##// END OF EJS Templates
Add basic Meson build support...
Add basic Meson build support This should ease building both FSW and unit tests. Meson has a better support for building both corss and native binaries at the same time.

File last commit:

r405:f3243196bdc5 3.2.0.24 R3++
r407:244510f22990 tip R3.3
Show More
tc_handler.c
1694 lines | 54.1 KiB | text/x-c | CLexer
/*------------------------------------------------------------------------------
-- Solar Orbiter's Low Frequency Receiver Flight Software (LFR FSW),
-- This file is a part of the LFR FSW
-- Copyright (C) 2012-2018, Plasma Physics Laboratory - CNRS
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-------------------------------------------------------------------------------*/
/*-- Author : Paul Leroy
-- Contact : Alexis Jeandet
-- Mail : alexis.jeandet@lpp.polytechnique.fr
----------------------------------------------------------------------------*/
/** Functions and tasks related to TeleCommand handling.
*
* @file
* @author P. LEROY
*
* A group of functions to handle TeleCommands:\n
* action launching\n
* TC parsing\n
* ...
*
*/
#include "tc_handler.h"
#include "math.h"
//***********
// RTEMS TASK
rtems_task actn_task( rtems_task_argument unused )
{
/** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
*
* @param unused is the starting argument of the RTEMS task
*
* The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
* on the incoming TeleCommand.
*
*/
int result;
rtems_status_code status; // RTEMS status code
ccsdsTelecommandPacket_t __attribute__((aligned(4))) TC; // TC sent to the ACTN task
size_t size; // size of the incoming TC packet
unsigned char subtype; // subtype of the current TC packet
unsigned char time[BYTES_PER_TIME];
rtems_id queue_rcv_id;
rtems_id queue_snd_id;
memset(&TC, 0, sizeof(ccsdsTelecommandPacket_t));
size = 0;
queue_rcv_id = RTEMS_ID_NONE;
queue_snd_id = RTEMS_ID_NONE;
status = get_message_queue_id_recv( &queue_rcv_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
}
status = get_message_queue_id_send( &queue_snd_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
}
result = LFR_SUCCESSFUL;
subtype = 0; // subtype of the current TC packet
BOOT_PRINTF("in ACTN *** \n");
while(1)
{
status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
RTEMS_WAIT, RTEMS_NO_TIMEOUT);
getTime( time ); // set time to the current time
if (status!=RTEMS_SUCCESSFUL)
{
PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
}
else
{
subtype = TC.serviceSubType;
switch(subtype)
{
case TC_SUBTYPE_RESET:
result = action_reset( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
case TC_SUBTYPE_LOAD_COMM:
result = action_load_common_par( &TC );
close_action( &TC, result, queue_snd_id );
break;
case TC_SUBTYPE_LOAD_NORM:
result = action_load_normal_par( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
case TC_SUBTYPE_LOAD_BURST:
result = action_load_burst_par( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
case TC_SUBTYPE_LOAD_SBM1:
result = action_load_sbm1_par( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
case TC_SUBTYPE_LOAD_SBM2:
result = action_load_sbm2_par( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
case TC_SUBTYPE_DUMP:
result = action_dump_par( &TC, queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
case TC_SUBTYPE_ENTER:
result = action_enter_mode( &TC, queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
case TC_SUBTYPE_UPDT_INFO:
result = action_update_info( &TC, queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
case TC_SUBTYPE_EN_CAL:
result = action_enable_calibration( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
case TC_SUBTYPE_DIS_CAL:
result = action_disable_calibration( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
case TC_SUBTYPE_LOAD_K:
result = action_load_kcoefficients( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
case TC_SUBTYPE_DUMP_K:
result = action_dump_kcoefficients( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
case TC_SUBTYPE_LOAD_FBINS:
result = action_load_fbins_mask( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
case TC_SUBTYPE_LOAD_FILTER_PAR:
result = action_load_filter_par( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
case TC_SUBTYPE_UPDT_TIME:
result = action_update_time( &TC );
close_action( &TC, result, queue_snd_id );
break;
default:
break;
}
}
}
}
//***********
// TC ACTIONS
int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
PRINTF("this is the end!!!\n");
#ifdef GCOV_ENABLED
#ifndef GCOV_USE_EXIT
extern void gcov_exit (void);
gcov_exit();
#endif
#endif
exit(0);
#ifdef ENABLE_DEAD_CODE
send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
#endif
return LFR_DEFAULT;
}
int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
{
/** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
rtems_status_code status;
unsigned char requestedMode;
unsigned int transitionCoarseTime;
unsigned char * bytePosPtr;
bytePosPtr = (unsigned char *) &TC->packetID;
requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
copyInt32ByChar( (char*) &transitionCoarseTime, &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
transitionCoarseTime = transitionCoarseTime & COARSE_TIME_MASK;
status = check_mode_value( requestedMode );
if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
{
send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
}
else // the mode value is valid, check the transition
{
status = check_mode_transition(requestedMode);
if (status != LFR_SUCCESSFUL)
{
PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
send_tm_lfr_tc_exe_not_executable( TC, queue_id );
}
}
if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
{
status = check_transition_date( transitionCoarseTime );
if (status != LFR_SUCCESSFUL)
{
PRINTF("ERR *** in action_enter_mode *** check_transition_date\n");
send_tm_lfr_tc_exe_not_executable(TC, queue_id );
}
}
if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
{
PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
switch(requestedMode)
{
case LFR_MODE_STANDBY:
status = enter_mode_standby();
break;
case LFR_MODE_NORMAL:
status = enter_mode_normal( transitionCoarseTime );
break;
case LFR_MODE_BURST:
status = enter_mode_burst( transitionCoarseTime );
break;
case LFR_MODE_SBM1:
status = enter_mode_sbm1( transitionCoarseTime );
break;
case LFR_MODE_SBM2:
status = enter_mode_sbm2( transitionCoarseTime );
break;
default:
break;
}
if (status != RTEMS_SUCCESSFUL)
{
status = LFR_EXE_ERROR;
}
}
return status;
}
int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
{
/** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
* @return LFR directive status code:
* - LFR_DEFAULT
* - LFR_SUCCESSFUL
*
*/
unsigned int val;
unsigned int status;
unsigned char mode;
unsigned char * bytePosPtr;
int pos;
float value;
pos = INIT_CHAR;
value = INIT_FLOAT;
status = LFR_DEFAULT;
bytePosPtr = (unsigned char *) &TC->packetID;
// check LFR mode
mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & BITS_LFR_MODE) >> SHIFT_LFR_MODE;
status = check_update_info_hk_lfr_mode( mode );
if (status == LFR_SUCCESSFUL) // check TDS mode
{
mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_TDS_MODE) >> SHIFT_TDS_MODE;
status = check_update_info_hk_tds_mode( mode );
}
if (status == LFR_SUCCESSFUL) // check THR mode
{
mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_THR_MODE);
status = check_update_info_hk_thr_mode( mode );
}
if (status == LFR_SUCCESSFUL) // check reaction wheels frequencies
{
status = check_all_sy_lfr_rw_f(TC, &pos, &value);
}
// if the parameters checking succeeds, udpate all parameters
if (status == LFR_SUCCESSFUL)
{
// pa_bia_status_info
// => pa_bia_mode_mux_set 3 bits
// => pa_bia_mode_hv_enabled 1 bit
// => pa_bia_mode_bias1_enabled 1 bit
// => pa_bia_mode_bias2_enabled 1 bit
// => pa_bia_mode_bias3_enabled 1 bit
// => pa_bia_on_off (cp_dpu_bias_on_off)
pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & BITS_BIA; // [1111 1110]
pa_bia_status_info = pa_bia_status_info
| (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 1);
// REACTION_WHEELS_FREQUENCY, copy the incoming parameters in the local variable (to be copied in HK packets)
getReactionWheelsFrequencies( TC );
set_hk_lfr_sc_rw_f_flags();
build_sy_lfr_rw_masks();
// once the masks are built, they have to be merged with the fbins_mask
merge_fbins_masks();
// increase the TC_LFR_UPDATE_INFO counter
if (status == LFR_SUCCESSFUL) // if the parameter check is successful
{
val = (housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * CONST_256)
+ housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
val++;
housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
}
}
return status;
}
int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
int result;
result = LFR_DEFAULT;
setCalibration( true );
result = LFR_SUCCESSFUL;
return result;
}
int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
int result;
result = LFR_DEFAULT;
setCalibration( false );
result = LFR_SUCCESSFUL;
return result;
}
int action_update_time(ccsdsTelecommandPacket_t *TC)
{
/** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
* @return LFR_SUCCESSFUL
*
*/
unsigned int val;
time_management_regs->coarse_time_load = (TC->dataAndCRC[BYTE_0] << SHIFT_3_BYTES)
+ (TC->dataAndCRC[BYTE_1] << SHIFT_2_BYTES)
+ (TC->dataAndCRC[BYTE_2] << SHIFT_1_BYTE)
+ TC->dataAndCRC[BYTE_3];
val = (housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * CONST_256)
+ housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
val++;
housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
oneTcLfrUpdateTimeReceived = 1;
return LFR_SUCCESSFUL;
}
//*******************
// ENTERING THE MODES
int check_mode_value( unsigned char requestedMode )
{
int status;
status = LFR_DEFAULT;
if ( (requestedMode != LFR_MODE_STANDBY)
&& (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
&& (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
{
status = LFR_DEFAULT;
}
else
{
status = LFR_SUCCESSFUL;
}
return status;
}
int check_mode_transition( unsigned char requestedMode )
{
/** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
*
* @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
*
* @return LFR directive status codes:
* - LFR_SUCCESSFUL - the transition is authorized
* - LFR_DEFAULT - the transition is not authorized
*
*/
int status;
switch (requestedMode)
{
case LFR_MODE_STANDBY:
if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
status = LFR_DEFAULT;
}
else
{
status = LFR_SUCCESSFUL;
}
break;
case LFR_MODE_NORMAL:
if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
status = LFR_DEFAULT;
}
else {
status = LFR_SUCCESSFUL;
}
break;
case LFR_MODE_BURST:
if ( lfrCurrentMode == LFR_MODE_BURST ) {
status = LFR_DEFAULT;
}
else {
status = LFR_SUCCESSFUL;
}
break;
case LFR_MODE_SBM1:
if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
status = LFR_DEFAULT;
}
else {
status = LFR_SUCCESSFUL;
}
break;
case LFR_MODE_SBM2:
if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
status = LFR_DEFAULT;
}
else {
status = LFR_SUCCESSFUL;
}
break;
default:
status = LFR_DEFAULT;
break;
}
return status;
}
void update_last_valid_transition_date( unsigned int transitionCoarseTime )
{
if (transitionCoarseTime == 0)
{
lastValidEnterModeTime = time_management_regs->coarse_time + 1;
PRINTF1("lastValidEnterModeTime = 0x%x (transitionCoarseTime = 0 => coarse_time+1)\n", lastValidEnterModeTime);
}
else
{
lastValidEnterModeTime = transitionCoarseTime;
PRINTF1("lastValidEnterModeTime = 0x%x\n", transitionCoarseTime);
}
}
int check_transition_date( unsigned int transitionCoarseTime )
{
int status;
unsigned int localCoarseTime;
unsigned int deltaCoarseTime;
status = LFR_SUCCESSFUL;
if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
{
status = LFR_SUCCESSFUL;
}
else
{
localCoarseTime = time_management_regs->coarse_time & COARSE_TIME_MASK;
PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime);
if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
{
status = LFR_DEFAULT;
PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n");
}
if (status == LFR_SUCCESSFUL)
{
deltaCoarseTime = transitionCoarseTime - localCoarseTime;
if ( deltaCoarseTime > MAX_DELTA_COARSE_TIME ) // SSS-CP-EQS-323
{
status = LFR_DEFAULT;
PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
}
}
}
return status;
}
int restart_asm_activities( unsigned char lfrRequestedMode )
{
rtems_status_code status;
status = stop_spectral_matrices();
thisIsAnASMRestart = 1;
status = restart_asm_tasks( lfrRequestedMode );
launch_spectral_matrix();
return status;
}
int stop_spectral_matrices( void )
{
/** This function stops and restarts the current mode average spectral matrices activities.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_ALREADY_SUSPENDED - task already suspended
*
*/
rtems_status_code status;
status = RTEMS_SUCCESSFUL;
// (1) mask interruptions
LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // mask spectral matrix interrupt
// (2) reset spectral matrices registers
set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
reset_sm_status();
// (3) clear interruptions
LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
// suspend several tasks
if (lfrCurrentMode != LFR_MODE_STANDBY) {
status = suspend_asm_tasks();
}
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
}
return status;
}
int stop_current_mode( void )
{
/** This function stops the current mode by masking interrupt lines and suspending science tasks.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_ALREADY_SUSPENDED - task already suspended
*
*/
rtems_status_code status;
status = RTEMS_SUCCESSFUL;
// (1) mask interruptions
LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
// (2) reset waveform picker registers
reset_wfp_burst_enable(); // reset burst and enable bits
reset_wfp_status(); // reset all the status bits
// (3) reset spectral matrices registers
set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
reset_sm_status();
// reset lfr VHDL module
reset_lfr();
reset_extractSWF(); // reset the extractSWF flag to false
// (4) clear interruptions
LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
// suspend several tasks
if (lfrCurrentMode != LFR_MODE_STANDBY) {
status = suspend_science_tasks();
}
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
}
return status;
}
int enter_mode_standby( void )
{
/** This function is used to put LFR in the STANDBY mode.
*
* @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_INCORRECT_STATE - task never started
* - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
*
* The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
* is immediate.
*
*/
int status;
status = stop_current_mode(); // STOP THE CURRENT MODE
#ifdef PRINT_TASK_STATISTICS
rtems_cpu_usage_report();
#endif
#ifdef PRINT_STACK_REPORT
PRINTF("stack report selected\n")
rtems_stack_checker_report_usage();
#endif
return status;
}
int enter_mode_normal( unsigned int transitionCoarseTime )
{
/** This function is used to start the NORMAL mode.
*
* @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_INCORRECT_STATE - task never started
* - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
*
* The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
* the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
*
*/
int status;
#ifdef PRINT_TASK_STATISTICS
rtems_cpu_usage_reset();
#endif
status = RTEMS_UNSATISFIED;
switch( lfrCurrentMode )
{
case LFR_MODE_STANDBY:
status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
{
launch_spectral_matrix( );
launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
}
break;
case LFR_MODE_BURST:
status = stop_current_mode(); // stop the current mode
status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
{
launch_spectral_matrix( );
launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
}
break;
case LFR_MODE_SBM1:
status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
update_last_valid_transition_date( transitionCoarseTime );
break;
case LFR_MODE_SBM2:
status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
update_last_valid_transition_date( transitionCoarseTime );
break;
default:
break;
}
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
status = RTEMS_UNSATISFIED;
}
return status;
}
int enter_mode_burst( unsigned int transitionCoarseTime )
{
/** This function is used to start the BURST mode.
*
* @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_INCORRECT_STATE - task never started
* - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
*
* The way the BURST mode is started does not depend on the LFR current mode.
*
*/
int status;
#ifdef PRINT_TASK_STATISTICS
rtems_cpu_usage_reset();
#endif
status = stop_current_mode(); // stop the current mode
status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
{
launch_spectral_matrix( );
launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
}
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
status = RTEMS_UNSATISFIED;
}
return status;
}
int enter_mode_sbm1( unsigned int transitionCoarseTime )
{
/** This function is used to start the SBM1 mode.
*
* @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_INCORRECT_STATE - task never started
* - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
*
* The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
* the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
* cases, the acquisition is completely restarted.
*
*/
int status;
#ifdef PRINT_TASK_STATISTICS
rtems_cpu_usage_reset();
#endif
status = RTEMS_UNSATISFIED;
switch( lfrCurrentMode )
{
case LFR_MODE_STANDBY:
status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
{
launch_spectral_matrix( );
launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
}
break;
case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
status = restart_asm_activities( LFR_MODE_SBM1 );
status = LFR_SUCCESSFUL;
update_last_valid_transition_date( transitionCoarseTime );
break;
case LFR_MODE_BURST:
status = stop_current_mode(); // stop the current mode
status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
{
launch_spectral_matrix( );
launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
}
break;
case LFR_MODE_SBM2:
status = restart_asm_activities( LFR_MODE_SBM1 );
status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
update_last_valid_transition_date( transitionCoarseTime );
break;
default:
break;
}
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status);
status = RTEMS_UNSATISFIED;
}
return status;
}
int enter_mode_sbm2( unsigned int transitionCoarseTime )
{
/** This function is used to start the SBM2 mode.
*
* @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_INCORRECT_STATE - task never started
* - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
*
* The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
* the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
* cases, the acquisition is completely restarted.
*
*/
int status;
#ifdef PRINT_TASK_STATISTICS
rtems_cpu_usage_reset();
#endif
status = RTEMS_UNSATISFIED;
switch( lfrCurrentMode )
{
case LFR_MODE_STANDBY:
status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
{
launch_spectral_matrix( );
launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
}
break;
case LFR_MODE_NORMAL:
status = restart_asm_activities( LFR_MODE_SBM2 );
status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
update_last_valid_transition_date( transitionCoarseTime );
break;
case LFR_MODE_BURST:
status = stop_current_mode(); // stop the current mode
status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
{
launch_spectral_matrix( );
launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
}
break;
case LFR_MODE_SBM1:
status = restart_asm_activities( LFR_MODE_SBM2 );
status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
update_last_valid_transition_date( transitionCoarseTime );
break;
default:
break;
}
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
status = RTEMS_UNSATISFIED;
}
return status;
}
int restart_science_tasks( unsigned char lfrRequestedMode )
{
/** This function is used to restart all science tasks.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_INCORRECT_STATE - task never started
* - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
*
* Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
*
*/
rtems_status_code status[NB_SCIENCE_TASKS];
rtems_status_code ret;
ret = RTEMS_SUCCESSFUL;
status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
if (status[STATUS_0] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
}
status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
if (status[STATUS_1] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
}
status[STATUS_2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
if (status[STATUS_2] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[STATUS_2])
}
status[STATUS_3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
if (status[STATUS_3] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[STATUS_3])
}
status[STATUS_4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
if (status[STATUS_4] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[STATUS_4])
}
status[STATUS_5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
if (status[STATUS_5] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[STATUS_5])
}
status[STATUS_6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
if (status[STATUS_6] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_6])
}
status[STATUS_7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
if (status[STATUS_7] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_7])
}
status[STATUS_8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
if (status[STATUS_8] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_8])
}
status[STATUS_9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
if (status[STATUS_9] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_9])
}
if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
(status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
(status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) ||
(status[STATUS_6] != RTEMS_SUCCESSFUL) || (status[STATUS_7] != RTEMS_SUCCESSFUL) ||
(status[STATUS_8] != RTEMS_SUCCESSFUL) || (status[STATUS_9] != RTEMS_SUCCESSFUL) )
{
ret = RTEMS_UNSATISFIED;
}
return ret;
}
int restart_asm_tasks( unsigned char lfrRequestedMode )
{
/** This function is used to restart average spectral matrices tasks.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_INCORRECT_STATE - task never started
* - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
*
* ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
*
*/
rtems_status_code status[NB_ASM_TASKS];
rtems_status_code ret;
ret = RTEMS_SUCCESSFUL;
status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
if (status[STATUS_0] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
}
status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
if (status[STATUS_1] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
}
status[STATUS_2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
if (status[STATUS_2] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_2])
}
status[STATUS_3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
if (status[STATUS_3] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_3])
}
status[STATUS_4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
if (status[STATUS_4] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_4])
}
status[STATUS_5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
if (status[STATUS_5] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_5])
}
if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
(status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
(status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) )
{
ret = RTEMS_UNSATISFIED;
}
return ret;
}
int suspend_science_tasks( void )
{
/** This function suspends the science tasks.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_ALREADY_SUSPENDED - task already suspended
*
*/
rtems_status_code status;
PRINTF("in suspend_science_tasks\n")
status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
{
PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
}
else
{
status = RTEMS_SUCCESSFUL;
}
if (status == RTEMS_SUCCESSFUL) // suspend PRC0
{
status = rtems_task_suspend( Task_id[TASKID_PRC0] );
if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
{
PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
}
else
{
status = RTEMS_SUCCESSFUL;
}
}
if (status == RTEMS_SUCCESSFUL) // suspend AVF1
{
status = rtems_task_suspend( Task_id[TASKID_AVF1] );
if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
{
PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
}
else
{
status = RTEMS_SUCCESSFUL;
}
}
if (status == RTEMS_SUCCESSFUL) // suspend PRC1
{
status = rtems_task_suspend( Task_id[TASKID_PRC1] );
if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
{
PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
}
else
{
status = RTEMS_SUCCESSFUL;
}
}
if (status == RTEMS_SUCCESSFUL) // suspend AVF2
{
status = rtems_task_suspend( Task_id[TASKID_AVF2] );
if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
{
PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
}
else
{
status = RTEMS_SUCCESSFUL;
}
}
if (status == RTEMS_SUCCESSFUL) // suspend PRC2
{
status = rtems_task_suspend( Task_id[TASKID_PRC2] );
if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
{
PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
}
else
{
status = RTEMS_SUCCESSFUL;
}
}
if (status == RTEMS_SUCCESSFUL) // suspend WFRM
{
status = rtems_task_suspend( Task_id[TASKID_WFRM] );
if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
{
PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
}
else
{
status = RTEMS_SUCCESSFUL;
}
}
if (status == RTEMS_SUCCESSFUL) // suspend CWF3
{
status = rtems_task_suspend( Task_id[TASKID_CWF3] );
if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
{
PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
}
else
{
status = RTEMS_SUCCESSFUL;
}
}
if (status == RTEMS_SUCCESSFUL) // suspend CWF2
{
status = rtems_task_suspend( Task_id[TASKID_CWF2] );
if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
{
PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
}
else
{
status = RTEMS_SUCCESSFUL;
}
}
if (status == RTEMS_SUCCESSFUL) // suspend CWF1
{
status = rtems_task_suspend( Task_id[TASKID_CWF1] );
if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
{
PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
}
else
{
status = RTEMS_SUCCESSFUL;
}
}
return status;
}
int suspend_asm_tasks( void )
{
/** This function suspends the science tasks.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_ALREADY_SUSPENDED - task already suspended
*
*/
rtems_status_code status;
PRINTF("in suspend_science_tasks\n")
status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
{
PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
}
else
{
status = RTEMS_SUCCESSFUL;
}
if (status == RTEMS_SUCCESSFUL) // suspend PRC0
{
status = rtems_task_suspend( Task_id[TASKID_PRC0] );
if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
{
PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
}
else
{
status = RTEMS_SUCCESSFUL;
}
}
if (status == RTEMS_SUCCESSFUL) // suspend AVF1
{
status = rtems_task_suspend( Task_id[TASKID_AVF1] );
if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
{
PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
}
else
{
status = RTEMS_SUCCESSFUL;
}
}
if (status == RTEMS_SUCCESSFUL) // suspend PRC1
{
status = rtems_task_suspend( Task_id[TASKID_PRC1] );
if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
{
PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
}
else
{
status = RTEMS_SUCCESSFUL;
}
}
if (status == RTEMS_SUCCESSFUL) // suspend AVF2
{
status = rtems_task_suspend( Task_id[TASKID_AVF2] );
if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
{
PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
}
else
{
status = RTEMS_SUCCESSFUL;
}
}
if (status == RTEMS_SUCCESSFUL) // suspend PRC2
{
status = rtems_task_suspend( Task_id[TASKID_PRC2] );
if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
{
PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
}
else
{
status = RTEMS_SUCCESSFUL;
}
}
return status;
}
void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
{
WFP_reset_current_ring_nodes();
reset_waveform_picker_regs();
set_wfp_burst_enable_register( mode );
LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
if (transitionCoarseTime == 0)
{
// instant transition means transition on the next valid date
// this is mandatory to have a good snapshot period and a good correction of the snapshot period
waveform_picker_regs->start_date = time_management_regs->coarse_time + 1;
}
else
{
waveform_picker_regs->start_date = transitionCoarseTime;
}
update_last_valid_transition_date(waveform_picker_regs->start_date);
}
void launch_spectral_matrix( void )
{
SM_reset_current_ring_nodes();
reset_spectral_matrix_regs();
reset_nb_sm();
set_sm_irq_onNewMatrix( 1 );
LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
}
void set_sm_irq_onNewMatrix( unsigned char value )
{
if (value == 1)
{
spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_NEW_MATRIX;
}
else
{
spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_NEW_MATRIX; // 1110
}
}
void set_sm_irq_onError( unsigned char value )
{
if (value == 1)
{
spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_ERROR;
}
else
{
spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_ERROR; // 1101
}
}
//*****************************
// CONFIGURE CALIBRATION SIGNAL
void setCalibrationPrescaler( unsigned int prescaler )
{
// prescaling of the master clock (25 MHz)
// master clock is divided by 2^prescaler
time_management_regs->calPrescaler = prescaler;
}
void setCalibrationDivisor( unsigned int divisionFactor )
{
// division of the prescaled clock by the division factor
time_management_regs->calDivisor = divisionFactor;
}
void setCalibrationData( void )
{
/** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
*
* @param void
*
* @return void
*
*/
unsigned int k;
unsigned short data;
float val;
float Ts;
time_management_regs->calDataPtr = INIT_CHAR;
Ts = 1 / CAL_FS;
// build the signal for the SCM calibration
for (k = 0; k < CAL_NB_PTS; k++)
{
val = CAL_A0 * sin( CAL_W0 * k * Ts )
+ CAL_A1 * sin( CAL_W1 * k * Ts );
data = (unsigned short) ((val * CAL_SCALE_FACTOR) + CONST_2048);
time_management_regs->calData = data & CAL_DATA_MASK;
}
}
#ifdef ENABLE_DEAD_CODE
void setCalibrationDataInterleaved( void )
{
/** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
*
* @param void
*
* @return void
*
* In interleaved mode, one can store more values than in normal mode.
* The data are stored in bunch of 18 bits, 12 bits from one sample and 6 bits from another sample.
* T store 3 values, one need two write operations.
* s1 [ b11 b10 b9 b8 b7 b6 ] s0 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
* s1 [ b5 b4 b3 b2 b1 b0 ] s2 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
*
*/
unsigned int k;
float val;
float Ts;
unsigned short data[CAL_NB_PTS_INTER];
unsigned char *dataPtr;
Ts = 1 / CAL_FS_INTER;
time_management_regs->calDataPtr = INIT_CHAR;
// build the signal for the SCM calibration
for (k=0; k<CAL_NB_PTS_INTER; k++)
{
val = sin( 2 * pi * CAL_F0 * k * Ts )
+ sin( 2 * pi * CAL_F1 * k * Ts );
data[k] = (unsigned short) ((val * CONST_512) + CONST_2048);
}
// write the signal in interleaved mode
for (k=0; k < STEPS_FOR_STORAGE_INTER; k++)
{
dataPtr = (unsigned char*) &data[ (k * BYTES_FOR_2_SAMPLES) + 2 ];
time_management_regs->calData = ( data[ k * BYTES_FOR_2_SAMPLES ] & CAL_DATA_MASK )
+ ( (dataPtr[0] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
time_management_regs->calData = ( data[(k * BYTES_FOR_2_SAMPLES) + 1] & CAL_DATA_MASK )
+ ( (dataPtr[1] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
}
}
#endif
void setCalibrationReload( bool state)
{
if (state == true)
{
time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_RELOAD; // [0001 0000]
}
else
{
time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_RELOAD; // [1110 1111]
}
}
void setCalibrationEnable( bool state )
{
// this bit drives the multiplexer
if (state == true)
{
time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_ENABLE; // [0100 0000]
}
else
{
time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_ENABLE; // [1011 1111]
}
}
#ifdef ENABLE_DEAD_CODE
void setCalibrationInterleaved( bool state )
{
// this bit drives the multiplexer
if (state == true)
{
time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_SET_INTERLEAVED; // [0010 0000]
}
else
{
time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_SET_INTERLEAVED; // [1101 1111]
}
}
#endif
void setCalibration( bool state )
{
if (state == true)
{
setCalibrationEnable( true );
setCalibrationReload( false );
set_hk_lfr_calib_enable( true );
}
else
{
setCalibrationEnable( false );
setCalibrationReload( true );
set_hk_lfr_calib_enable( false );
}
}
void configureCalibration( bool interleaved )
{
setCalibration( false );
#ifdef ENABLE_DEAD_CODE
if ( interleaved == true )
{
setCalibrationInterleaved( true );
setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
setCalibrationDivisor( CAL_F_DIVISOR_INTER ); // => 240 384
setCalibrationDataInterleaved();
}
else
#endif
{
setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
setCalibrationDivisor( CAL_F_DIVISOR ); // => 160 256 (39 - 1)
setCalibrationData();
}
}
//****************
// CLOSING ACTIONS
void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
{
/** This function is used to update the HK packets statistics after a successful TC execution.
*
* @param TC points to the TC being processed
* @param time is the time used to date the TC execution
*
*/
unsigned int val;
housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
housekeeping_packet.hk_lfr_last_exe_tc_type[0] = INIT_CHAR;
housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = INIT_CHAR;
housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_0] = time[BYTE_0];
housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_1] = time[BYTE_1];
housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_2] = time[BYTE_2];
housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_3] = time[BYTE_3];
housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_4] = time[BYTE_4];
housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_5] = time[BYTE_5];
val = (housekeeping_packet.hk_lfr_exe_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
val++;
housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
}
void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
{
/** This function is used to update the HK packets statistics after a TC rejection.
*
* @param TC points to the TC being processed
* @param time is the time used to date the TC rejection
*
*/
unsigned int val;
housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
housekeeping_packet.hk_lfr_last_rej_tc_type[0] = INIT_CHAR;
housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = INIT_CHAR;
housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_0] = time[BYTE_0];
housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_1] = time[BYTE_1];
housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_2] = time[BYTE_2];
housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_3] = time[BYTE_3];
housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_4] = time[BYTE_4];
housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_5] = time[BYTE_5];
val = (housekeeping_packet.hk_lfr_rej_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
val++;
housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
}
void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
{
/** This function is the last step of the TC execution workflow.
*
* @param TC points to the TC being processed
* @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
* @param queue_id is the id of the RTEMS message queue used to send TM packets
* @param time is the time used to date the TC execution
*
*/
unsigned char requestedMode;
if (result == LFR_SUCCESSFUL)
{
if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
&
!( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
)
{
send_tm_lfr_tc_exe_success( TC, queue_id );
}
if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
{
//**********************************
// UPDATE THE LFRMODE LOCAL VARIABLE
requestedMode = TC->dataAndCRC[1];
updateLFRCurrentMode( requestedMode );
}
}
else if (result == LFR_EXE_ERROR)
{
send_tm_lfr_tc_exe_error( TC, queue_id );
}
}
//****************
// OTHER FUNCTIONS
void updateLFRCurrentMode( unsigned char requestedMode )
{
/** This function updates the value of the global variable lfrCurrentMode.
*
* lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
*
*/
// update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
housekeeping_packet.lfr_status_word[0] = (housekeeping_packet.lfr_status_word[0] & STATUS_WORD_LFR_MODE_MASK)
+ (unsigned char) ( requestedMode << STATUS_WORD_LFR_MODE_SHIFT );
lfrCurrentMode = requestedMode;
}
void set_lfr_soft_reset( unsigned char value )
{
if (value == 1)
{
time_management_regs->ctrl = time_management_regs->ctrl | BIT_SOFT_RESET; // [0100]
}
else
{
time_management_regs->ctrl = time_management_regs->ctrl & MASK_SOFT_RESET; // [1011]
}
}
void reset_lfr( void )
{
set_lfr_soft_reset( 1 );
set_lfr_soft_reset( 0 );
set_hk_lfr_sc_potential_flag( true );
}