##// END OF EJS Templates
The HK packet contains v, e1 and e2 valid data at f3....
The HK packet contains v, e1 and e2 valid data at f3. The ACTN task mode is set to NO_PREEMPT In BURST, f3 flow is enabled to allow the v, e1 and e2 data pick-up for HK

File last commit:

r126:5ae10b1b8078 VHDLib206
r129:85c441b3b744 VHDLib206
Show More
fsw_processing.h
238 lines | 8.7 KiB | text/x-c | CLexer
#ifndef FSW_PROCESSING_H_INCLUDED
#define FSW_PROCESSING_H_INCLUDED
#include <rtems.h>
#include <grspw.h>
#include <math.h>
#include <stdlib.h> // abs() is in the stdlib
#include <stdio.h> // printf()
#include <math.h>
#include "fsw_params.h"
#include "fsw_spacewire.h"
typedef struct ring_node_sm
{
struct ring_node_sm *previous;
struct ring_node_sm *next;
int buffer_address;
unsigned int status;
unsigned int coarseTime;
unsigned int fineTime;
} ring_node_sm;
typedef struct ring_node_asm
{
struct ring_node_asm *next;
float matrix[ TOTAL_SIZE_SM ];
unsigned int status;
} ring_node_asm;
typedef struct bp_packet
{
Header_TM_LFR_SCIENCE_BP_t header;
unsigned char data[ 30 * 22 ]; // MAX size is 22 * 30 [TM_LFR_SCIENCE_BURST_BP2_F1]
} bp_packet;
typedef struct bp_packet_with_spare
{
Header_TM_LFR_SCIENCE_BP_with_spare_t header;
unsigned char data[ 9 * 13 ]; // only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
} bp_packet_with_spare;
typedef struct asm_msg
{
ring_node_asm *norm;
ring_node_asm *burst_sbm;
rtems_event_set event;
unsigned int coarseTime;
unsigned int fineTime;
} asm_msg;
extern volatile int sm_f0[ ];
extern volatile int sm_f1[ ];
extern volatile int sm_f2[ ];
// parameters
extern struct param_local_str param_local;
// registers
extern time_management_regs_t *time_management_regs;
extern spectral_matrix_regs_t *spectral_matrix_regs;
extern rtems_name misc_name[5];
extern rtems_id Task_id[20]; /* array of task ids */
// ISR
rtems_isr spectral_matrices_isr( rtems_vector_number vector );
rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
//******************
// Spectral Matrices
void reset_nb_sm( void );
// SM
void SM_init_rings( void );
void SM_reset_current_ring_nodes( void );
// ASM
void ASM_generic_init_ring(ring_node_asm *ring, unsigned char nbNodes );
void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header);
void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id);
//*****************
// Basic Parameters
void BP_reset_current_ring_nodes( void );
void BP_init_header(Header_TM_LFR_SCIENCE_BP_t *header,
unsigned int apid, unsigned char sid,
unsigned int packetLength , unsigned char blkNr);
void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
unsigned int apid, unsigned char sid,
unsigned int packetLength, unsigned char blkNr );
void BP_send(char *data,
rtems_id queue_id ,
unsigned int nbBytesToSend );
//******************
// general functions
void reset_spectral_matrix_regs( void );
void set_time(unsigned char *time, unsigned char *timeInBuffer );
extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
//***************************************
// DEFINITIONS OF STATIC INLINE FUNCTIONS
static inline void SM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
ring_node_sm *ring_node_tab[],
unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 );
static inline void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
float divider );
static inline void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
float divider,
unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
static inline void ASM_convert(volatile float *input_matrix, char *output_matrix);
void SM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
ring_node_sm *ring_node_tab[],
unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 )
{
float sum;
unsigned int i;
for(i=0; i<TOTAL_SIZE_SM; i++)
{
sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
if ( (nbAverageNormF0 == 0) && (nbAverageSBM1F0 == 0) )
{
averaged_spec_mat_f0[ i ] = sum;
averaged_spec_mat_f1[ i ] = sum;
}
else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 != 0) )
{
averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
averaged_spec_mat_f1[ i ] = ( averaged_spec_mat_f1[ i ] + sum );
}
else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 == 0) )
{
averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
averaged_spec_mat_f1[ i ] = sum;
}
else
{
PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNormF0, nbAverageSBM1F0)
}
}
}
void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
{
int frequencyBin;
int asmComponent;
unsigned int offsetAveragedSpecMatReorganized;
unsigned int offsetAveragedSpecMat;
for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
{
for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
{
offsetAveragedSpecMatReorganized =
frequencyBin * NB_VALUES_PER_SM
+ asmComponent;
offsetAveragedSpecMat =
asmComponent * NB_BINS_PER_SM
+ frequencyBin;
averaged_spec_mat_reorganized[offsetAveragedSpecMatReorganized ] =
averaged_spec_mat[ offsetAveragedSpecMat ] / divider;
}
}
}
void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
{
int frequencyBin;
int asmComponent;
int offsetASM;
int offsetCompressed;
int k;
// build data
for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
{
for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
{
offsetCompressed = // NO TIME OFFSET
frequencyBin * NB_VALUES_PER_SM
+ asmComponent;
offsetASM = // NO TIME OFFSET
asmComponent * NB_BINS_PER_SM
+ ASMIndexStart
+ frequencyBin * nbBinsToAverage;
compressed_spec_mat[ offsetCompressed ] = 0;
for ( k = 0; k < nbBinsToAverage; k++ )
{
compressed_spec_mat[offsetCompressed ] =
( compressed_spec_mat[ offsetCompressed ]
+ averaged_spec_mat[ offsetASM + k ] ) / (divider * nbBinsToAverage);
}
}
}
}
void ASM_convert( volatile float *input_matrix, char *output_matrix)
{
unsigned int frequencyBin;
unsigned int asmComponent;
char * pt_char_input;
char * pt_char_output;
unsigned int offsetInput;
unsigned int offsetOutput;
pt_char_input = (char*) &input_matrix;
pt_char_output = (char*) &output_matrix;
// convert all other data
for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
{
for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
{
offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
offsetOutput = 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
pt_char_input = (char*) &input_matrix [ offsetInput ];
pt_char_output = (char*) &output_matrix[ offsetOutput ];
pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
}
}
}
#endif // FSW_PROCESSING_H_INCLUDED