##// END OF EJS Templates
Sync before going back to 1.0.0.12 for sources delivery
Sync before going back to 1.0.0.12 for sources delivery

File last commit:

r157:a703b578b7d4 VHDLib206
r163:397b59567aca VHDLib206
Show More
tc_handler.c
948 lines | 30.9 KiB | text/x-c | CLexer
/** Functions and tasks related to TeleCommand handling.
*
* @file
* @author P. LEROY
*
* A group of functions to handle TeleCommands:\n
* action launching\n
* TC parsing\n
* ...
*
*/
#include "tc_handler.h"
//***********
// RTEMS TASK
rtems_task actn_task( rtems_task_argument unused )
{
/** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
*
* @param unused is the starting argument of the RTEMS task
*
* The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
* on the incoming TeleCommand.
*
*/
int result;
rtems_status_code status; // RTEMS status code
ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
size_t size; // size of the incoming TC packet
unsigned char subtype; // subtype of the current TC packet
unsigned char time[6];
rtems_id queue_rcv_id;
rtems_id queue_snd_id;
status = get_message_queue_id_recv( &queue_rcv_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
}
status = get_message_queue_id_send( &queue_snd_id );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
}
result = LFR_SUCCESSFUL;
subtype = 0; // subtype of the current TC packet
BOOT_PRINTF("in ACTN *** \n")
while(1)
{
status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
RTEMS_WAIT, RTEMS_NO_TIMEOUT);
getTime( time ); // set time to the current time
if (status!=RTEMS_SUCCESSFUL)
{
PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
}
else
{
subtype = TC.serviceSubType;
switch(subtype)
{
case TC_SUBTYPE_RESET:
result = action_reset( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_LOAD_COMM:
result = action_load_common_par( &TC );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_LOAD_NORM:
result = action_load_normal_par( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_LOAD_BURST:
result = action_load_burst_par( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_LOAD_SBM1:
result = action_load_sbm1_par( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_LOAD_SBM2:
result = action_load_sbm2_par( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_DUMP:
result = action_dump_par( queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_ENTER:
result = action_enter_mode( &TC, queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_UPDT_INFO:
result = action_update_info( &TC, queue_snd_id );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_EN_CAL:
result = action_enable_calibration( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_DIS_CAL:
result = action_disable_calibration( &TC, queue_snd_id, time );
close_action( &TC, result, queue_snd_id );
break;
//
case TC_SUBTYPE_UPDT_TIME:
result = action_update_time( &TC );
close_action( &TC, result, queue_snd_id );
break;
//
default:
break;
}
}
}
}
//***********
// TC ACTIONS
int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
return LFR_DEFAULT;
}
int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
{
/** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
rtems_status_code status;
unsigned char requestedMode;
unsigned int *transitionCoarseTime_ptr;
unsigned int transitionCoarseTime;
unsigned char * bytePosPtr;
bytePosPtr = (unsigned char *) &TC->packetID;
requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
status = check_mode_value( requestedMode );
if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
{
send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
}
else // the mode value is consistent, check the transition
{
status = check_mode_transition(requestedMode);
if (status != LFR_SUCCESSFUL)
{
PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
send_tm_lfr_tc_exe_not_executable( TC, queue_id );
}
}
if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
{
status = check_transition_date( transitionCoarseTime );
if (status != LFR_SUCCESSFUL)
{
PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
BYTE_POS_CP_LFR_ENTER_MODE_TIME,
bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
}
}
if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
{
PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
status = enter_mode( requestedMode, transitionCoarseTime );
}
return status;
}
int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
{
/** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
* @return LFR directive status code:
* - LFR_DEFAULT
* - LFR_SUCCESSFUL
*
*/
unsigned int val;
int result;
unsigned int status;
unsigned char mode;
unsigned char * bytePosPtr;
bytePosPtr = (unsigned char *) &TC->packetID;
// check LFR mode
mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
status = check_update_info_hk_lfr_mode( mode );
if (status == LFR_SUCCESSFUL) // check TDS mode
{
mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
status = check_update_info_hk_tds_mode( mode );
}
if (status == LFR_SUCCESSFUL) // check THR mode
{
mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
status = check_update_info_hk_thr_mode( mode );
}
if (status == LFR_SUCCESSFUL) // if the parameter check is successful
{
val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
+ housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
val++;
housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
}
result = status;
return result;
}
int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
int result;
unsigned char lfrMode;
result = LFR_DEFAULT;
lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
result = LFR_DEFAULT;
return result;
}
int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
{
/** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
*/
int result;
unsigned char lfrMode;
result = LFR_DEFAULT;
lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
result = LFR_DEFAULT;
return result;
}
int action_update_time(ccsdsTelecommandPacket_t *TC)
{
/** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
*
* @param TC points to the TeleCommand packet that is being processed
* @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
*
* @return LFR_SUCCESSFUL
*
*/
unsigned int val;
time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
+ (TC->dataAndCRC[1] << 16)
+ (TC->dataAndCRC[2] << 8)
+ TC->dataAndCRC[3];
PRINTF1("time received: %x\n", time_management_regs->coarse_time_load)
val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
+ housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
val++;
housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
// time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
return LFR_SUCCESSFUL;
}
//*******************
// ENTERING THE MODES
int check_mode_value( unsigned char requestedMode )
{
int status;
if ( (requestedMode != LFR_MODE_STANDBY)
&& (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
&& (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
{
status = LFR_DEFAULT;
}
else
{
status = LFR_SUCCESSFUL;
}
return status;
}
int check_mode_transition( unsigned char requestedMode )
{
/** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
*
* @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
*
* @return LFR directive status codes:
* - LFR_SUCCESSFUL - the transition is authorized
* - LFR_DEFAULT - the transition is not authorized
*
*/
int status;
switch (requestedMode)
{
case LFR_MODE_STANDBY:
if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
status = LFR_DEFAULT;
}
else
{
status = LFR_SUCCESSFUL;
}
break;
case LFR_MODE_NORMAL:
if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
status = LFR_DEFAULT;
}
else {
status = LFR_SUCCESSFUL;
}
break;
case LFR_MODE_BURST:
if ( lfrCurrentMode == LFR_MODE_BURST ) {
status = LFR_DEFAULT;
}
else {
status = LFR_SUCCESSFUL;
}
break;
case LFR_MODE_SBM1:
if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
status = LFR_DEFAULT;
}
else {
status = LFR_SUCCESSFUL;
}
break;
case LFR_MODE_SBM2:
if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
status = LFR_DEFAULT;
}
else {
status = LFR_SUCCESSFUL;
}
break;
default:
status = LFR_DEFAULT;
break;
}
return status;
}
int check_transition_date( unsigned int transitionCoarseTime )
{
int status;
unsigned int localCoarseTime;
unsigned int deltaCoarseTime;
status = LFR_SUCCESSFUL;
if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
{
status = LFR_SUCCESSFUL;
}
else
{
localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
{
status = LFR_DEFAULT;
PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
}
if (status == LFR_SUCCESSFUL)
{
deltaCoarseTime = transitionCoarseTime - localCoarseTime;
if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
{
status = LFR_DEFAULT;
PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
}
}
}
return status;
}
int stop_current_mode( void )
{
/** This function stops the current mode by masking interrupt lines and suspending science tasks.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_ALREADY_SUSPENDED - task already suspended
*
*/
rtems_status_code status;
status = RTEMS_SUCCESSFUL;
// (1) mask interruptions
LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
// (2) clear interruptions
LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
// (3) reset waveform picker registers
reset_wfp_burst_enable(); // reset burst and enable bits
reset_wfp_status(); // reset all the status bits
// (4) reset spectral matrices registers
set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
reset_extractSWF(); // reset the extractSWF flag to false
// <Spectral Matrices simulator>
LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
// </Spectral Matrices simulator>
// suspend several tasks
if (lfrCurrentMode != LFR_MODE_STANDBY) {
status = suspend_science_tasks();
}
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
}
return status;
}
int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
{
/** This function is launched after a mode transition validation.
*
* @param mode is the mode in which LFR will be put.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - the mode has been entered successfully
* - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
*
*/
rtems_status_code status;
//**********************
// STOP THE CURRENT MODE
status = stop_current_mode();
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
}
//*************************
// ENTER THE REQUESTED MODE
if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
|| (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
{
#ifdef PRINT_TASK_STATISTICS
rtems_cpu_usage_reset();
maxCount = 0;
#endif
status = restart_science_tasks( mode );
launch_waveform_picker( mode, transitionCoarseTime );
launch_spectral_matrix( );
// launch_spectral_matrix_simu( );
}
else if ( mode == LFR_MODE_STANDBY )
{
#ifdef PRINT_TASK_STATISTICS
rtems_cpu_usage_report();
#endif
#ifdef PRINT_STACK_REPORT
PRINTF("stack report selected\n")
rtems_stack_checker_report_usage();
#endif
PRINTF1("maxCount = %d\n", maxCount)
}
else
{
status = RTEMS_UNSATISFIED;
}
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
status = RTEMS_UNSATISFIED;
}
return status;
}
int restart_science_tasks(unsigned char lfrRequestedMode )
{
/** This function is used to restart all science tasks.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_INCORRECT_STATE - task never started
* - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
*
* Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
*
*/
rtems_status_code status[10];
rtems_status_code ret;
ret = RTEMS_SUCCESSFUL;
status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
if (status[0] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
}
status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
if (status[1] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
}
status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
if (status[2] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
}
status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
if (status[3] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
}
status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
if (status[4] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
}
status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
if (status[5] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
}
status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
if (status[6] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
}
status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
if (status[7] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
}
status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
if (status[8] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
}
status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
if (status[9] != RTEMS_SUCCESSFUL)
{
PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
}
if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
(status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
(status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
(status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
(status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
{
ret = RTEMS_UNSATISFIED;
}
return ret;
}
int suspend_science_tasks()
{
/** This function suspends the science tasks.
*
* @return RTEMS directive status codes:
* - RTEMS_SUCCESSFUL - task restarted successfully
* - RTEMS_INVALID_ID - task id invalid
* - RTEMS_ALREADY_SUSPENDED - task already suspended
*
*/
rtems_status_code status;
status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
}
if (status == RTEMS_SUCCESSFUL) // suspend PRC0
{
status = rtems_task_suspend( Task_id[TASKID_PRC0] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
}
}
if (status == RTEMS_SUCCESSFUL) // suspend AVF1
{
status = rtems_task_suspend( Task_id[TASKID_AVF1] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
}
}
if (status == RTEMS_SUCCESSFUL) // suspend PRC1
{
status = rtems_task_suspend( Task_id[TASKID_PRC1] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
}
}
if (status == RTEMS_SUCCESSFUL) // suspend AVF2
{
status = rtems_task_suspend( Task_id[TASKID_AVF2] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
}
}
if (status == RTEMS_SUCCESSFUL) // suspend PRC2
{
status = rtems_task_suspend( Task_id[TASKID_PRC2] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
}
}
if (status == RTEMS_SUCCESSFUL) // suspend WFRM
{
status = rtems_task_suspend( Task_id[TASKID_WFRM] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
}
}
if (status == RTEMS_SUCCESSFUL) // suspend CWF3
{
status = rtems_task_suspend( Task_id[TASKID_CWF3] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
}
}
if (status == RTEMS_SUCCESSFUL) // suspend CWF2
{
status = rtems_task_suspend( Task_id[TASKID_CWF2] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
}
}
if (status == RTEMS_SUCCESSFUL) // suspend CWF1
{
status = rtems_task_suspend( Task_id[TASKID_CWF1] );
if (status != RTEMS_SUCCESSFUL)
{
PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
}
}
return status;
}
void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
{
WFP_reset_current_ring_nodes();
reset_waveform_picker_regs();
set_wfp_burst_enable_register( mode );
LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
if (transitionCoarseTime == 0)
{
waveform_picker_regs->start_date = time_management_regs->coarse_time;
}
else
{
waveform_picker_regs->start_date = transitionCoarseTime;
}
}
void launch_spectral_matrix( void )
{
SM_reset_current_ring_nodes();
reset_spectral_matrix_regs();
reset_nb_sm();
struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
grgpio_regs->io_port_direction_register =
grgpio_regs->io_port_direction_register | 0x01; // [0000 0001], 0 = output disabled, 1 = output enabled
grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfffffffe; // set the bit 0 to 0
set_irq_on_new_ready_matrix( 1 );
LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
set_run_matrix_spectral( 1 );
}
void launch_spectral_matrix_simu( void )
{
SM_reset_current_ring_nodes();
reset_spectral_matrix_regs();
reset_nb_sm();
// Spectral Matrices simulator
timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
}
void set_irq_on_new_ready_matrix( unsigned char value )
{
if (value == 1)
{
spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
}
else
{
spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
}
}
void set_run_matrix_spectral( unsigned char value )
{
if (value == 1)
{
spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // [0100] set run_matrix spectral to 1
}
else
{
spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // [1011] set run_matrix spectral to 0
}
}
//****************
// CLOSING ACTIONS
void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
{
/** This function is used to update the HK packets statistics after a successful TC execution.
*
* @param TC points to the TC being processed
* @param time is the time used to date the TC execution
*
*/
unsigned int val;
housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
val++;
housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
}
void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
{
/** This function is used to update the HK packets statistics after a TC rejection.
*
* @param TC points to the TC being processed
* @param time is the time used to date the TC rejection
*
*/
unsigned int val;
housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
val++;
housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
}
void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
{
/** This function is the last step of the TC execution workflow.
*
* @param TC points to the TC being processed
* @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
* @param queue_id is the id of the RTEMS message queue used to send TM packets
* @param time is the time used to date the TC execution
*
*/
unsigned char requestedMode;
if (result == LFR_SUCCESSFUL)
{
if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
&
!( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
)
{
send_tm_lfr_tc_exe_success( TC, queue_id );
}
if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
{
//**********************************
// UPDATE THE LFRMODE LOCAL VARIABLE
requestedMode = TC->dataAndCRC[1];
housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
updateLFRCurrentMode();
}
}
else if (result == LFR_EXE_ERROR)
{
send_tm_lfr_tc_exe_error( TC, queue_id );
}
}
//***************************
// Interrupt Service Routines
rtems_isr commutation_isr1( rtems_vector_number vector )
{
if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
printf("In commutation_isr1 *** Error sending event to DUMB\n");
}
}
rtems_isr commutation_isr2( rtems_vector_number vector )
{
if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
printf("In commutation_isr2 *** Error sending event to DUMB\n");
}
}
//****************
// OTHER FUNCTIONS
void updateLFRCurrentMode()
{
/** This function updates the value of the global variable lfrCurrentMode.
*
* lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
*
*/
// update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
}