##// END OF EJS Templates
Sync
Sync

File last commit:

r115:f4c5e8b9b4cc VHDLib206
r115:f4c5e8b9b4cc VHDLib206
Show More
fsw_processing.c
704 lines | 27.2 KiB | text/x-c | CLexer
/** Functions related to data processing.
*
* @file
* @author P. LEROY
*
* These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
*
*/
#include <fsw_processing.h>
#include "fsw_processing_globals.c"
//************************
// spectral matrices rings
ring_node_sm sm_ring_f0[ NB_RING_NODES_ASM_F0 ];
ring_node_sm sm_ring_f1[ NB_RING_NODES_ASM_F1 ];
ring_node_sm sm_ring_f2[ NB_RING_NODES_ASM_F2 ];
ring_node_sm *current_ring_node_sm_f0;
ring_node_sm *ring_node_for_averaging_sm_f0;
ring_node_sm *current_ring_node_sm_f1;
ring_node_sm *current_ring_node_sm_f2;
//**********************
// basic parameter rings
ring_node_bp *current_node_sbm1_bp1_f0;
ring_node_bp bp_ring_sbm1[ NB_RING_NODES_BP1_SBM1 ];
//*****
// NORM
// F0
float asm_f0 [ TIME_OFFSET + TOTAL_SIZE_SM ];
float asm_f0_reorganized[ TIME_OFFSET + TOTAL_SIZE_SM ];
char asm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
float compressed_sm_f0 [ TIME_OFFSET + TOTAL_SIZE_COMPRESSED_ASM_F0 ];
//*****
// SBM1
float averaged_sm_sbm1 [ TIME_OFFSET + TOTAL_SIZE_SM ];
float compressed_sm_sbm1 [ TIME_OFFSET + TOTAL_SIZE_COMPRESSED_ASM_SBM1 ];
unsigned char LFR_BP1_F0[ TIME_OFFSET_IN_BYTES + TOTAL_SIZE_NORM_BP1_F0 * 2 ];
unsigned char LFR_BP1_F1[ TIME_OFFSET_IN_BYTES + TOTAL_SIZE_NORM_BP1_F1 ];
unsigned char LFR_BP1_F2[ TIME_OFFSET_IN_BYTES + TOTAL_SIZE_NORM_BP1_F2 ];
unsigned int nb_sm_f0;
void init_sm_rings( void )
{
unsigned char i;
// F0 RING
sm_ring_f0[0].next = (ring_node_sm*) &sm_ring_f0[1];
sm_ring_f0[0].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_ASM_F0-1];
sm_ring_f0[0].buffer_address =
(int) &sm_f0[ 0 ];
sm_ring_f0[NB_RING_NODES_ASM_F0-1].next = (ring_node_sm*) &sm_ring_f0[0];
sm_ring_f0[NB_RING_NODES_ASM_F0-1].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_ASM_F0-2];
sm_ring_f0[NB_RING_NODES_ASM_F0-1].buffer_address =
(int) &sm_f0[ (NB_RING_NODES_ASM_F0-1) * TOTAL_SIZE_SM ];
for(i=1; i<NB_RING_NODES_ASM_F0-1; i++)
{
sm_ring_f0[i].next = (ring_node_sm*) &sm_ring_f0[i+1];
sm_ring_f0[i].previous = (ring_node_sm*) &sm_ring_f0[i-1];
sm_ring_f0[i].buffer_address =
(int) &sm_f0[ i * TOTAL_SIZE_SM ];
}
// F1 RING
sm_ring_f1[0].next = (ring_node_sm*) &sm_ring_f1[1];
sm_ring_f1[0].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_ASM_F1-1];
sm_ring_f1[0].buffer_address =
(int) &sm_f1[ 0 ];
sm_ring_f1[NB_RING_NODES_ASM_F1-1].next = (ring_node_sm*) &sm_ring_f1[0];
sm_ring_f1[NB_RING_NODES_ASM_F1-1].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_ASM_F1-2];
sm_ring_f1[NB_RING_NODES_ASM_F1-1].buffer_address =
(int) &sm_f1[ (NB_RING_NODES_ASM_F1-1) * TOTAL_SIZE_SM ];
for(i=1; i<NB_RING_NODES_ASM_F1-1; i++)
{
sm_ring_f1[i].next = (ring_node_sm*) &sm_ring_f1[i+1];
sm_ring_f1[i].previous = (ring_node_sm*) &sm_ring_f1[i-1];
sm_ring_f1[i].buffer_address =
(int) &sm_f1[ i * TOTAL_SIZE_SM ];
}
// F2 RING
sm_ring_f2[0].next = (ring_node_sm*) &sm_ring_f2[1];
sm_ring_f2[0].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_ASM_F2-1];
sm_ring_f2[0].buffer_address =
(int) &sm_f2[ 0 ];
sm_ring_f2[NB_RING_NODES_ASM_F2-1].next = (ring_node_sm*) &sm_ring_f2[0];
sm_ring_f2[NB_RING_NODES_ASM_F2-1].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_ASM_F2-2];
sm_ring_f2[NB_RING_NODES_ASM_F2-1].buffer_address =
(int) &sm_f2[ (NB_RING_NODES_ASM_F2-1) * TOTAL_SIZE_SM ];
for(i=1; i<NB_RING_NODES_ASM_F2-1; i++)
{
sm_ring_f2[i].next = (ring_node_sm*) &sm_ring_f2[i+1];
sm_ring_f2[i].previous = (ring_node_sm*) &sm_ring_f2[i-1];
sm_ring_f2[i].buffer_address =
(int) &sm_f2[ i * TOTAL_SIZE_SM ];
}
DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
DEBUG_PRINTF1("asm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
DEBUG_PRINTF1("asm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
spectral_matrix_regs->matrixF0_Address0 = sm_ring_f0[0].buffer_address;
DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->matrixF0_Address0)
}
void reset_current_sm_ring_nodes( void )
{
current_ring_node_sm_f0 = sm_ring_f0;
current_ring_node_sm_f1 = sm_ring_f1;
current_ring_node_sm_f2 = sm_ring_f2;
ring_node_for_averaging_sm_f0 = sm_ring_f0;
}
void reset_current_node_sbm1_bp1_f0( void )
{
current_node_sbm1_bp1_f0 = bp_ring_sbm1;
}
//***********************************************************
// Interrupt Service Routine for spectral matrices processing
void reset_nb_sm_f0( void )
{
nb_sm_f0 = 0;
}
rtems_isr spectral_matrices_isr( rtems_vector_number vector )
{
rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
if ( (spectral_matrix_regs->status & 0x1) == 0x01)
{
current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe; // 1110
nb_sm_f0 = nb_sm_f0 + 1;
}
else if ( (spectral_matrix_regs->status & 0x2) == 0x02)
{
current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // 1101
nb_sm_f0 = nb_sm_f0 + 1;
}
if ( (spectral_matrix_regs->status & 0x30) != 0x00)
{
rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // 1100 1111
}
spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff3; // 0011
if (nb_sm_f0 == (NB_SM_TO_RECEIVE_BEFORE_AVF0-1) )
{
ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
{
rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
}
nb_sm_f0 = 0;
}
else
{
nb_sm_f0 = nb_sm_f0 + 1;
}
}
rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
{
if (nb_sm_f0 == (NB_SM_TO_RECEIVE_BEFORE_AVF0-1) )
{
ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
{
rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
}
nb_sm_f0 = 0;
}
else
{
nb_sm_f0 = nb_sm_f0 + 1;
}
}
//************
// RTEMS TASKS
rtems_task smiq_task(rtems_task_argument argument) // process the Spectral Matrices IRQ
{
rtems_event_set event_out;
BOOT_PRINTF("in SMIQ *** \n")
while(1){
rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
}
}
rtems_task avf0_task(rtems_task_argument argument)
{
int i;
static unsigned int nb_average_norm_f0;
static unsigned int nb_average_sbm1_f0;
rtems_event_set event_out;
rtems_status_code status;
ring_node_sm *ring_node_tab[8];
nb_average_norm_f0 = 0;
nb_average_sbm1_f0 = 0;
BOOT_PRINTF("in AVFO *** \n")
while(1){
rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
ring_node_tab[NB_SM_TO_RECEIVE_BEFORE_AVF0-1] = ring_node_for_averaging_sm_f0;
for ( i = 2; i < (NB_SM_TO_RECEIVE_BEFORE_AVF0+1); i++ )
{
ring_node_for_averaging_sm_f0 = ring_node_for_averaging_sm_f0->previous;
ring_node_tab[NB_SM_TO_RECEIVE_BEFORE_AVF0-i] = ring_node_for_averaging_sm_f0;
}
// copy time information in the asm_f0 buffer
asm_f0[0] = ring_node_tab[7]->coarseTime;
asm_f0[1] = ring_node_tab[7]->fineTime;
averaged_sm_sbm1[0] = ring_node_tab[7]->coarseTime;
averaged_sm_sbm1[1] = ring_node_tab[7]->fineTime;
// compute the average and store it in the averaged_sm_f1 buffer
ASM_average( asm_f0, averaged_sm_sbm1,
ring_node_tab,
nb_average_norm_f0, nb_average_sbm1_f0 );
// update nb_average
nb_average_norm_f0 = nb_average_norm_f0 + NB_SM_TO_RECEIVE_BEFORE_AVF0;
nb_average_sbm1_f0 = nb_average_sbm1_f0 + NB_SM_TO_RECEIVE_BEFORE_AVF0;
// launch actions depending on the current mode
if (nb_average_sbm1_f0 == NB_AVERAGE_SBM1_F0)
{
nb_average_sbm1_f0 = 0;
if (lfrCurrentMode == LFR_MODE_SBM1)
{
status = rtems_event_send( Task_id[TASKID_MATR], RTEMS_EVENT_MODE_SBM1 ); // sending an event to the task 7, BPF0
if (status != RTEMS_SUCCESSFUL)
{
printf("in AVF0 *** Error sending RTEMS_EVENT_MODE_SBM1, code %d\n", status);
}
}
}
if (nb_average_norm_f0 == NB_AVERAGE_NORMAL_F0) {
nb_average_norm_f0 = 0;
status = rtems_event_send( Task_id[TASKID_MATR], RTEMS_EVENT_MODE_NORMAL ); // sending an event to the task 7, BPF0
if (status != RTEMS_SUCCESSFUL) {
printf("in AVF0 *** Error sending RTEMS_EVENT_0, code %d\n", status);
}
}
}
}
rtems_task matr_task(rtems_task_argument argument)
{
spw_ioctl_pkt_send spw_ioctl_send_ASM;
rtems_event_set event_out;
rtems_status_code status;
rtems_id queue_id;
Header_TM_LFR_SCIENCE_ASM_t headerASM;
ring_node_norm_bp current_node_norm_bp1_f0;
init_header_asm( &headerASM );
// init_header_bp( &current_node_norm_bp1_f0.header );
status = get_message_queue_id_send( &queue_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in MATR *** ERR get_message_queue_id_send %d\n", status)
}
BOOT_PRINTF("in MATR *** \n")
while(1){
rtems_event_receive( RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1,
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
if (event_out==RTEMS_EVENT_MODE_NORMAL)
{
// 1) compress the matrix for Basic Parameters calculation
ASM_compress_reorganize_and_divide( asm_f0, compressed_sm_f0,
NB_AVERAGE_NORMAL_F0,
NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
ASM_F0_INDICE_START );
// 2) compute the BP1 set
// 3) send the BP1 set
BP1_send( &current_node_norm_bp1_f0, SID_NORM_BP1_F0, queue_id );
// 4) reorganize the ASM and divide
ASM_reorganize_and_divide( asm_f0, asm_f0_reorganized, NB_AVERAGE_NORMAL_F0 );
// 5) convert the float array in a char array
ASM_convert( asm_f0_reorganized, asm_f0_char);
// 6) send the spectral matrix packets
ASM_send( &headerASM, asm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
}
else if (event_out==RTEMS_EVENT_MODE_SBM1)
{
// 1) compress the matrix for Basic Parameters calculation
ASM_compress_reorganize_and_divide( averaged_sm_sbm1, compressed_sm_sbm1,
NB_AVERAGE_SBM1_F0,
NB_BINS_COMPRESSED_SM_SBM1_F0, NB_BINS_TO_AVERAGE_ASM_SBM1_F0,
ASM_F0_INDICE_START);
// 2) compute the BP1 set
// 3) send the basic parameters set 1 packet
BP1_send( current_node_sbm1_bp1_f0, SID_SBM1_BP1_F0, queue_id );
// 4) update current_node_sbm1_bp1_f0
current_node_sbm1_bp1_f0 = current_node_sbm1_bp1_f0->next;
}
else
{
PRINTF1("ERR *** in MATR *** unexect event = %x\n", (unsigned int) event_out)
}
}
}
//*****************************
// Spectral matrices processing
void ASM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
ring_node_sm *ring_node_tab[],
unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 )
{
float sum;
unsigned int i;
for(i=0; i<TOTAL_SIZE_SM; i++)
{
sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
if ( (nbAverageNormF0 == 0) && (nbAverageSBM1F0 == 0) )
{
averaged_spec_mat_f0[ TIME_OFFSET + i ] = sum;
averaged_spec_mat_f1[ TIME_OFFSET + i ] = sum;
}
else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 != 0) )
{
averaged_spec_mat_f0[ TIME_OFFSET + i ] = ( averaged_spec_mat_f0[ TIME_OFFSET + i ] + sum );
averaged_spec_mat_f1[ TIME_OFFSET + i ] = ( averaged_spec_mat_f1[ TIME_OFFSET + i ] + sum );
}
else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 == 0) )
{
averaged_spec_mat_f0[ TIME_OFFSET + i ] = ( averaged_spec_mat_f0[ TIME_OFFSET + i ] + sum );
averaged_spec_mat_f1[ TIME_OFFSET + i ] = sum;
}
else
{
PRINTF2("ERR *** in ASM_average *** unexpected parameters %d %d\n", nbAverageNormF0, nbAverageSBM1F0)
}
}
}
void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
{
int frequencyBin;
int asmComponent;
// copy the time information
averaged_spec_mat_reorganized[ 0 ] = averaged_spec_mat[ 0 ];
averaged_spec_mat_reorganized[ 1 ] = averaged_spec_mat[ 1 ];
for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
{
for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
{
averaged_spec_mat_reorganized[ TIME_OFFSET + frequencyBin * NB_VALUES_PER_SM + asmComponent ] =
averaged_spec_mat[ TIME_OFFSET + asmComponent * NB_BINS_PER_SM + frequencyBin ] / divider;
}
}
}
void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
{
int frequencyBin;
int asmComponent;
int offsetASM;
int offsetCompressed;
int k;
for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
{
for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
{
offsetCompressed = TIME_OFFSET
+ frequencyBin * NB_VALUES_PER_SM
+ asmComponent;
offsetASM = TIME_OFFSET
+ asmComponent * NB_BINS_PER_SM
+ ASMIndexStart
+ frequencyBin * nbBinsToAverage;
compressed_spec_mat[ offsetCompressed ] = 0;
for ( k = 0; k < nbBinsToAverage; k++ )
{
compressed_spec_mat[offsetCompressed ] =
( compressed_spec_mat[ offsetCompressed ]
+ averaged_spec_mat[ offsetASM + k ] ) / (divider * nbBinsToAverage);
}
}
}
}
void ASM_convert( volatile float *input_matrix, char *output_matrix)
{
unsigned int i;
unsigned int frequencyBin;
unsigned int asmComponent;
char * pt_char_input;
char * pt_char_output;
pt_char_input = (char*) &input_matrix;
pt_char_output = (char*) &output_matrix;
// copy the time information
for (i=0; i<TIME_OFFSET_IN_BYTES; i++)
{
pt_char_output[ i ] = pt_char_output[ i ];
}
// convert all other data
for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
{
for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
{
pt_char_input = (char*) &input_matrix [ (frequencyBin*NB_VALUES_PER_SM) + asmComponent + TIME_OFFSET ];
pt_char_output = (char*) &output_matrix[ 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) + TIME_OFFSET_IN_BYTES ];
pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
}
}
}
void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
{
unsigned int i;
unsigned int length = 0;
rtems_status_code status;
for (i=0; i<2; i++)
{
// (1) BUILD THE DATA
switch(sid)
{
case SID_NORM_ASM_F0:
spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2;
spw_ioctl_send->data = &spectral_matrix[
( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
+ TIME_OFFSET_IN_BYTES
];
length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
break;
case SID_NORM_ASM_F1:
break;
case SID_NORM_ASM_F2:
break;
default:
PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
break;
}
spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
spw_ioctl_send->hdr = (char *) header;
spw_ioctl_send->options = 0;
// (2) BUILD THE HEADER
header->packetLength[0] = (unsigned char) (length>>8);
header->packetLength[1] = (unsigned char) (length);
header->sid = (unsigned char) sid; // SID
header->pa_lfr_pkt_cnt_asm = 2;
header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
// (3) SET PACKET TIME
header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
header->time[3] = (unsigned char) (time_management_regs->coarse_time);
header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
header->time[5] = (unsigned char) (time_management_regs->fine_time);
//
header->acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
header->acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
header->acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
header->acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
header->acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
header->acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
// (4) SEND PACKET
status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
if (status != RTEMS_SUCCESSFUL) {
printf("in ASM_send *** ERR %d\n", (int) status);
}
}
}
void BP1_send( ring_node_bp *ring_node_to_send, unsigned int sid, rtems_id queue_id )
{
unsigned int length = 0;
rtems_status_code status;
unsigned char nbBytesTosend;
// (1) BUILD THE DATA
switch(sid)
{
case SID_NORM_BP1_F0:
length = PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0;
ring_node_to_send->header.packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
ring_node_to_send->header.packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
ring_node_to_send->header.pa_lfr_bp_blk_nr[0] = (unsigned char) ( (NB_BINS_COMPRESSED_SM_F0) >> 8 ); // BLK_NR MSB
ring_node_to_send->header.pa_lfr_bp_blk_nr[1] = (unsigned char) (NB_BINS_COMPRESSED_SM_F0); // BLK_NR LSB
nbBytesTosend = PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0
+ CCSDS_TC_TM_PACKET_OFFSET
+ CCSDS_PROTOCOLE_EXTRA_BYTES;
case SID_SBM1_BP1_F0:
length = PACKET_LENGTH_TM_LFR_SCIENCE_SBM1_BP1_F0;
ring_node_to_send->header.packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2 >> 8);
ring_node_to_send->header.packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2);
ring_node_to_send->header.pa_lfr_bp_blk_nr[0] = (unsigned char) ( (NB_BINS_COMPRESSED_SM_SBM1_F0) >> 8 ); // BLK_NR MSB
ring_node_to_send->header.pa_lfr_bp_blk_nr[1] = (unsigned char) (NB_BINS_COMPRESSED_SM_SBM1_F0); // BLK_NR LSB
nbBytesTosend = PACKET_LENGTH_TM_LFR_SCIENCE_SBM1_BP1_F0
+ CCSDS_TC_TM_PACKET_OFFSET
+ CCSDS_PROTOCOLE_EXTRA_BYTES;
break;
default:
nbBytesTosend = 0;
PRINTF1("ERR *** in BP1_send *** unexpected sid %d\n", sid)
break;
}
// (2) BUILD THE HEADER
ring_node_to_send->header.packetLength[0] = (unsigned char) (length>>8);
ring_node_to_send->header.packetLength[1] = (unsigned char) (length);
ring_node_to_send->header.sid = sid;
// (3) SET PACKET TIME
ring_node_to_send->header.time[0] = (unsigned char) (ring_node_to_send->coarseTime>>24);
ring_node_to_send->header.time[1] = (unsigned char) (ring_node_to_send->coarseTime>>16);
ring_node_to_send->header.time[2] = (unsigned char) (ring_node_to_send->coarseTime>>8);
ring_node_to_send->header.time[3] = (unsigned char) (ring_node_to_send->coarseTime);
ring_node_to_send->header.time[4] = (unsigned char) (ring_node_to_send->fineTime>>8);
ring_node_to_send->header.time[5] = (unsigned char) (ring_node_to_send->fineTime);
//
ring_node_to_send->header.acquisitionTime[0] = (unsigned char) (ring_node_to_send->coarseTime>>24);
ring_node_to_send->header.acquisitionTime[1] = (unsigned char) (ring_node_to_send->coarseTime>>16);
ring_node_to_send->header.acquisitionTime[2] = (unsigned char) (ring_node_to_send->coarseTime>>8);
ring_node_to_send->header.acquisitionTime[3] = (unsigned char) (ring_node_to_send->coarseTime);
ring_node_to_send->header.acquisitionTime[4] = (unsigned char) (ring_node_to_send->fineTime>>8);
ring_node_to_send->header.acquisitionTime[5] = (unsigned char) (ring_node_to_send->fineTime);
// (4) SEND PACKET
status = rtems_message_queue_send( queue_id, &ring_node_to_send->header, nbBytesTosend);
if (status != RTEMS_SUCCESSFUL)
{
printf("ERR *** in BP1_send *** ERR %d\n", (int) status);
}
}
void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header)
{
header->targetLogicalAddress = CCSDS_DESTINATION_ID;
header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
header->reserved = 0x00;
header->userApplication = CCSDS_USER_APP;
header->packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
header->packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
header->packetSequenceControl[0] = 0xc0;
header->packetSequenceControl[1] = 0x00;
header->packetLength[0] = 0x00;
header->packetLength[1] = 0x00;
// DATA FIELD HEADER
header->spare1_pusVersion_spare2 = 0x10;
header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
header->destinationID = TM_DESTINATION_ID_GROUND;
// AUXILIARY DATA HEADER
header->sid = 0x00;
header->biaStatusInfo = 0x00;
header->pa_lfr_pkt_cnt_asm = 0x00;
header->pa_lfr_pkt_nr_asm = 0x00;
header->time[0] = 0x00;
header->time[0] = 0x00;
header->time[0] = 0x00;
header->time[0] = 0x00;
header->time[0] = 0x00;
header->time[0] = 0x00;
header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
}
void init_bp_ring_sbm1()
{
unsigned int i;
//********
// F0 RING
bp_ring_sbm1[0].next = (ring_node_bp*) &bp_ring_sbm1[1];
bp_ring_sbm1[0].previous = (ring_node_bp*) &bp_ring_sbm1[NB_RING_NODES_BP1_SBM1-1];
bp_ring_sbm1[NB_RING_NODES_BP1_SBM1-1].next = (ring_node_bp*) &bp_ring_sbm1[0];
bp_ring_sbm1[NB_RING_NODES_BP1_SBM1-1].previous = (ring_node_bp*) &bp_ring_sbm1[NB_RING_NODES_ASM_F0-2];
for(i=1; i<NB_RING_NODES_BP1_SBM1-1; i++)
{
bp_ring_sbm1[i].next = (ring_node_bp*) &bp_ring_sbm1[i+1];
bp_ring_sbm1[i].previous = (ring_node_bp*) &bp_ring_sbm1[i-1];
}
//
//********
for (i=0; i<NB_RING_NODES_BP1_SBM1; i++)
{
init_header_bp( (Header_TM_LFR_SCIENCE_BP_SBM_t*) &bp_ring_sbm1[ i ] );
bp_ring_sbm1[ i ].status = 0;
}
}
void init_header_bp(Header_TM_LFR_SCIENCE_BP_SBM_t *header )
{
header->targetLogicalAddress = CCSDS_DESTINATION_ID;
header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
header->reserved = 0x00;
header->userApplication = CCSDS_USER_APP;
header->packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2 >> 8);
header->packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2);
header->packetSequenceControl[0] = 0xc0;
header->packetSequenceControl[1] = 0x00;
header->packetLength[0] = 0x00;
header->packetLength[1] = 0x00;
// DATA FIELD HEADER
header->spare1_pusVersion_spare2 = 0x10;
header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
header->destinationID = TM_DESTINATION_ID_GROUND;
// AUXILIARY DATA HEADER
header->sid = 0x00;
header->biaStatusInfo = 0x00;
header->time[0] = 0x00;
header->time[0] = 0x00;
header->time[0] = 0x00;
header->time[0] = 0x00;
header->time[0] = 0x00;
header->time[0] = 0x00;
header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
header->pa_lfr_bp_blk_nr[1] = 0x00; // BLK_NR LSB
}
void reset_spectral_matrix_regs( void )
{
/** This function resets the spectral matrices module registers.
*
* The registers affected by this function are located at the following offset addresses:
*
* - 0x00 config
* - 0x04 status
* - 0x08 matrixF0_Address0
* - 0x10 matrixFO_Address1
* - 0x14 matrixF1_Address
* - 0x18 matrixF2_Address
*
*/
spectral_matrix_regs->config = 0x00;
spectral_matrix_regs->status = 0x00;
spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
}
//******************
// general functions