##// END OF EJS Templates
Minor changes
paul -
r93:ffd04db5cce0 VHDLib206
parent child
Show More
@@ -1,248 +1,248
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw-vhdl-dev
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Mon Jan 27 07:11:41 2014
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Thu Feb 6 09:29:25 2014
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=1 -DPRINT_MESSAGES_ON_CONSOLE -DDEBUG_MESSAGES -DVHDL_DEV
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_processing.c \
49 49 ../src/fsw_misc.c \
50 50 ../src/fsw_init.c \
51 51 ../src/fsw_globals.c \
52 52 ../src/fsw_spacewire.c \
53 53 ../src/tc_load_dump_parameters.c \
54 54 ../src/tm_lfr_tc_exe.c \
55 55 ../src/tc_acceptance.c
56 56 OBJECTS = obj/wf_handler.o \
57 57 obj/tc_handler.o \
58 58 obj/fsw_processing.o \
59 59 obj/fsw_misc.o \
60 60 obj/fsw_init.o \
61 61 obj/fsw_globals.o \
62 62 obj/fsw_spacewire.o \
63 63 obj/tc_load_dump_parameters.o \
64 64 obj/tm_lfr_tc_exe.o \
65 65 obj/tc_acceptance.o
66 66 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
67 67 /usr/lib64/qt4/mkspecs/common/linux.conf \
68 68 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
69 69 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
70 70 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
71 71 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
72 72 /usr/lib64/qt4/mkspecs/qconfig.pri \
73 73 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
74 74 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
75 75 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
76 76 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
77 77 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
78 78 sparc.pri \
79 79 /usr/lib64/qt4/mkspecs/features/release.prf \
80 80 /usr/lib64/qt4/mkspecs/features/default_post.prf \
81 81 /usr/lib64/qt4/mkspecs/features/shared.prf \
82 82 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
83 83 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
84 84 /usr/lib64/qt4/mkspecs/features/resources.prf \
85 85 /usr/lib64/qt4/mkspecs/features/uic.prf \
86 86 /usr/lib64/qt4/mkspecs/features/yacc.prf \
87 87 /usr/lib64/qt4/mkspecs/features/lex.prf \
88 88 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
89 89 fsw-qt.pro
90 90 QMAKE_TARGET = fsw-vhdl-dev
91 91 DESTDIR = bin/
92 92 TARGET = bin/fsw-vhdl-dev
93 93
94 94 first: all
95 95 ####### Implicit rules
96 96
97 97 .SUFFIXES: .o .c .cpp .cc .cxx .C
98 98
99 99 .cpp.o:
100 100 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
101 101
102 102 .cc.o:
103 103 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
104 104
105 105 .cxx.o:
106 106 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
107 107
108 108 .C.o:
109 109 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
110 110
111 111 .c.o:
112 112 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
113 113
114 114 ####### Build rules
115 115
116 116 all: Makefile $(TARGET)
117 117
118 118 $(TARGET): $(OBJECTS)
119 119 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
120 120 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
121 121
122 122 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
123 123 /usr/lib64/qt4/mkspecs/common/linux.conf \
124 124 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
125 125 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
126 126 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
127 127 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
128 128 /usr/lib64/qt4/mkspecs/qconfig.pri \
129 129 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
130 130 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
131 131 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
132 132 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
133 133 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
134 134 sparc.pri \
135 135 /usr/lib64/qt4/mkspecs/features/release.prf \
136 136 /usr/lib64/qt4/mkspecs/features/default_post.prf \
137 137 /usr/lib64/qt4/mkspecs/features/shared.prf \
138 138 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
139 139 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
140 140 /usr/lib64/qt4/mkspecs/features/resources.prf \
141 141 /usr/lib64/qt4/mkspecs/features/uic.prf \
142 142 /usr/lib64/qt4/mkspecs/features/yacc.prf \
143 143 /usr/lib64/qt4/mkspecs/features/lex.prf \
144 144 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
145 145 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
146 146 /usr/lib64/qt4/mkspecs/common/unix.conf:
147 147 /usr/lib64/qt4/mkspecs/common/linux.conf:
148 148 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
149 149 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
150 150 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
151 151 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
152 152 /usr/lib64/qt4/mkspecs/qconfig.pri:
153 153 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
154 154 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
155 155 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
156 156 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
157 157 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
158 158 sparc.pri:
159 159 /usr/lib64/qt4/mkspecs/features/release.prf:
160 160 /usr/lib64/qt4/mkspecs/features/default_post.prf:
161 161 /usr/lib64/qt4/mkspecs/features/shared.prf:
162 162 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
163 163 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
164 164 /usr/lib64/qt4/mkspecs/features/resources.prf:
165 165 /usr/lib64/qt4/mkspecs/features/uic.prf:
166 166 /usr/lib64/qt4/mkspecs/features/yacc.prf:
167 167 /usr/lib64/qt4/mkspecs/features/lex.prf:
168 168 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
169 169 qmake: FORCE
170 170 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
171 171
172 172 dist:
173 173 @$(CHK_DIR_EXISTS) obj/fsw-vhdl-dev1.0.0 || $(MKDIR) obj/fsw-vhdl-dev1.0.0
174 174 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw-vhdl-dev1.0.0/ && (cd `dirname obj/fsw-vhdl-dev1.0.0` && $(TAR) fsw-vhdl-dev1.0.0.tar fsw-vhdl-dev1.0.0 && $(COMPRESS) fsw-vhdl-dev1.0.0.tar) && $(MOVE) `dirname obj/fsw-vhdl-dev1.0.0`/fsw-vhdl-dev1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw-vhdl-dev1.0.0
175 175
176 176
177 177 clean:compiler_clean
178 178 -$(DEL_FILE) $(OBJECTS)
179 179 -$(DEL_FILE) *~ core *.core
180 180
181 181
182 182 ####### Sub-libraries
183 183
184 184 distclean: clean
185 185 -$(DEL_FILE) $(TARGET)
186 186 -$(DEL_FILE) Makefile
187 187
188 188
189 189 grmon:
190 190 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
191 191
192 192 check: first
193 193
194 194 compiler_rcc_make_all:
195 195 compiler_rcc_clean:
196 196 compiler_uic_make_all:
197 197 compiler_uic_clean:
198 198 compiler_image_collection_make_all: qmake_image_collection.cpp
199 199 compiler_image_collection_clean:
200 200 -$(DEL_FILE) qmake_image_collection.cpp
201 201 compiler_yacc_decl_make_all:
202 202 compiler_yacc_decl_clean:
203 203 compiler_yacc_impl_make_all:
204 204 compiler_yacc_impl_clean:
205 205 compiler_lex_make_all:
206 206 compiler_lex_clean:
207 207 compiler_clean:
208 208
209 209 ####### Compile
210 210
211 211 obj/wf_handler.o: ../src/wf_handler.c
212 212 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
213 213
214 214 obj/tc_handler.o: ../src/tc_handler.c
215 215 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
216 216
217 217 obj/fsw_processing.o: ../src/fsw_processing.c ../src/fsw_processing_globals.c
218 218 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/fsw_processing.c
219 219
220 220 obj/fsw_misc.o: ../src/fsw_misc.c
221 221 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
222 222
223 223 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
224 224 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
225 225
226 226 obj/fsw_globals.o: ../src/fsw_globals.c
227 227 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
228 228
229 229 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
230 230 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
231 231
232 232 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
233 233 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
234 234
235 235 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
236 236 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
237 237
238 238 obj/tc_acceptance.o: ../src/tc_acceptance.c
239 239 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
240 240
241 241 ####### Install
242 242
243 243 install: FORCE
244 244
245 245 uninstall: FORCE
246 246
247 247 FORCE:
248 248
@@ -1,311 +1,339
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.0, 2014-01-28T06:58:48. -->
3 <!-- Written by QtCreator 3.0.0, 2014-02-06T15:45:54. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 <value type="int">0</value>
7 <value type="int">1</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 <value type="QByteArray" key="EditorConfiguration.Codec">System</value>
28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop</value>
55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop</value>
56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{e04e3924-0bd8-4708-be18-f1474e45608e}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">1</value>
59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory">/opt/DEV_PLE/FSW-qt</value>
61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">true</value>
69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 72 </valuemap>
73 73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 79 <value type="QString">-w</value>
80 80 <value type="QString">-r</value>
81 81 </valuelist>
82 82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w -j 4</value>
83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 85 </valuemap>
86 86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 90 </valuemap>
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 98 <value type="QString">-w</value>
99 99 <value type="QString">-r</value>
100 100 </valuelist>
101 101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w clean</value>
102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 104 </valuemap>
105 105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 109 </valuemap>
110 110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Qt 4.8.2 in PATH (System) Release</value>
113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">false</value>
117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 </valuemap>
119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 </valuemap>
127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
118 131 </valuemap>
119 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.1">
120 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory">/opt/DEV_PLE/FSW-qt</value>
132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 <value type="int">0</value>
154 <value type="int">1</value>
155 <value type="int">2</value>
156 <value type="int">3</value>
157 <value type="int">4</value>
158 <value type="int">5</value>
159 <value type="int">6</value>
160 <value type="int">7</value>
161 <value type="int">8</value>
162 <value type="int">9</value>
163 <value type="int">10</value>
164 <value type="int">11</value>
165 <value type="int">12</value>
166 <value type="int">13</value>
167 <value type="int">14</value>
168 </valuelist>
169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 <value type="bool" key="RunConfiguration.UseCppDebugger">false</value>
181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">true</value>
182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 </valuemap>
186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 </valuemap>
188 </data>
189 <data>
190 <variable>ProjectExplorer.Project.Target.1</variable>
191 <valuemap type="QVariantMap">
192 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
193 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
194 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
195 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
196 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
197 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
198 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
199 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
121 200 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 201 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
123 202 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
124 203 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
125 204 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
126 205 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
127 206 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
128 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">true</value>
207 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
129 208 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
130 209 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
131 210 </valuemap>
132 211 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
133 212 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
134 213 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
135 214 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
136 215 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
137 216 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
138 217 <value type="QString">-w</value>
139 218 <value type="QString">-r</value>
140 219 </valuelist>
141 220 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
142 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w </value>
221 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
143 222 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
144 223 </valuemap>
145 224 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
146 225 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
147 226 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
148 227 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
149 228 </valuemap>
150 229 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
151 230 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
152 231 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
153 232 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
154 233 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
155 234 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
156 235 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
157 236 <value type="QString">-w</value>
158 237 <value type="QString">-r</value>
159 238 </valuelist>
160 239 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
161 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w clean</value>
240 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
162 241 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
163 242 </valuemap>
164 243 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
165 244 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
166 245 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
167 246 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
168 247 </valuemap>
169 248 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
170 249 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
171 250 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Qt 4.8.2 in PATH (System) Debug</value>
251 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
173 252 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
174 253 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
175 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">2</value>
176 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">false</value>
254 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
255 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
177 256 </valuemap>
178 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">2</value>
257 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
179 258 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
180 259 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
181 260 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
182 261 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
183 262 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
184 263 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
185 264 </valuemap>
186 265 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
187 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">No deployment</value>
266 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
188 267 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
189 268 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
190 269 </valuemap>
191 270 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
192 271 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
193 272 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
194 273 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
195 274 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
196 275 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
197 276 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
198 277 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
199 278 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
200 279 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
201 280 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
202 281 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
203 282 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
204 283 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
205 284 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
206 285 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
207 286 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
208 287 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
209 288 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
210 289 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
211 290 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
212 291 <value type="int">0</value>
213 292 <value type="int">1</value>
214 293 <value type="int">2</value>
215 294 <value type="int">3</value>
216 295 <value type="int">4</value>
217 296 <value type="int">5</value>
218 297 <value type="int">6</value>
219 298 <value type="int">7</value>
220 299 <value type="int">8</value>
221 300 <value type="int">9</value>
222 301 <value type="int">10</value>
223 302 <value type="int">11</value>
224 303 <value type="int">12</value>
225 304 <value type="int">13</value>
226 305 <value type="int">14</value>
227 306 </valuelist>
228 307 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
229 308 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
230 309 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
231 310 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
232 311 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
233 312 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
234 313 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
235 314 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
236 315 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
237 316 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
238 317 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
239 318 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
240 319 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
241 320 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
242 321 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
243 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">false</value>
244 </valuemap>
245 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.1">
246 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
247 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
248 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
249 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
250 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
251 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
252 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
253 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
254 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
255 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
256 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
257 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
258 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
259 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
260 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
261 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
262 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
263 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
264 <value type="int">0</value>
265 <value type="int">1</value>
266 <value type="int">2</value>
267 <value type="int">3</value>
268 <value type="int">4</value>
269 <value type="int">5</value>
270 <value type="int">6</value>
271 <value type="int">7</value>
272 <value type="int">8</value>
273 <value type="int">9</value>
274 <value type="int">10</value>
275 <value type="int">11</value>
276 <value type="int">12</value>
277 <value type="int">13</value>
278 <value type="int">14</value>
279 </valuelist>
280 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
281 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
282 <value type="QString" key="ProjectExplorer.CustomExecutableRunConfiguration.Arguments"></value>
283 <value type="QString" key="ProjectExplorer.CustomExecutableRunConfiguration.Executable">doxygen</value>
284 <value type="bool" key="ProjectExplorer.CustomExecutableRunConfiguration.UseTerminal">true</value>
285 <value type="QString" key="ProjectExplorer.CustomExecutableRunConfiguration.WorkingDirectory">/opt/DEV_PLE/doc</value>
286 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Run doxygen</value>
287 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
288 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.CustomExecutableRunConfiguration</value>
289 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
290 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
291 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
292 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
293 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
294 322 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
295 323 </valuemap>
296 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">2</value>
324 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
297 325 </valuemap>
298 326 </data>
299 327 <data>
300 328 <variable>ProjectExplorer.Project.TargetCount</variable>
301 <value type="int">1</value>
329 <value type="int">2</value>
302 330 </data>
303 331 <data>
304 332 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
305 333 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
306 334 </data>
307 335 <data>
308 336 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
309 337 <value type="int">15</value>
310 338 </data>
311 339 </qtcreator>
@@ -1,603 +1,605
1 1 #ifndef CCSDS_TYPES_H_INCLUDED
2 2 #define CCSDS_TYPES_H_INCLUDED
3 3
4 4 #define CCSDS_PROTOCOLE_EXTRA_BYTES 4
5 5 #define CCSDS_TELEMETRY_HEADER_LENGTH 16+4
6 6 #define CCSDS_TM_PKT_MAX_SIZE 4412
7 7 #define CCSDS_TELECOMMAND_HEADER_LENGTH 10+4
8 8 #define CCSDS_TC_PKT_MAX_SIZE 256
9 9 #define CCSDS_TC_PKT_MIN_SIZE 16
10 10 #define CCSDS_TC_TM_PACKET_OFFSET 7
11 11 #define CCSDS_PROCESS_ID 76
12 12 #define CCSDS_PACKET_CATEGORY 12
13 13 #define CCSDS_NODE_ADDRESS 0xfe
14 14 #define CCSDS_USER_APP 0x00
15 15
16 16 #define DEFAULT_SPARE1_PUSVERSION_SPARE2 0x10
17 17 #define DEFAULT_RESERVED 0x00
18 18 #define DEFAULT_HKBIA 0x1e // 0001 1110
19 19
20 20 // PACKET ID
21 21 #define TM_PACKET_ID_TC_EXE 0x0cc1 // PID 76 CAT 1
22 22 #define TM_PACKET_ID_HK 0x0cc4 // PID 76 CAT 4
23 23 #define TM_PACKET_ID_PARAMETER_DUMP 0x0cc9 // PID 76 CAT 9
24 24 #define TM_PACKET_ID_SCIENCE_NORMAL_BURST 0x0ccc // PID 76 CAT 12
25 25 #define TM_PACKET_ID_SCIENCE_SBM1_SBM2 0x0cfc // PID 79 CAT 12
26 26 #define TM_PACKET_PID_DEFAULT 76
27 27 #define TM_PACKET_PID_BURST_SBM1_SBM2 79
28 28 #define TM_PACKET_CAT_TC_EXE 1
29 29 #define TM_PACKET_CAT_HK 4
30 30 #define TM_PACKET_CAT_PARAMETER_DUMP 9
31 31 #define TM_PACKET_CAT_SCIENCE 12
32 32
33 33 // PACKET SEQUENCE CONTROL
34 34 #define TM_PACKET_SEQ_CTRL_CONTINUATION 0x00 // [0000 0000]
35 35 #define TM_PACKET_SEQ_CTRL_FIRST 0x40 // [0100 0000]
36 36 #define TM_PACKET_SEQ_CTRL_LAST 0x80 // [1000 0000]
37 37 #define TM_PACKET_SEQ_CTRL_STANDALONE 0xc0 // [1100 0000]
38 38 #define TM_PACKET_SEQ_CNT_DEFAULT 0x00 // [0000 0000]
39 39
40 40 // DESTINATION ID
41 41 #define TM_DESTINATION_ID_GROUND 0
42 42 #define TM_DESTINATION_ID_MISSION_TIMELINE 110
43 43 #define TM_DESTINATION_ID_TC_SEQUENCES 111
44 44 #define TM_DESTINATION_ID_RECOVERY_ACTION_COMMAND 112
45 45 #define TM_DESTINATION_ID_BACKUP_MISSION_TIMELINE 113
46 46 #define TM_DESTINATION_ID_DIRECT_CMD 120
47 47 #define TM_DESTINATION_ID_SPARE_GRD_SRC1 121
48 48 #define TM_DESTINATION_ID_SPARE_GRD_SRC2 122
49 49 #define TM_DESTINATION_ID_OBCP 15
50 50 #define TM_DESTINATION_ID_SYSTEM_CONTROL 14
51 51 #define TM_DESTINATION_ID_AOCS 11
52 52
53 53 #define CCSDS_DESTINATION_ID 0x01
54 54 #define CCSDS_PROTOCOLE_ID 0x02
55 55 #define CCSDS_RESERVED 0x00
56 56 #define CCSDS_USER_APP 0x00
57 57
58 58 #define SIZE_TM_LFR_TC_EXE_NOT_IMPLEMENTED 24
59 59 #define SIZE_TM_LFR_TC_EXE_CORRUPTED 32
60 60 #define SIZE_HK_PARAMETERS 112
61 61
62 62 // TC TYPES
63 63 #define TC_TYPE_GEN 181
64 64 #define TC_TYPE_TIME 9
65 65
66 66 // TC SUBTYPES
67 67 #define TC_SUBTYPE_RESET 1
68 68 #define TC_SUBTYPE_LOAD_COMM 11
69 69 #define TC_SUBTYPE_LOAD_NORM 13
70 70 #define TC_SUBTYPE_LOAD_BURST 19
71 71 #define TC_SUBTYPE_LOAD_SBM1 25
72 72 #define TC_SUBTYPE_LOAD_SBM2 27
73 73 #define TC_SUBTYPE_DUMP 31
74 74 #define TC_SUBTYPE_ENTER 41
75 75 #define TC_SUBTYPE_UPDT_INFO 51
76 76 #define TC_SUBTYPE_EN_CAL 61
77 77 #define TC_SUBTYPE_DIS_CAL 63
78 78 #define TC_SUBTYPE_UPDT_TIME 129
79 79
80 80 // TC LEN
81 81 #define TC_LEN_RESET 12
82 82 #define TC_LEN_LOAD_COMM 14
83 83 #define TC_LEN_LOAD_NORM 22
84 84 #define TC_LEN_LOAD_BURST 14
85 85 #define TC_LEN_LOAD_SBM1 14
86 86 #define TC_LEN_LOAD_SBM2 14
87 87 #define TC_LEN_DUMP 12
88 88 #define TC_LEN_ENTER 20
89 89 #define TC_LEN_UPDT_INFO 46
90 90 #define TC_LEN_EN_CAL 12
91 91 #define TC_LEN_DIS_CAL 12
92 92 #define TC_LEN_UPDT_TIME 18
93 93
94 94 // TM TYPES
95 95 #define TM_TYPE_TC_EXE 1
96 96 #define TM_TYPE_HK 3
97 97 #define TM_TYPE_PARAMETER_DUMP 3
98 98 #define TM_TYPE_LFR_SCIENCE 21
99 99
100 100 // TM SUBTYPES
101 101 #define TM_SUBTYPE_EXE_OK 7
102 102 #define TM_SUBTYPE_EXE_NOK 8
103 103 #define TM_SUBTYPE_HK 25
104 104 #define TM_SUBTYPE_PARAMETER_DUMP 25
105 105 #define TM_SUBTYPE_SCIENCE 3
106 106 #define TM_SUBTYPE_LFR_SCIENCE 3
107 107
108 108 // FAILURE CODES
109 109 #define ILLEGAL_APID 0
110 110 #define WRONG_LEN_PKT 1
111 111 #define INCOR_CHECKSUM 2
112 112 #define ILL_TYPE 3
113 113 #define ILL_SUBTYPE 4
114 114 #define WRONG_APP_DATA 5 // 0x00 0x05
115 115 #define TC_NOT_EXE 42000 // 0xa4 0x10
116 116 #define WRONG_SRC_ID 42001 // 0xa4 0x11
117 117 #define FUNCT_NOT_IMPL 42002 // 0xa4 0x12
118 118 #define FAIL_DETECTED 42003 // 0xa4 0x13
119 119 #define NOT_ALLOWED 42004 // 0xa4 0x14
120 120 #define CORRUPTED 42005 // 0xa4 0x15
121 121 #define CCSDS_TM_VALID 7
122 122
123 123 // TC SID
124 124 #define SID_TC_GROUND 0
125 125 #define SID_TC_MISSION_TIMELINE 110
126 126 #define SID_TC_TC_SEQUENCES 111
127 127 #define SID_TC_RECOVERY_ACTION_CMD 112
128 128 #define SID_TC_BACKUP_MISSION_TIMELINE 113
129 129 #define SID_TC_DIRECT_CMD 120
130 130 #define SID_TC_SPARE_GRD_SRC1 121
131 131 #define SID_TC_SPARE_GRD_SRC2 122
132 132 #define SID_TC_OBCP 15
133 133 #define SID_TC_SYSTEM_CONTROL 14
134 134 #define SID_TC_AOCS 11
135 135 #define SID_TC_RPW_INTERNAL 254
136 136
137 137 enum apid_destid{
138 138 GROUND,
139 139 MISSION_TIMELINE,
140 140 TC_SEQUENCES,
141 141 RECOVERY_ACTION_CMD,
142 142 BACKUP_MISSION_TIMELINE,
143 143 DIRECT_CMD,
144 144 SPARE_GRD_SRC1,
145 145 SPARE_GRD_SRC2,
146 146 OBCP,
147 147 SYSTEM_CONTROL,
148 148 AOCS,
149 149 RPW_INTERNAL
150 150 };
151 151 // SEQUENCE COUNTERS
152 152 #define SEQ_CNT_MAX 16383
153 153 #define SEQ_CNT_NB_DEST_ID 12
154 154
155 155 // TM SID
156 156 #define SID_HK 1
157 157 #define SID_PARAMETER_DUMP 10
158 158
159 159 #define SID_NORM_SWF_F0 3
160 160 #define SID_NORM_SWF_F1 4
161 161 #define SID_NORM_SWF_F2 5
162 162 #define SID_NORM_CWF_F3 1
163 163 #define SID_BURST_CWF_F2 2
164 164 #define SID_SBM1_CWF_F1 24
165 165 #define SID_SBM2_CWF_F2 25
166 166 #define SID_NORM_ASM_F0 11
167 167 #define SID_NORM_ASM_F1 12
168 168 #define SID_NORM_ASM_F2 13
169 169 #define SID_NORM_BP1_F0 14
170 170 #define SID_NORM_BP1_F1 15
171 171 #define SID_NORM_BP1_F2 16
172 172 #define SID_NORM_BP2_F0 19
173 173 #define SID_NORM_BP2_F1 20
174 174 #define SID_NORM_BP2_F2 21
175 175 #define SID_BURST_BP1_F0 17
176 176 #define SID_BURST_BP2_F0 22
177 177 #define SID_BURST_BP1_F1 18
178 178 #define SID_BURST_BP2_F1 23
179 179 #define SID_SBM1_BP1_F0 28
180 180 #define SID_SBM1_BP2_F0 31
181 181 #define SID_SBM2_BP1_F0 29
182 182 #define SID_SBM2_BP2_F0 32
183 183 #define SID_SBM2_BP1_F1 30
184 184 #define SID_SBM2_BP2_F1 33
185 185 #define SID_NORM_CWF_LONG_F3 34
186 186
187 187 // LENGTH (BYTES)
188 188 #define LENGTH_TM_LFR_TC_EXE_MAX 32
189 189 #define LENGTH_TM_LFR_HK 126
190 190
191 191 // HEADER_LENGTH
192 192 #define TM_HEADER_LEN 16
193 193 #define HEADER_LENGTH_TM_LFR_SCIENCE_ASM 28
194 194 // PACKET_LENGTH
195 195 #define PACKET_LENGTH_TC_EXE_SUCCESS (20 - CCSDS_TC_TM_PACKET_OFFSET)
196 196 #define PACKET_LENGTH_TC_EXE_INCONSISTENT (26 - CCSDS_TC_TM_PACKET_OFFSET)
197 197 #define PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE (26 - CCSDS_TC_TM_PACKET_OFFSET)
198 198 #define PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED (24 - CCSDS_TC_TM_PACKET_OFFSET)
199 199 #define PACKET_LENGTH_TC_EXE_ERROR (24 - CCSDS_TC_TM_PACKET_OFFSET)
200 200 #define PACKET_LENGTH_TC_EXE_CORRUPTED (32 - CCSDS_TC_TM_PACKET_OFFSET)
201 201 #define PACKET_LENGTH_HK (126 - CCSDS_TC_TM_PACKET_OFFSET)
202 202 #define PACKET_LENGTH_PARAMETER_DUMP (34 - CCSDS_TC_TM_PACKET_OFFSET)
203 203 #define PACKET_LENGTH_TM_LFR_SCIENCE_ASM (TOTAL_SIZE_SM + HEADER_LENGTH_TM_LFR_SCIENCE_ASM - CCSDS_TC_TM_PACKET_OFFSET)
204 204
205 205 #define SPARE1_PUSVERSION_SPARE2 0x10
206 206
207 207 #define LEN_TM_LFR_HK 130 // 126 + 4
208 208 #define LEN_TM_LFR_TC_EXE_NOT_IMP 28 // 24 + 4
209 209
210 210 // R1
211 211 #define TM_LEN_SCI_SWF_340 4101 // 340 * 12 + 10 + 12 - 1
212 212 #define TM_LEN_SCI_SWF_8 117 // 8 * 12 + 10 + 12 - 1
213 // R2
214 #define TM_LEN_SCI_SWF_304 3669 // 304 * 12 + 10 + 12 - 1
215 #define TM_LEN_SCI_SWF_224 2709 // 224 * 12 + 10 + 12 - 1
216 //
217 213 #define TM_LEN_SCI_CWF_340 4099 // 340 * 12 + 10 + 10 - 1
218 214 #define TM_LEN_SCI_CWF_8 115 // 8 * 12 + 10 + 10 - 1
219 215 #define TM_LEN_SCI_CWF3_LIGHT_340 2059 // 340 * 6 + 10 + 10 - 1
220 216 #define TM_LEN_SCI_CWF3_LIGHT_8 67 // 8 * 6 + 10 + 10 - 1
221 #define DEFAULT_PKTCNT 0x07
222 #define BLK_NR_340 0x0154
223 #define BLK_NR_8 0x0008
224 #define BLK_NR_304 0x0130
225 #define BLK_NR_224 0x00e0
217 // R2
218 #define TM_LEN_SCI_SWF_304 3669 // 304 * 12 + 10 + 12 - 1
219 #define TM_LEN_SCI_SWF_224 2709 // 224 * 12 + 10 + 12 - 1
220 #define TM_LEN_SCI_CWF_336 4051 // 336 * 12 + 10 + 10 - 1
221 #define TM_LEN_SCI_CWF_672 4051 // 672 * 6 + 10 + 10 - 1
222 //
223 #define DEFAULT_PKTCNT 0x07
224 #define BLK_NR_304 0x0130
225 #define BLK_NR_224 0x00e0
226 #define BLK_NR_CWF 0x0150 // 336
227 #define BLK_NR_CWF_SHORT_F3 0x02a0 // 672
226 228
227 229 enum TM_TYPE{
228 230 TM_LFR_TC_EXE_OK,
229 231 TM_LFR_TC_EXE_ERR,
230 232 TM_LFR_HK,
231 233 TM_LFR_SCI,
232 234 TM_LFR_SCI_SBM,
233 235 TM_LFR_PAR_DUMP
234 236 };
235 237
236 238 typedef struct {
237 239 unsigned char targetLogicalAddress;
238 240 unsigned char protocolIdentifier;
239 241 unsigned char reserved;
240 242 unsigned char userApplication;
241 243 // PACKET HEADER
242 244 unsigned char packetID[2];
243 245 unsigned char packetSequenceControl[2];
244 246 unsigned char packetLength[2];
245 247 // DATA FIELD HEADER
246 248 unsigned char spare1_pusVersion_spare2;
247 249 unsigned char serviceType;
248 250 unsigned char serviceSubType;
249 251 unsigned char destinationID;
250 252 unsigned char time[6];
251 253 //
252 254 unsigned char telecommand_pkt_id[2];
253 255 unsigned char pkt_seq_control[2];
254 256 } Packet_TM_LFR_TC_EXE_SUCCESS_t;
255 257
256 258 typedef struct {
257 259 unsigned char targetLogicalAddress;
258 260 unsigned char protocolIdentifier;
259 261 unsigned char reserved;
260 262 unsigned char userApplication;
261 263 // PACKET HEADER
262 264 unsigned char packetID[2];
263 265 unsigned char packetSequenceControl[2];
264 266 unsigned char packetLength[2];
265 267 // DATA FIELD HEADER
266 268 unsigned char spare1_pusVersion_spare2;
267 269 unsigned char serviceType;
268 270 unsigned char serviceSubType;
269 271 unsigned char destinationID;
270 272 unsigned char time[6];
271 273 //
272 274 unsigned char tc_failure_code[2];
273 275 unsigned char telecommand_pkt_id[2];
274 276 unsigned char pkt_seq_control[2];
275 277 unsigned char tc_service;
276 278 unsigned char tc_subtype;
277 279 unsigned char byte_position;
278 280 unsigned char rcv_value;
279 281 } Packet_TM_LFR_TC_EXE_INCONSISTENT_t;
280 282
281 283 typedef struct {
282 284 unsigned char targetLogicalAddress;
283 285 unsigned char protocolIdentifier;
284 286 unsigned char reserved;
285 287 unsigned char userApplication;
286 288 // PACKET HEADER
287 289 unsigned char packetID[2];
288 290 unsigned char packetSequenceControl[2];
289 291 unsigned char packetLength[2];
290 292 // DATA FIELD HEADER
291 293 unsigned char spare1_pusVersion_spare2;
292 294 unsigned char serviceType;
293 295 unsigned char serviceSubType;
294 296 unsigned char destinationID;
295 297 unsigned char time[6];
296 298 //
297 299 unsigned char tc_failure_code[2];
298 300 unsigned char telecommand_pkt_id[2];
299 301 unsigned char pkt_seq_control[2];
300 302 unsigned char tc_service;
301 303 unsigned char tc_subtype;
302 304 unsigned char lfr_status_word[2];
303 305 } Packet_TM_LFR_TC_EXE_NOT_EXECUTABLE_t;
304 306
305 307 typedef struct {
306 308 unsigned char targetLogicalAddress;
307 309 unsigned char protocolIdentifier;
308 310 unsigned char reserved;
309 311 unsigned char userApplication;
310 312 // PACKET HEADER
311 313 unsigned char packetID[2];
312 314 unsigned char packetSequenceControl[2];
313 315 unsigned char packetLength[2];
314 316 // DATA FIELD HEADER
315 317 unsigned char spare1_pusVersion_spare2;
316 318 unsigned char serviceType;
317 319 unsigned char serviceSubType;
318 320 unsigned char destinationID;
319 321 unsigned char time[6];
320 322 //
321 323 unsigned char tc_failure_code[2];
322 324 unsigned char telecommand_pkt_id[2];
323 325 unsigned char pkt_seq_control[2];
324 326 unsigned char tc_service;
325 327 unsigned char tc_subtype;
326 328 } Packet_TM_LFR_TC_EXE_NOT_IMPLEMENTED_t;
327 329
328 330 typedef struct {
329 331 unsigned char targetLogicalAddress;
330 332 unsigned char protocolIdentifier;
331 333 unsigned char reserved;
332 334 unsigned char userApplication;
333 335 // PACKET HEADER
334 336 unsigned char packetID[2];
335 337 unsigned char packetSequenceControl[2];
336 338 unsigned char packetLength[2];
337 339 // DATA FIELD HEADER
338 340 unsigned char spare1_pusVersion_spare2;
339 341 unsigned char serviceType;
340 342 unsigned char serviceSubType;
341 343 unsigned char destinationID;
342 344 unsigned char time[6];
343 345 //
344 346 unsigned char tc_failure_code[2];
345 347 unsigned char telecommand_pkt_id[2];
346 348 unsigned char pkt_seq_control[2];
347 349 unsigned char tc_service;
348 350 unsigned char tc_subtype;
349 351 } Packet_TM_LFR_TC_EXE_ERROR_t;
350 352
351 353 typedef struct {
352 354 unsigned char targetLogicalAddress;
353 355 unsigned char protocolIdentifier;
354 356 unsigned char reserved;
355 357 unsigned char userApplication;
356 358 // PACKET HEADER
357 359 unsigned char packetID[2];
358 360 unsigned char packetSequenceControl[2];
359 361 unsigned char packetLength[2];
360 362 // DATA FIELD HEADER
361 363 unsigned char spare1_pusVersion_spare2;
362 364 unsigned char serviceType;
363 365 unsigned char serviceSubType;
364 366 unsigned char destinationID;
365 367 unsigned char time[6];
366 368 //
367 369 unsigned char tc_failure_code[2];
368 370 unsigned char telecommand_pkt_id[2];
369 371 unsigned char pkt_seq_control[2];
370 372 unsigned char tc_service;
371 373 unsigned char tc_subtype;
372 374 unsigned char pkt_len_rcv_value[2];
373 375 unsigned char pkt_datafieldsize_cnt[2];
374 376 unsigned char rcv_crc[2];
375 377 unsigned char computed_crc[2];
376 378 } Packet_TM_LFR_TC_EXE_CORRUPTED_t;
377 379
378 380 typedef struct {
379 381 unsigned char targetLogicalAddress;
380 382 unsigned char protocolIdentifier;
381 383 unsigned char reserved;
382 384 unsigned char userApplication;
383 385 unsigned char packetID[2];
384 386 unsigned char packetSequenceControl[2];
385 387 unsigned char packetLength[2];
386 388 // DATA FIELD HEADER
387 389 unsigned char spare1_pusVersion_spare2;
388 390 unsigned char serviceType;
389 391 unsigned char serviceSubType;
390 392 unsigned char destinationID;
391 393 unsigned char time[6];
392 394 // AUXILIARY HEADER
393 395 unsigned char sid;
394 396 unsigned char hkBIA;
395 397 unsigned char pktCnt;
396 398 unsigned char pktNr;
397 399 unsigned char acquisitionTime[6];
398 400 unsigned char blkNr[2];
399 401 } Header_TM_LFR_SCIENCE_SWF_t;
400 402
401 403 typedef struct {
402 404 unsigned char targetLogicalAddress;
403 405 unsigned char protocolIdentifier;
404 406 unsigned char reserved;
405 407 unsigned char userApplication;
406 408 unsigned char packetID[2];
407 409 unsigned char packetSequenceControl[2];
408 410 unsigned char packetLength[2];
409 411 // DATA FIELD HEADER
410 412 unsigned char spare1_pusVersion_spare2;
411 413 unsigned char serviceType;
412 414 unsigned char serviceSubType;
413 415 unsigned char destinationID;
414 416 unsigned char time[6];
415 417 // AUXILIARY DATA HEADER
416 418 unsigned char sid;
417 419 unsigned char hkBIA;
418 420 unsigned char acquisitionTime[6];
419 421 unsigned char blkNr[2];
420 422 } Header_TM_LFR_SCIENCE_CWF_t;
421 423
422 424 typedef struct {
423 425 unsigned char targetLogicalAddress;
424 426 unsigned char protocolIdentifier;
425 427 unsigned char reserved;
426 428 unsigned char userApplication;
427 429 unsigned char packetID[2];
428 430 unsigned char packetSequenceControl[2];
429 431 unsigned char packetLength[2];
430 432 // DATA FIELD HEADER
431 433 unsigned char spare1_pusVersion_spare2;
432 434 unsigned char serviceType;
433 435 unsigned char serviceSubType;
434 436 unsigned char destinationID;
435 437 unsigned char time[6];
436 438 // AUXILIARY HEADER
437 439 unsigned char sid;
438 440 unsigned char biaStatusInfo;
439 441 unsigned char cntASM;
440 442 unsigned char nrASM;
441 443 unsigned char acquisitionTime[6];
442 444 unsigned char blkNr[2];
443 445 } Header_TM_LFR_SCIENCE_ASM_t;
444 446
445 447 typedef struct {
446 448 //targetLogicalAddress is removed by the grspw module
447 449 unsigned char protocolIdentifier;
448 450 unsigned char reserved;
449 451 unsigned char userApplication;
450 452 unsigned char packetID[2];
451 453 unsigned char packetSequenceControl[2];
452 454 unsigned char packetLength[2];
453 455 // DATA FIELD HEADER
454 456 unsigned char headerFlag_pusVersion_Ack;
455 457 unsigned char serviceType;
456 458 unsigned char serviceSubType;
457 459 unsigned char sourceID;
458 460 unsigned char dataAndCRC[CCSDS_TC_PKT_MAX_SIZE-10];
459 461 } ccsdsTelecommandPacket_t;
460 462
461 463 typedef struct {
462 464 unsigned char targetLogicalAddress;
463 465 unsigned char protocolIdentifier;
464 466 unsigned char reserved;
465 467 unsigned char userApplication;
466 468 unsigned char packetID[2];
467 469 unsigned char packetSequenceControl[2];
468 470 unsigned char packetLength[2];
469 471 unsigned char spare1_pusVersion_spare2;
470 472 unsigned char serviceType;
471 473 unsigned char serviceSubType;
472 474 unsigned char destinationID;
473 475 unsigned char time[6];
474 476 unsigned char sid;
475 477
476 478 //**************
477 479 // HK PARAMETERS
478 480 unsigned char lfr_status_word[2];
479 481 unsigned char lfr_sw_version[4];
480 482 unsigned char lfr_fpga_version[3];
481 483 // ressource statistics
482 484 unsigned char hk_lfr_cpu_load;
483 485 unsigned char hk_lfr_load_max;
484 486 unsigned char hk_lfr_load_aver;
485 487 // tc statistics
486 488 unsigned char hk_lfr_update_info_tc_cnt[2];
487 489 unsigned char hk_lfr_update_time_tc_cnt[2];
488 490 unsigned char hk_lfr_exe_tc_cnt[2];
489 491 unsigned char hk_lfr_rej_tc_cnt[2];
490 492 unsigned char hk_lfr_last_exe_tc_id[2];
491 493 unsigned char hk_lfr_last_exe_tc_type[2];
492 494 unsigned char hk_lfr_last_exe_tc_subtype[2];
493 495 unsigned char hk_lfr_last_exe_tc_time[6];
494 496 unsigned char hk_lfr_last_rej_tc_id[2];
495 497 unsigned char hk_lfr_last_rej_tc_type[2];
496 498 unsigned char hk_lfr_last_rej_tc_subtype[2];
497 499 unsigned char hk_lfr_last_rej_tc_time[6];
498 500 // anomaly statistics
499 501 unsigned char hk_lfr_le_cnt[2];
500 502 unsigned char hk_lfr_me_cnt[2];
501 503 unsigned char hk_lfr_he_cnt[2];
502 504 unsigned char hk_lfr_last_er_rid[2];
503 505 unsigned char hk_lfr_last_er_code;
504 506 unsigned char hk_lfr_last_er_time[6];
505 507 // vhdl_blk_status
506 508 unsigned char hk_lfr_vhdl_aa_sm;
507 509 unsigned char hk_lfr_vhdl_fft_sr;
508 510 unsigned char hk_lfr_vhdl_cic_hk;
509 511 unsigned char hk_lfr_vhdl_iir_cal;
510 512 // spacewire_if_statistics
511 513 unsigned char hk_lfr_dpu_spw_pkt_rcv_cnt[2];
512 514 unsigned char hk_lfr_dpu_spw_pkt_sent_cnt[2];
513 515 unsigned char hk_lfr_dpu_spw_tick_out_cnt;
514 516 unsigned char hk_lfr_dpu_spw_last_timc;
515 517 // ahb error statistics
516 518 unsigned int hk_lfr_last_fail_addr;
517 519 // temperatures
518 520 unsigned char hk_lfr_temp_scm[2];
519 521 unsigned char hk_lfr_temp_pcb[2];
520 522 unsigned char hk_lfr_temp_fpga[2];
521 523 // spacecraft potential
522 524 unsigned char hk_lfr_sc_v_f3[2];
523 525 unsigned char hk_lfr_sc_e1_f3[2];
524 526 unsigned char hk_lfr_sc_e2_f3[2];
525 527 // error counters
526 528 unsigned char hk_lfr_dpu_spw_parity;
527 529 unsigned char hk_lfr_dpu_spw_disconnect;
528 530 unsigned char hk_lfr_dpu_spw_escape;
529 531 unsigned char hk_lfr_dpu_spw_credit;
530 532 unsigned char hk_lfr_dpu_spw_write_sync;
531 533 unsigned char hk_lfr_dpu_spw_rx_ahb;
532 534 unsigned char hk_lfr_dpu_spw_tx_ahb;
533 535 unsigned char hk_lfr_dpu_spw_early_eop;
534 536 unsigned char hk_lfr_dpu_spw_invalid_addr;
535 537 unsigned char hk_lfr_dpu_spw_eep;
536 538 unsigned char hk_lfr_dpu_spw_rx_too_big;
537 539 // timecode
538 540 unsigned char hk_lfr_timecode_erroneous;
539 541 unsigned char hk_lfr_timecode_missing;
540 542 unsigned char hk_lfr_timecode_invalid;
541 543 // time
542 544 unsigned char hk_lfr_time_timecode_it;
543 545 unsigned char hk_lfr_time_not_synchro;
544 546 unsigned char hk_lfr_time_timecode_ctr;
545 547 // hk_lfr_buffer_dpu_
546 548 unsigned char hk_lfr_buffer_dpu_tc_fifo;
547 549 unsigned char hk_lfr_buffer_dpu_tm_fifo;
548 550 // hk_lfr_ahb_
549 551 unsigned char hk_lfr_ahb_correctable;
550 552 unsigned char hk_lfr_ahb_uncorrectable;
551 553 // spare
552 554 unsigned char parameters_spare;
553 555 } Packet_TM_LFR_HK_t;
554 556
555 557 typedef struct {
556 558 unsigned char targetLogicalAddress;
557 559 unsigned char protocolIdentifier;
558 560 unsigned char reserved;
559 561 unsigned char userApplication;
560 562 unsigned char packetID[2];
561 563 unsigned char packetSequenceControl[2];
562 564 unsigned char packetLength[2];
563 565 // DATA FIELD HEADER
564 566 unsigned char spare1_pusVersion_spare2;
565 567 unsigned char serviceType;
566 568 unsigned char serviceSubType;
567 569 unsigned char destinationID;
568 570 unsigned char time[6];
569 571 unsigned char sid;
570 572
571 573 //******************
572 574 // COMMON PARAMETERS
573 575 unsigned char unused0;
574 576 unsigned char bw_sp0_sp1_r0_r1;
575 577
576 578 //******************
577 579 // NORMAL PARAMETERS
578 580 unsigned char sy_lfr_n_swf_l[2];
579 581 unsigned char sy_lfr_n_swf_p[2];
580 582 unsigned char sy_lfr_n_asm_p[2];
581 583 unsigned char sy_lfr_n_bp_p0;
582 584 unsigned char sy_lfr_n_bp_p1;
583 585 unsigned char sy_lfr_n_cwf_long_f3;
584 586 unsigned char lfr_normal_parameters_spare;
585 587
586 588 //*****************
587 589 // BURST PARAMETERS
588 590 unsigned char sy_lfr_b_bp_p0;
589 591 unsigned char sy_lfr_b_bp_p1;
590 592
591 593 //****************
592 594 // SBM1 PARAMETERS
593 595 unsigned char sy_lfr_s1_bp_p0;
594 596 unsigned char sy_lfr_s1_bp_p1;
595 597
596 598 //****************
597 599 // SBM2 PARAMETERS
598 600 unsigned char sy_lfr_s2_bp_p0;
599 601 unsigned char sy_lfr_s2_bp_p1;
600 602 } Packet_TM_LFR_PARAMETER_DUMP_t;
601 603
602 604
603 605 #endif // CCSDS_TYPES_H_INCLUDED
@@ -1,206 +1,218
1 1 #ifndef FSW_PARAMS_H_INCLUDED
2 2 #define FSW_PARAMS_H_INCLUDED
3 3
4 4 #include "grlib_regs.h"
5 5 #include "fsw_params_processing.h"
6 6 #include "tm_byte_positions.h"
7 7 #include "ccsds_types.h"
8 8
9 9 #define GRSPW_DEVICE_NAME "/dev/grspw0"
10 10 #define UART_DEVICE_NAME "/dev/console"
11 11
12 typedef struct ring_node
13 {
14 struct ring_node *previous;
15 int buffer_address;
16 struct ring_node *next;
17 unsigned int status;
18 } ring_node;
19
12 20 //************************
13 21 // flight software version
14 22 // this parameters is handled by the Qt project options
15 23
16 24 //#define NB_SAMPLES_PER_SNAPSHOT 2048
17 25 #define NB_SAMPLES_PER_SNAPSHOT 2352 // 336 * 7 = 2352
18 26 #define TIME_OFFSET 2
27 #define TIME_OFFSET_IN_BYTES 8
19 28 #define WAVEFORM_EXTENDED_HEADER_OFFSET 22
20 29 #define NB_BYTES_SWF_BLK (2 * 6)
21 30 #define NB_WORDS_SWF_BLK 3
22 31 #define NB_BYTES_CWF3_LIGHT_BLK 6
23 32 #define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
24 #define NB_RING_NODES_F0 3 // AT LEAST 3
25 #define NB_RING_NODES_F1 5 // AT LEAST 3
26 #define NB_RING_NODES_F2 5 // AT LEAST 3
33 #define NB_RING_NODES_F0 3 // AT LEAST 3
34 #define NB_RING_NODES_F1 5 // AT LEAST 3
35 #define NB_RING_NODES_F2 5 // AT LEAST 3
36 #define NB_RING_NODES_ASM_F0 8 // AT LEAST 3
37 #define NB_RING_NODES_ASM_F1 2 // AT LEAST 3
38 #define NB_RING_NODES_ASM_F2 2 // AT LEAST 3
27 39
28 40 //**********
29 41 // LFR MODES
30 42 #define LFR_MODE_STANDBY 0
31 43 #define LFR_MODE_NORMAL 1
32 44 #define LFR_MODE_BURST 2
33 45 #define LFR_MODE_SBM1 3
34 46 #define LFR_MODE_SBM2 4
35 47 #define LFR_MODE_NORMAL_CWF_F3 5
36 48
37 49 #define RTEMS_EVENT_MODE_STANDBY RTEMS_EVENT_0
38 50 #define RTEMS_EVENT_MODE_NORMAL RTEMS_EVENT_1
39 51 #define RTEMS_EVENT_MODE_BURST RTEMS_EVENT_2
40 52 #define RTEMS_EVENT_MODE_SBM1 RTEMS_EVENT_3
41 53 #define RTEMS_EVENT_MODE_SBM2 RTEMS_EVENT_4
42 54 #define RTEMS_EVENT_MODE_SBM2_WFRM RTEMS_EVENT_5
43 55
44 56 //****************************
45 57 // LFR DEFAULT MODE PARAMETERS
46 58 // COMMON
47 59 #define DEFAULT_SY_LFR_COMMON0 0x00
48 60 #define DEFAULT_SY_LFR_COMMON1 0x10 // default value 0 0 0 1 0 0 0 0
49 61 // NORM
50 62 #define SY_LFR_N_SWF_L 2048 // nb sample
51 63 #define SY_LFR_N_SWF_P 20 // sec
52 64 #define SY_LFR_N_ASM_P 3600 // sec
53 65 #define SY_LFR_N_BP_P0 4 // sec
54 66 #define SY_LFR_N_BP_P1 20 // sec
55 67 #define MIN_DELTA_SNAPSHOT 16 // sec
56 68 // BURST
57 69 #define DEFAULT_SY_LFR_B_BP_P0 1 // sec
58 70 #define DEFAULT_SY_LFR_B_BP_P1 5 // sec
59 71 // SBM1
60 72 #define DEFAULT_SY_LFR_S1_BP_P0 1 // sec
61 73 #define DEFAULT_SY_LFR_S1_BP_P1 1 // sec
62 74 // SBM2
63 75 #define DEFAULT_SY_LFR_S2_BP_P0 1 // sec
64 76 #define DEFAULT_SY_LFR_S2_BP_P1 5 // sec
65 77 // ADDITIONAL PARAMETERS
66 78 #define TIME_BETWEEN_TWO_SWF_PACKETS 30 // nb x 10 ms => 300 ms
67 79 #define TIME_BETWEEN_TWO_CWF3_PACKETS 1000 // nb x 10 ms => 10 s
68 80 // STATUS WORD
69 81 #define DEFAULT_STATUS_WORD_BYTE0 0x0d // [0000] [1] [101] mode 4 bits / SPW enabled 1 bit / state is run 3 bits
70 82 #define DEFAULT_STATUS_WORD_BYTE1 0x00
71 83 //
72 84 #define SY_LFR_DPU_CONNECT_TIMEOUT 100 // 100 * 10 ms = 1 s
73 85 #define SY_LFR_DPU_CONNECT_ATTEMPT 3
74 86 //****************************
75 87
76 88 //*****************************
77 89 // APB REGISTERS BASE ADDRESSES
78 90 #define REGS_ADDR_APBUART 0x80000100
79 91 #define REGS_ADDR_GPTIMER 0x80000300
80 92 #define REGS_ADDR_GRSPW 0x80000500
81 93 #define REGS_ADDR_TIME_MANAGEMENT 0x80000600
82 94 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
83 95
84 96 #ifdef GSA
85 97 #else
86 98 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f20
87 99 #endif
88 100
89 101 #define APBUART_CTRL_REG_MASK_DB 0xfffff7ff
90 102 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400 (0x50)
91 103
92 104 //**********
93 105 // IRQ LINES
94 106 #define IRQ_SM 9
95 107 #define IRQ_SPARC_SM 0x19 // see sparcv8.pdf p.76 for interrupt levels
96 108 #define IRQ_WF 10
97 109 #define IRQ_SPARC_WF 0x1a // see sparcv8.pdf p.76 for interrupt levels
98 110 #define IRQ_TIME1 12
99 111 #define IRQ_SPARC_TIME1 0x1c // see sparcv8.pdf p.76 for interrupt levels
100 112 #define IRQ_TIME2 13
101 113 #define IRQ_SPARC_TIME2 0x1d // see sparcv8.pdf p.76 for interrupt levels
102 114 #define IRQ_WAVEFORM_PICKER 14
103 115 #define IRQ_SPARC_WAVEFORM_PICKER 0x1e // see sparcv8.pdf p.76 for interrupt levels
104 116 #define IRQ_SPECTRAL_MATRIX 6
105 117 #define IRQ_SPARC_SPECTRAL_MATRIX 0x16 // see sparcv8.pdf p.76 for interrupt levels
106 118
107 119 //*****
108 120 // TIME
109 121 #define CLKDIV_SM_SIMULATOR (10000 - 1) // 10 ms
110 122 #define CLKDIV_WF_SIMULATOR (10000000 - 1) // 10 000 000 * 1 us = 10 s
111 123 #define TIMER_SM_SIMULATOR 1
112 124 #define TIMER_WF_SIMULATOR 2
113 125 #define HK_PERIOD 100 // 100 * 10ms => 1sec
114 126
115 127 //**********
116 128 // LPP CODES
117 129 #define LFR_SUCCESSFUL 0
118 130 #define LFR_DEFAULT 1
119 131
120 132 //******
121 133 // RTEMS
122 134 #define TASKID_RECV 1
123 135 #define TASKID_ACTN 2
124 136 #define TASKID_SPIQ 3
125 137 #define TASKID_SMIQ 4
126 138 #define TASKID_STAT 5
127 139 #define TASKID_AVF0 6
128 140 #define TASKID_BPF0 7
129 141 #define TASKID_WFRM 8
130 142 #define TASKID_DUMB 9
131 143 #define TASKID_HOUS 10
132 144 #define TASKID_MATR 11
133 145 #define TASKID_CWF3 12
134 146 #define TASKID_CWF2 13
135 147 #define TASKID_CWF1 14
136 148 #define TASKID_SEND 15
137 149 #define TASKID_WTDG 16
138 150
139 151 #define TASK_PRIORITY_SPIQ 5
140 152 #define TASK_PRIORITY_SMIQ 10
141 153 #define TASK_PRIORITY_WTDG 20
142 154 #define TASK_PRIORITY_HOUS 30
143 155 #define TASK_PRIORITY_CWF1 35 // CWF1 and CWF2 are never running together
144 156 #define TASK_PRIORITY_CWF2 35 //
145 157 #define TASK_PRIORITY_WFRM 40
146 158 #define TASK_PRIORITY_CWF3 40 // there is a printf in this function, be careful with its priority wrt CWF1
147 159 #define TASK_PRIORITY_SEND 45
148 160 #define TASK_PRIORITY_RECV 50
149 161 #define TASK_PRIORITY_ACTN 50
150 162 #define TASK_PRIORITY_AVF0 60
151 163 #define TASK_PRIORITY_BPF0 60
152 164 #define TASK_PRIORITY_MATR 100
153 165 #define TASK_PRIORITY_STAT 200
154 166 #define TASK_PRIORITY_DUMB 200
155 167
156 168 #define ACTION_MSG_QUEUE_COUNT 10
157 169 #define ACTION_MSG_PKTS_COUNT 50
158 170 #define ACTION_MSG_PKTS_MAX_SIZE (PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES)
159 171 #define ACTION_MSG_SPW_IOCTL_SEND_SIZE 24 // hlen *hdr dlen *data sent options
160 172
161 173 #define QUEUE_RECV 0
162 174 #define QUEUE_SEND 1
163 175
164 176 //*******
165 177 // MACROS
166 178 #ifdef PRINT_MESSAGES_ON_CONSOLE
167 179 #define PRINTF(x) printf(x);
168 180 #define PRINTF1(x,y) printf(x,y);
169 181 #define PRINTF2(x,y,z) printf(x,y,z);
170 182 #else
171 183 #define PRINTF(x) ;
172 184 #define PRINTF1(x,y) ;
173 185 #define PRINTF2(x,y,z) ;
174 186 #endif
175 187
176 188 #ifdef BOOT_MESSAGES
177 189 #define BOOT_PRINTF(x) printf(x);
178 190 #define BOOT_PRINTF1(x,y) printf(x,y);
179 191 #define BOOT_PRINTF2(x,y,z) printf(x,y,z);
180 192 #else
181 193 #define BOOT_PRINTF(x) ;
182 194 #define BOOT_PRINTF1(x,y) ;
183 195 #define BOOT_PRINTF2(x,y,z) ;
184 196 #endif
185 197
186 198 #ifdef DEBUG_MESSAGES
187 199 #define DEBUG_PRINTF(x) printf(x);
188 200 #define DEBUG_PRINTF1(x,y) printf(x,y);
189 201 #define DEBUG_PRINTF2(x,y,z) printf(x,y,z);
190 202 #else
191 203 #define DEBUG_PRINTF(x) ;
192 204 #define DEBUG_PRINTF1(x,y) ;
193 205 #define DEBUG_PRINTF2(x,y,z) ;
194 206 #endif
195 207
196 208 #define CPU_USAGE_REPORT_PERIOD 6 // * 10 s = period
197 209
198 210 struct param_local_str{
199 211 unsigned int local_sbm1_nb_cwf_sent;
200 212 unsigned int local_sbm1_nb_cwf_max;
201 213 unsigned int local_sbm2_nb_cwf_sent;
202 214 unsigned int local_sbm2_nb_cwf_max;
203 215 unsigned int local_nb_interrupt_f0_MAX;
204 216 };
205 217
206 218 #endif // FSW_PARAMS_H_INCLUDED
@@ -1,26 +1,26
1 1 #ifndef FSW_PARAMS_PROCESSING_H
2 2 #define FSW_PARAMS_PROCESSING_H
3 3
4 #define NB_BINS_PER_SM 128
5 #define NB_VALUES_PER_SM 25
6 #define TOTAL_SIZE_SM 0
7 #define SM_HEADER 0
4 #define NB_BINS_PER_SM 128 //
5 #define NB_VALUES_PER_SM 25 //
6 #define TOTAL_SIZE_SM 3200 // 25 * 128
7 #define SM_HEADER 0 //
8 8
9 9 #define NB_BINS_COMPRESSED_SM_F0 11
10 10 #define NB_BINS_COMPRESSED_SM_F1 13
11 11 #define NB_BINS_COMPRESSED_SM_F2 12
12 12 #define TOTAL_SIZE_COMPRESSED_MATRIX_f0 (NB_BINS_COMPRESSED_SM_F0 * NB_VALUES_PER_SM)
13 13 #define NB_AVERAGE_NORMAL_f0 96*4
14 14 #define NB_SM_TO_RECEIVE_BEFORE_AVF0 8
15 15
16 16 typedef struct {
17 17 volatile unsigned char PE[2];
18 18 volatile unsigned char PB[2];
19 19 volatile unsigned char V0;
20 20 volatile unsigned char V1;
21 21 volatile unsigned char V2_ELLIP_DOP;
22 22 volatile unsigned char SZ;
23 23 volatile unsigned char VPHI;
24 24 } BP1_t;
25 25
26 26 #endif // FSW_PARAMS_PROCESSING_H
@@ -1,66 +1,54
1 1 #ifndef FSW_PROCESSING_H_INCLUDED
2 2 #define FSW_PROCESSING_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <math.h>
7 7 #include <stdlib.h> // abs() is in the stdlib
8 8 #include <stdio.h> // printf()
9 9 #include <math.h>
10 10
11 11 #include "fsw_params.h"
12 12 #include "fsw_spacewire.h"
13 13
14 extern volatile int spec_mat_f0_0[ ];
15 extern volatile int spec_mat_f0_1[ ];
16 extern volatile int spec_mat_f0_a[ ];
17 extern volatile int spec_mat_f0_b[ ];
18 extern volatile int spec_mat_f0_c[ ];
19 extern volatile int spec_mat_f0_d[ ];
20 extern volatile int spec_mat_f0_e[ ];
21 extern volatile int spec_mat_f0_f[ ];
22 extern volatile int spec_mat_f0_g[ ];
23 extern volatile int spec_mat_f0_h[ ];
24
25 extern volatile int spec_mat_f1[ ];
26 extern volatile int spec_mat_f2[ ];
27
28 extern volatile int spec_mat_f1_bis[ ];
29 extern volatile int spec_mat_f2_bis[ ];
30 extern volatile int spec_mat_f0_0_bis[ ];
31 extern volatile int spec_mat_f0_1_bis[ ];
14 extern volatile int sm_f0[ ][ SM_HEADER + TOTAL_SIZE_SM ];
15 extern volatile int sm_f1[ ][ SM_HEADER + TOTAL_SIZE_SM ];
16 extern volatile int sm_f2[ ][ SM_HEADER + TOTAL_SIZE_SM ];
32 17
33 18 // parameters
34 19 extern struct param_local_str param_local;
35 20
36 21 // registers
37 22 extern time_management_regs_t *time_management_regs;
38 23 extern spectral_matrix_regs_t *spectral_matrix_regs;
39 24
40 25 extern rtems_name misc_name[5];
41 26 extern rtems_id Task_id[20]; /* array of task ids */
42 27
28 //
29 void init_asm_rings( void );
30
43 31 // ISR
44 32 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
45 33 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
46 34
47 35 // RTEMS TASKS
48 36 rtems_task spw_bppr_task(rtems_task_argument argument);
49 37 rtems_task avf0_task(rtems_task_argument argument);
50 38 rtems_task bpf0_task(rtems_task_argument argument);
51 39 rtems_task smiq_task(rtems_task_argument argument); // added to test the spectral matrix simulator
52 40 rtems_task matr_task(rtems_task_argument argument);
53 41
54 42 void matrix_compression(volatile float *averaged_spec_mat, unsigned char fChannel, float *compressed_spec_mat);
55 43 void matrix_reset(volatile float *averaged_spec_mat);
56 44 void BP1_set(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * LFR_BP1);
57 45 void BP2_set(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat);
58 46 //
59 47 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header);
60 48 void send_spectral_matrix(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
61 49 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id);
62 50 void convert_averaged_spectral_matrix(volatile float *input_matrix, char *output_matrix);
63 51 void fill_averaged_spectral_matrix( void );
64 52 void reset_spectral_matrix_regs();
65 53
66 54 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,94 +1,88
1 1 #ifndef WF_HANDLER_H_INCLUDED
2 2 #define WF_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <stdio.h>
7 7 #include <math.h>
8 8
9 9 #include "fsw_params.h"
10 10 #include "fsw_spacewire.h"
11 11 #include "fsw_misc.h"
12 12
13 13 #define pi 3.1415
14 14
15 typedef struct ring_node
16 {
17 struct ring_node *previous;
18 int buffer_address;
19 struct ring_node *next;
20 unsigned int status;
21 } ring_node;
22
23 15 extern int fdSPW;
24 16
25 17 //*****************
26 18 // waveform buffers
27 19 // F0
28 20 //extern volatile int wf_snap_f0[ ];
29 21 // F1 F2
30 22 extern volatile int wf_snap_f0[ ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 46 ];
31 23 extern volatile int wf_snap_f1[ ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 46 ];
32 24 extern volatile int wf_snap_f2[ ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 46 ];
33 25 // F3
34 26 extern volatile int wf_cont_f3_a[ ];
35 27 extern volatile int wf_cont_f3_b[ ];
36 28 extern char wf_cont_f3_light[ ];
37 29
38 30 #ifdef VHDL_DEV
39 31 extern waveform_picker_regs_new_t *waveform_picker_regs;
40 32 #else
41 33 extern waveform_picker_regs_t *waveform_picker_regs;
42 34 #endif
43 35 extern time_management_regs_t *time_management_regs;
44 36 extern Packet_TM_LFR_HK_t housekeeping_packet;
45 37 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
46 38 extern struct param_local_str param_local;
47 39
48 40 extern unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
49 41 extern unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
50 42
51 43 extern rtems_id Task_id[20]; /* array of task ids */
52 44
53 45 extern unsigned char lfrCurrentMode;
54 46
55 47 rtems_isr waveforms_isr( rtems_vector_number vector );
56 48 rtems_task wfrm_task( rtems_task_argument argument );
57 49 rtems_task cwf3_task( rtems_task_argument argument );
58 50 rtems_task cwf2_task( rtems_task_argument argument );
59 51 rtems_task cwf1_task( rtems_task_argument argument );
60 52
61 53 //******************
62 54 // general functions
63 55 void init_waveforms( void );
64 56 void init_waveform_rings( void );
65 57 void reset_current_ring_nodes( void );
66 58 //
67 59 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF );
68 60 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
69 61 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
70 62 //
71 63 int send_waveform_SWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id );
72 64 int send_waveform_CWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
73 65 int send_waveform_CWF3( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
74 66 int send_waveform_CWF3_light( volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
75 67 //
68 void compute_acquisition_time(unsigned int *coarseTime, unsigned int *fineTime, unsigned int sid, unsigned char pa_lfr_pkt_nr );
69 //
76 70 rtems_id get_pkts_queue_id( void );
77 71
78 72 //**************
79 73 // wfp registers
80 74 void set_wfp_data_shaping();
81 75 char set_wfp_delta_snapshot();
82 76 void set_wfp_burst_enable_register( unsigned char mode );
83 77 void reset_wfp_burst_enable();
84 78 void reset_wfp_status();
85 79 void reset_waveform_picker_regs();
86 80 void reset_new_waveform_picker_regs();
87 81
88 82 //*****************
89 83 // local parameters
90 84 void set_local_nb_interrupt_f0_MAX( void );
91 85
92 86 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid );
93 87
94 88 #endif // WF_HANDLER_H_INCLUDED
@@ -1,90 +1,75
1 1 /** Global variables of the LFR flight software.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * Among global variables, there are:
7 7 * - RTEMS names and id.
8 8 * - APB configuration registers.
9 9 * - waveforms global buffers, used by the waveform picker hardware module to store data.
10 10 * - spectral matrices buffesr, used by the hardware module to store data.
11 11 * - variable related to LFR modes parameters.
12 12 * - the global HK packet buffer.
13 13 * - the global dump parameter buffer.
14 14 *
15 15 */
16 16
17 17 #include <rtems.h>
18 18 #include <grspw.h>
19 19
20 20 #include "ccsds_types.h"
21 21 #include "grlib_regs.h"
22 22 #include "fsw_params.h"
23 23
24 24 // RTEMS GLOBAL VARIABLES
25 25 rtems_name misc_name[5];
26 26 rtems_id misc_id[5];
27 27 rtems_name Task_name[20]; /* array of task names */
28 28 rtems_id Task_id[20]; /* array of task ids */
29 29 unsigned int maxCount;
30 30 int fdSPW = 0;
31 31 int fdUART = 0;
32 32 unsigned char lfrCurrentMode;
33 33
34 34 // WAVEFORMS GLOBAL VARIABLES // 2048 * 3 * 4 + 2 * 4 = 24576 + 8 bytes
35 35 // F0
36 36 //volatile int wf_snap_f0 [ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 46 ] __attribute__((aligned(0x100)));
37 37 volatile int wf_snap_f0[ NB_RING_NODES_F0 ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 46 ] __attribute__((aligned(0x100)));
38 38 // F1 F2
39 39 volatile int wf_snap_f1[ NB_RING_NODES_F1 ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 46 ] __attribute__((aligned(0x100)));
40 40 volatile int wf_snap_f2[ NB_RING_NODES_F2 ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 46 ] __attribute__((aligned(0x100)));
41 41 // F3
42 volatile int wf_cont_f3_a[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ] __attribute__((aligned(0x100)));
43 volatile int wf_cont_f3_b[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ] __attribute__((aligned(0x100)));
44 char wf_cont_f3_light[ NB_SAMPLES_PER_SNAPSHOT * NB_BYTES_CWF3_LIGHT_BLK ] __attribute__((aligned(0x100)));
42 volatile int wf_cont_f3_a [ (NB_SAMPLES_PER_SNAPSHOT) * NB_WORDS_SWF_BLK + TIME_OFFSET ] __attribute__((aligned(0x100)));
43 volatile int wf_cont_f3_b [ (NB_SAMPLES_PER_SNAPSHOT) * NB_WORDS_SWF_BLK + TIME_OFFSET ] __attribute__((aligned(0x100)));
44 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK + TIME_OFFSET_IN_BYTES ] __attribute__((aligned(0x100)));
45 45
46 46 // SPECTRAL MATRICES GLOBAL VARIABLES
47 volatile int spec_mat_f0_0[ SM_HEADER + TOTAL_SIZE_SM ];
48 volatile int spec_mat_f0_1[ SM_HEADER + TOTAL_SIZE_SM ];
49 volatile int spec_mat_f0_a[ SM_HEADER + TOTAL_SIZE_SM ];
50 volatile int spec_mat_f0_b[ SM_HEADER + TOTAL_SIZE_SM ];
51 volatile int spec_mat_f0_c[ SM_HEADER + TOTAL_SIZE_SM ];
52 volatile int spec_mat_f0_d[ SM_HEADER + TOTAL_SIZE_SM ];
53 volatile int spec_mat_f0_e[ SM_HEADER + TOTAL_SIZE_SM ];
54 volatile int spec_mat_f0_f[ SM_HEADER + TOTAL_SIZE_SM ];
55 volatile int spec_mat_f0_g[ SM_HEADER + TOTAL_SIZE_SM ];
56 volatile int spec_mat_f0_h[ SM_HEADER + TOTAL_SIZE_SM ];
57 volatile int spec_mat_f0_0_bis[ SM_HEADER + TOTAL_SIZE_SM ];
58 volatile int spec_mat_f0_1_bis[ SM_HEADER + TOTAL_SIZE_SM ];
59 //
60 volatile int spec_mat_f1[ SM_HEADER + TOTAL_SIZE_SM ];
61 volatile int spec_mat_f1_bis[ SM_HEADER + TOTAL_SIZE_SM ];
62 //
63 volatile int spec_mat_f2[ SM_HEADER + TOTAL_SIZE_SM ];
64 volatile int spec_mat_f2_bis[ SM_HEADER + TOTAL_SIZE_SM ];
47 volatile int sm_f0[ NB_RING_NODES_ASM_F0 ][ SM_HEADER + TOTAL_SIZE_SM ];
48 volatile int sm_f1[ NB_RING_NODES_ASM_F1 ][ SM_HEADER + TOTAL_SIZE_SM ];
49 volatile int sm_f2[ NB_RING_NODES_ASM_F2 ][ SM_HEADER + TOTAL_SIZE_SM ];
65 50
66 51 // APB CONFIGURATION REGISTERS
67 52 time_management_regs_t *time_management_regs = (time_management_regs_t*) REGS_ADDR_TIME_MANAGEMENT;
68 53 gptimer_regs_t *gptimer_regs = (gptimer_regs_t *) REGS_ADDR_GPTIMER;
69 54
70 55 #ifdef VHDL_DEV
71 56 waveform_picker_regs_new_t *waveform_picker_regs = (waveform_picker_regs_new_t*) REGS_ADDR_WAVEFORM_PICKER;
72 57 #else
73 58 waveform_picker_regs_t *waveform_picker_regs = (waveform_picker_regs_t*) REGS_ADDR_WAVEFORM_PICKER;
74 59 #endif
75 60 spectral_matrix_regs_t *spectral_matrix_regs = (spectral_matrix_regs_t*) REGS_ADDR_SPECTRAL_MATRIX;
76 61
77 62 // MODE PARAMETERS
78 63 Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
79 64 struct param_local_str param_local;
80 65
81 66 // HK PACKETS
82 67 Packet_TM_LFR_HK_t housekeeping_packet;
83 68 // sequence counters are incremented by APID (PID + CAT) and destination ID
84 69 unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
85 70 unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
86 71 unsigned short sequenceCounters_TC_EXE[SEQ_CNT_NB_DEST_ID];
87 72 spw_stats spacewire_stats;
88 73 spw_stats spacewire_stats_backup;
89 74
90 75
@@ -1,643 +1,646
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include <fsw_processing.h>
11 11
12 12 #include "fsw_processing_globals.c"
13 13
14 //************************
15 // spectral matrices rings
16 ring_node sm_ring_f0[NB_RING_NODES_ASM_F0];
17 ring_node sm_ring_f1[NB_RING_NODES_ASM_F1];
18 ring_node sm_ring_f2[NB_RING_NODES_ASM_F2];
19 ring_node *current_ring_node_sm_f0;
20 ring_node *current_ring_node_sm_f1;
21 ring_node *current_ring_node_sm_f2;
22
14 23 BP1_t data_BP1[ NB_BINS_COMPRESSED_SM_F0 ];
15 float averaged_spec_mat_f0[ TOTAL_SIZE_SM ];
16 char averaged_spec_mat_f0_char[ TOTAL_SIZE_SM * 2 ];
17 float compressed_spec_mat_f0[ TOTAL_SIZE_COMPRESSED_MATRIX_f0 ];
24 float averaged_sm_f0[ TOTAL_SIZE_SM ];
25 char averaged_sm_f0_char[ TOTAL_SIZE_SM * 2 ];
26 float compressed_sm_f0[ TOTAL_SIZE_COMPRESSED_MATRIX_f0 ];
27
28 void init_asm_rings( void )
29 {
30 unsigned char i;
31
32 // F0 RING
33 sm_ring_f0[0].next = (ring_node*) &sm_ring_f0[1];
34 sm_ring_f0[0].previous = (ring_node*) &sm_ring_f0[NB_RING_NODES_ASM_F0-1];
35 sm_ring_f0[0].buffer_address = (int) &sm_f0[0][0];
36
37 sm_ring_f0[NB_RING_NODES_ASM_F0-1].next = (ring_node*) &sm_ring_f0[0];
38 sm_ring_f0[NB_RING_NODES_ASM_F0-1].previous = (ring_node*) &sm_ring_f0[NB_RING_NODES_ASM_F0-2];
39 sm_ring_f0[NB_RING_NODES_ASM_F0-1].buffer_address = (int) &sm_f0[NB_RING_NODES_ASM_F0-1][0];
40
41 for(i=1; i<NB_RING_NODES_ASM_F0-1; i++)
42 {
43 sm_ring_f0[i].next = (ring_node*) &sm_ring_f0[i+1];
44 sm_ring_f0[i].previous = (ring_node*) &sm_ring_f0[i-1];
45 sm_ring_f0[i].buffer_address = (int) &sm_f0[i][0];
46 }
47
48 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
49
50 }
51
52 void reset_current_sm_ring_nodes( void )
53 {
54 current_ring_node_sm_f0 = sm_ring_f0;
55 }
18 56
19 57 //***********************************************************
20 58 // Interrupt Service Routine for spectral matrices processing
21 59 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
22 60 {
23 61 unsigned char status;
24 62 unsigned char i;
25 63
26 64 status = spectral_matrix_regs->status; //[f2 f1 f0_1 f0_0]
27 65 for (i=0; i<4; i++)
28 66 {
29 67 if ( ( (status >> i) & 0x01) == 1) // (1) buffer rotation
30 68 {
31 69 switch(i)
32 70 {
33 71 case 0:
34 if (spectral_matrix_regs->matrixF0_Address0 == (int) spec_mat_f0_0)
35 {
36 spectral_matrix_regs->matrixF0_Address0 = (int) spec_mat_f0_0_bis;
37 }
38 else
39 {
40 spectral_matrix_regs->matrixF0_Address0 = (int) spec_mat_f0_0;
41 }
72 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
73 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
42 74 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe;
43 75 break;
44 76 case 1:
45 if (spectral_matrix_regs->matrixFO_Address1 == (int) spec_mat_f0_1)
46 {
47 spectral_matrix_regs->matrixFO_Address1 = (int) spec_mat_f0_1_bis;
48 }
49 else
50 {
51 spectral_matrix_regs->matrixFO_Address1 = (int) spec_mat_f0_1;
52 }
53 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd;
54 77 break;
55 78 case 2:
56 if (spectral_matrix_regs->matrixF1_Address == (int) spec_mat_f1)
57 {
58 spectral_matrix_regs->matrixF1_Address = (int) spec_mat_f1_bis;
59 }
60 else
61 {
62 spectral_matrix_regs->matrixF1_Address = (int) spec_mat_f1;
63 }
64 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffb;
65 break;
66 case 3:
67 if (spectral_matrix_regs->matrixF2_Address == (int) spec_mat_f2)
68 {
69 spectral_matrix_regs->matrixF2_Address = (int) spec_mat_f2_bis;
70 }
71 else
72 {
73 spectral_matrix_regs->matrixF2_Address = (int) spec_mat_f2;
74 }
75 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff7;
76 79 break;
77 80 default:
78 81 break;
79 82 }
80 83 }
81 84 }
82 85
83 86 // reset error codes to 0
84 87 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // [1100 1111]
85 88
86 89 if (rtems_event_send( Task_id[TASKID_SMIQ], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
87 90 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_4 );
88 91 }
89 92 }
90 93
91 94 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
92 95 {
93 96 if (rtems_event_send( Task_id[TASKID_SMIQ], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
94 97 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_4 );
95 98 }
96 99 }
97 100
98 101 //************
99 102 // RTEMS TASKS
100 103
101 104 rtems_task smiq_task(rtems_task_argument argument) // process the Spectral Matrices IRQ
102 105 {
103 106 rtems_event_set event_out;
104 107 unsigned int nb_interrupt_f0 = 0;
105 108
106 109 BOOT_PRINTF("in SMIQ *** \n")
107 110
108 111 while(1){
109 112 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
110 113 nb_interrupt_f0 = nb_interrupt_f0 + 1;
111 114 if (nb_interrupt_f0 == NB_SM_TO_RECEIVE_BEFORE_AVF0 ){
112 115 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
113 116 {
114 117 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
115 118 }
116 119 nb_interrupt_f0 = 0;
117 120 }
118 121 }
119 122 }
120 123
121 124 rtems_task spw_bppr_task(rtems_task_argument argument)
122 125 {
123 126 rtems_status_code status;
124 127 rtems_event_set event_out;
125 128
126 129 BOOT_PRINTF("in BPPR ***\n");
127 130
128 131 while( true ){ // wait for an event to begin with the processing
129 132 status = rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out);
130 133 }
131 134 }
132 135
133 136 rtems_task avf0_task(rtems_task_argument argument)
134 137 {
135 138 int i;
136 139 static int nb_average;
137 140 rtems_event_set event_out;
138 141 rtems_status_code status;
139 142
140 143 nb_average = 0;
141 144
142 145 BOOT_PRINTF("in AVFO *** \n")
143 146
144 147 while(1){
145 148 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
146 149 for(i=0; i<TOTAL_SIZE_SM; i++){
147 averaged_spec_mat_f0[i] = averaged_spec_mat_f0[i] + spec_mat_f0_a[i]
148 + spec_mat_f0_b[i]
149 + spec_mat_f0_c[i]
150 + spec_mat_f0_d[i]
151 + spec_mat_f0_e[i]
152 + spec_mat_f0_f[i]
153 + spec_mat_f0_g[i]
154 + spec_mat_f0_h[i];
150 averaged_sm_f0[i] = current_ring_node_sm_f0[0].buffer_address
151 + current_ring_node_sm_f0[1].buffer_address
152 + current_ring_node_sm_f0[2].buffer_address
153 + current_ring_node_sm_f0[3].buffer_address
154 + current_ring_node_sm_f0[4].buffer_address
155 + current_ring_node_sm_f0[5].buffer_address
156 + current_ring_node_sm_f0[6].buffer_address
157 + current_ring_node_sm_f0[7].buffer_address;
155 158 }
156 159 nb_average = nb_average + NB_SM_TO_RECEIVE_BEFORE_AVF0;
157 160 if (nb_average == NB_AVERAGE_NORMAL_f0) {
158 161 nb_average = 0;
159 162 status = rtems_event_send( Task_id[TASKID_MATR], RTEMS_EVENT_0 ); // sending an event to the task 7, BPF0
160 163 if (status != RTEMS_SUCCESSFUL) {
161 164 printf("in AVF0 *** Error sending RTEMS_EVENT_0, code %d\n", status);
162 165 }
163 166 }
164 167 }
165 168 }
166 169
167 170 rtems_task bpf0_task(rtems_task_argument argument)
168 171 {
169 172 rtems_event_set event_out;
170 173 static unsigned char LFR_BP1_F0[ NB_BINS_COMPRESSED_SM_F0 * 9 ];
171 174
172 175 BOOT_PRINTF("in BPFO *** \n")
173 176
174 177 while(1){
175 178 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
176 matrix_compression(averaged_spec_mat_f0, 0, compressed_spec_mat_f0);
177 BP1_set(compressed_spec_mat_f0, NB_BINS_COMPRESSED_SM_F0, LFR_BP1_F0);
179 matrix_compression(averaged_sm_f0, 0, compressed_sm_f0);
180 BP1_set(compressed_sm_f0, NB_BINS_COMPRESSED_SM_F0, LFR_BP1_F0);
178 181 }
179 182 }
180 183
181 184 rtems_task matr_task(rtems_task_argument argument)
182 185 {
183 186 spw_ioctl_pkt_send spw_ioctl_send_ASM;
184 187 rtems_event_set event_out;
185 188 rtems_status_code status;
186 189 rtems_id queue_id;
187 190 Header_TM_LFR_SCIENCE_ASM_t headerASM;
188 191
189 192 init_header_asm( &headerASM );
190 193
191 194 status = get_message_queue_id_send( &queue_id );
192 195 if (status != RTEMS_SUCCESSFUL)
193 196 {
194 197 PRINTF1("in MATR *** ERR get_message_queue_id_send %d\n", status)
195 198 }
196 199
197 200 BOOT_PRINTF("in MATR *** \n")
198 201
199 202 fill_averaged_spectral_matrix( );
200 203
201 204 while(1){
202 205 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
203 206 // 1) convert the float array in a char array
204 convert_averaged_spectral_matrix( averaged_spec_mat_f0, averaged_spec_mat_f0_char);
207 convert_averaged_spectral_matrix( averaged_sm_f0, averaged_sm_f0_char);
205 208 // 2) send the spectral matrix packets
206 send_spectral_matrix( &headerASM, averaged_spec_mat_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
209 send_spectral_matrix( &headerASM, averaged_sm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
207 210 }
208 211 }
209 212
210 213 //*****************************
211 214 // Spectral matrices processing
212 215
213 216 void matrix_reset(volatile float *averaged_spec_mat)
214 217 {
215 218 int i;
216 219 for(i=0; i<TOTAL_SIZE_SM; i++){
217 220 averaged_spec_mat[i] = 0;
218 221 }
219 222 }
220 223
221 224 void matrix_compression(volatile float *averaged_spec_mat, unsigned char fChannel, float *compressed_spec_mat)
222 225 {
223 226 int i;
224 227 int j;
225 228 switch (fChannel){
226 229 case 0:
227 230 for(i=0;i<NB_BINS_COMPRESSED_SM_F0;i++){
228 231 j = 17 + (i * 8);
229 232 compressed_spec_mat[i] = (averaged_spec_mat[j]
230 233 + averaged_spec_mat[j+1]
231 234 + averaged_spec_mat[j+2]
232 235 + averaged_spec_mat[j+3]
233 236 + averaged_spec_mat[j+4]
234 237 + averaged_spec_mat[j+5]
235 238 + averaged_spec_mat[j+6]
236 239 + averaged_spec_mat[j+7])/(8*NB_AVERAGE_NORMAL_f0);
237 240 }
238 241 break;
239 242 case 1:
240 243 // case fChannel = f1 to be completed later
241 244 break;
242 245 case 2:
243 246 // case fChannel = f1 to be completed later
244 247 break;
245 248 default:
246 249 break;
247 250 }
248 251 }
249 252
250 253 void BP1_set(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * LFR_BP1){
251 254 int i;
252 255 int j;
253 256 unsigned char tmp_u_char;
254 257 unsigned char * pt_char = NULL;
255 258 float PSDB, PSDE;
256 259 float NVEC_V0;
257 260 float NVEC_V1;
258 261 float NVEC_V2;
259 262 //float significand;
260 263 //int exponent;
261 264 float aux;
262 265 float tr_SB_SB;
263 266 float tmp;
264 267 float sx_re;
265 268 float sx_im;
266 269 float nebx_re = 0;
267 270 float nebx_im = 0;
268 271 float ny = 0;
269 272 float nz = 0;
270 273 float bx_bx_star = 0;
271 274 for(i=0; i<nb_bins_compressed_spec_mat; i++){
272 275 //==============================================
273 276 // BP1 PSD == B PAR_LFR_SC_BP1_PE_FL0 == 16 bits
274 277 PSDB = compressed_spec_mat[i*30] // S11
275 278 + compressed_spec_mat[(i*30) + 10] // S22
276 279 + compressed_spec_mat[(i*30) + 18]; // S33
277 280 //significand = frexp(PSDB, &exponent);
278 281 pt_char = (unsigned char*) &PSDB;
279 282 LFR_BP1[(i*9) + 2] = pt_char[0]; // bits 31 downto 24 of the float
280 283 LFR_BP1[(i*9) + 3] = pt_char[1]; // bits 23 downto 16 of the float
281 284 //==============================================
282 285 // BP1 PSD == E PAR_LFR_SC_BP1_PB_FL0 == 16 bits
283 286 PSDE = compressed_spec_mat[(i*30) + 24] * K44_pe // S44
284 287 + compressed_spec_mat[(i*30) + 28] * K55_pe // S55
285 288 + compressed_spec_mat[(i*30) + 26] * K45_pe_re // S45
286 289 - compressed_spec_mat[(i*30) + 27] * K45_pe_im; // S45
287 290 pt_char = (unsigned char*) &PSDE;
288 291 LFR_BP1[(i*9) + 0] = pt_char[0]; // bits 31 downto 24 of the float
289 292 LFR_BP1[(i*9) + 1] = pt_char[1]; // bits 23 downto 16 of the float
290 293 //==============================================================================
291 294 // BP1 normal wave vector == PAR_LFR_SC_BP1_NVEC_V0_F0 == 8 bits
292 295 // == PAR_LFR_SC_BP1_NVEC_V1_F0 == 8 bits
293 296 // == PAR_LFR_SC_BP1_NVEC_V2_F0 == 1 bits
294 297 tmp = sqrt(
295 298 compressed_spec_mat[(i*30) + 3]*compressed_spec_mat[(i*30) + 3] //Im S12
296 299 +compressed_spec_mat[(i*30) + 5]*compressed_spec_mat[(i*30) + 5] //Im S13
297 300 +compressed_spec_mat[(i*30) + 13]*compressed_spec_mat[(i*30) + 13] //Im S23
298 301 );
299 302 NVEC_V0 = compressed_spec_mat[(i*30) + 13] / tmp; // Im S23
300 303 NVEC_V1 = -compressed_spec_mat[(i*30) + 5] / tmp; // Im S13
301 304 NVEC_V2 = compressed_spec_mat[(i*30) + 3] / tmp; // Im S12
302 305 LFR_BP1[(i*9) + 4] = (char) (NVEC_V0*127);
303 306 LFR_BP1[(i*9) + 5] = (char) (NVEC_V1*127);
304 307 pt_char = (unsigned char*) &NVEC_V2;
305 308 LFR_BP1[(i*9) + 6] = pt_char[0] & 0x80; // extract the sign of NVEC_V2
306 309 //=======================================================
307 310 // BP1 ellipticity == PAR_LFR_SC_BP1_ELLIP_F0 == 4 bits
308 311 aux = 2*tmp / PSDB; // compute the ellipticity
309 312 tmp_u_char = (unsigned char) (aux*(16-1)); // convert the ellipticity
310 313 LFR_BP1[i*9+6] = LFR_BP1[i*9+6] | ((tmp_u_char&0x0f)<<3); // keeps 4 bits of the resulting unsigned char
311 314 //==============================================================
312 315 // BP1 degree of polarization == PAR_LFR_SC_BP1_DOP_F0 == 3 bits
313 316 for(j = 0; j<NB_VALUES_PER_SM;j++){
314 317 tr_SB_SB = compressed_spec_mat[i*30] * compressed_spec_mat[i*30]
315 318 + compressed_spec_mat[(i*30) + 10] * compressed_spec_mat[(i*30) + 10]
316 319 + compressed_spec_mat[(i*30) + 18] * compressed_spec_mat[(i*30) + 18]
317 320 + 2 * compressed_spec_mat[(i*30) + 2] * compressed_spec_mat[(i*30) + 2]
318 321 + 2 * compressed_spec_mat[(i*30) + 3] * compressed_spec_mat[(i*30) + 3]
319 322 + 2 * compressed_spec_mat[(i*30) + 4] * compressed_spec_mat[(i*30) + 4]
320 323 + 2 * compressed_spec_mat[(i*30) + 5] * compressed_spec_mat[(i*30) + 5]
321 324 + 2 * compressed_spec_mat[(i*30) + 12] * compressed_spec_mat[(i*30) + 12]
322 325 + 2 * compressed_spec_mat[(i*30) + 13] * compressed_spec_mat[(i*30) + 13];
323 326 }
324 327 aux = PSDB*PSDB;
325 328 tmp = sqrt( abs( ( 3*tr_SB_SB - aux ) / ( 2 * aux ) ) );
326 329 tmp_u_char = (unsigned char) (NVEC_V0*(8-1));
327 330 LFR_BP1[(i*9) + 6] = LFR_BP1[(i*9) + 6] | (tmp_u_char & 0x07); // keeps 3 bits of the resulting unsigned char
328 331 //=======================================================================================
329 332 // BP1 x-component of the normalized Poynting flux == PAR_LFR_SC_BP1_SZ_F0 == 8 bits (7+1)
330 333 sx_re = compressed_spec_mat[(i*30) + 20] * K34_sx_re
331 334 + compressed_spec_mat[(i*30) + 6] * K14_sx_re
332 335 + compressed_spec_mat[(i*30) + 8] * K15_sx_re
333 336 + compressed_spec_mat[(i*30) + 14] * K24_sx_re
334 337 + compressed_spec_mat[(i*30) + 16] * K25_sx_re
335 338 + compressed_spec_mat[(i*30) + 22] * K35_sx_re;
336 339 sx_im = compressed_spec_mat[(i*30) + 21] * K34_sx_im
337 340 + compressed_spec_mat[(i*30) + 7] * K14_sx_im
338 341 + compressed_spec_mat[(i*30) + 9] * K15_sx_im
339 342 + compressed_spec_mat[(i*30) + 15] * K24_sx_im
340 343 + compressed_spec_mat[(i*30) + 17] * K25_sx_im
341 344 + compressed_spec_mat[(i*30) + 23] * K35_sx_im;
342 345 LFR_BP1[(i*9) + 7] = ((unsigned char) (sx_re * 128)) & 0x7f; // cf DOC for the compression
343 346 if ( abs(sx_re) > abs(sx_im) ) {
344 347 LFR_BP1[(i*9) + 7] = LFR_BP1[(i*9) + 1] | (0x80); // extract the sector of sx
345 348 }
346 349 else {
347 350 LFR_BP1[(i*9) + 7] = LFR_BP1[(i*9) + 1] & (0x7f); // extract the sector of sx
348 351 }
349 352 //======================================================================
350 353 // BP1 phase velocity estimator == PAR_LFR_SC_BP1_VPHI_F0 == 8 bits (7+1)
351 354 ny = sin(Alpha_M)*NVEC_V1 + cos(Alpha_M)*NVEC_V2;
352 355 nz = NVEC_V0;
353 356 bx_bx_star = cos(Alpha_M) * cos(Alpha_M) * compressed_spec_mat[i*30+10] // re S22
354 357 + sin(Alpha_M) * sin(Alpha_M) * compressed_spec_mat[i*30+18] // re S33
355 358 - 2 * sin(Alpha_M) * cos(Alpha_M) * compressed_spec_mat[i*30+12]; // re S23
356 359 nebx_re = ny * (compressed_spec_mat[(i*30) + 14] * K24_ny_re
357 360 +compressed_spec_mat[(i*30) + 16] * K25_ny_re
358 361 +compressed_spec_mat[(i*30) + 20] * K34_ny_re
359 362 +compressed_spec_mat[(i*30) + 22] * K35_ny_re)
360 363 + nz * (compressed_spec_mat[(i*30) + 14] * K24_nz_re
361 364 +compressed_spec_mat[(i*30) + 16] * K25_nz_re
362 365 +compressed_spec_mat[(i*30) + 20] * K34_nz_re
363 366 +compressed_spec_mat[(i*30) + 22] * K35_nz_re);
364 367 nebx_im = ny * (compressed_spec_mat[(i*30) + 15]*K24_ny_re
365 368 +compressed_spec_mat[(i*30) + 17] * K25_ny_re
366 369 +compressed_spec_mat[(i*30) + 21] * K34_ny_re
367 370 +compressed_spec_mat[(i*30) + 23] * K35_ny_re)
368 371 + nz * (compressed_spec_mat[(i*30) + 15] * K24_nz_im
369 372 +compressed_spec_mat[(i*30) + 17] * K25_nz_im
370 373 +compressed_spec_mat[(i*30) + 21] * K34_nz_im
371 374 +compressed_spec_mat[(i*30) + 23] * K35_nz_im);
372 375 tmp = nebx_re / bx_bx_star;
373 376 LFR_BP1[(i*9) + 8] = ((unsigned char) (tmp * 128)) & 0x7f; // cf DOC for the compression
374 377 if ( abs(nebx_re) > abs(nebx_im) ) {
375 378 LFR_BP1[(i*9) + 8] = LFR_BP1[(i*9) + 8] | (0x80); // extract the sector of nebx
376 379 }
377 380 else {
378 381 LFR_BP1[(i*9) + 8] = LFR_BP1[(i*9) + 8] & (0x7f); // extract the sector of nebx
379 382 }
380 383 }
381 384
382 385 }
383 386
384 387 void BP2_set(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat){
385 388 // BP2 autocorrelation
386 389 int i;
387 390 int aux = 0;
388 391
389 392 for(i = 0; i<nb_bins_compressed_spec_mat; i++){
390 393 // S12
391 394 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 10]);
392 395 compressed_spec_mat[(i*30) + 2] = compressed_spec_mat[(i*30) + 2] / aux;
393 396 compressed_spec_mat[(i*30) + 3] = compressed_spec_mat[(i*30) + 3] / aux;
394 397 // S13
395 398 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 18]);
396 399 compressed_spec_mat[(i*30) + 4] = compressed_spec_mat[(i*30) + 4] / aux;
397 400 compressed_spec_mat[(i*30) + 5] = compressed_spec_mat[(i*30) + 5] / aux;
398 401 // S23
399 402 aux = sqrt(compressed_spec_mat[i*30+12]*compressed_spec_mat[(i*30) + 18]);
400 403 compressed_spec_mat[(i*30) + 12] = compressed_spec_mat[(i*30) + 12] / aux;
401 404 compressed_spec_mat[(i*30) + 13] = compressed_spec_mat[(i*30) + 13] / aux;
402 405 // S45
403 406 aux = sqrt(compressed_spec_mat[i*30+24]*compressed_spec_mat[(i*30) + 28]);
404 407 compressed_spec_mat[(i*30) + 26] = compressed_spec_mat[(i*30) + 26] / aux;
405 408 compressed_spec_mat[(i*30) + 27] = compressed_spec_mat[(i*30) + 27] / aux;
406 409 // S14
407 410 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) +24]);
408 411 compressed_spec_mat[(i*30) + 6] = compressed_spec_mat[(i*30) + 6] / aux;
409 412 compressed_spec_mat[(i*30) + 7] = compressed_spec_mat[(i*30) + 7] / aux;
410 413 // S15
411 414 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 28]);
412 415 compressed_spec_mat[(i*30) + 8] = compressed_spec_mat[(i*30) + 8] / aux;
413 416 compressed_spec_mat[(i*30) + 9] = compressed_spec_mat[(i*30) + 9] / aux;
414 417 // S24
415 418 aux = sqrt(compressed_spec_mat[i*10]*compressed_spec_mat[(i*30) + 24]);
416 419 compressed_spec_mat[(i*30) + 14] = compressed_spec_mat[(i*30) + 14] / aux;
417 420 compressed_spec_mat[(i*30) + 15] = compressed_spec_mat[(i*30) + 15] / aux;
418 421 // S25
419 422 aux = sqrt(compressed_spec_mat[i*10]*compressed_spec_mat[(i*30) + 28]);
420 423 compressed_spec_mat[(i*30) + 16] = compressed_spec_mat[(i*30) + 16] / aux;
421 424 compressed_spec_mat[(i*30) + 17] = compressed_spec_mat[(i*30) + 17] / aux;
422 425 // S34
423 426 aux = sqrt(compressed_spec_mat[i*18]*compressed_spec_mat[(i*30) + 24]);
424 427 compressed_spec_mat[(i*30) + 20] = compressed_spec_mat[(i*30) + 20] / aux;
425 428 compressed_spec_mat[(i*30) + 21] = compressed_spec_mat[(i*30) + 21] / aux;
426 429 // S35
427 430 aux = sqrt(compressed_spec_mat[i*18]*compressed_spec_mat[(i*30) + 28]);
428 431 compressed_spec_mat[(i*30) + 22] = compressed_spec_mat[(i*30) + 22] / aux;
429 432 compressed_spec_mat[(i*30) + 23] = compressed_spec_mat[(i*30) + 23] / aux;
430 433 }
431 434 }
432 435
433 436 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header)
434 437 {
435 438 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
436 439 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
437 440 header->reserved = 0x00;
438 441 header->userApplication = CCSDS_USER_APP;
439 442 header->packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
440 443 header->packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
441 444 header->packetSequenceControl[0] = 0xc0;
442 445 header->packetSequenceControl[1] = 0x00;
443 446 header->packetLength[0] = 0x00;
444 447 header->packetLength[1] = 0x00;
445 448 // DATA FIELD HEADER
446 449 header->spare1_pusVersion_spare2 = 0x10;
447 450 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
448 451 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
449 452 header->destinationID = TM_DESTINATION_ID_GROUND;
450 453 // AUXILIARY DATA HEADER
451 454 header->sid = 0x00;
452 455 header->biaStatusInfo = 0x00;
453 456 header->cntASM = 0x00;
454 457 header->nrASM = 0x00;
455 458 header->time[0] = 0x00;
456 459 header->time[0] = 0x00;
457 460 header->time[0] = 0x00;
458 461 header->time[0] = 0x00;
459 462 header->time[0] = 0x00;
460 463 header->time[0] = 0x00;
461 464 header->blkNr[0] = 0x00; // BLK_NR MSB
462 465 header->blkNr[1] = 0x00; // BLK_NR LSB
463 466 }
464 467
465 468 void send_spectral_matrix(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
466 469 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
467 470 {
468 471 unsigned int i;
469 472 unsigned int length = 0;
470 473 rtems_status_code status;
471 474
472 475 header->sid = (unsigned char) sid;
473 476
474 477 for (i=0; i<2; i++)
475 478 {
476 479 // BUILD THE DATA
477 480 spw_ioctl_send->dlen = TOTAL_SIZE_SM;
478 481 spw_ioctl_send->data = &spectral_matrix[ i * TOTAL_SIZE_SM];
479 482 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
480 483 spw_ioctl_send->hdr = (char *) header;
481 484 spw_ioctl_send->options = 0;
482 485
483 486 // BUILD THE HEADER
484 487 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM;
485 488 header->packetLength[0] = (unsigned char) (length>>8);
486 489 header->packetLength[1] = (unsigned char) (length);
487 490 header->sid = (unsigned char) sid; // SID
488 491 header->cntASM = 2;
489 492 header->nrASM = (unsigned char) (i+1);
490 493 header->blkNr[0] =(unsigned char) ( (NB_BINS_PER_SM/2) >> 8 ); // BLK_NR MSB
491 494 header->blkNr[1] = (unsigned char) (NB_BINS_PER_SM/2); // BLK_NR LSB
492 495 // SET PACKET TIME
493 496 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
494 497 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
495 498 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
496 499 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
497 500 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
498 501 header->time[5] = (unsigned char) (time_management_regs->fine_time);
499 502 header->acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
500 503 header->acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
501 504 header->acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
502 505 header->acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
503 506 header->acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
504 507 header->acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
505 508 // SEND PACKET
506 509 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
507 510 if (status != RTEMS_SUCCESSFUL) {
508 511 printf("in send_spectral_matrix *** ERR %d\n", (int) status);
509 512 }
510 513 }
511 514 }
512 515
513 516 void convert_averaged_spectral_matrix( volatile float *input_matrix, char *output_matrix)
514 517 {
515 518 unsigned int i;
516 519 unsigned int j;
517 520 char * pt_char_input;
518 521 char * pt_char_output;
519 522
520 523 pt_char_input = NULL;
521 524 pt_char_output = NULL;
522 525
523 526 for( i=0; i<NB_BINS_PER_SM; i++)
524 527 {
525 528 for ( j=0; j<NB_VALUES_PER_SM; j++)
526 529 {
527 530 pt_char_input = (char*) &input_matrix [ (i*NB_VALUES_PER_SM) + j ];
528 531 pt_char_output = (char*) &output_matrix[ 2 * ( (i*NB_VALUES_PER_SM) + j ) ];
529 532 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
530 533 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
531 534 }
532 535 }
533 536 }
534 537
535 538 void fill_averaged_spectral_matrix(void)
536 539 {
537 540 /** This function fills spectral matrices related buffers with arbitrary data.
538 541 *
539 542 * This function is for testing purpose only.
540 543 *
541 544 */
542 545
543 546 float offset;
544 547 float coeff;
545 548
546 549 offset = 10.;
547 550 coeff = 100000.;
548 averaged_spec_mat_f0[ 0 + 25 * 0 ] = 0. + offset;
549 averaged_spec_mat_f0[ 0 + 25 * 1 ] = 1. + offset;
550 averaged_spec_mat_f0[ 0 + 25 * 2 ] = 2. + offset;
551 averaged_spec_mat_f0[ 0 + 25 * 3 ] = 3. + offset;
552 averaged_spec_mat_f0[ 0 + 25 * 4 ] = 4. + offset;
553 averaged_spec_mat_f0[ 0 + 25 * 5 ] = 5. + offset;
554 averaged_spec_mat_f0[ 0 + 25 * 6 ] = 6. + offset;
555 averaged_spec_mat_f0[ 0 + 25 * 7 ] = 7. + offset;
556 averaged_spec_mat_f0[ 0 + 25 * 8 ] = 8. + offset;
557 averaged_spec_mat_f0[ 0 + 25 * 9 ] = 9. + offset;
558 averaged_spec_mat_f0[ 0 + 25 * 10 ] = 10. + offset;
559 averaged_spec_mat_f0[ 0 + 25 * 11 ] = 11. + offset;
560 averaged_spec_mat_f0[ 0 + 25 * 12 ] = 12. + offset;
561 averaged_spec_mat_f0[ 0 + 25 * 13 ] = 13. + offset;
562 averaged_spec_mat_f0[ 0 + 25 * 14 ] = 14. + offset;
563 averaged_spec_mat_f0[ 9 + 25 * 0 ] = -(0. + offset)* coeff;
564 averaged_spec_mat_f0[ 9 + 25 * 1 ] = -(1. + offset)* coeff;
565 averaged_spec_mat_f0[ 9 + 25 * 2 ] = -(2. + offset)* coeff;
566 averaged_spec_mat_f0[ 9 + 25 * 3 ] = -(3. + offset)* coeff;
567 averaged_spec_mat_f0[ 9 + 25 * 4 ] = -(4. + offset)* coeff;
568 averaged_spec_mat_f0[ 9 + 25 * 5 ] = -(5. + offset)* coeff;
569 averaged_spec_mat_f0[ 9 + 25 * 6 ] = -(6. + offset)* coeff;
570 averaged_spec_mat_f0[ 9 + 25 * 7 ] = -(7. + offset)* coeff;
571 averaged_spec_mat_f0[ 9 + 25 * 8 ] = -(8. + offset)* coeff;
572 averaged_spec_mat_f0[ 9 + 25 * 9 ] = -(9. + offset)* coeff;
573 averaged_spec_mat_f0[ 9 + 25 * 10 ] = -(10. + offset)* coeff;
574 averaged_spec_mat_f0[ 9 + 25 * 11 ] = -(11. + offset)* coeff;
575 averaged_spec_mat_f0[ 9 + 25 * 12 ] = -(12. + offset)* coeff;
576 averaged_spec_mat_f0[ 9 + 25 * 13 ] = -(13. + offset)* coeff;
577 averaged_spec_mat_f0[ 9 + 25 * 14 ] = -(14. + offset)* coeff;
551 averaged_sm_f0[ 0 + 25 * 0 ] = 0. + offset;
552 averaged_sm_f0[ 0 + 25 * 1 ] = 1. + offset;
553 averaged_sm_f0[ 0 + 25 * 2 ] = 2. + offset;
554 averaged_sm_f0[ 0 + 25 * 3 ] = 3. + offset;
555 averaged_sm_f0[ 0 + 25 * 4 ] = 4. + offset;
556 averaged_sm_f0[ 0 + 25 * 5 ] = 5. + offset;
557 averaged_sm_f0[ 0 + 25 * 6 ] = 6. + offset;
558 averaged_sm_f0[ 0 + 25 * 7 ] = 7. + offset;
559 averaged_sm_f0[ 0 + 25 * 8 ] = 8. + offset;
560 averaged_sm_f0[ 0 + 25 * 9 ] = 9. + offset;
561 averaged_sm_f0[ 0 + 25 * 10 ] = 10. + offset;
562 averaged_sm_f0[ 0 + 25 * 11 ] = 11. + offset;
563 averaged_sm_f0[ 0 + 25 * 12 ] = 12. + offset;
564 averaged_sm_f0[ 0 + 25 * 13 ] = 13. + offset;
565 averaged_sm_f0[ 0 + 25 * 14 ] = 14. + offset;
566 averaged_sm_f0[ 9 + 25 * 0 ] = -(0. + offset)* coeff;
567 averaged_sm_f0[ 9 + 25 * 1 ] = -(1. + offset)* coeff;
568 averaged_sm_f0[ 9 + 25 * 2 ] = -(2. + offset)* coeff;
569 averaged_sm_f0[ 9 + 25 * 3 ] = -(3. + offset)* coeff;
570 averaged_sm_f0[ 9 + 25 * 4 ] = -(4. + offset)* coeff;
571 averaged_sm_f0[ 9 + 25 * 5 ] = -(5. + offset)* coeff;
572 averaged_sm_f0[ 9 + 25 * 6 ] = -(6. + offset)* coeff;
573 averaged_sm_f0[ 9 + 25 * 7 ] = -(7. + offset)* coeff;
574 averaged_sm_f0[ 9 + 25 * 8 ] = -(8. + offset)* coeff;
575 averaged_sm_f0[ 9 + 25 * 9 ] = -(9. + offset)* coeff;
576 averaged_sm_f0[ 9 + 25 * 10 ] = -(10. + offset)* coeff;
577 averaged_sm_f0[ 9 + 25 * 11 ] = -(11. + offset)* coeff;
578 averaged_sm_f0[ 9 + 25 * 12 ] = -(12. + offset)* coeff;
579 averaged_sm_f0[ 9 + 25 * 13 ] = -(13. + offset)* coeff;
580 averaged_sm_f0[ 9 + 25 * 14 ] = -(14. + offset)* coeff;
578 581
579 582 offset = 10000000;
580 averaged_spec_mat_f0[ 16 + 25 * 0 ] = (0. + offset)* coeff;
581 averaged_spec_mat_f0[ 16 + 25 * 1 ] = (1. + offset)* coeff;
582 averaged_spec_mat_f0[ 16 + 25 * 2 ] = (2. + offset)* coeff;
583 averaged_spec_mat_f0[ 16 + 25 * 3 ] = (3. + offset)* coeff;
584 averaged_spec_mat_f0[ 16 + 25 * 4 ] = (4. + offset)* coeff;
585 averaged_spec_mat_f0[ 16 + 25 * 5 ] = (5. + offset)* coeff;
586 averaged_spec_mat_f0[ 16 + 25 * 6 ] = (6. + offset)* coeff;
587 averaged_spec_mat_f0[ 16 + 25 * 7 ] = (7. + offset)* coeff;
588 averaged_spec_mat_f0[ 16 + 25 * 8 ] = (8. + offset)* coeff;
589 averaged_spec_mat_f0[ 16 + 25 * 9 ] = (9. + offset)* coeff;
590 averaged_spec_mat_f0[ 16 + 25 * 10 ] = (10. + offset)* coeff;
591 averaged_spec_mat_f0[ 16 + 25 * 11 ] = (11. + offset)* coeff;
592 averaged_spec_mat_f0[ 16 + 25 * 12 ] = (12. + offset)* coeff;
593 averaged_spec_mat_f0[ 16 + 25 * 13 ] = (13. + offset)* coeff;
594 averaged_spec_mat_f0[ 16 + 25 * 14 ] = (14. + offset)* coeff;
583 averaged_sm_f0[ 16 + 25 * 0 ] = (0. + offset)* coeff;
584 averaged_sm_f0[ 16 + 25 * 1 ] = (1. + offset)* coeff;
585 averaged_sm_f0[ 16 + 25 * 2 ] = (2. + offset)* coeff;
586 averaged_sm_f0[ 16 + 25 * 3 ] = (3. + offset)* coeff;
587 averaged_sm_f0[ 16 + 25 * 4 ] = (4. + offset)* coeff;
588 averaged_sm_f0[ 16 + 25 * 5 ] = (5. + offset)* coeff;
589 averaged_sm_f0[ 16 + 25 * 6 ] = (6. + offset)* coeff;
590 averaged_sm_f0[ 16 + 25 * 7 ] = (7. + offset)* coeff;
591 averaged_sm_f0[ 16 + 25 * 8 ] = (8. + offset)* coeff;
592 averaged_sm_f0[ 16 + 25 * 9 ] = (9. + offset)* coeff;
593 averaged_sm_f0[ 16 + 25 * 10 ] = (10. + offset)* coeff;
594 averaged_sm_f0[ 16 + 25 * 11 ] = (11. + offset)* coeff;
595 averaged_sm_f0[ 16 + 25 * 12 ] = (12. + offset)* coeff;
596 averaged_sm_f0[ 16 + 25 * 13 ] = (13. + offset)* coeff;
597 averaged_sm_f0[ 16 + 25 * 14 ] = (14. + offset)* coeff;
595 598
596 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 0 ] = averaged_spec_mat_f0[ 0 ];
597 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 1 ] = averaged_spec_mat_f0[ 1 ];
598 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 2 ] = averaged_spec_mat_f0[ 2 ];
599 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 3 ] = averaged_spec_mat_f0[ 3 ];
600 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 4 ] = averaged_spec_mat_f0[ 4 ];
601 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 5 ] = averaged_spec_mat_f0[ 5 ];
602 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 6 ] = averaged_spec_mat_f0[ 6 ];
603 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 7 ] = averaged_spec_mat_f0[ 7 ];
604 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 8 ] = averaged_spec_mat_f0[ 8 ];
605 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 9 ] = averaged_spec_mat_f0[ 9 ];
606 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 10 ] = averaged_spec_mat_f0[ 10 ];
607 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 11 ] = averaged_spec_mat_f0[ 11 ];
608 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 12 ] = averaged_spec_mat_f0[ 12 ];
609 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 13 ] = averaged_spec_mat_f0[ 13 ];
610 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 14 ] = averaged_spec_mat_f0[ 14 ];
611 averaged_spec_mat_f0[ (TOTAL_SIZE_SM/2) + 15 ] = averaged_spec_mat_f0[ 15 ];
599 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 0 ] = averaged_sm_f0[ 0 ];
600 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 1 ] = averaged_sm_f0[ 1 ];
601 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 2 ] = averaged_sm_f0[ 2 ];
602 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 3 ] = averaged_sm_f0[ 3 ];
603 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 4 ] = averaged_sm_f0[ 4 ];
604 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 5 ] = averaged_sm_f0[ 5 ];
605 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 6 ] = averaged_sm_f0[ 6 ];
606 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 7 ] = averaged_sm_f0[ 7 ];
607 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 8 ] = averaged_sm_f0[ 8 ];
608 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 9 ] = averaged_sm_f0[ 9 ];
609 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 10 ] = averaged_sm_f0[ 10 ];
610 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 11 ] = averaged_sm_f0[ 11 ];
611 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 12 ] = averaged_sm_f0[ 12 ];
612 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 13 ] = averaged_sm_f0[ 13 ];
613 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 14 ] = averaged_sm_f0[ 14 ];
614 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 15 ] = averaged_sm_f0[ 15 ];
612 615 }
613 616
614 617 void reset_spectral_matrix_regs()
615 618 {
616 619 /** This function resets the spectral matrices module registers.
617 620 *
618 621 * The registers affected by this function are located at the following offset addresses:
619 622 *
620 623 * - 0x00 config
621 624 * - 0x04 status
622 625 * - 0x08 matrixF0_Address0
623 626 * - 0x10 matrixFO_Address1
624 627 * - 0x14 matrixF1_Address
625 628 * - 0x18 matrixF2_Address
626 629 *
627 630 */
628 631
629 632 #ifdef GSA
630 633 #else
631 spectral_matrix_regs->matrixF0_Address0 = (int) spec_mat_f0_0;
632 spectral_matrix_regs->matrixFO_Address1 = (int) spec_mat_f0_1;
633 spectral_matrix_regs->matrixF1_Address = (int) spec_mat_f1;
634 spectral_matrix_regs->matrixF2_Address = (int) spec_mat_f2;
634 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
635 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
636 spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
637 spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
635 638 #endif
636 639 }
637 640
638 641 //******************
639 642 // general functions
640 643
641 644
642 645
643 646
@@ -1,1181 +1,1250
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //*****************
13 13 // waveform headers
14 14 // SWF
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
16 16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
17 17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
18 18 // CWF
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[7];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[7];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[7];
22 22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[7];
23 23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[7];
24 24
25 25 //**************
26 26 // waveform ring
27 27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
28 28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
29 29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
30 30 ring_node *current_ring_node_f0;
31 31 ring_node *ring_node_to_send_swf_f0;
32 32 ring_node *current_ring_node_f1;
33 33 ring_node *ring_node_to_send_swf_f1;
34 34 ring_node *ring_node_to_send_cwf_f1;
35 35 ring_node *current_ring_node_f2;
36 36 ring_node *ring_node_to_send_swf_f2;
37 37 ring_node *ring_node_to_send_cwf_f2;
38 38
39 unsigned char doubleSendCWF2 = 0;
40
41 39 rtems_isr waveforms_isr( rtems_vector_number vector )
42 40 {
43 41 /** This is the interrupt sub routine called by the waveform picker core.
44 42 *
45 43 * This ISR launch different actions depending mainly on two pieces of information:
46 44 * 1. the values read in the registers of the waveform picker.
47 45 * 2. the current LFR mode.
48 46 *
49 47 */
50 48
49 static unsigned char nb_swf = 0;
50
51 51 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
52 52 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
53 53 { // in modes other than STANDBY and BURST, send the CWF_F3 data
54 54 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
55 55 // (1) change the receiving buffer for the waveform picker
56 56 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
57 57 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_b);
58 58 }
59 59 else {
60 60 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a);
61 61 }
62 62 // (2) send an event for the waveforms transmission
63 63 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
64 64 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
65 65 }
66 66 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
67 67 }
68 68 }
69 69
70 70 switch(lfrCurrentMode)
71 71 {
72 72 //********
73 73 // STANDBY
74 74 case(LFR_MODE_STANDBY):
75 75 break;
76 76
77 77 //******
78 78 // NORMAL
79 79 case(LFR_MODE_NORMAL):
80 80 if ( (waveform_picker_regs->status & 0x7) == 0x7 ){ // f2 f1 and f0 are full
81 81 // change F0 ring node
82 82 ring_node_to_send_swf_f0 = current_ring_node_f0;
83 83 current_ring_node_f0 = current_ring_node_f0->next;
84 84 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
85 85 // change F1 ring node
86 86 ring_node_to_send_swf_f1 = current_ring_node_f1;
87 87 current_ring_node_f1 = current_ring_node_f1->next;
88 88 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
89 89 // change F2 ring node
90 90 ring_node_to_send_swf_f2 = current_ring_node_f2;
91 91 current_ring_node_f2 = current_ring_node_f2->next;
92 92 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
93 93 // send an event to the WFRM task
94 94 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
95 95 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
96 96 }
97 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
98 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_7 );
99 // reset_wfp_burst_enable();
97 // nb_swf = nb_swf + 1;
98 // if (nb_swf == 2)
99 // {
100 // reset_wfp_burst_enable();
101 // }
102 // else
103 // {
104 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
105 // }
100 106 }
101 107 break;
102 108
103 109 //******
104 110 // BURST
105 111 case(LFR_MODE_BURST):
106 112 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
107 113 // (1) change the receiving buffer for the waveform picker
108 114 ring_node_to_send_cwf_f2 = current_ring_node_f2;
109 115 current_ring_node_f2 = current_ring_node_f2->next;
110 116 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
111 117 // (2) send an event for the waveforms transmission
112 118 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
113 119 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
114 120 }
115 121 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
116 122 }
117 123 break;
118 124
119 125 //*****
120 126 // SBM1
121 127 case(LFR_MODE_SBM1):
122 128 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
123 129 // (1) change the receiving buffer for the waveform picker
124 130 ring_node_to_send_cwf_f1 = current_ring_node_f1;
125 131 current_ring_node_f1 = current_ring_node_f1->next;
126 132 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
127 133 // (2) send an event for the waveforms transmission
128 134 if (rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 ) != RTEMS_SUCCESSFUL) {
129 135 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
130 136 }
131 137 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bit = 0
132 138 }
133 139 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
134 140 ring_node_to_send_swf_f1 = current_ring_node_f1->previous;
135 141 }
136 142 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
137 143 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
138 144 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
139 145 }
140 146 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2 and f0 bits = 0
141 147 }
142 148 break;
143 149
144 150 //*****
145 151 // SBM2
146 152 case(LFR_MODE_SBM2):
147 153 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
148 154 // (1) change the receiving buffer for the waveform picker
149 155 ring_node_to_send_cwf_f2 = current_ring_node_f2;
150 156 current_ring_node_f2 = current_ring_node_f2->next;
151 157 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
152 158 // (2) send an event for the waveforms transmission
153 159 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
154 160 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
155 161 }
156 162 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
157 163 }
158 164 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
159 165 ring_node_to_send_swf_f2 = current_ring_node_f2->previous;
160 166 }
161 167 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
162 168 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
163 169 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
164 170 }
165 171 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
166 172 }
167 173 break;
168 174
169 175 //********
170 176 // DEFAULT
171 177 default:
172 178 break;
173 179 }
174 180 }
175 181
176 182 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
177 183 {
178 184 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
179 185 *
180 186 * @param unused is the starting argument of the RTEMS task
181 187 *
182 188 * The following data packets are sent by this task:
183 189 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
184 190 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
185 191 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
186 192 *
187 193 */
188 194
189 195 rtems_event_set event_out;
190 196 rtems_id queue_id;
191 197 rtems_status_code status;
192 198
193 199 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
194 200 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
195 201 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
196 202
197 203 init_waveforms();
198 204
199 205 status = get_message_queue_id_send( &queue_id );
200 206 if (status != RTEMS_SUCCESSFUL)
201 207 {
202 208 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
203 209 }
204 210
205 211 BOOT_PRINTF("in WFRM ***\n")
206 212
207 213 while(1){
208 214 // wait for an RTEMS_EVENT
209 215 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
210 216 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
211 217 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
212 218 if (event_out == RTEMS_EVENT_MODE_NORMAL)
213 219 {
220 PRINTF1("status %x\n", waveform_picker_regs->status )
214 221 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
215 222 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
216 223 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
224 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
217 225 }
218 226 else
219 227 {
220 228 PRINTF("in WFRM *** unexpected event")
221 229 }
222 230 }
223 231 }
224 232
225 233 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
226 234 {
227 235 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
228 236 *
229 237 * @param unused is the starting argument of the RTEMS task
230 238 *
231 239 * The following data packet is sent by this task:
232 240 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
233 241 *
234 242 */
235 243
236 244 rtems_event_set event_out;
237 245 rtems_id queue_id;
238 246 rtems_status_code status;
239 247
240 248 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
241 249 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
242 250
243 251 status = get_message_queue_id_send( &queue_id );
244 252 if (status != RTEMS_SUCCESSFUL)
245 253 {
246 254 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
247 255 }
248 256
249 257 BOOT_PRINTF("in CWF3 ***\n")
250 258
251 259 while(1){
252 260 // wait for an RTEMS_EVENT
253 261 rtems_event_receive( RTEMS_EVENT_0,
254 262 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
255 263 PRINTF("send CWF F3 \n")
256 264 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
257 265 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
258 266 {
259 267 send_waveform_CWF( wf_cont_f3_b, SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
260 268 }
261 269 else
262 270 {
263 271 send_waveform_CWF3_light( wf_cont_f3_b, headerCWF_F3_light, queue_id );
264 272 }
265 273 }
266 274 else
267 275 {
268 276 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x00)
269 277 {
270 278 send_waveform_CWF( wf_cont_f3_a, SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
271 279 }
272 280 else
273 281 {
274 282 send_waveform_CWF3_light( wf_cont_f3_a, headerCWF_F3_light, queue_id );
275 283 }
276 284
277 285 }
278 286 }
279 287 }
280 288
281 289 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
282 290 {
283 291 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
284 292 *
285 293 * @param unused is the starting argument of the RTEMS task
286 294 *
287 295 * The following data packet is sent by this function:
288 296 * - TM_LFR_SCIENCE_BURST_CWF_F2
289 297 * - TM_LFR_SCIENCE_SBM2_CWF_F2
290 298 *
291 299 */
292 300
293 301 rtems_event_set event_out;
294 302 rtems_id queue_id;
295 303 rtems_status_code status;
296 304
297 305 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
298 306 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
299 307
300 308 status = get_message_queue_id_send( &queue_id );
301 309 if (status != RTEMS_SUCCESSFUL)
302 310 {
303 311 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
304 312 }
305 313
306 314 BOOT_PRINTF("in CWF2 ***\n")
307 315
308 316 while(1){
309 317 // wait for an RTEMS_EVENT
310 318 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
311 319 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
312 320 if (event_out == RTEMS_EVENT_MODE_BURST)
313 321 {
314 322 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
315 323 }
316 324 if (event_out == RTEMS_EVENT_MODE_SBM2)
317 325 {
318 326 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
319 327 }
320 328 }
321 329 }
322 330
323 331 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
324 332 {
325 333 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
326 334 *
327 335 * @param unused is the starting argument of the RTEMS task
328 336 *
329 337 * The following data packet is sent by this function:
330 338 * - TM_LFR_SCIENCE_SBM1_CWF_F1
331 339 *
332 340 */
333 341
334 342 rtems_event_set event_out;
335 343 rtems_id queue_id;
336 344 rtems_status_code status;
337 345
338 346 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
339 347
340 348 status = get_message_queue_id_send( &queue_id );
341 349 if (status != RTEMS_SUCCESSFUL)
342 350 {
343 351 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
344 352 }
345 353
346 354 BOOT_PRINTF("in CWF1 ***\n")
347 355
348 356 while(1){
349 357 // wait for an RTEMS_EVENT
350 358 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
351 359 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
352 360 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
353 361 }
354 362 }
355 363
356 364 //******************
357 365 // general functions
358 366 void init_waveforms( void )
359 367 {
360 368 int i = 0;
361 369
362 370 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
363 371 {
364 372 //***
365 373 // F0
366 374 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x88887777; //
367 375 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111; //
368 376 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0x44443333; //
369 377
370 378 //***
371 379 // F1
372 380 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x22221111;
373 381 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x44443333;
374 382 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
375 383
376 384 //***
377 385 // F2
378 386 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x44443333;
379 387 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111;
380 388 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
381 389
382 390 //***
383 391 // F3
384 392 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 0 ] = val1;
385 393 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 1 ] = val2;
386 394 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 2 ] = 0xaaaa0000;
387 395 }
388 396 }
389 397
390 398 void init_waveform_rings( void )
391 399 {
392 400 unsigned char i;
393 401
394 402 // F0 RING
395 403 waveform_ring_f0[0].next = (ring_node*) &waveform_ring_f0[1];
396 404 waveform_ring_f0[0].previous = (ring_node*) &waveform_ring_f0[NB_RING_NODES_F0-1];
397 405 waveform_ring_f0[0].buffer_address = (int) &wf_snap_f0[0][0];
398 406
399 407 waveform_ring_f0[NB_RING_NODES_F0-1].next = (ring_node*) &waveform_ring_f0[0];
400 408 waveform_ring_f0[NB_RING_NODES_F0-1].previous = (ring_node*) &waveform_ring_f0[NB_RING_NODES_F0-2];
401 409 waveform_ring_f0[NB_RING_NODES_F0-1].buffer_address = (int) &wf_snap_f0[NB_RING_NODES_F0-1][0];
402 410
403 411 for(i=1; i<NB_RING_NODES_F0-1; i++)
404 412 {
405 413 waveform_ring_f0[i].next = (ring_node*) &waveform_ring_f0[i+1];
406 414 waveform_ring_f0[i].previous = (ring_node*) &waveform_ring_f0[i-1];
407 415 waveform_ring_f0[i].buffer_address = (int) &wf_snap_f0[i][0];
408 416 }
409 417
410 418 // F1 RING
411 419 waveform_ring_f1[0].next = (ring_node*) &waveform_ring_f1[1];
412 420 waveform_ring_f1[0].previous = (ring_node*) &waveform_ring_f1[NB_RING_NODES_F1-1];
413 421 waveform_ring_f1[0].buffer_address = (int) &wf_snap_f1[0][0];
414 422
415 423 waveform_ring_f1[NB_RING_NODES_F1-1].next = (ring_node*) &waveform_ring_f1[0];
416 424 waveform_ring_f1[NB_RING_NODES_F1-1].previous = (ring_node*) &waveform_ring_f1[NB_RING_NODES_F1-2];
417 425 waveform_ring_f1[NB_RING_NODES_F1-1].buffer_address = (int) &wf_snap_f1[NB_RING_NODES_F1-1][0];
418 426
419 427 for(i=1; i<NB_RING_NODES_F1-1; i++)
420 428 {
421 429 waveform_ring_f1[i].next = (ring_node*) &waveform_ring_f1[i+1];
422 430 waveform_ring_f1[i].previous = (ring_node*) &waveform_ring_f1[i-1];
423 431 waveform_ring_f1[i].buffer_address = (int) &wf_snap_f1[i][0];
424 432 }
425 433
426 434 // F2 RING
427 435 waveform_ring_f2[0].next = (ring_node*) &waveform_ring_f2[1];
428 436 waveform_ring_f2[0].previous = (ring_node*) &waveform_ring_f2[NB_RING_NODES_F2-1];
429 437 waveform_ring_f2[0].buffer_address = (int) &wf_snap_f2[0][0];
430 438
431 439 waveform_ring_f2[NB_RING_NODES_F2-1].next = (ring_node*) &waveform_ring_f2[0];
432 440 waveform_ring_f2[NB_RING_NODES_F2-1].previous = (ring_node*) &waveform_ring_f2[NB_RING_NODES_F2-2];
433 441 waveform_ring_f2[NB_RING_NODES_F2-1].buffer_address = (int) &wf_snap_f2[NB_RING_NODES_F2-1][0];
434 442
435 443 for(i=1; i<NB_RING_NODES_F2-1; i++)
436 444 {
437 445 waveform_ring_f2[i].next = (ring_node*) &waveform_ring_f2[i+1];
438 446 waveform_ring_f2[i].previous = (ring_node*) &waveform_ring_f2[i-1];
439 447 waveform_ring_f2[i].buffer_address = (int) &wf_snap_f2[i][0];
440 448 }
441 449
442 450 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
443 451 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
444 452 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
445 453
446 454 }
447 455
448 456 void reset_current_ring_nodes( void )
449 457 {
450 458 current_ring_node_f0 = waveform_ring_f0;
451 459 ring_node_to_send_swf_f0 = waveform_ring_f0;
452 460
453 461 current_ring_node_f1 = waveform_ring_f1;
454 462 ring_node_to_send_cwf_f1 = waveform_ring_f1;
455 463 ring_node_to_send_swf_f1 = waveform_ring_f1;
456 464
457 465 current_ring_node_f2 = waveform_ring_f2;
458 466 ring_node_to_send_cwf_f2 = waveform_ring_f2;
459 467 ring_node_to_send_swf_f2 = waveform_ring_f2;
460 468 }
461 469
462 470 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
463 471 {
464 472 unsigned char i;
465 473
466 474 for (i=0; i<7; i++)
467 475 {
468 476 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
469 477 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
470 478 headerSWF[ i ].reserved = DEFAULT_RESERVED;
471 479 headerSWF[ i ].userApplication = CCSDS_USER_APP;
472 480 headerSWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
473 481 headerSWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
474 482 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
475 483 if (i == 6)
476 484 {
477 485 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
478 486 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
479 487 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
480 488 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
481 489 }
482 490 else
483 491 {
484 492 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
485 493 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
486 494 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
487 495 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
488 496 }
489 497 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
490 498 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
491 499 headerSWF[ i ].pktNr = i+1; // PKT_NR
492 500 // DATA FIELD HEADER
493 501 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
494 502 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
495 503 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
496 504 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
497 505 // AUXILIARY DATA HEADER
498 506 headerSWF[ i ].time[0] = 0x00;
499 507 headerSWF[ i ].time[0] = 0x00;
500 508 headerSWF[ i ].time[0] = 0x00;
501 509 headerSWF[ i ].time[0] = 0x00;
502 510 headerSWF[ i ].time[0] = 0x00;
503 511 headerSWF[ i ].time[0] = 0x00;
504 512 headerSWF[ i ].sid = sid;
505 513 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
506 514 }
507 515 return LFR_SUCCESSFUL;
508 516 }
509 517
510 518 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
511 519 {
512 520 unsigned int i;
513 521
514 522 for (i=0; i<7; i++)
515 523 {
516 524 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
517 525 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
518 526 headerCWF[ i ].reserved = DEFAULT_RESERVED;
519 527 headerCWF[ i ].userApplication = CCSDS_USER_APP;
520 528 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
521 529 {
522 530 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2 >> 8);
523 531 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2);
524 532 }
525 533 else
526 534 {
527 535 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
528 536 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
529 537 }
530 if (i == 0)
531 {
532 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
533 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_340 >> 8);
534 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_340 );
535 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
536 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
537 }
538 else if (i == 6)
539 {
540 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
541 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_8 >> 8);
542 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_8 );
543 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
544 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
545 }
546 else
547 {
548 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
549 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_340 >> 8);
550 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_340 );
551 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
552 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
553 }
538 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
539 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
540 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
541 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
542 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
554 543 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
555 // PKT_CNT
556 // PKT_NR
557 544 // DATA FIELD HEADER
558 545 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
559 546 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
560 547 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
561 548 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
562 549 // AUXILIARY DATA HEADER
563 550 headerCWF[ i ].sid = sid;
564 551 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
565 552 headerCWF[ i ].time[0] = 0x00;
566 553 headerCWF[ i ].time[0] = 0x00;
567 554 headerCWF[ i ].time[0] = 0x00;
568 555 headerCWF[ i ].time[0] = 0x00;
569 556 headerCWF[ i ].time[0] = 0x00;
570 557 headerCWF[ i ].time[0] = 0x00;
571 558 }
572 559 return LFR_SUCCESSFUL;
573 560 }
574 561
575 562 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
576 563 {
577 564 unsigned int i;
578 565
579 566 for (i=0; i<7; i++)
580 567 {
581 568 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
582 569 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
583 570 headerCWF[ i ].reserved = DEFAULT_RESERVED;
584 571 headerCWF[ i ].userApplication = CCSDS_USER_APP;
585 572
586 573 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
587 574 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
588 if (i == 0)
589 {
590 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
591 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 >> 8);
592 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 );
593 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
594 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
595 }
596 else if (i == 6)
597 {
598 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
599 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_8 >> 8);
600 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_8 );
601 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
602 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
603 }
604 else
605 {
606 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
607 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 >> 8);
608 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 );
609 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
610 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
611 }
575
576 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
577 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
578 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
579 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
580 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
581
612 582 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
613 583 // DATA FIELD HEADER
614 584 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
615 585 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
616 586 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
617 587 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
618 588 // AUXILIARY DATA HEADER
619 589 headerCWF[ i ].sid = SID_NORM_CWF_F3;
620 590 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
621 591 headerCWF[ i ].time[0] = 0x00;
622 592 headerCWF[ i ].time[0] = 0x00;
623 593 headerCWF[ i ].time[0] = 0x00;
624 594 headerCWF[ i ].time[0] = 0x00;
625 595 headerCWF[ i ].time[0] = 0x00;
626 596 headerCWF[ i ].time[0] = 0x00;
627 597 }
628 598 return LFR_SUCCESSFUL;
629 599 }
630 600
631 601 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
632 602 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
633 603 {
634 604 /** This function sends SWF CCSDS packets (F2, F1 or F0).
635 605 *
636 606 * @param waveform points to the buffer containing the data that will be send.
637 607 * @param sid is the source identifier of the data that will be sent.
638 608 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
639 609 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
640 610 * contain information to setup the transmission of the data packets.
641 611 *
642 612 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
643 613 *
644 614 */
645 615
646 616 unsigned int i;
647 617 int ret;
618 unsigned int coarseTime;
619 unsigned int fineTime;
648 620 rtems_status_code status;
649 621 spw_ioctl_pkt_send spw_ioctl_send_SWF;
650 622
651 623 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
652 624 spw_ioctl_send_SWF.options = 0;
653 625
654 626 ret = LFR_DEFAULT;
655 627
628 PRINTF1("sid = %d, ", sid)
629 PRINTF2("coarse = %x, fine = %x\n", waveform[0], waveform[1])
630
656 631 for (i=0; i<7; i++) // send waveform
657 632 {
658 633 #ifdef VHDL_DEV
659 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * 304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
634 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
660 635 #else
661 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * 304 * NB_WORDS_SWF_BLK) ];
636 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
662 637 #endif
663 638 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
664 639 // BUILD THE DATA
665 640 if (i==6) {
666 spw_ioctl_send_SWF.dlen = 224 * NB_BYTES_SWF_BLK;
641 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
667 642 }
668 643 else {
669 spw_ioctl_send_SWF.dlen = 304 * NB_BYTES_SWF_BLK;
644 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
670 645 }
671 646 // SET PACKET SEQUENCE COUNTER
672 647 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
673 648 // SET PACKET TIME
649 #ifdef VHDL_DEV
650 coarseTime = waveform[0];
651 fineTime = waveform[1];
652 compute_acquisition_time( &coarseTime, &fineTime, sid, i);
653
654 headerSWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime >> 24 );
655 headerSWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime >> 16 );
656 headerSWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime >> 8 );
657 headerSWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime );
658 headerSWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime >> 8 );
659 headerSWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime );
660 #else
674 661 headerSWF[ i ].acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
675 662 headerSWF[ i ].acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
676 663 headerSWF[ i ].acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
677 664 headerSWF[ i ].acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
678 665 headerSWF[ i ].acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
679 666 headerSWF[ i ].acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
667 #endif
680 668 headerSWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
681 669 headerSWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
682 670 headerSWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
683 671 headerSWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
684 672 headerSWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
685 673 headerSWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
686 674 // SEND PACKET
687 675 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
688 676 if (status != RTEMS_SUCCESSFUL) {
689 677 printf("%d-%d, ERR %d\n", sid, i, (int) status);
690 678 ret = LFR_DEFAULT;
691 679 }
692 680 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
693 681 }
694 682
695 683 return ret;
696 684 }
697 685
698 686 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
699 687 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
700 688 {
701 689 /** This function sends CWF CCSDS packets (F2, F1 or F0).
702 690 *
703 691 * @param waveform points to the buffer containing the data that will be send.
704 692 * @param sid is the source identifier of the data that will be sent.
705 693 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
706 694 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
707 695 * contain information to setup the transmission of the data packets.
708 696 *
709 697 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
710 698 *
711 699 */
712 700
713 701 unsigned int i;
714 702 int ret;
703 unsigned char *coarseTimePtr;
704 unsigned char *fineTimePtr;
715 705 rtems_status_code status;
716 706 spw_ioctl_pkt_send spw_ioctl_send_CWF;
717 707
718 708 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
719 709 spw_ioctl_send_CWF.options = 0;
720 710
721 711 ret = LFR_DEFAULT;
722 712
723 713 for (i=0; i<7; i++) // send waveform
724 714 {
725 715 int coarseTime = 0x00;
726 716 int fineTime = 0x00;
727 717 #ifdef VHDL_DEV
728 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * 340 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
718 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
729 719 #else
730 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * 340 * NB_WORDS_SWF_BLK) ];
720 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
731 721 #endif
732 722 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
733 723 // BUILD THE DATA
734 if (i==6) {
735 spw_ioctl_send_CWF.dlen = 8 * NB_BYTES_SWF_BLK;
736 }
737 else {
738 spw_ioctl_send_CWF.dlen = 340 * NB_BYTES_SWF_BLK;
739 }
724 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
740 725 // SET PACKET SEQUENCE COUNTER
741 726 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
742 727 // SET PACKET TIME
728 #ifdef VHDL_DEV
729 coarseTimePtr = (unsigned char *) &waveform;
730 fineTimePtr = (unsigned char *) &waveform[1];
731 headerCWF[ i ].acquisitionTime[0] = coarseTimePtr[2];
732 headerCWF[ i ].acquisitionTime[1] = coarseTimePtr[3];
733 headerCWF[ i ].acquisitionTime[2] = coarseTimePtr[0];
734 headerCWF[ i ].acquisitionTime[3] = coarseTimePtr[1];
735 headerCWF[ i ].acquisitionTime[4] = fineTimePtr[0];
736 headerCWF[ i ].acquisitionTime[5] = fineTimePtr[1];
737 #else
743 738 coarseTime = time_management_regs->coarse_time;
744 739 fineTime = time_management_regs->fine_time;
745 740 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
746 741 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
747 742 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
748 743 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
749 744 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
750 745 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
746 #endif
747
751 748 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
752 749 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
753 750 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
754 751 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
755 752 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
756 753 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
757 754 // SEND PACKET
758 755 if (sid == SID_NORM_CWF_LONG_F3)
759 756 {
760 757 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
761 758 if (status != RTEMS_SUCCESSFUL) {
762 759 printf("%d-%d, ERR %d\n", sid, i, (int) status);
763 760 ret = LFR_DEFAULT;
764 761 }
765 762 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
766 763 }
767 764 else
768 765 {
769 766 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
770 767 if (status != RTEMS_SUCCESSFUL) {
771 768 printf("%d-%d, ERR %d\n", sid, i, (int) status);
772 769 ret = LFR_DEFAULT;
773 770 }
774 771 }
775 772 }
776 773
777 774 return ret;
778 775 }
779 776
780 777 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
781 778 {
782 779 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
783 780 *
784 781 * @param waveform points to the buffer containing the data that will be send.
785 782 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
786 783 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
787 784 * contain information to setup the transmission of the data packets.
788 785 *
789 786 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
790 787 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
791 788 *
792 789 */
793 790
794 791 unsigned int i;
795 792 int ret;
793 unsigned char *coarseTimePtr;
794 unsigned char *fineTimePtr;
796 795 rtems_status_code status;
797 796 spw_ioctl_pkt_send spw_ioctl_send_CWF;
798 797 char *sample;
799 798
800 799 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
801 800 spw_ioctl_send_CWF.options = 0;
802 801
803 802 ret = LFR_DEFAULT;
804 803
805 804 //**********************
806 805 // BUILD CWF3_light DATA
807 for ( i=0; i< 2048; i++)
806 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
808 807 {
809 808 #ifdef VHDL_DEV
810 809 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
810 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
811 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
812 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
813 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
814 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
815 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
811 816 #else
812 817 sample = (char*) &waveform[ i * NB_WORDS_SWF_BLK ];
813 #endif
814 818 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
815 819 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
816 820 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
817 821 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
818 822 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
819 823 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
824 #endif
820 825 }
821 826
822 827 //*********************
823 828 // SEND CWF3_light DATA
824 829
825 830 for (i=0; i<7; i++) // send waveform
826 831 {
827 832 int coarseTime = 0x00;
828 833 int fineTime = 0x00;
829 834
830 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * 340 * NB_BYTES_CWF3_LIGHT_BLK) ];
835 #ifdef VHDL_DEV
836 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
837 #else
838 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
839 #endif
831 840 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
832 841 // BUILD THE DATA
833 if ( i == WFRM_INDEX_OF_LAST_PACKET ) {
834 spw_ioctl_send_CWF.dlen = 8 * NB_BYTES_CWF3_LIGHT_BLK;
835 }
836 else {
837 spw_ioctl_send_CWF.dlen = 340 * NB_BYTES_CWF3_LIGHT_BLK;
838 }
842 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
839 843 // SET PACKET SEQUENCE COUNTER
840 844 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
841 845 // SET PACKET TIME
846 #ifdef VHDL_DEV
847 coarseTimePtr = (unsigned char *) &waveform;
848 fineTimePtr = (unsigned char *) &waveform[1];
849 headerCWF[ i ].acquisitionTime[0] = coarseTimePtr[2];
850 headerCWF[ i ].acquisitionTime[1] = coarseTimePtr[3];
851 headerCWF[ i ].acquisitionTime[2] = coarseTimePtr[0];
852 headerCWF[ i ].acquisitionTime[3] = coarseTimePtr[1];
853 headerCWF[ i ].acquisitionTime[4] = fineTimePtr[0];
854 headerCWF[ i ].acquisitionTime[5] = fineTimePtr[1];
855 #else
842 856 coarseTime = time_management_regs->coarse_time;
843 857 fineTime = time_management_regs->fine_time;
844 858 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
845 859 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
846 860 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
847 861 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
848 862 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
849 863 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
864 #endif
850 865 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
851 866 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
852 867 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
853 868 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
854 869 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
855 870 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
856 871 // SEND PACKET
857 872 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
858 873 if (status != RTEMS_SUCCESSFUL) {
859 874 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
860 875 ret = LFR_DEFAULT;
861 876 }
862 877 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
863 878 }
864 879
865 880 return ret;
866 881 }
867 882
883 void compute_acquisition_time( unsigned int *coarseTime, unsigned int *fineTime, unsigned int sid, unsigned char pa_lfr_pkt_nr )
884 {
885 unsigned long long int acquisitionTimeAsLong;
886 unsigned char acquisitionTime[6];
887 float deltaT = 0.;
888
889 acquisitionTime[0] = (unsigned char) ( *coarseTime >> 8 );
890 acquisitionTime[1] = (unsigned char) ( *coarseTime );
891 acquisitionTime[2] = (unsigned char) ( *coarseTime >> 24 );
892 acquisitionTime[3] = (unsigned char) ( *coarseTime >> 16 );
893 acquisitionTime[4] = (unsigned char) ( *fineTime >> 24 );
894 acquisitionTime[5] = (unsigned char) ( *fineTime >> 16 );
895
896 acquisitionTimeAsLong = ( (unsigned long long int) acquisitionTime[0] << 40 )
897 + ( (unsigned long long int) acquisitionTime[1] << 32 )
898 + ( acquisitionTime[2] << 24 )
899 + ( acquisitionTime[3] << 16 )
900 + ( acquisitionTime[4] << 8 )
901 + ( acquisitionTime[5] );
902
903 switch( sid )
904 {
905 case SID_NORM_SWF_F0:
906 deltaT = ( (float ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
907 break;
908
909 case SID_NORM_SWF_F1:
910 deltaT = ( (float ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
911 break;
912
913 case SID_NORM_SWF_F2:
914 deltaT = ( (float ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
915 break;
916
917 default:
918 deltaT = 0.;
919 break;
920 }
921
922 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
923
924 *coarseTime = (unsigned int) (acquisitionTimeAsLong >> 16);
925 *fineTime = (unsigned int) (acquisitionTimeAsLong & 0xffff);
926 }
868 927
869 928 //**************
870 929 // wfp registers
871 930 void set_wfp_data_shaping()
872 931 {
873 932 /** This function sets the data_shaping register of the waveform picker module.
874 933 *
875 934 * The value is read from one field of the parameter_dump_packet structure:\n
876 935 * bw_sp0_sp1_r0_r1
877 936 *
878 937 */
879 938
880 939 unsigned char data_shaping;
881 940
882 941 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
883 942 // waveform picker : [R1 R0 SP1 SP0 BW]
884 943
885 944 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
886 945
887 946 #ifdef GSA
888 947 #else
889 948 waveform_picker_regs->data_shaping =
890 949 ( (data_shaping & 0x10) >> 4 ) // BW
891 950 + ( (data_shaping & 0x08) >> 2 ) // SP0
892 951 + ( (data_shaping & 0x04) ) // SP1
893 952 + ( (data_shaping & 0x02) << 2 ) // R0
894 953 + ( (data_shaping & 0x01) << 4 ); // R1
895 954 #endif
896 955 }
897 956
898 957 char set_wfp_delta_snapshot()
899 958 {
900 959 /** This function sets the delta_snapshot register of the waveform picker module.
901 960 *
902 961 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
903 962 * - sy_lfr_n_swf_p[0]
904 963 * - sy_lfr_n_swf_p[1]
905 964 *
906 965 */
907 966
908 967 char ret;
909 968 unsigned int delta_snapshot;
910 969 unsigned int aux;
911 970
912 971 aux = 0;
913 972 ret = LFR_DEFAULT;
914 973
915 974 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
916 975 + parameter_dump_packet.sy_lfr_n_swf_p[1];
917 976
918 977 #ifdef GSA
919 978 #else
920 979 if ( delta_snapshot < MIN_DELTA_SNAPSHOT )
921 980 {
922 981 aux = MIN_DELTA_SNAPSHOT;
923 982 ret = LFR_DEFAULT;
924 983 }
925 984 else
926 985 {
927 986 aux = delta_snapshot ;
928 987 ret = LFR_SUCCESSFUL;
929 988 }
930 989 waveform_picker_regs->delta_snapshot = aux - 1; // max 2 bytes
931 990 #endif
932 991
933 992 return ret;
934 993 }
935 994
936 995 #ifdef VHDL_DEV
937 996 void set_wfp_burst_enable_register( unsigned char mode )
938 997 {
939 998 /** This function sets the waveform picker burst_enable register depending on the mode.
940 999 *
941 1000 * @param mode is the LFR mode to launch.
942 1001 *
943 1002 * The burst bits shall be before the enable bits.
944 1003 *
945 1004 */
946 1005
947 1006 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
948 1007 // the burst bits shall be set first, before the enable bits
949 1008 switch(mode) {
950 1009 case(LFR_MODE_NORMAL):
951 1010 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
952 1011 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
953 1012 break;
954 1013 case(LFR_MODE_BURST):
955 1014 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
956 1015 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
957 1016 break;
958 1017 case(LFR_MODE_SBM1):
959 1018 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
960 1019 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
961 1020 break;
962 1021 case(LFR_MODE_SBM2):
963 1022 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
964 1023 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
965 1024 break;
966 1025 default:
967 1026 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
968 1027 break;
969 1028 }
970 1029 }
971 1030 #else
972 1031 void set_wfp_burst_enable_register( unsigned char mode )
973 1032 {
974 1033 /** This function sets the waveform picker burst_enable register depending on the mode.
975 1034 *
976 1035 * @param mode is the LFR mode to launch.
977 1036 *
978 1037 * The burst bits shall be before the enable bits.
979 1038 *
980 1039 */
981 1040
982 1041 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
983 1042 // the burst bits shall be set first, before the enable bits
984 1043 switch(mode) {
985 1044 case(LFR_MODE_NORMAL):
986 1045 waveform_picker_regs->burst_enable = 0x00; // [0000 0000] no burst enable
987 1046 waveform_picker_regs->burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
988 1047 break;
989 1048 case(LFR_MODE_BURST):
990 1049 waveform_picker_regs->burst_enable = 0x40; // [0100 0000] f2 burst enabled
991 1050 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x04; // [0100] enable f2
992 1051 break;
993 1052 case(LFR_MODE_SBM1):
994 1053 waveform_picker_regs->burst_enable = 0x20; // [0010 0000] f1 burst enabled
995 1054 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
996 1055 break;
997 1056 case(LFR_MODE_SBM2):
998 1057 waveform_picker_regs->burst_enable = 0x40; // [0100 0000] f2 burst enabled
999 1058 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1000 1059 break;
1001 1060 default:
1002 1061 waveform_picker_regs->burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1003 1062 break;
1004 1063 }
1005 1064 }
1006 1065 #endif
1007 1066
1008 1067 void reset_wfp_burst_enable()
1009 1068 {
1010 1069 /** This function resets the waveform picker burst_enable register.
1011 1070 *
1012 1071 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1013 1072 *
1014 1073 */
1015 1074
1016 1075 #ifdef VHDL_DEV
1017 1076 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1018 1077 #else
1019 1078 waveform_picker_regs->burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1020 1079 #endif
1021 1080 }
1022 1081
1023 1082 void reset_wfp_status()
1024 1083 {
1025 1084 /** This function resets the waveform picker status register.
1026 1085 *
1027 1086 * All status bits are set to 0 [new_err full_err full].
1028 1087 *
1029 1088 */
1030 1089
1031 1090 #ifdef GSA
1032 1091 #else
1033 1092 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1034 1093 #endif
1035 1094 }
1036 1095
1037 1096 #ifdef VHDL_DEV
1038 1097 void reset_waveform_picker_regs()
1039 1098 {
1040 1099 /** This function resets the waveform picker module registers.
1041 1100 *
1042 1101 * The registers affected by this function are located at the following offset addresses:
1043 1102 * - 0x00 data_shaping
1044 1103 * - 0x04 run_burst_enable
1045 1104 * - 0x08 addr_data_f0
1046 1105 * - 0x0C addr_data_f1
1047 1106 * - 0x10 addr_data_f2
1048 1107 * - 0x14 addr_data_f3
1049 1108 * - 0x18 status
1050 1109 * - 0x1C delta_snapshot
1051 1110 * - 0x20 delta_f0
1052 1111 * - 0x24 delta_f0_2
1053 1112 * - 0x28 delta_f1
1054 1113 * - 0x2c delta_f2
1055 1114 * - 0x30 nb_data_by_buffer
1056 1115 * - 0x34 nb_snapshot_param
1057 1116 * - 0x38 start_date
1058 1117 * - 0x3c nb_word_in_buffer
1059 1118 *
1060 1119 */
1061 1120 waveform_picker_regs->data_shaping = 0x01; // 0x00 *** R1 R0 SP1 SP0 BW
1062 1121 waveform_picker_regs->run_burst_enable = 0x00; // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1063 1122 //waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0); // 0x08
1064 1123 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1065 1124 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1066 1125 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1067 1126 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a); // 0x14
1068 1127 waveform_picker_regs->status = 0x00; // 0x18
1069 // waveform_picker_regs->delta_snapshot = 0x12800; // 0x1c 296 * 256 = 75776
1070 waveform_picker_regs->delta_snapshot = 0x1000; // 0x1c 16 * 256 = 4096
1071 //waveform_picker_regs->delta_snapshot = 0x2000; // 0x1c 32 * 256 = 8192
1072 waveform_picker_regs->delta_f0 = 0xbf5; // 0x20 *** 1013
1073 waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7 [7 bits]
1074 waveform_picker_regs->delta_f1 = 0xbc0; // 0x28 *** 960
1075 // waveform_picker_regs->delta_f2 = 0x12200; // 0x2c *** 290 * 256 = 74240
1076 waveform_picker_regs->delta_f2 = 0xc00; // 0x2c *** 12 * 256 = 3072
1077 waveform_picker_regs->nb_data_by_buffer = 0x7ff; // 0x30 *** 2048 -1 => nb samples -1
1078 waveform_picker_regs->snapshot_param = 0x800; // 0x34 *** 2048 => nb samples
1079 waveform_picker_regs->start_date = 0x00; // 0x38
1080 waveform_picker_regs->nb_word_in_buffer = 0x1802; // 0x3c *** 2048 * 3 + 2 = 6146
1128 //
1129 // waveform_picker_regs->delta_snapshot = 0x1000; // 0x1c *** 4096 = 16 * 256
1130 // waveform_picker_regs->delta_f0 = 0xc0b; // 0x20 *** 3083 = 4096 - 1013
1131 // waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7 [7 bits]
1132 // waveform_picker_regs->delta_f1 = 0xc40; // 0x28 *** 3136 = 4096 - 960
1133 // waveform_picker_regs->delta_f2 = 0xc00; // 0x2c *** 3072 = 12 * 256
1134 //
1135 waveform_picker_regs->delta_snapshot = 0x1000; // 0x1c *** 4096 = 16 * 256
1136 waveform_picker_regs->delta_f0 = 0x1; // 0x20 ***
1137 waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7 [7 bits]
1138 waveform_picker_regs->delta_f1 = 0x1; // 0x28 ***
1139 waveform_picker_regs->delta_f2 = 0x1; // 0x2c ***
1140 // 2048
1141 // waveform_picker_regs->nb_data_by_buffer = 0x7ff; // 0x30 *** 2048 -1 => nb samples -1
1142 // waveform_picker_regs->snapshot_param = 0x800; // 0x34 *** 2048 => nb samples
1143 // waveform_picker_regs->start_date = 0x00; // 0x38
1144 // waveform_picker_regs->nb_word_in_buffer = 0x1802; // 0x3c *** 2048 * 3 + 2 = 6146
1145 // 2352 = 7 * 336
1146 waveform_picker_regs->nb_data_by_buffer = 0x92f; // 0x30 *** 2352 - 1 => nb samples -1
1147 waveform_picker_regs->snapshot_param = 0x930; // 0x34 *** 2352 => nb samples
1148 waveform_picker_regs->start_date = 0x00; // 0x38
1149 waveform_picker_regs->nb_word_in_buffer = 0x1b92; // 0x3c *** 2352 * 3 + 2 = 7058
1081 1150 }
1082 1151 #else
1083 1152 void reset_waveform_picker_regs()
1084 1153 {
1085 1154 /** This function resets the waveform picker module registers.
1086 1155 *
1087 1156 * The registers affected by this function are located at the following offset addresses:
1088 1157 * - 0x00 data_shaping
1089 1158 * - 0x04 burst_enable
1090 1159 * - 0x08 addr_data_f0
1091 1160 * - 0x0C addr_data_f1
1092 1161 * - 0x10 addr_data_f2
1093 1162 * - 0x14 addr_data_f3
1094 1163 * - 0x18 status
1095 1164 * - 0x1C delta_snapshot
1096 1165 * - 0x20 delta_f2_f1
1097 1166 * - 0x24 delta_f2_f0
1098 1167 * - 0x28 nb_burst
1099 1168 * - 0x2C nb_snapshot
1100 1169 *
1101 1170 */
1102 1171
1103 1172 reset_wfp_burst_enable();
1104 1173 reset_wfp_status();
1105 1174 // set buffer addresses
1106 1175 waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0);
1107 1176 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
1108 1177 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
1109 1178 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a);
1110 1179 // set other parameters
1111 1180 set_wfp_data_shaping();
1112 1181 set_wfp_delta_snapshot(); // time in seconds between two snapshots
1113 1182 waveform_picker_regs->delta_f2_f1 = 0xffff; // 0x16800 => 92160 (max 4 bytes)
1114 1183 waveform_picker_regs->delta_f2_f0 = 0x17c00; // 97 280 (max 5 bytes)
1115 1184 // waveform_picker_regs->nb_burst_available = 0x180; // max 3 bytes, size of the buffer in burst (1 burst = 16 x 4 octets)
1116 1185 // // 3 * 2048 / 16 = 384
1117 1186 // waveform_picker_regs->nb_snapshot_param = 0x7ff; // max 3 octets, 2048 - 1
1118 1187 waveform_picker_regs->nb_burst_available = 0x1b9; // max 3 bytes, size of the buffer in burst (1 burst = 16 x 4 octets)
1119 1188 // 3 * 2352 / 16 = 441
1120 1189 waveform_picker_regs->nb_snapshot_param = 0x944; // max 3 octets, 2372 - 1
1121 1190 }
1122 1191 #endif
1123 1192
1124 1193 //*****************
1125 1194 // local parameters
1126 1195 void set_local_nb_interrupt_f0_MAX( void )
1127 1196 {
1128 1197 /** This function sets the value of the nb_interrupt_f0_MAX local parameter.
1129 1198 *
1130 1199 * This parameter is used for the SM validation only.\n
1131 1200 * The software waits param_local.local_nb_interrupt_f0_MAX interruptions from the spectral matrices
1132 1201 * module before launching a basic processing.
1133 1202 *
1134 1203 */
1135 1204
1136 1205 param_local.local_nb_interrupt_f0_MAX = ( (parameter_dump_packet.sy_lfr_n_asm_p[0]) * 256
1137 1206 + parameter_dump_packet.sy_lfr_n_asm_p[1] ) * 100;
1138 1207 }
1139 1208
1140 1209 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1141 1210 {
1142 1211 unsigned short *sequence_cnt;
1143 1212 unsigned short segmentation_grouping_flag;
1144 1213 unsigned short new_packet_sequence_control;
1145 1214
1146 1215 if ( (sid ==SID_NORM_SWF_F0) || (sid ==SID_NORM_SWF_F1) || (sid ==SID_NORM_SWF_F2)
1147 1216 || (sid ==SID_NORM_CWF_F3) || (sid==SID_NORM_CWF_LONG_F3) || (sid ==SID_BURST_CWF_F2) )
1148 1217 {
1149 1218 sequence_cnt = &sequenceCounters_SCIENCE_NORMAL_BURST;
1150 1219 }
1151 1220 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2) )
1152 1221 {
1153 1222 sequence_cnt = &sequenceCounters_SCIENCE_SBM1_SBM2;
1154 1223 }
1155 1224 else
1156 1225 {
1157 1226 sequence_cnt = NULL;
1158 1227 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1159 1228 }
1160 1229
1161 1230 if (sequence_cnt != NULL)
1162 1231 {
1163 1232 segmentation_grouping_flag = (packet_sequence_control[ 0 ] & 0xc0) << 8;
1164 1233 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1165 1234
1166 1235 new_packet_sequence_control = segmentation_grouping_flag | *sequence_cnt ;
1167 1236
1168 1237 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1169 1238 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1170 1239
1171 1240 // increment the sequence counter for the next packet
1172 1241 if ( *sequence_cnt < SEQ_CNT_MAX)
1173 1242 {
1174 1243 *sequence_cnt = *sequence_cnt + 1;
1175 1244 }
1176 1245 else
1177 1246 {
1178 1247 *sequence_cnt = 0;
1179 1248 }
1180 1249 }
1181 1250 }
General Comments 0
You need to be logged in to leave comments. Login now