AVF0 *** Error sending RTEMS_EVENT_0, code %d\n", status); } } } rtems_task matr_task(rtems_task_argument argument) { spw_ioctl_pkt_send spw_ioctl_send_ASM; rtems_event_set event_out; rtems_status_code status; rtems_id queue_id; Header_TM_LFR_SCIENCE_ASM_t headerASM; ring_node_bp_with_spare current_node_norm_bp1_f0; ring_node_bp current_node_norm_bp2_f0; init_header_asm( &headerASM ); init_header_bp_with_spare( ¤t_node_norm_bp1_f0.header, APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0, PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 ); init_header_bp( ¤t_node_norm_bp2_f0.header, APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0, PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0); status = get_message_queue_id_send( &queue_id ); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in MATR *** ERR get_message_queue_id_send %d\n", status) } BOOT_PRINTF("in MATR *** \n") while(1){ rtems_event_receive( RTEMS_EVENT_NORM_BP1_F0 | RTEMS_EVENT_NORM_BP2_F0 | RTEMS_EVENT_NORM_ASM_F0 | RTEMS_EVENT_SBM1_BP1_F0 | RTEMS_EVENT_SBM1_BP2_F0, RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); //***** //***** // SBM1 //***** //***** if (event_out & RTEMS_EVENT_SBM1_BP1_F0) { // 1) compress the matrix for Basic Parameters calculation ASM_compress_reorganize_and_divide( asm_sbm1_f0, compressed_sm_sbm1, NB_SM_BEFORE_SBM1_BP1_F0, NB_BINS_COMPRESSED_SM_SBM1_F0, NB_BINS_TO_AVERAGE_ASM_SBM1_F0, ASM_F0_INDICE_START); // 2) compute the BP1 set // 3) send the BP1 set set_time( current_node_sbm1_bp1_f0->header.time, current_node_sbm1_bp1_f0->coarseTime, current_node_sbm1_bp1_f0->fineTime); set_time( current_node_sbm1_bp1_f0->header.acquisitionTime, current_node_sbm1_bp1_f0->coarseTime, current_node_sbm1_bp1_f0->fineTime); BP_send( (char *) ¤t_node_sbm1_bp1_f0->header, queue_id, PACKET_LENGTH_TM_LFR_SCIENCE_SBM1_BP1_F0 + PACKET_LENGTH_DELTA); // 4) update current_node_sbm1_bp1_f0 current_node_sbm1_bp1_f0 = current_node_sbm1_bp1_f0->next; if (event_out & RTEMS_EVENT_SBM1_BP2_F0) { // 1) compute the BP2 set // 2) send the BP2 set set_time( current_node_sbm1_bp2_f0->header.time, current_node_sbm1_bp2_f0->coarseTime, current_node_sbm1_bp2_f0->fineTime); set_time( current_node_sbm1_bp2_f0->header.acquisitionTime, current_node_sbm1_bp2_f0->coarseTime, current_node_sbm1_bp2_f0->fineTime); BP_send( (char *) ¤t_node_sbm1_bp2_f0->header, queue_id, PACKET_LENGTH_TM_LFR_SCIENCE_SBM1_BP1_F0 + PACKET_LENGTH_DELTA); } } //***** //***** // NORM //***** //***** if (event_out & RTEMS_EVENT_NORM_BP1_F0) { // 1) compress the matrix for Basic Parameters calculation ASM_compress_reorganize_and_divide( asm_norm_f0, compressed_sm_norm_f0, NB_SM_BEFORE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0, ASM_F0_INDICE_START ); // 2) compute the BP1 set // 3) send the BP1 set set_time( current_node_norm_bp1_f0.header.time, current_node_norm_bp1_f0.coarseTime, current_node_norm_bp1_f0.fineTime); set_time( current_node_norm_bp1_f0.header.acquisitionTime, current_node_norm_bp1_f0.coarseTime, current_node_norm_bp1_f0.fineTime); BP_send( (char *) ¤t_node_norm_bp1_f0.header, queue_id, PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA); if (event_out & RTEMS_EVENT_NORM_BP2_F0) { // 1) compute the BP2 set // 2) send the BP2 set set_time( current_node_norm_bp2_f0.header.time, current_node_norm_bp2_f0.coarseTime, current_node_norm_bp2_f0.fineTime); set_time( current_node_norm_bp2_f0.header.acquisitionTime, current_node_norm_bp2_f0.coarseTime, current_node_norm_bp2_f0.fineTime); BP_send( (char *) ¤t_node_norm_bp2_f0.header, queue_id, PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA); } } if (event_out & RTEMS_EVENT_NORM_ASM_F0) { // 1) reorganize the ASM and divide ASM_reorganize_and_divide( asm_norm_f0, asm_f0_reorganized, NB_SM_BEFORE_NORM_BP1_F0 ); // 2) convert the float array in a char array ASM_convert( asm_f0_reorganized, asm_f0_char); // 3) send the spectral matrix packets ASM_send( &headerASM, asm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id); } } } //***************************** // Spectral matrices processing void SM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1, ring_node_sm *ring_node_tab[], unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 ) { float sum; unsigned int i; for(i=0; ibuffer_address) ) [ i ] + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ] + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ] + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ] + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ] + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ] + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ] + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ]; if ( (nbAverageNormF0 == 0) && (nbAverageSBM1F0 == 0) ) { averaged_spec_mat_f0[ TIME_OFFSET + i ] = sum; averaged_spec_mat_f1[ TIME_OFFSET + i ] = sum; } else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 != 0) ) { averaged_spec_mat_f0[ TIME_OFFSET + i ] = ( averaged_spec_mat_f0[ TIME_OFFSET + i ] + sum ); averaged_spec_mat_f1[ TIME_OFFSET + i ] = ( averaged_spec_mat_f1[ TIME_OFFSET + i ] + sum ); } else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 == 0) ) { averaged_spec_mat_f0[ TIME_OFFSET + i ] = ( averaged_spec_mat_f0[ TIME_OFFSET + i ] + sum ); averaged_spec_mat_f1[ TIME_OFFSET + i ] = sum; } else { PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNormF0, nbAverageSBM1F0) } } } void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider ) { int frequencyBin; int asmComponent; // copy the time information averaged_spec_mat_reorganized[ 0 ] = averaged_spec_mat[ 0 ]; averaged_spec_mat_reorganized[ 1 ] = averaged_spec_mat[ 1 ]; for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++) { for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ ) { averaged_spec_mat_reorganized[ TIME_OFFSET + frequencyBin * NB_VALUES_PER_SM + asmComponent ] = averaged_spec_mat[ TIME_OFFSET + asmComponent * NB_BINS_PER_SM + frequencyBin ] / divider; } } } void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider, unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart ) { int frequencyBin; int asmComponent; int offsetASM; int offsetCompressed; int k; for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++) { for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ ) { offsetCompressed = TIME_OFFSET + frequencyBin * NB_VALUES_PER_SM + asmComponent; offsetASM = TIME_OFFSET + asmComponent * NB_BINS_PER_SM + ASMIndexStart + frequencyBin * nbBinsToAverage; compressed_spec_mat[ offsetCompressed ] = 0; for ( k = 0; k < nbBinsToAverage; k++ ) { compressed_spec_mat[offsetCompressed ] = ( compressed_spec_mat[ offsetCompressed ] + averaged_spec_mat[ offsetASM + k ] ) / (divider * nbBinsToAverage); } } } } void ASM_convert( volatile float *input_matrix, char *output_matrix) { unsigned int i; unsigned int frequencyBin; unsigned int asmComponent; char * pt_char_input; char * pt_char_output; pt_char_input = (char*) &input_matrix; pt_char_output = (char*) &output_matrix; // copy the time information for (i=0; idlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; spw_ioctl_send->data = &spectral_matrix[ ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2 + TIME_OFFSET_IN_BYTES ]; length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0; header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB break; case SID_NORM_ASM_F1: break; case SID_NORM_ASM_F2: break; default: PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid) break; } spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES; spw_ioctl_send->hdr = (char *) header; spw_ioctl_send->options = 0; // (2) BUILD THE HEADER header->packetLength[0] = (unsigned char) (length>>8); header->packetLength[1] = (unsigned char) (length); header->sid = (unsigned char) sid; // SID header->pa_lfr_pkt_cnt_asm = 2; header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1); // (3) SET PACKET TIME header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24); header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16); header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8); header->time[3] = (unsigned char) (time_management_regs->coarse_time); header->time[4] = (unsigned char) (time_management_regs->fine_time>>8); header->time[5] = (unsigned char) (time_management_regs->fine_time); // header->acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24); header->acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16); header->acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8); header->acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time); header->acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8); header->acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time); // (4) SEND PACKET status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE); if (status != RTEMS_SUCCESSFUL) { printf("in ASM_send *** ERR %d\n", (int) status); } } } void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend ) { rtems_status_code status; // SEND PACKET status = rtems_message_queue_send( queue_id, data, nbBytesToSend); if (status != RTEMS_SUCCESSFUL) { printf("ERR *** in BP_send *** ERR %d\n", (int) status); } } void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header) { header->targetLogicalAddress = CCSDS_DESTINATION_ID; header->protocolIdentifier = CCSDS_PROTOCOLE_ID; header->reserved = 0x00; header->userApplication = CCSDS_USER_APP; header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8); header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST); header->packetSequenceControl[0] = 0xc0; header->packetSequenceControl[1] = 0x00; header->packetLength[0] = 0x00; header->packetLength[1] = 0x00; // DATA FIELD HEADER header->spare1_pusVersion_spare2 = 0x10; header->serviceType = TM_TYPE_LFR_SCIENCE; // service type header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype header->destinationID = TM_DESTINATION_ID_GROUND; // AUXILIARY DATA HEADER header->sid = 0x00; header->biaStatusInfo = 0x00; header->pa_lfr_pkt_cnt_asm = 0x00; header->pa_lfr_pkt_nr_asm = 0x00; header->time[0] = 0x00; header->time[0] = 0x00; header->time[0] = 0x00; header->time[0] = 0x00; header->time[0] = 0x00; header->time[0] = 0x00; header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB } void init_bp_ring_sbm1_bp1( void ) { unsigned int i; //******** // F0 RING bp_ring_sbm1_bp1[0].next = (ring_node_bp*) &bp_ring_sbm1_bp1[1]; bp_ring_sbm1_bp1[0].previous = (ring_node_bp*) &bp_ring_sbm1_bp1[NB_RING_NODES_SBM1_BP1-1]; bp_ring_sbm1_bp1[NB_RING_NODES_SBM1_BP1-1].next = (ring_node_bp*) &bp_ring_sbm1_bp1[0]; bp_ring_sbm1_bp1[NB_RING_NODES_SBM1_BP1-1].previous = (ring_node_bp*) &bp_ring_sbm1_bp1[NB_RING_NODES_SBM1_BP1-2]; for(i=1; itargetLogicalAddress = CCSDS_DESTINATION_ID; header->protocolIdentifier = CCSDS_PROTOCOLE_ID; header->reserved = 0x00; header->userApplication = CCSDS_USER_APP; header->packetID[0] = (unsigned char) (apid >> 8); header->packetID[1] = (unsigned char) (apid); header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE; header->packetSequenceControl[1] = 0x00; header->packetLength[0] = (unsigned char) (packetLength >> 8); header->packetLength[1] = (unsigned char) (packetLength); // DATA FIELD HEADER header->spare1_pusVersion_spare2 = 0x10; header->serviceType = TM_TYPE_LFR_SCIENCE; // service type header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype header->destinationID = TM_DESTINATION_ID_GROUND; // AUXILIARY DATA HEADER header->sid = sid; header->biaStatusInfo = 0x00; header->time[0] = 0x00; header->time[0] = 0x00; header->time[0] = 0x00; header->time[0] = 0x00; header->time[0] = 0x00; header->time[0] = 0x00; header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB } void init_header_bp_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header, unsigned int apid, unsigned char sid, unsigned int packetLength , unsigned char blkNr) { header->targetLogicalAddress = CCSDS_DESTINATION_ID; header->protocolIdentifier = CCSDS_PROTOCOLE_ID; header->reserved = 0x00; header->userApplication = CCSDS_USER_APP; header->packetID[0] = (unsigned char) (apid >> 8); header->packetID[1] = (unsigned char) (apid); header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE; header->packetSequenceControl[1] = 0x00; header->packetLength[0] = (unsigned char) (packetLength >> 8); header->packetLength[1] = (unsigned char) (packetLength); // DATA FIELD HEADER header->spare1_pusVersion_spare2 = 0x10; header->serviceType = TM_TYPE_LFR_SCIENCE; // service type header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype header->destinationID = TM_DESTINATION_ID_GROUND; // AUXILIARY DATA HEADER header->sid = sid; header->biaStatusInfo = 0x00; header->time[0] = 0x00; header->time[0] = 0x00; header->time[0] = 0x00; header->time[0] = 0x00; header->time[0] = 0x00; header->time[0] = 0x00; header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB } void reset_spectral_matrix_regs( void ) { /** This function resets the spectral matrices module registers. * * The registers affected by this function are located at the following offset addresses: * * - 0x00 config * - 0x04 status * - 0x08 matrixF0_Address0 * - 0x10 matrixFO_Address1 * - 0x14 matrixF1_Address * - 0x18 matrixF2_Address * */ spectral_matrix_regs->config = 0x00; spectral_matrix_regs->status = 0x00; spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address; spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address; spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address; spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address; } //****************** // general functions void set_time( unsigned char *time, unsigned int coarseTime, unsigned int fineTime ) { time[0] = (unsigned char) (coarseTime>>24); time[1] = (unsigned char) (coarseTime>>16); time[2] = (unsigned char) (coarseTime>>8); time[3] = (unsigned char) (coarseTime); time[4] = (unsigned char) (fineTime>>8); time[5] = (unsigned char) (fineTime); }