##// END OF EJS Templates
Forgot to remove dead code functions declarations
Forgot to remove dead code functions declarations

File last commit:

r402:eb452cd0caf8 R3++
r405:f3243196bdc5 3.2.0.24 R3++
Show More
fsw_misc.c
1111 lines | 40.0 KiB | text/x-c | CLexer
/*------------------------------------------------------------------------------
-- Solar Orbiter's Low Frequency Receiver Flight Software (LFR FSW),
-- This file is a part of the LFR FSW
-- Copyright (C) 2012-2018, Plasma Physics Laboratory - CNRS
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-------------------------------------------------------------------------------*/
/*-- Author : Paul Leroy
-- Contact : Alexis Jeandet
-- Mail : alexis.jeandet@lpp.polytechnique.fr
----------------------------------------------------------------------------*/
/** General usage functions and RTEMS tasks.
*
* @file
* @author P. LEROY
*
*/
#include "fsw_misc.h"
int16_t hk_lfr_sc_v_f3_as_int16 = 0;
int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
void timer_configure(unsigned char timer, unsigned int clock_divider,
unsigned char interrupt_level, rtems_isr (*timer_isr)() )
{
/** This function configures a GPTIMER timer instantiated in the VHDL design.
*
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
* @param clock_divider is the divider of the 1 MHz clock that will be configured.
* @param interrupt_level is the interrupt level that the timer drives.
* @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
*
* Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
*
*/
rtems_status_code status;
rtems_isr_entry old_isr_handler;
old_isr_handler = NULL;
gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
if (status!=RTEMS_SUCCESSFUL)
{
PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
}
timer_set_clock_divider( timer, clock_divider);
}
#ifdef ENABLE_DEAD_CODE
void timer_start(unsigned char timer)
{
/** This function starts a GPTIMER timer.
*
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
*
*/
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
}
#endif
void timer_stop(unsigned char timer)
{
/** This function stops a GPTIMER timer.
*
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
*
*/
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
}
void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
{
/** This function sets the clock divider of a GPTIMER timer.
*
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
* @param clock_divider is the divider of the 1 MHz clock that will be configured.
*
*/
gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
}
// WATCHDOG, this ISR should never be triggered.
rtems_isr watchdog_isr( rtems_vector_number vector )
{
rtems_status_code status_code;
status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
PRINTF("watchdog_isr *** this is the end, exit(0)\n");
exit(0);
}
void watchdog_configure(void)
{
/** This function configure the watchdog.
*
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
*
* The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
*
*/
LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
}
void watchdog_stop(void)
{
LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
timer_stop( TIMER_WATCHDOG );
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
}
void watchdog_reload(void)
{
/** This function reloads the watchdog timer counter with the timer reload value.
*
* @param void
*
* @return void
*
*/
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
}
void watchdog_start(void)
{
/** This function starts the watchdog timer.
*
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
*
*/
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
}
int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
{
struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
return 0;
}
void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
{
/** This function sets the scaler reload register of the apbuart module
*
* @param regs is the address of the apbuart registers in memory
* @param value is the value that will be stored in the scaler register
*
* The value shall be set by the software to get data on the serial interface.
*
*/
struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
apbuart_regs->scaler = value;
BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
}
/**
* @brief load_task starts and keeps the watchdog alive.
* @param argument
* @return
*/
rtems_task load_task(rtems_task_argument argument)
{
BOOT_PRINTF("in LOAD *** \n")
rtems_status_code status;
unsigned int i;
unsigned int j;
rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
watchdog_period_id = RTEMS_ID_NONE;
name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
if( status != RTEMS_SUCCESSFUL ) {
PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
}
i = 0;
j = 0;
watchdog_configure();
watchdog_start();
set_sy_lfr_watchdog_enabled( true );
while(1){
status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
watchdog_reload();
i = i + 1;
if ( i == WATCHDOG_LOOP_PRINTF )
{
i = 0;
j = j + 1;
PRINTF1("%d\n", j)
}
#ifdef DEBUG_WATCHDOG
if (j == WATCHDOG_LOOP_DEBUG )
{
status = rtems_task_delete(RTEMS_SELF);
}
#endif
}
}
/**
* @brief hous_task produces and sends HK each seconds
* @param argument
* @return
*/
rtems_task hous_task(rtems_task_argument argument)
{
rtems_status_code status;
rtems_status_code spare_status;
rtems_id queue_id;
rtems_rate_monotonic_period_status period_status;
bool isSynchronized;
queue_id = RTEMS_ID_NONE;
memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
isSynchronized = false;
status = get_message_queue_id_send( &queue_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
}
BOOT_PRINTF("in HOUS ***\n");
if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
if( status != RTEMS_SUCCESSFUL ) {
PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
}
}
status = rtems_rate_monotonic_cancel(HK_id);
if( status != RTEMS_SUCCESSFUL ) {
PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
}
else {
DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
}
// startup phase
status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
status = rtems_rate_monotonic_get_status( HK_id, &period_status );
DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
while( (period_status.state != RATE_MONOTONIC_EXPIRED)
&& (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
{
if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
{
isSynchronized = true;
}
else
{
status = rtems_rate_monotonic_get_status( HK_id, &period_status );
status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
}
}
status = rtems_rate_monotonic_cancel(HK_id);
DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
set_hk_lfr_reset_cause( POWER_ON );
while(1){ // launch the rate monotonic task
status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
if ( status != RTEMS_SUCCESSFUL ) {
PRINTF1( "in HOUS *** ERR period: %d\n", status);
spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
}
else {
housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
increment_seq_counter( &sequenceCounterHK );
housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
spacewire_read_statistics();
update_hk_with_grspw_stats();
set_hk_lfr_time_not_synchro();
housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
hk_lfr_le_me_he_update();
// SEND PACKET
status = rtems_message_queue_send( queue_id, &housekeeping_packet,
PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
if (status != RTEMS_SUCCESSFUL) {
PRINTF1("in HOUS *** ERR send: %d\n", status)
}
}
}
PRINTF("in HOUS *** deleting task\n")
status = rtems_task_delete( RTEMS_SELF ); // should not return
return;
}
/**
* @brief filter is a Direct-Form-II filter implementation, mostly used to filter electric field for HK
* @param x, new sample
* @param ctx, filter context, used to store previous input and output samples
* @return a new filtered sample
*/
int filter( int x, filter_ctx* ctx )
{
static const int b[NB_COEFFS][NB_COEFFS]={ {B00, B01, B02}, {B10, B11, B12}, {B20, B21, B22} };
static const int a[NB_COEFFS][NB_COEFFS]={ {A00, A01, A02}, {A10, A11, A12}, {A20, A21, A22} };
static const int b_gain[NB_COEFFS]={GAIN_B0, GAIN_B1, GAIN_B2};
static const int a_gain[NB_COEFFS]={GAIN_A0, GAIN_A1, GAIN_A2};
int_fast32_t W;
int i;
W = INIT_INT;
i = INIT_INT;
//Direct-Form-II
for ( i = 0; i < NB_COEFFS; i++ )
{
x = x << a_gain[i];
W = (x - ( a[i][COEFF1] * ctx->W[i][COEFF0] )
- ( a[i][COEFF2] * ctx->W[i][COEFF1] ) ) >> a_gain[i];
x = ( b[i][COEFF0] * W )
+ ( b[i][COEFF1] * ctx->W[i][COEFF0] )
+ ( b[i][COEFF2] * ctx->W[i][COEFF1] );
x = x >> b_gain[i];
ctx->W[i][1] = ctx->W[i][0];
ctx->W[i][0] = W;
}
return x;
}
/**
* @brief avgv_task pruduces HK rate elctrical field from F3 data
* @param argument
* @return
*/
rtems_task avgv_task(rtems_task_argument argument)
{
#define MOVING_AVERAGE 16
rtems_status_code status;
static int32_t v[MOVING_AVERAGE] = {0};
static int32_t e1[MOVING_AVERAGE] = {0};
static int32_t e2[MOVING_AVERAGE] = {0};
static int old_v = 0;
static int old_e1 = 0;
static int old_e2 = 0;
int32_t current_v;
int32_t current_e1;
int32_t current_e2;
int32_t average_v;
int32_t average_e1;
int32_t average_e2;
int32_t newValue_v;
int32_t newValue_e1;
int32_t newValue_e2;
unsigned char k;
unsigned char indexOfOldValue;
static filter_ctx ctx_v = { { {0,0,0}, {0,0,0}, {0,0,0} } };
static filter_ctx ctx_e1 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
static filter_ctx ctx_e2 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
BOOT_PRINTF("in AVGV ***\n");
if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &AVGV_id) != RTEMS_SUCCESSFUL) {
status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
if( status != RTEMS_SUCCESSFUL ) {
PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
}
}
status = rtems_rate_monotonic_cancel(AVGV_id);
if( status != RTEMS_SUCCESSFUL ) {
PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
}
else {
DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
}
// initialize values
indexOfOldValue = MOVING_AVERAGE - 1;
current_v = 0;
current_e1 = 0;
current_e2 = 0;
average_v = 0;
average_e1 = 0;
average_e2 = 0;
newValue_v = 0;
newValue_e1 = 0;
newValue_e2 = 0;
k = INIT_CHAR;
while(1)
{ // launch the rate monotonic task
status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
if ( status != RTEMS_SUCCESSFUL )
{
PRINTF1( "in AVGV *** ERR period: %d\n", status);
}
else
{
current_v = waveform_picker_regs->v;
current_e1 = waveform_picker_regs->e1;
current_e2 = waveform_picker_regs->e2;
if ( (current_v != old_v)
|| (current_e1 != old_e1)
|| (current_e2 != old_e2))
{
average_v = filter( current_v, &ctx_v );
average_e1 = filter( current_e1, &ctx_e1 );
average_e2 = filter( current_e2, &ctx_e2 );
//update int16 values
hk_lfr_sc_v_f3_as_int16 = (int16_t) average_v;
hk_lfr_sc_e1_f3_as_int16 = (int16_t) average_e1;
hk_lfr_sc_e2_f3_as_int16 = (int16_t) average_e2;
}
old_v = current_v;
old_e1 = current_e1;
old_e2 = current_e2;
}
}
PRINTF("in AVGV *** deleting task\n");
status = rtems_task_delete( RTEMS_SELF ); // should not return
return;
}
rtems_task dumb_task( rtems_task_argument unused )
{
/** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
*
* @param unused is the starting argument of the RTEMS task
*
* The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
*
*/
unsigned int i;
unsigned int intEventOut;
unsigned int coarse_time = 0;
unsigned int fine_time = 0;
rtems_event_set event_out;
event_out = EVENT_SETS_NONE_PENDING;
BOOT_PRINTF("in DUMB *** \n")
while(1){
rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
| RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
| RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
| RTEMS_EVENT_14,
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
intEventOut = (unsigned int) event_out;
for ( i=0; i<NB_RTEMS_EVENTS; i++)
{
if ( ((intEventOut >> i) & 1) != 0)
{
coarse_time = time_management_regs->coarse_time;
fine_time = time_management_regs->fine_time;
if (i==EVENT_12)
{
PRINTF1("%s\n", DUMB_MESSAGE_12)
}
if (i==EVENT_13)
{
PRINTF1("%s\n", DUMB_MESSAGE_13)
}
if (i==EVENT_14)
{
PRINTF1("%s\n", DUMB_MESSAGE_1)
}
}
}
}
}
rtems_task scrubbing_task( rtems_task_argument unused )
{
/** This RTEMS taks is used to avoid entering IDLE task and also scrub memory to increase scubbing frequency.
*
* @param unused is the starting argument of the RTEMS task
*
* The scrubbing reads continuously memory when no other tasks are ready.
*
*/
BOOT_PRINTF("in SCRUBBING *** \n");
volatile int i=0;
volatile float valuef = 1.;
volatile uint32_t* RAM=(uint32_t*)0x40000000;
volatile uint32_t value;
#ifdef ENABLE_SCRUBBING_COUNTER
housekeeping_packet.lfr_fpga_version[BYTE_0] = 0;
#endif
while(1){
i=(i+1)%(1024*1024);
valuef += 10.f*(float)RAM[i];
#ifdef ENABLE_SCRUBBING_COUNTER
if(i==0)
{
housekeeping_packet.lfr_fpga_version[BYTE_0] += 1;
}
#endif
}
}
rtems_task calibration_sweep_task( rtems_task_argument unused )
{
/** This RTEMS taks is used to change calibration signal smapling frequency between snapshots.
*
* @param unused is the starting argument of the RTEMS task
*
* If calibration is enabled, this task will divide by two the calibration signal smapling frequency between snapshots.
* When minimum sampling frequency is reach it will jump to maximum sampling frequency to loop indefinitely.
*
*/
rtems_event_set event_out;
BOOT_PRINTF("in calibration sweep *** \n");
rtems_interval ticks_per_seconds = rtems_clock_get_ticks_per_second();
while(1){
// Waiting for next F0 snapshot
rtems_event_receive(RTEMS_EVENT_CAL_SWEEP_WAKE, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out);
if(time_management_regs->calDACCtrl & BIT_CAL_ENABLE)
{
unsigned int delta_snapshot;
delta_snapshot = (parameter_dump_packet.sy_lfr_n_swf_p[0] * CONST_256)
+ parameter_dump_packet.sy_lfr_n_swf_p[1];
// We are woken almost in the center of a snapshot -> let's wait for sy_lfr_n_swf_p / 2
rtems_task_wake_after( ticks_per_seconds * delta_snapshot / 2);
if(time_management_regs->calDivisor >= CAL_F_DIVISOR_MAX){
time_management_regs->calDivisor = CAL_F_DIVISOR_MIN;
}
else{
time_management_regs->calDivisor *= 2;
}
}
}
}
//*****************************
// init housekeeping parameters
void init_housekeeping_parameters( void )
{
/** This function initialize the housekeeping_packet global variable with default values.
*
*/
unsigned int i = 0;
unsigned char *parameters;
unsigned char sizeOfHK;
sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
parameters = (unsigned char*) &housekeeping_packet;
for(i = 0; i< sizeOfHK; i++)
{
parameters[i] = INIT_CHAR;
}
housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
housekeeping_packet.reserved = DEFAULT_RESERVED;
housekeeping_packet.userApplication = CCSDS_USER_APP;
housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
housekeeping_packet.serviceType = TM_TYPE_HK;
housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
housekeeping_packet.sid = SID_HK;
// init status word
housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
// init software version
housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
// init fpga version
parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
}
void increment_seq_counter( unsigned short *packetSequenceControl )
{
/** This function increment the sequence counter passes in argument.
*
* The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
*
*/
unsigned short segmentation_grouping_flag;
unsigned short sequence_cnt;
segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
if ( sequence_cnt < SEQ_CNT_MAX)
{
sequence_cnt = sequence_cnt + 1;
}
else
{
sequence_cnt = 0;
}
*packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
}
void getTime( unsigned char *time)
{
/** This function write the current local time in the time buffer passed in argument.
*
*/
time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
time[3] = (unsigned char) (time_management_regs->coarse_time);
time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
time[5] = (unsigned char) (time_management_regs->fine_time);
}
unsigned long long int getTimeAsUnsignedLongLongInt( )
{
/** This function write the current local time in the time buffer passed in argument.
*
*/
unsigned long long int time;
time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
+ time_management_regs->fine_time;
return time;
}
void get_temperatures( unsigned char *temperatures )
{
unsigned char* temp_scm_ptr;
unsigned char* temp_pcb_ptr;
unsigned char* temp_fpga_ptr;
// SEL1 SEL0
// 0 0 => PCB
// 0 1 => FPGA
// 1 0 => SCM
temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
}
void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
{
unsigned char* v_ptr;
unsigned char* e1_ptr;
unsigned char* e2_ptr;
v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
spacecraft_potential[BYTE_0] = v_ptr[0];
spacecraft_potential[BYTE_1] = v_ptr[1];
spacecraft_potential[BYTE_2] = e1_ptr[0];
spacecraft_potential[BYTE_3] = e1_ptr[1];
spacecraft_potential[BYTE_4] = e2_ptr[0];
spacecraft_potential[BYTE_5] = e2_ptr[1];
}
/**
* @brief get_cpu_load, computes CPU load, CPU load average and CPU load max
* @param resource_statistics stores:
* - CPU load at index 0
* - CPU load max at index 1
* - CPU load average at index 2
*
* The CPU load average is computed on the last 60 values with a simple moving average.
*/
void get_cpu_load( unsigned char *resource_statistics )
{
#define LOAD_AVG_SIZE 60
static unsigned char cpu_load_hist[LOAD_AVG_SIZE]={0};
static char old_avg_pos=0;
static unsigned int cpu_load_avg;
unsigned char cpu_load;
cpu_load = lfr_rtems_cpu_usage_report();
// HK_LFR_CPU_LOAD
resource_statistics[BYTE_0] = cpu_load;
// HK_LFR_CPU_LOAD_MAX
if (cpu_load > resource_statistics[BYTE_1])
{
resource_statistics[BYTE_1] = cpu_load;
}
cpu_load_avg = cpu_load_avg - (unsigned int)cpu_load_hist[(int)old_avg_pos] + (unsigned int)cpu_load;
cpu_load_hist[(int)old_avg_pos] = cpu_load;
old_avg_pos += 1;
old_avg_pos %= LOAD_AVG_SIZE;
// CPU_LOAD_AVE
resource_statistics[BYTE_2] = (unsigned char)(cpu_load_avg / LOAD_AVG_SIZE);
// this will change the way LFR compute usage
#ifndef PRINT_TASK_STATISTICS
rtems_cpu_usage_reset();
#endif
}
void set_hk_lfr_sc_potential_flag( bool state )
{
if (state == true)
{
housekeeping_packet.lfr_status_word[1] =
housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
}
else
{
housekeeping_packet.lfr_status_word[1] =
housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
}
}
void set_sy_lfr_pas_filter_enabled( bool state )
{
if (state == true)
{
housekeeping_packet.lfr_status_word[1] =
housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
}
else
{
housekeeping_packet.lfr_status_word[1] =
housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
}
}
void set_sy_lfr_watchdog_enabled( bool state )
{
if (state == true)
{
housekeeping_packet.lfr_status_word[1] =
housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
}
else
{
housekeeping_packet.lfr_status_word[1] =
housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
}
}
void set_hk_lfr_calib_enable( bool state )
{
if (state == true)
{
housekeeping_packet.lfr_status_word[1] =
housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
}
else
{
housekeeping_packet.lfr_status_word[1] =
housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
}
}
void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
{
housekeeping_packet.lfr_status_word[1] =
housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
| (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
}
void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
{
int delta;
delta = 0;
if (newValue >= oldValue)
{
delta = newValue - oldValue;
}
else
{
delta = (CONST_256 - oldValue) + newValue;
}
*counter = *counter + delta;
}
// Low severity error counters update
void hk_lfr_le_update( void )
{
static hk_lfr_le_t old_hk_lfr_le = {0};
hk_lfr_le_t new_hk_lfr_le;
unsigned int counter;
counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1];
// DPU
new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
// TIMECODE
new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
// TIME
new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
//AHB
new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
// housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
// housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
// update the le counter
// DPU
increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
// TIMECODE
increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
// TIME
increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
// AHB
increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
// DPU
old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
// TIMECODE
old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
// TIME
old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
//AHB
old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
// housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
// housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
// update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
// LE
housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
}
// Medium severity error counters update
void hk_lfr_me_update( void )
{
static hk_lfr_me_t old_hk_lfr_me = {0};
hk_lfr_me_t new_hk_lfr_me;
unsigned int counter;
counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1];
// get the current values
new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
// update the me counter
increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
// store the counters for the next time
old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
// update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
// ME
housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
}
// High severity error counters update
void hk_lfr_le_me_he_update()
{
unsigned int hk_lfr_he_cnt;
hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
//update the low severity error counter
hk_lfr_le_update( );
//update the medium severity error counter
hk_lfr_me_update();
//update the high severity error counter
hk_lfr_he_cnt = 0;
// update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
// HE
housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
}
void set_hk_lfr_time_not_synchro()
{
static unsigned char synchroLost = 1;
int synchronizationBit;
// get the synchronization bit
synchronizationBit =
(time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
switch (synchronizationBit)
{
case 0:
if (synchroLost == 1)
{
synchroLost = 0;
}
break;
case 1:
if (synchroLost == 0 )
{
synchroLost = 1;
increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
}
break;
default:
PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
break;
}
}
void set_hk_lfr_ahb_correctable() // CRITICITY L
{
/** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
* by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
* detected errors in the cache, in the integer unit and in the floating point unit.
*
* @param void
*
* @return void
*
* All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
*
*/
unsigned int ahb_correctable;
unsigned int instructionErrorCounter;
unsigned int dataErrorCounter;
unsigned int fprfErrorCounter;
unsigned int iurfErrorCounter;
instructionErrorCounter = 0;
dataErrorCounter = 0;
fprfErrorCounter = 0;
iurfErrorCounter = 0;
CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
ahb_correctable = instructionErrorCounter
+ dataErrorCounter
+ fprfErrorCounter
+ iurfErrorCounter
+ housekeeping_packet.hk_lfr_ahb_correctable;
housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
}