##// END OF EJS Templates
Disabled most dead code + set CMake min Ver to 3.5
Disabled most dead code + set CMake min Ver to 3.5

File last commit:

r390:1c936ff95146 No PWD scrub with...
r402:eb452cd0caf8 R3++
Show More
wf_handler.c
1366 lines | 51.4 KiB | text/x-c | CLexer
/*------------------------------------------------------------------------------
-- Solar Orbiter's Low Frequency Receiver Flight Software (LFR FSW),
-- This file is a part of the LFR FSW
-- Copyright (C) 2012-2018, Plasma Physics Laboratory - CNRS
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-------------------------------------------------------------------------------*/
/*-- Author : Paul Leroy
-- Contact : Alexis Jeandet
-- Mail : alexis.jeandet@lpp.polytechnique.fr
----------------------------------------------------------------------------*/
/** Functions and tasks related to waveform packet generation.
*
* @file
* @author P. LEROY
*
* A group of functions to handle waveforms, in snapshot or continuous format.\n
*
*/
#include "wf_handler.h"
//***************
// waveform rings
// F0
ring_node waveform_ring_f0[NB_RING_NODES_F0]= {0};
ring_node *current_ring_node_f0 = NULL;
ring_node *ring_node_to_send_swf_f0 = NULL;
// F1
ring_node waveform_ring_f1[NB_RING_NODES_F1] = {0};
ring_node *current_ring_node_f1 = NULL;
ring_node *ring_node_to_send_swf_f1 = NULL;
ring_node *ring_node_to_send_cwf_f1 = NULL;
// F2
ring_node waveform_ring_f2[NB_RING_NODES_F2] = {0};
ring_node *current_ring_node_f2 = NULL;
ring_node *ring_node_to_send_swf_f2 = NULL;
ring_node *ring_node_to_send_cwf_f2 = NULL;
// F3
ring_node waveform_ring_f3[NB_RING_NODES_F3] = {0};
ring_node *current_ring_node_f3 = NULL;
ring_node *ring_node_to_send_cwf_f3 = NULL;
char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ] = {0};
bool extractSWF1 = false;
bool extractSWF2 = false;
bool swf0_ready_flag_f1 = false;
bool swf0_ready_flag_f2 = false;
bool swf1_ready = false;
bool swf2_ready = false;
int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ] = {0};
int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ] = {0};
ring_node ring_node_swf1_extracted = {0};
ring_node ring_node_swf2_extracted = {0};
typedef enum resynchro_state_t
{
MEASURE,
CORRECTION
} resynchro_state;
//*********************
// Interrupt SubRoutine
ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
{
ring_node *node;
node = NULL;
switch ( frequencyChannel ) {
case CHANNELF1:
node = ring_node_to_send_cwf_f1;
break;
case CHANNELF2:
node = ring_node_to_send_cwf_f2;
break;
case CHANNELF3:
node = ring_node_to_send_cwf_f3;
break;
default:
break;
}
return node;
}
ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
{
ring_node *node;
node = NULL;
switch ( frequencyChannel ) {
case CHANNELF0:
node = ring_node_to_send_swf_f0;
break;
case CHANNELF1:
node = ring_node_to_send_swf_f1;
break;
case CHANNELF2:
node = ring_node_to_send_swf_f2;
break;
default:
break;
}
return node;
}
void reset_extractSWF( void )
{
extractSWF1 = false;
extractSWF2 = false;
swf0_ready_flag_f1 = false;
swf0_ready_flag_f2 = false;
swf1_ready = false;
swf2_ready = false;
}
inline void waveforms_isr_f3( void )
{
rtems_status_code spare_status;
if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
|| (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
{ // in modes other than STANDBY and BURST, send the CWF_F3 data
//***
// F3
if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F3) != INIT_CHAR ) { // [1100 0000] check the f3 full bits
ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
current_ring_node_f3 = current_ring_node_f3->next;
if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_0) == BIT_WFP_BUF_F3_0){ // [0100 0000] f3 buffer 0 is full
ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_0; // [1000 1000 0100 0000]
}
else if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_1) == BIT_WFP_BUF_F3_1){ // [1000 0000] f3 buffer 1 is full
ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_1; // [1000 1000 1000 0000]
}
if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
}
}
}
}
inline void waveforms_isr_burst( void )
{
unsigned char status;
rtems_status_code spare_status;
status = (waveform_picker_regs->status & BITS_WFP_STATUS_F2) >> SHIFT_WFP_STATUS_F2; // [0011 0000] get the status bits for f2
switch(status)
{
case BIT_WFP_BUFFER_0:
ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
current_ring_node_f2 = current_ring_node_f2->next;
waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
}
waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
break;
case BIT_WFP_BUFFER_1:
ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
current_ring_node_f2 = current_ring_node_f2->next;
waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
}
waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
break;
default:
break;
}
}
inline void waveform_isr_normal_sbm1_sbm2( void )
{
rtems_status_code status;
//***
// F0
if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F0) != INIT_CHAR ) // [0000 0011] check the f0 full bits
{
swf0_ready_flag_f1 = true;
swf0_ready_flag_f2 = true;
ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
current_ring_node_f0 = current_ring_node_f0->next;
if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_0) == BIT_WFP_BUFFER_0)
{
ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_0; // [0001 0001 0000 0001]
}
else if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_1) == BIT_WFP_BUFFER_1)
{
ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_1; // [0001 0001 0000 0010]
}
// send an event to the WFRM task for resynchro activities
status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
status = rtems_event_send( Task_id[TASKID_CALI], RTEMS_EVENT_CAL_SWEEP_WAKE );
}
//***
// F1
if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F1) != INIT_CHAR ) { // [0000 1100] check the f1 full bits
// (1) change the receiving buffer for the waveform picker
ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
current_ring_node_f1 = current_ring_node_f1->next;
if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_0) == BIT_WFP_BUF_F1_0)
{
ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_0; // [0010 0010 0000 0100] f1 bits = 0
}
else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_1) == BIT_WFP_BUF_F1_1)
{
ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_1; // [0010 0010 0000 1000] f1 bits = 0
}
// (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
}
//***
// F2
if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F2) != INIT_CHAR ) { // [0011 0000] check the f2 full bit
// (1) change the receiving buffer for the waveform picker
ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
current_ring_node_f2 = current_ring_node_f2->next;
if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_0) == BIT_WFP_BUF_F2_0)
{
ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
}
else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_1) == BIT_WFP_BUF_F2_1)
{
ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
}
// (2) send an event for the waveforms transmission
status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
}
}
rtems_isr waveforms_isr( rtems_vector_number vector )
{
/** This is the interrupt sub routine called by the waveform picker core.
*
* This ISR launch different actions depending mainly on two pieces of information:
* 1. the values read in the registers of the waveform picker.
* 2. the current LFR mode.
*
*/
// STATUS
// new error error buffer full
// 15 14 13 12 11 10 9 8
// f3 f2 f1 f0 f3 f2 f1 f0
//
// ready buffer
// 7 6 5 4 3 2 1 0
// f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
rtems_status_code spare_status;
waveforms_isr_f3();
//*************************************************
// copy the status bits in the housekeeping packets
housekeeping_packet.hk_lfr_vhdl_iir_cal =
(unsigned char) ((waveform_picker_regs->status & BYTE0_MASK) >> SHIFT_1_BYTE);
if ( (waveform_picker_regs->status & BYTE0_MASK) != INIT_CHAR) // [1111 1111 0000 0000] check the error bits
{
spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
}
switch(lfrCurrentMode)
{
//********
// STANDBY
case LFR_MODE_STANDBY:
break;
//**************************
// LFR NORMAL, SBM1 and SBM2
case LFR_MODE_NORMAL:
case LFR_MODE_SBM1:
case LFR_MODE_SBM2:
waveform_isr_normal_sbm1_sbm2();
break;
//******
// BURST
case LFR_MODE_BURST:
waveforms_isr_burst();
break;
//********
// DEFAULT
default:
break;
}
}
//************
// RTEMS TASKS
rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
{
/** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
*
* @param unused is the starting argument of the RTEMS task
*
* The following data packets are sent by this task:
* - TM_LFR_SCIENCE_NORMAL_SWF_F0
* - TM_LFR_SCIENCE_NORMAL_SWF_F1
* - TM_LFR_SCIENCE_NORMAL_SWF_F2
*
*/
rtems_event_set event_out;
rtems_id queue_id;
rtems_status_code status;
ring_node *ring_node_swf1_extracted_ptr;
ring_node *ring_node_swf2_extracted_ptr;
event_out = EVENT_SETS_NONE_PENDING;
queue_id = RTEMS_ID_NONE;
ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
status = get_message_queue_id_send( &queue_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
}
BOOT_PRINTF("in WFRM ***\n");
while(1){
// wait for an RTEMS_EVENT
rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
if (event_out == RTEMS_EVENT_MODE_NORMAL)
{
DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
}
if (event_out == RTEMS_EVENT_SWF_RESYNCH)
{
snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
}
}
}
rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
{
/** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
*
* @param unused is the starting argument of the RTEMS task
*
* The following data packet is sent by this task:
* - TM_LFR_SCIENCE_NORMAL_CWF_F3
*
*/
rtems_event_set event_out;
rtems_id queue_id;
rtems_status_code status;
ring_node ring_node_cwf3_light;
ring_node *ring_node_to_send_cwf;
event_out = EVENT_SETS_NONE_PENDING;
queue_id = RTEMS_ID_NONE;
status = get_message_queue_id_send( &queue_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
}
ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
// init the ring_node_cwf3_light structure
ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
ring_node_cwf3_light.coarseTime = INIT_CHAR;
ring_node_cwf3_light.fineTime = INIT_CHAR;
ring_node_cwf3_light.next = NULL;
ring_node_cwf3_light.previous = NULL;
ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
ring_node_cwf3_light.status = INIT_CHAR;
BOOT_PRINTF("in CWF3 ***\n");
while(1){
// wait for an RTEMS_EVENT
rtems_event_receive( RTEMS_EVENT_0,
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
if ( (lfrCurrentMode == LFR_MODE_NORMAL)
|| (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
{
ring_node_to_send_cwf = getRingNodeToSendCWF( CHANNELF3 );
if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & BIT_CWF_LONG_F3) == BIT_CWF_LONG_F3)
{
PRINTF("send CWF_LONG_F3\n");
ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
}
else
{
PRINTF("send CWF_F3 (light)\n");
send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
}
}
else
{
PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
}
}
}
rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
{
/** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
*
* @param unused is the starting argument of the RTEMS task
*
* The following data packet is sent by this function:
* - TM_LFR_SCIENCE_BURST_CWF_F2
* - TM_LFR_SCIENCE_SBM2_CWF_F2
*
*/
rtems_event_set event_out;
rtems_id queue_id;
rtems_status_code status;
ring_node *ring_node_to_send;
unsigned long long int acquisitionTimeF0_asLong;
event_out = EVENT_SETS_NONE_PENDING;
queue_id = RTEMS_ID_NONE;
acquisitionTimeF0_asLong = INIT_CHAR;
status = get_message_queue_id_send( &queue_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
}
BOOT_PRINTF("in CWF2 ***\n");
while(1){
// wait for an RTEMS_EVENT// send the snapshot when built
status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
ring_node_to_send = getRingNodeToSendCWF( CHANNELF2 );
if (event_out == RTEMS_EVENT_MODE_BURST)
{ // data are sent whatever the transition time
status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
}
else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
{
if ( lfrCurrentMode == LFR_MODE_SBM2 )
{
// data are sent depending on the transition time
if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
{
status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
}
}
// launch snapshot extraction if needed
if (extractSWF2 == true)
{
ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
// extract the snapshot
build_snapshot_from_ring( ring_node_to_send_swf_f2, CHANNELF2, acquisitionTimeF0_asLong,
&ring_node_swf2_extracted, swf2_extracted );
extractSWF2 = false;
swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
}
if (swf0_ready_flag_f2 == true)
{
extractSWF2 = true;
// record the acquition time of the f0 snapshot to use to build the snapshot at f2
acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
swf0_ready_flag_f2 = false;
}
}
}
}
rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
{
/** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
*
* @param unused is the starting argument of the RTEMS task
*
* The following data packet is sent by this function:
* - TM_LFR_SCIENCE_SBM1_CWF_F1
*
*/
rtems_event_set event_out;
rtems_id queue_id;
rtems_status_code status;
ring_node *ring_node_to_send_cwf;
event_out = EVENT_SETS_NONE_PENDING;
queue_id = RTEMS_ID_NONE;
status = get_message_queue_id_send( &queue_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
}
BOOT_PRINTF("in CWF1 ***\n");
while(1){
// wait for an RTEMS_EVENT
rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
if (lfrCurrentMode == LFR_MODE_SBM1)
{
// data are sent depending on the transition time
if ( time_management_regs->coarse_time >= lastValidEnterModeTime )
{
status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
}
}
// launch snapshot extraction if needed
if (extractSWF1 == true)
{
ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
// launch the snapshot extraction
status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
extractSWF1 = false;
}
if (swf0_ready_flag_f1 == true)
{
extractSWF1 = true;
swf0_ready_flag_f1 = false; // this step shall be executed only one time
}
if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
{
status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
swf1_ready = false;
swf2_ready = false;
}
}
}
rtems_task swbd_task(rtems_task_argument argument)
{
/** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
*
* @param unused is the starting argument of the RTEMS task
*
*/
rtems_event_set event_out;
unsigned long long int acquisitionTimeF0_asLong;
event_out = EVENT_SETS_NONE_PENDING;
acquisitionTimeF0_asLong = INIT_CHAR;
BOOT_PRINTF("in SWBD ***\n")
while(1){
// wait for an RTEMS_EVENT
rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
{
acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
build_snapshot_from_ring( ring_node_to_send_swf_f1, CHANNELF1, acquisitionTimeF0_asLong,
&ring_node_swf1_extracted, swf1_extracted );
swf1_ready = true; // the snapshot has been extracted and is ready to be sent
}
else
{
PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
}
}
}
//******************
// general functions
void WFP_init_rings( void )
{
// F0 RING
init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
// F1 RING
init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
// F2 RING
init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
// F3 RING
init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
}
void WFP_reset_current_ring_nodes( void )
{
current_ring_node_f0 = waveform_ring_f0[0].next;
current_ring_node_f1 = waveform_ring_f1[0].next;
current_ring_node_f2 = waveform_ring_f2[0].next;
current_ring_node_f3 = waveform_ring_f3[0].next;
ring_node_to_send_swf_f0 = waveform_ring_f0;
ring_node_to_send_swf_f1 = waveform_ring_f1;
ring_node_to_send_swf_f2 = waveform_ring_f2;
ring_node_to_send_cwf_f1 = waveform_ring_f1;
ring_node_to_send_cwf_f2 = waveform_ring_f2;
ring_node_to_send_cwf_f3 = waveform_ring_f3;
}
int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
{
/** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
*
* @param waveform points to the buffer containing the data that will be send.
* @param headerCWF points to a table of headers that have been prepared for the data transmission.
* @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
* contain information to setup the transmission of the data packets.
*
* By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
* from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
*
*/
unsigned int i;
unsigned int j;
int ret;
rtems_status_code status;
char *sample;
int *dataPtr;
ret = LFR_DEFAULT;
dataPtr = (int*) ring_node_to_send->buffer_address;
ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
//**********************
// BUILD CWF3_light DATA
for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
{
sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
for (j=0; j < CWF_BLK_SIZE; j++)
{
wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + j] = sample[ j ];
}
}
// SEND PACKET
status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
if (status != RTEMS_SUCCESSFUL) {
ret = LFR_DEFAULT;
}
return ret;
}
void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
{
unsigned long long int acquisitionTimeAsLong;
unsigned char localAcquisitionTime[BYTES_PER_TIME];
double deltaT;
deltaT = INIT_FLOAT;
localAcquisitionTime[BYTE_0] = (unsigned char) ( coarseTime >> SHIFT_3_BYTES );
localAcquisitionTime[BYTE_1] = (unsigned char) ( coarseTime >> SHIFT_2_BYTES );
localAcquisitionTime[BYTE_2] = (unsigned char) ( coarseTime >> SHIFT_1_BYTE );
localAcquisitionTime[BYTE_3] = (unsigned char) ( coarseTime );
localAcquisitionTime[BYTE_4] = (unsigned char) ( fineTime >> SHIFT_1_BYTE );
localAcquisitionTime[BYTE_5] = (unsigned char) ( fineTime );
acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[BYTE_0] << SHIFT_5_BYTES )
+ ( (unsigned long long int) localAcquisitionTime[BYTE_1] << SHIFT_4_BYTES )
+ ( (unsigned long long int) localAcquisitionTime[BYTE_2] << SHIFT_3_BYTES )
+ ( (unsigned long long int) localAcquisitionTime[BYTE_3] << SHIFT_2_BYTES )
+ ( (unsigned long long int) localAcquisitionTime[BYTE_4] << SHIFT_1_BYTE )
+ ( (unsigned long long int) localAcquisitionTime[BYTE_5] );
switch( sid )
{
case SID_NORM_SWF_F0:
deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T0_IN_FINETIME ;
break;
case SID_NORM_SWF_F1:
deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T1_IN_FINETIME ;
break;
case SID_NORM_SWF_F2:
deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T2_IN_FINETIME ;
break;
case SID_SBM1_CWF_F1:
deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T1_IN_FINETIME ;
break;
case SID_SBM2_CWF_F2:
deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
break;
case SID_BURST_CWF_F2:
deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
break;
case SID_NORM_CWF_F3:
deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * T3_IN_FINETIME ;
break;
case SID_NORM_CWF_LONG_F3:
deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T3_IN_FINETIME ;
break;
default:
PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
deltaT = 0.;
break;
}
acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
//
acquisitionTime[BYTE_0] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_5_BYTES);
acquisitionTime[BYTE_1] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_4_BYTES);
acquisitionTime[BYTE_2] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_3_BYTES);
acquisitionTime[BYTE_3] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_2_BYTES);
acquisitionTime[BYTE_4] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_1_BYTE );
acquisitionTime[BYTE_5] = (unsigned char) (acquisitionTimeAsLong );
}
void build_snapshot_from_ring( ring_node *ring_node_to_send,
unsigned char frequencyChannel,
unsigned long long int acquisitionTimeF0_asLong,
ring_node *ring_node_swf_extracted,
int *swf_extracted)
{
unsigned int i;
unsigned int node;
unsigned long long int centerTime_asLong;
unsigned long long int acquisitionTime_asLong;
unsigned long long int bufferAcquisitionTime_asLong;
unsigned char *ptr1;
unsigned char *ptr2;
unsigned char *timeCharPtr;
unsigned char nb_ring_nodes;
unsigned long long int frequency_asLong;
unsigned long long int nbTicksPerSample_asLong;
unsigned long long int nbSamplesPart1_asLong;
unsigned long long int sampleOffset_asLong;
unsigned int deltaT_F0;
unsigned int deltaT_F1;
unsigned long long int deltaT_F2;
deltaT_F0 = DELTAT_F0;
deltaT_F1 = DELTAT_F1;
deltaT_F2 = DELTAT_F2;
sampleOffset_asLong = INIT_CHAR;
// (1) get the f0 acquisition time => the value is passed in argument
// (2) compute the central reference time
centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
acquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
bufferAcquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
nbTicksPerSample_asLong = TICKS_PER_T2; //set to default value (Don_Initialisation_P2)
// (3) compute the acquisition time of the current snapshot
switch(frequencyChannel)
{
case CHANNELF1: // 1 is for F1 = 4096 Hz
acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
nb_ring_nodes = NB_RING_NODES_F1;
frequency_asLong = FREQ_F1;
nbTicksPerSample_asLong = TICKS_PER_T1; // 65536 / 4096;
break;
case CHANNELF2: // 2 is for F2 = 256 Hz
acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
nb_ring_nodes = NB_RING_NODES_F2;
frequency_asLong = FREQ_F2;
nbTicksPerSample_asLong = TICKS_PER_T2; // 65536 / 256;
break;
default:
acquisitionTime_asLong = centerTime_asLong;
nb_ring_nodes = 0;
frequency_asLong = FREQ_F2;
nbTicksPerSample_asLong = TICKS_PER_T2;
break;
}
//*****************************************************************************
// (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
node = 0;
while ( node < nb_ring_nodes)
{
bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
{
node = nb_ring_nodes;
}
else
{
node = node + 1;
ring_node_to_send = ring_node_to_send->previous;
}
}
// (5) compute the number of samples to take in the current buffer
sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> SHIFT_2_BYTES;
nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
// (6) compute the final acquisition time
acquisitionTime_asLong = bufferAcquisitionTime_asLong +
(sampleOffset_asLong * nbTicksPerSample_asLong);
// (7) copy the acquisition time at the beginning of the extrated snapshot
ptr1 = (unsigned char*) &acquisitionTime_asLong;
// fine time
ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
ptr2[BYTE_2] = ptr1[ BYTE_4 + OFFSET_2_BYTES ];
ptr2[BYTE_3] = ptr1[ BYTE_5 + OFFSET_2_BYTES ];
// coarse time
ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
ptr2[BYTE_0] = ptr1[ BYTE_0 + OFFSET_2_BYTES ];
ptr2[BYTE_1] = ptr1[ BYTE_1 + OFFSET_2_BYTES ];
ptr2[BYTE_2] = ptr1[ BYTE_2 + OFFSET_2_BYTES ];
ptr2[BYTE_3] = ptr1[ BYTE_3 + OFFSET_2_BYTES ];
// re set the synchronization bit
timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
ptr2[0] = ptr2[0] | (timeCharPtr[0] & SYNC_BIT); // [1000 0000]
if ( (nbSamplesPart1_asLong > NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
{
nbSamplesPart1_asLong = 0;
}
// copy the part 1 of the snapshot in the extracted buffer
for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
{
swf_extracted[i] =
((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
}
// copy the part 2 of the snapshot in the extracted buffer
ring_node_to_send = ring_node_to_send->next;
for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
{
swf_extracted[i] =
((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
}
}
double computeCorrection( unsigned char *timePtr )
{
unsigned long long int acquisitionTime;
unsigned long long int centerTime;
unsigned long long int previousTick;
unsigned long long int nextTick;
unsigned long long int deltaPreviousTick;
unsigned long long int deltaNextTick;
double deltaPrevious_ms;
double deltaNext_ms;
double correctionInF2;
correctionInF2 = 0; //set to default value (Don_Initialisation_P2)
// get acquisition time in fine time ticks
acquisitionTime = get_acquisition_time( timePtr );
// compute center time
centerTime = acquisitionTime + DELTAT_F0; // (2048. / 24576. / 2.) * 65536. = 2730.667;
previousTick = centerTime - (centerTime & INT16_ALL_F);
nextTick = previousTick + TICKS_PER_S;
deltaPreviousTick = centerTime - previousTick;
deltaNextTick = nextTick - centerTime;
deltaPrevious_ms = (((double) deltaPreviousTick) / TICKS_PER_S) * MS_PER_S;
deltaNext_ms = (((double) deltaNextTick) / TICKS_PER_S) * MS_PER_S;
PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
// which tick is the closest?
if (deltaPreviousTick > deltaNextTick)
{
// the snapshot center is just before the second => increase delta_snapshot
correctionInF2 = + (deltaNext_ms * FREQ_F2 / MS_PER_S );
}
else
{
// the snapshot center is just after the second => decrease delta_snapshot
correctionInF2 = - (deltaPrevious_ms * FREQ_F2 / MS_PER_S );
}
PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
return correctionInF2;
}
void applyCorrection( double correction )
{
int correctionInt;
correctionInt = 0;
if (correction >= 0.)
{
if ( (ONE_TICK_CORR_INTERVAL_0_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_0_MAX) )
{
correctionInt = ONE_TICK_CORR;
}
else
{
correctionInt = CORR_MULT * floor(correction);
}
}
else
{
if ( (ONE_TICK_CORR_INTERVAL_1_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_1_MAX) )
{
correctionInt = -ONE_TICK_CORR;
}
else
{
correctionInt = CORR_MULT * ceil(correction);
}
}
waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
}
void snapshot_resynchronization( unsigned char *timePtr )
{
/** This function compute a correction to apply on delta_snapshot.
*
*
* @param timePtr is a pointer to the acquisition time of the snapshot being considered.
*
* @return void
*
*/
static double correction = INIT_FLOAT;
static resynchro_state state = MEASURE;
static unsigned int nbSnapshots = 0;
int correctionInt;
correctionInt = 0;
switch (state)
{
case MEASURE:
// ********
PRINTF1("MEASURE === %d\n", nbSnapshots);
state = CORRECTION;
correction = computeCorrection( timePtr );
PRINTF1("MEASURE === correction = %.2f\n", correction );
applyCorrection( correction );
PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
//****
break;
case CORRECTION:
//************
PRINTF1("CORRECTION === %d\n", nbSnapshots);
state = MEASURE;
computeCorrection( timePtr );
set_wfp_delta_snapshot();
PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
//****
break;
default:
break;
}
nbSnapshots++;
}
//**************
// wfp registers
void reset_wfp_burst_enable( void )
{
/** This function resets the waveform picker burst_enable register.
*
* The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
*
*/
// [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & RST_BITS_RUN_BURST_EN;
}
void reset_wfp_status( void )
{
/** This function resets the waveform picker status register.
*
* All status bits are set to 0 [new_err full_err full].
*
*/
waveform_picker_regs->status = INT16_ALL_F;
}
void reset_wfp_buffer_addresses( void )
{
// F0
waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
// F1
waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
// F2
waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
// F3
waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
}
void reset_waveform_picker_regs( void )
{
/** This function resets the waveform picker module registers.
*
* The registers affected by this function are located at the following offset addresses:
* - 0x00 data_shaping
* - 0x04 run_burst_enable
* - 0x08 addr_data_f0
* - 0x0C addr_data_f1
* - 0x10 addr_data_f2
* - 0x14 addr_data_f3
* - 0x18 status
* - 0x1C delta_snapshot
* - 0x20 delta_f0
* - 0x24 delta_f0_2
* - 0x28 delta_f1 (obsolet parameter)
* - 0x2c delta_f2
* - 0x30 nb_data_by_buffer
* - 0x34 nb_snapshot_param
* - 0x38 start_date
* - 0x3c nb_word_in_buffer
*
*/
set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
reset_wfp_buffer_addresses();
reset_wfp_status(); // 0x18
set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
set_wfp_delta_f0_f0_2(); // 0x20, 0x24
//the parameter delta_f1 [0x28] is not used anymore
set_wfp_delta_f2(); // 0x2c
DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
// 2688 = 8 * 336
waveform_picker_regs->nb_data_by_buffer = DFLT_WFP_NB_DATA_BY_BUFFER; // 0x30 *** 2688 - 1 => nb samples -1
waveform_picker_regs->snapshot_param = DFLT_WFP_SNAPSHOT_PARAM; // 0x34 *** 2688 => nb samples
waveform_picker_regs->start_date = COARSE_TIME_MASK;
//
// coarse time and fine time registers are not initialized, they are volatile
//
waveform_picker_regs->buffer_length = DFLT_WFP_BUFFER_LENGTH; // buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
}
void set_wfp_data_shaping( void )
{
/** This function sets the data_shaping register of the waveform picker module.
*
* The value is read from one field of the parameter_dump_packet structure:\n
* bw_sp0_sp1_r0_r1
*
*/
unsigned char data_shaping;
// get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
// waveform picker : [R1 R0 SP1 SP0 BW]
data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
waveform_picker_regs->data_shaping =
( (data_shaping & BIT_5) >> SHIFT_5_BITS ) // BW
+ ( (data_shaping & BIT_4) >> SHIFT_3_BITS ) // SP0
+ ( (data_shaping & BIT_3) >> 1 ) // SP1
+ ( (data_shaping & BIT_2) << 1 ) // R0
+ ( (data_shaping & BIT_1) << SHIFT_3_BITS ) // R1
+ ( (data_shaping & BIT_0) << SHIFT_5_BITS ); // R2
}
void set_wfp_burst_enable_register( unsigned char mode )
{
/** This function sets the waveform picker burst_enable register depending on the mode.
*
* @param mode is the LFR mode to launch.
*
* The burst bits shall be before the enable bits.
*
*/
// [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
// the burst bits shall be set first, before the enable bits
switch(mode) {
case LFR_MODE_NORMAL:
case LFR_MODE_SBM1:
case LFR_MODE_SBM2:
waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_SBM2; // [0110 0000] enable f2 and f1 burst
waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | BITS_WFP_ENABLE_ALL; // [1111] enable f3 f2 f1 f0
break;
case LFR_MODE_BURST:
waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_BURST; // [0100 0000] f2 burst enabled
waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | BITS_WFP_ENABLE_BURST; // [1100] enable f3 and f2
break;
default:
waveform_picker_regs->run_burst_enable = INIT_CHAR; // [0000 0000] no burst enabled, no waveform enabled
break;
}
}
void set_wfp_delta_snapshot( void )
{
/** This function sets the delta_snapshot register of the waveform picker module.
*
* The value is read from two (unsigned char) of the parameter_dump_packet structure:
* - sy_lfr_n_swf_p[0]
* - sy_lfr_n_swf_p[1]
*
*/
unsigned int delta_snapshot;
unsigned int delta_snapshot_in_T2;
delta_snapshot = (parameter_dump_packet.sy_lfr_n_swf_p[0] * CONST_256)
+ parameter_dump_packet.sy_lfr_n_swf_p[1];
delta_snapshot_in_T2 = delta_snapshot * FREQ_F2;
waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
}
void set_wfp_delta_f0_f0_2( void )
{
unsigned int delta_snapshot;
unsigned int nb_samples_per_snapshot;
float delta_f0_in_float;
delta_snapshot = waveform_picker_regs->delta_snapshot;
nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
delta_f0_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F0) ) * FREQ_F2;
waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
waveform_picker_regs->delta_f0_2 = DFLT_WFP_DELTA_F0_2;
}
void set_wfp_delta_f1( void )
{
/** Sets the value of the delta_f1 parameter
*
* @param void
*
* @return void
*
* delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
*
*/
unsigned int delta_snapshot;
unsigned int nb_samples_per_snapshot;
float delta_f1_in_float;
delta_snapshot = waveform_picker_regs->delta_snapshot;
nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
delta_f1_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F1) ) * FREQ_F2;
waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
}
void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
{
/** Sets the value of the delta_f2 parameter
*
* @param void
*
* @return void
*
* delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
* waveforms (see lpp_waveform_snapshot_controler.vhd for details).
*
*/
unsigned int delta_snapshot;
unsigned int nb_samples_per_snapshot;
delta_snapshot = waveform_picker_regs->delta_snapshot;
nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
waveform_picker_regs->delta_f2 = delta_snapshot - (nb_samples_per_snapshot / 2) - 1;
}
//*****************
// local parameters
void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
{
/** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
*
* @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
* @param sid is the source identifier of the packet being updated.
*
* REQ-LFR-SRS-5240 / SSS-CP-FS-590
* The sequence counters shall wrap around from 2^14 to zero.
* The sequence counter shall start at zero at startup.
*
* REQ-LFR-SRS-5239 / SSS-CP-FS-580
* All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
*
*/
unsigned short *sequence_cnt;
unsigned short segmentation_grouping_flag;
unsigned short new_packet_sequence_control;
rtems_mode initial_mode_set;
rtems_mode current_mode_set;
rtems_status_code status;
initial_mode_set = RTEMS_DEFAULT_MODES;
current_mode_set = RTEMS_DEFAULT_MODES;
sequence_cnt = NULL;
//******************************************
// CHANGE THE MODE OF THE CALLING RTEMS TASK
status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
|| (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
|| (sid == SID_BURST_CWF_F2)
|| (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
|| (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
|| (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
|| (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
|| (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
{
sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
}
else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
|| (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
|| (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
|| (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
{
sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
}
else
{
sequence_cnt = (unsigned short *) NULL;
PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
}
if (sequence_cnt != NULL)
{
segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
*sequence_cnt = (*sequence_cnt) & SEQ_CNT_MASK;
new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
// increment the sequence counter
if ( *sequence_cnt < SEQ_CNT_MAX)
{
*sequence_cnt = *sequence_cnt + 1;
}
else
{
*sequence_cnt = 0;
}
}
//*************************************
// RESTORE THE MODE OF THE CALLING TASK
status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
}