/** Functions and tasks related to TeleCommand handling. * * @file * @author P. LEROY * * A group of functions to handle TeleCommands:\n * action launching\n * TC parsing\n * ... * */ #include "tc_handler.h" //*********** // RTEMS TASK rtems_task actn_task( rtems_task_argument unused ) { /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands. * * @param unused is the starting argument of the RTEMS task * * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending * on the incoming TeleCommand. * */ int result; rtems_status_code status; // RTEMS status code ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task size_t size; // size of the incoming TC packet unsigned char subtype; // subtype of the current TC packet unsigned char time[6]; rtems_id queue_rcv_id; rtems_id queue_snd_id; status = get_message_queue_id_recv( &queue_rcv_id ); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status) } status = get_message_queue_id_send( &queue_snd_id ); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status) } result = LFR_SUCCESSFUL; subtype = 0; // subtype of the current TC packet BOOT_PRINTF("in ACTN *** \n") while(1) { status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size, RTEMS_WAIT, RTEMS_NO_TIMEOUT); getTime( time ); // set time to the current time if (status!=RTEMS_SUCCESSFUL) { PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status) } else { subtype = TC.serviceSubType; switch(subtype) { case TC_SUBTYPE_RESET: result = action_reset( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id, time ); break; // case TC_SUBTYPE_LOAD_COMM: result = action_load_common_par( &TC ); close_action( &TC, result, queue_snd_id, time ); break; // case TC_SUBTYPE_LOAD_NORM: result = action_load_normal_par( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id, time ); break; // case TC_SUBTYPE_LOAD_BURST: result = action_load_burst_par( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id, time ); break; // case TC_SUBTYPE_LOAD_SBM1: result = action_load_sbm1_par( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id, time ); break; // case TC_SUBTYPE_LOAD_SBM2: result = action_load_sbm2_par( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id, time ); break; // case TC_SUBTYPE_DUMP: result = action_dump_par( queue_snd_id ); close_action( &TC, result, queue_snd_id, time ); break; // case TC_SUBTYPE_ENTER: result = action_enter_mode( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id, time ); break; // case TC_SUBTYPE_UPDT_INFO: result = action_update_info( &TC, queue_snd_id ); close_action( &TC, result, queue_snd_id, time ); break; // case TC_SUBTYPE_EN_CAL: result = action_enable_calibration( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id, time ); break; // case TC_SUBTYPE_DIS_CAL: result = action_disable_calibration( &TC, queue_snd_id, time ); close_action( &TC, result, queue_snd_id, time ); break; // case TC_SUBTYPE_UPDT_TIME: result = action_update_time( &TC ); close_action( &TC, result, queue_snd_id, time ); break; // default: break; } } } } //*********** // TC ACTIONS int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time) { /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received. * * @param TC points to the TeleCommand packet that is being processed * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver * */ send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time ); return LFR_DEFAULT; } int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time) { /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received. * * @param TC points to the TeleCommand packet that is being processed * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver * */ rtems_status_code status; unsigned char requestedMode; requestedMode = TC->dataAndCRC[1]; if ( (requestedMode != LFR_MODE_STANDBY) && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST) && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) ) { status = RTEMS_UNSATISFIED; send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_LFR_MODE, requestedMode, time ); } else { printf("try to enter mode %d\n", requestedMode); #ifdef PRINT_TASK_STATISTICS if (requestedMode != LFR_MODE_STANDBY) { rtems_cpu_usage_reset(); maxCount = 0; } #endif status = transition_validation(requestedMode); if ( status == LFR_SUCCESSFUL ) { if ( lfrCurrentMode != LFR_MODE_STANDBY) { status = stop_current_mode(); } if (status != RTEMS_SUCCESSFUL) { PRINTF("ERR *** in action_enter *** stop_current_mode\n") } status = enter_mode( requestedMode ); } else { PRINTF("ERR *** in action_enter *** transition rejected\n") send_tm_lfr_tc_exe_not_executable( TC, queue_id, time ); } } return status; } int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id) { /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received. * * @param TC points to the TeleCommand packet that is being processed * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver * * @return LFR directive status code: * - LFR_DEFAULT * - LFR_SUCCESSFUL * */ unsigned int val; int result; result = LFR_SUCCESSFUL; val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1]; val++; housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8); housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val); return result; } int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time) { /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received. * * @param TC points to the TeleCommand packet that is being processed * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver * */ int result; unsigned char lfrMode; result = LFR_DEFAULT; lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4; if ( (lfrMode == LFR_MODE_STANDBY) || (lfrMode == LFR_MODE_BURST) || (lfrMode == LFR_MODE_SBM2) ) { send_tm_lfr_tc_exe_not_executable( TC, queue_id, time ); result = LFR_DEFAULT; } else { send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time ); result = LFR_DEFAULT; } return result; } int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time) { /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received. * * @param TC points to the TeleCommand packet that is being processed * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver * */ int result; unsigned char lfrMode; result = LFR_DEFAULT; lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4; if ( (lfrMode == LFR_MODE_STANDBY) || (lfrMode == LFR_MODE_BURST) || (lfrMode == LFR_MODE_SBM2) ) { send_tm_lfr_tc_exe_not_executable( TC, queue_id, time ); result = LFR_DEFAULT; } else { send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time ); result = LFR_DEFAULT; } return result; } int action_update_time(ccsdsTelecommandPacket_t *TC) { /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received. * * @param TC points to the TeleCommand packet that is being processed * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver * * @return LFR_SUCCESSFUL * */ unsigned int val; time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24) + (TC->dataAndCRC[1] << 16) + (TC->dataAndCRC[2] << 8) + TC->dataAndCRC[3]; val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1]; val++; housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8); housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val); time_management_regs->ctrl = time_management_regs->ctrl | 1; return LFR_SUCCESSFUL; } //******************* // ENTERING THE MODES int transition_validation(unsigned char requestedMode) { /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE. * * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE * * @return LFR directive status codes: * - LFR_SUCCESSFUL - the transition is authorized * - LFR_DEFAULT - the transition is not authorized * */ int status; switch (requestedMode) { case LFR_MODE_STANDBY: if ( lfrCurrentMode == LFR_MODE_STANDBY ) { status = LFR_DEFAULT; } else { status = LFR_SUCCESSFUL; } break; case LFR_MODE_NORMAL: if ( lfrCurrentMode == LFR_MODE_NORMAL ) { status = LFR_DEFAULT; } else { status = LFR_SUCCESSFUL; } break; case LFR_MODE_BURST: if ( lfrCurrentMode == LFR_MODE_BURST ) { status = LFR_DEFAULT; } else { status = LFR_SUCCESSFUL; } break; case LFR_MODE_SBM1: if ( lfrCurrentMode == LFR_MODE_SBM1 ) { status = LFR_DEFAULT; } else { status = LFR_SUCCESSFUL; } break; case LFR_MODE_SBM2: if ( lfrCurrentMode == LFR_MODE_SBM2 ) { status = LFR_DEFAULT; } else { status = LFR_SUCCESSFUL; } break; default: status = LFR_DEFAULT; break; } return status; } int stop_current_mode() { /** This function stops the current mode by masking interrupt lines and suspending science tasks. * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - task restarted successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_ALREADY_SUSPENDED - task already suspended * */ rtems_status_code status; status = RTEMS_SUCCESSFUL; #ifdef GSA LEON_Mask_interrupt( IRQ_WF ); // mask waveform interrupt (coming from the timer VHDL IP) LEON_Clear_interrupt( IRQ_WF ); // clear waveform interrupt (coming from the timer VHDL IP) timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_WF_SIMULATOR ); #else // mask interruptions LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // mask spectral matrix interrupt // reset registers reset_wfp_burst_enable(); // reset burst and enable bits reset_wfp_status(); // reset all the status bits // creal interruptions LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectarl matrix interrupt #endif //********************** // suspend several tasks if (lfrCurrentMode != LFR_MODE_STANDBY) { status = suspend_science_tasks(); } if (status != RTEMS_SUCCESSFUL) { PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status) } return status; } int enter_mode(unsigned char mode ) { /** This function is launched after a mode transition validation. * * @param mode is the mode in which LFR will be put. * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - the mode has been entered successfully * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully * */ rtems_status_code status; status = RTEMS_UNSATISFIED; housekeeping_packet.lfr_status_word[0] = (unsigned char) ((mode << 4) + 0x0d); updateLFRCurrentMode(); switch(mode){ case LFR_MODE_STANDBY: status = enter_standby_mode( ); break; case LFR_MODE_NORMAL: status = enter_normal_mode( ); break; case LFR_MODE_BURST: status = enter_burst_mode( ); break; case LFR_MODE_SBM1: status = enter_sbm1_mode( ); break; case LFR_MODE_SBM2: status = enter_sbm2_mode( ); break; default: status = RTEMS_UNSATISFIED; } if (status != RTEMS_SUCCESSFUL) { PRINTF("in enter_mode *** ERR\n") status = RTEMS_UNSATISFIED; } return status; } int enter_standby_mode() { /** This function is used to enter the STANDBY mode. * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - the mode has been entered successfully * */ PRINTF1("maxCount = %d\n", maxCount) #ifdef PRINT_TASK_STATISTICS rtems_cpu_usage_report(); #endif #ifdef PRINT_STACK_REPORT rtems_stack_checker_report_usage(); #endif return LFR_SUCCESSFUL; } int enter_normal_mode() { rtems_status_code status; status = restart_science_tasks(); #ifdef GSA timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_WF_SIMULATOR ); timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR ); LEON_Clear_interrupt( IRQ_WF ); LEON_Unmask_interrupt( IRQ_WF ); // set_local_nb_interrupt_f0_MAX(); LEON_Clear_interrupt( IRQ_SM ); // the IRQ_SM seems to be incompatible with the IRQ_WF on the xilinx board LEON_Unmask_interrupt( IRQ_SM ); #else //**************** // waveform picker reset_waveform_picker_regs(); set_wfp_burst_enable_register(LFR_MODE_NORMAL); LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER ); //**************** // spectral matrix #endif return status; } int enter_burst_mode() { /** This function is used to enter the STANDBY mode. * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - the mode has been entered successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_INCORRECT_STATE - task never started * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task * */ rtems_status_code status; status = restart_science_tasks(); #ifdef GSA LEON_Unmask_interrupt( IRQ_SM ); #else reset_waveform_picker_regs(); set_wfp_burst_enable_register(LFR_MODE_BURST); LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER ); #endif return status; } int enter_sbm1_mode() { /** This function is used to enter the SBM1 mode. * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - the mode has been entered successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_INCORRECT_STATE - task never started * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task * */ rtems_status_code status; status = restart_science_tasks(); set_local_sbm1_nb_cwf_max(); reset_local_sbm1_nb_cwf_sent(); #ifdef GSA LEON_Unmask_interrupt( IRQ_SM ); #else reset_waveform_picker_regs(); set_wfp_burst_enable_register(LFR_MODE_SBM1); LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER ); #endif return status; } int enter_sbm2_mode() { /** This function is used to enter the SBM2 mode. * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - the mode has been entered successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_INCORRECT_STATE - task never started * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task * */ rtems_status_code status; status = restart_science_tasks(); set_local_sbm2_nb_cwf_max(); reset_local_sbm2_nb_cwf_sent(); #ifdef GSA LEON_Unmask_interrupt( IRQ_SM ); #else reset_waveform_picker_regs(); set_wfp_burst_enable_register(LFR_MODE_SBM2); LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER ); #endif return status; } int restart_science_tasks() { /** This function is used to restart all science tasks. * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - task restarted successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_INCORRECT_STATE - task never started * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task * * Science tasks are AVF0, BPF0, WFRM, CWF3, CW2, CWF1 * */ rtems_status_code status[6]; rtems_status_code ret; ret = RTEMS_SUCCESSFUL; status[0] = rtems_task_restart( Task_id[TASKID_AVF0], 1 ); if (status[0] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** 0 ERR %d\n", status[0]) } status[1] = rtems_task_restart( Task_id[TASKID_BPF0],1 ); if (status[1] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** 1 ERR %d\n", status[1]) } status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 ); if (status[2] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** 2 ERR %d\n", status[2]) } status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 ); if (status[3] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** 3 ERR %d\n", status[3]) } status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 ); if (status[4] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** 4 ERR %d\n", status[4]) } status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 ); if (status[5] != RTEMS_SUCCESSFUL) { PRINTF1("in restart_science_task *** 5 ERR %d\n", status[5]) } if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) || (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) || (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ) { ret = RTEMS_UNSATISFIED; } return ret; } int suspend_science_tasks() { /** This function suspends the science tasks. * * @return RTEMS directive status codes: * - RTEMS_SUCCESSFUL - task restarted successfully * - RTEMS_INVALID_ID - task id invalid * - RTEMS_ALREADY_SUSPENDED - task already suspended * */ rtems_status_code status; status = rtems_task_suspend( Task_id[TASKID_AVF0] ); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status) } if (status == RTEMS_SUCCESSFUL) // suspend BPF0 { status = rtems_task_suspend( Task_id[TASKID_BPF0] ); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in suspend_science_task *** BPF0 ERR %d\n", status) } } if (status == RTEMS_SUCCESSFUL) // suspend WFRM { status = rtems_task_suspend( Task_id[TASKID_WFRM] ); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status) } } if (status == RTEMS_SUCCESSFUL) // suspend CWF3 { status = rtems_task_suspend( Task_id[TASKID_CWF3] ); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status) } } if (status == RTEMS_SUCCESSFUL) // suspend CWF2 { status = rtems_task_suspend( Task_id[TASKID_CWF2] ); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status) } } if (status == RTEMS_SUCCESSFUL) // suspend CWF1 { status = rtems_task_suspend( Task_id[TASKID_CWF1] ); if (status != RTEMS_SUCCESSFUL) { PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status) } } return status; } //**************** // CLOSING ACTIONS void update_last_TC_exe(ccsdsTelecommandPacket_t *TC, unsigned char *time) { /** This function is used to update the HK packets statistics after a successful TC execution. * * @param TC points to the TC being processed * @param time is the time used to date the TC execution * */ housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0]; housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1]; housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00; housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType; housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00; housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType; housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0]; housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1]; housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2]; housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3]; housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4]; housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5]; } void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char *time) { /** This function is used to update the HK packets statistics after a TC rejection. * * @param TC points to the TC being processed * @param time is the time used to date the TC rejection * */ housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0]; housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1]; housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00; housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType; housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00; housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType; housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0]; housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1]; housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2]; housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3]; housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4]; housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5]; } void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id, unsigned char *time) { /** This function is the last step of the TC execution workflow. * * @param TC points to the TC being processed * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT) * @param queue_id is the id of the RTEMS message queue used to send TM packets * @param time is the time used to date the TC execution * */ unsigned int val = 0; if (result == LFR_SUCCESSFUL) { if ( !( (TC->serviceType==TC_TYPE_TIME) && (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) ) && !( (TC->serviceType==TC_TYPE_GEN) && (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO)) ) { send_tm_lfr_tc_exe_success( TC, queue_id, time ); } update_last_TC_exe( TC, time ); val = housekeeping_packet.hk_dpu_exe_tc_lfr_cnt[0] * 256 + housekeeping_packet.hk_dpu_exe_tc_lfr_cnt[1]; val++; housekeeping_packet.hk_dpu_exe_tc_lfr_cnt[0] = (unsigned char) (val >> 8); housekeeping_packet.hk_dpu_exe_tc_lfr_cnt[1] = (unsigned char) (val); } else { update_last_TC_rej( TC, time ); val = housekeeping_packet.hk_dpu_rej_tc_lfr_cnt[0] * 256 + housekeeping_packet.hk_dpu_rej_tc_lfr_cnt[1]; val++; housekeeping_packet.hk_dpu_rej_tc_lfr_cnt[0] = (unsigned char) (val >> 8); housekeeping_packet.hk_dpu_rej_tc_lfr_cnt[1] = (unsigned char) (val); } } //*************************** // Interrupt Service Routines rtems_isr commutation_isr1( rtems_vector_number vector ) { if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) { printf("In commutation_isr1 *** Error sending event to DUMB\n"); } } rtems_isr commutation_isr2( rtems_vector_number vector ) { if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) { printf("In commutation_isr2 *** Error sending event to DUMB\n"); } } //**************** // OTHER FUNCTIONS void updateLFRCurrentMode() { /** This function updates the value of the global variable lfrCurrentMode. * * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running. * */ // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4; }