##// END OF EJS Templates
3.1.0.7...
paul -
r337:e784d0191567 R3_plus draft
parent child
Show More
@@ -1,103 +1,103
1 1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
2 2 #define TC_LOAD_DUMP_PARAMETERS_H
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "wf_handler.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "fsw_misc.h"
11 11 #include "basic_parameters_params.h"
12 12 #include "avf0_prc0.h"
13 13
14 14 #define FLOAT_EQUAL_ZERO 0.001
15 15 #define NB_BINS_TO_REMOVE 3
16 16 #define FI_INTERVAL_COEFF 0.285
17 17 #define BIN_MIN 0
18 18 #define BIN_MAX 127
19 19 #define DELTAF_F0 96.
20 20 #define DELTAF_F1 16.
21 21 #define DELTAF_F2 1.
22 22
23 23 #define BIT_RW1_F1 0x80
24 24 #define BIT_RW1_F2 0x40
25 25 #define BIT_RW2_F1 0x20
26 26 #define BIT_RW2_F2 0x10
27 27 #define BIT_RW3_F1 0x08
28 28 #define BIT_RW3_F2 0x04
29 29 #define BIT_RW4_F1 0x02
30 30 #define BIT_RW4_F2 0x01
31 31
32 32 #define SBM_KCOEFF_PER_NORM_KCOEFF 2
33 33
34 34 extern unsigned short sequenceCounterParameterDump;
35 35 extern unsigned short sequenceCounters_TM_DUMP[];
36 36 extern float k_coeff_intercalib_f0_norm[ ];
37 37 extern float k_coeff_intercalib_f0_sbm[ ];
38 38 extern float k_coeff_intercalib_f1_norm[ ];
39 39 extern float k_coeff_intercalib_f1_sbm[ ];
40 40 extern float k_coeff_intercalib_f2[ ];
41 41 extern fbins_masks_t fbins_masks;
42 42
43 43 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
44 44 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
45 45 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
46 46 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
47 47 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
48 48 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
49 49 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
50 50 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
51 51 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
52 52 int action_dump_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
53 53
54 54 // NORMAL
55 55 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
56 56 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
57 57 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
58 58 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
59 59 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
60 60 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
61 61 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
62 62
63 63 // BURST
64 64 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
65 65 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
66 66
67 67 // SBM1
68 68 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
69 69 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
70 70
71 71 // SBM2
72 72 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
73 73 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
74 74
75 75 // TC_LFR_UPDATE_INFO
76 76 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
77 77 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
78 78 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
79 79 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC );
80 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag );
80 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag, float sy_lfr_rw_k );
81 81 void build_sy_lfr_rw_mask( unsigned int channel );
82 82 void build_sy_lfr_rw_masks();
83 83 void merge_fbins_masks( void );
84 84
85 85 // FBINS_MASK
86 86 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
87 87
88 88 // TC_LFR_LOAD_PARS_FILTER_PAR
89 89 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
90 90
91 91 // KCOEFFICIENTS
92 92 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
93 93 void copyFloatByChar( unsigned char *destination, unsigned char *source );
94 94 void copyInt32ByChar( unsigned char *destination, unsigned char *source );
95 95 void copyInt16ByChar( unsigned char *destination, unsigned char *source );
96 96 void floatToChar( float value, unsigned char* ptr);
97 97
98 98 void init_parameter_dump( void );
99 99 void init_kcoefficients_dump( void );
100 100 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
101 101 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id );
102 102
103 103 #endif // TC_LOAD_DUMP_PARAMETERS_H
@@ -1,107 +1,107
1 1 cmake_minimum_required (VERSION 2.6)
2 2 project (fsw)
3 3
4 4 include(sparc-rtems)
5 5 include(cppcheck)
6 6
7 7 include_directories("../header"
8 8 "../header/lfr_common_headers"
9 9 "../header/processing"
10 10 "../LFR_basic-parameters"
11 11 "../src")
12 12
13 13 set(SOURCES wf_handler.c
14 14 tc_handler.c
15 15 fsw_misc.c
16 16 fsw_init.c
17 17 fsw_globals.c
18 18 fsw_spacewire.c
19 19 tc_load_dump_parameters.c
20 20 tm_lfr_tc_exe.c
21 21 tc_acceptance.c
22 22 processing/fsw_processing.c
23 23 processing/avf0_prc0.c
24 24 processing/avf1_prc1.c
25 25 processing/avf2_prc2.c
26 26 lfr_cpu_usage_report.c
27 27 ${LFR_BP_SRC}
28 28 ../header/wf_handler.h
29 29 ../header/tc_handler.h
30 30 ../header/grlib_regs.h
31 31 ../header/fsw_misc.h
32 32 ../header/fsw_init.h
33 33 ../header/fsw_spacewire.h
34 34 ../header/tc_load_dump_parameters.h
35 35 ../header/tm_lfr_tc_exe.h
36 36 ../header/tc_acceptance.h
37 37 ../header/processing/fsw_processing.h
38 38 ../header/processing/avf0_prc0.h
39 39 ../header/processing/avf1_prc1.h
40 40 ../header/processing/avf2_prc2.h
41 41 ../header/fsw_params_wf_handler.h
42 42 ../header/lfr_cpu_usage_report.h
43 43 ../header/lfr_common_headers/ccsds_types.h
44 44 ../header/lfr_common_headers/fsw_params.h
45 45 ../header/lfr_common_headers/fsw_params_nb_bytes.h
46 46 ../header/lfr_common_headers/fsw_params_processing.h
47 47 ../header/lfr_common_headers/tm_byte_positions.h
48 48 ../LFR_basic-parameters/basic_parameters.h
49 49 ../LFR_basic-parameters/basic_parameters_params.h
50 50 ../header/GscMemoryLPP.hpp
51 51 )
52 52
53 53
54 54 option(FSW_verbose "Enable verbose LFR" OFF)
55 55 option(FSW_boot_messages "Enable LFR boot messages" OFF)
56 56 option(FSW_debug_messages "Enable LFR debug messages" OFF)
57 57 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
58 58 option(FSW_stack_report "Enable LFR stack report" OFF)
59 59 option(FSW_vhdl_dev "?" OFF)
60 60 option(FSW_lpp_dpu_destid "Set to debug at LPP" ON)
61 61 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
62 62 option(FSW_debug_tch "?" OFF)
63 63
64 64 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
65 65 set(SW_VERSION_N2 "1" CACHE STRING "Choose N2 FSW Version." FORCE)
66 66 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
67 set(SW_VERSION_N4 "6" CACHE STRING "Choose N4 FSW Version." FORCE)
67 set(SW_VERSION_N4 "7" CACHE STRING "Choose N4 FSW Version." FORCE)
68 68
69 69 if(FSW_verbose)
70 70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
71 71 endif()
72 72 if(FSW_boot_messages)
73 73 add_definitions(-DBOOT_MESSAGES)
74 74 endif()
75 75 if(FSW_debug_messages)
76 76 add_definitions(-DDEBUG_MESSAGES)
77 77 endif()
78 78 if(FSW_cpu_usage_report)
79 79 add_definitions(-DPRINT_TASK_STATISTICS)
80 80 endif()
81 81 if(FSW_stack_report)
82 82 add_definitions(-DPRINT_STACK_REPORT)
83 83 endif()
84 84 if(FSW_vhdl_dev)
85 85 add_definitions(-DVHDL_DEV)
86 86 endif()
87 87 if(FSW_lpp_dpu_destid)
88 88 add_definitions(-DLPP_DPU_DESTID)
89 89 endif()
90 90 if(FSW_debug_watchdog)
91 91 add_definitions(-DDEBUG_WATCHDOG)
92 92 endif()
93 93 if(FSW_debug_tch)
94 94 add_definitions(-DDEBUG_TCH)
95 95 endif()
96 96
97 97 add_definitions(-DMSB_FIRST_TCH)
98 98
99 99 add_definitions(-DSWVERSION=-1-0)
100 100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
101 101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
102 102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
103 103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
104 104
105 105 add_executable(fsw ${SOURCES})
106 106 add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE)
107 107
@@ -1,1671 +1,1693
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1 = {0};
18 18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2 = {0};
19 19 ring_node kcoefficient_node_1 = {0};
20 20 ring_node kcoefficient_node_2 = {0};
21 21
22 22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 23 {
24 24 /** This function updates the LFR registers with the incoming common parameters.
25 25 *
26 26 * @param TC points to the TeleCommand packet that is being processed
27 27 *
28 28 *
29 29 */
30 30
31 31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 33 set_wfp_data_shaping( );
34 34 return LFR_SUCCESSFUL;
35 35 }
36 36
37 37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 38 {
39 39 /** This function updates the LFR registers with the incoming normal parameters.
40 40 *
41 41 * @param TC points to the TeleCommand packet that is being processed
42 42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 43 *
44 44 */
45 45
46 46 int result;
47 47 int flag;
48 48 rtems_status_code status;
49 49
50 50 flag = LFR_SUCCESSFUL;
51 51
52 52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 55 flag = LFR_DEFAULT;
56 56 }
57 57
58 58 // CHECK THE PARAMETERS SET CONSISTENCY
59 59 if (flag == LFR_SUCCESSFUL)
60 60 {
61 61 flag = check_normal_par_consistency( TC, queue_id );
62 62 }
63 63
64 64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_l( TC );
68 68 result = set_sy_lfr_n_swf_p( TC );
69 69 result = set_sy_lfr_n_bp_p0( TC );
70 70 result = set_sy_lfr_n_bp_p1( TC );
71 71 result = set_sy_lfr_n_asm_p( TC );
72 72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 73 }
74 74
75 75 return flag;
76 76 }
77 77
78 78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 79 {
80 80 /** This function updates the LFR registers with the incoming burst parameters.
81 81 *
82 82 * @param TC points to the TeleCommand packet that is being processed
83 83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 84 *
85 85 */
86 86
87 87 int flag;
88 88 rtems_status_code status;
89 89 unsigned char sy_lfr_b_bp_p0;
90 90 unsigned char sy_lfr_b_bp_p1;
91 91 float aux;
92 92
93 93 flag = LFR_SUCCESSFUL;
94 94
95 95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 97 flag = LFR_DEFAULT;
98 98 }
99 99
100 100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102 102
103 103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 104 if (flag == LFR_SUCCESSFUL)
105 105 {
106 106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 107 {
108 108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
109 109 flag = WRONG_APP_DATA;
110 110 }
111 111 }
112 112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 113 if (flag == LFR_SUCCESSFUL)
114 114 {
115 115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 116 {
117 117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
118 118 flag = WRONG_APP_DATA;
119 119 }
120 120 }
121 121 //****************************************************************
122 122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 123 if (flag == LFR_SUCCESSFUL)
124 124 {
125 125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 128 if (aux > FLOAT_EQUAL_ZERO)
129 129 {
130 130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
131 131 flag = LFR_DEFAULT;
132 132 }
133 133 }
134 134
135 135 // SET THE PARAMETERS
136 136 if (flag == LFR_SUCCESSFUL)
137 137 {
138 138 flag = set_sy_lfr_b_bp_p0( TC );
139 139 flag = set_sy_lfr_b_bp_p1( TC );
140 140 }
141 141
142 142 return flag;
143 143 }
144 144
145 145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 146 {
147 147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 148 *
149 149 * @param TC points to the TeleCommand packet that is being processed
150 150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 151 *
152 152 */
153 153
154 154 int flag;
155 155 rtems_status_code status;
156 156 unsigned char sy_lfr_s1_bp_p0;
157 157 unsigned char sy_lfr_s1_bp_p1;
158 158 float aux;
159 159
160 160 flag = LFR_SUCCESSFUL;
161 161
162 162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 164 flag = LFR_DEFAULT;
165 165 }
166 166
167 167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169 169
170 170 // sy_lfr_s1_bp_p0
171 171 if (flag == LFR_SUCCESSFUL)
172 172 {
173 173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 174 {
175 175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
176 176 flag = WRONG_APP_DATA;
177 177 }
178 178 }
179 179 // sy_lfr_s1_bp_p1
180 180 if (flag == LFR_SUCCESSFUL)
181 181 {
182 182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 183 {
184 184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
185 185 flag = WRONG_APP_DATA;
186 186 }
187 187 }
188 188 //******************************************************************
189 189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 190 if (flag == LFR_SUCCESSFUL)
191 191 {
192 192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
193 193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
194 194 if (aux > FLOAT_EQUAL_ZERO)
195 195 {
196 196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
197 197 flag = LFR_DEFAULT;
198 198 }
199 199 }
200 200
201 201 // SET THE PARAMETERS
202 202 if (flag == LFR_SUCCESSFUL)
203 203 {
204 204 flag = set_sy_lfr_s1_bp_p0( TC );
205 205 flag = set_sy_lfr_s1_bp_p1( TC );
206 206 }
207 207
208 208 return flag;
209 209 }
210 210
211 211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
212 212 {
213 213 /** This function updates the LFR registers with the incoming sbm2 parameters.
214 214 *
215 215 * @param TC points to the TeleCommand packet that is being processed
216 216 * @param queue_id is the id of the queue which handles TM related to this execution step
217 217 *
218 218 */
219 219
220 220 int flag;
221 221 rtems_status_code status;
222 222 unsigned char sy_lfr_s2_bp_p0;
223 223 unsigned char sy_lfr_s2_bp_p1;
224 224 float aux;
225 225
226 226 flag = LFR_SUCCESSFUL;
227 227
228 228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
229 229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
230 230 flag = LFR_DEFAULT;
231 231 }
232 232
233 233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
234 234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
235 235
236 236 // sy_lfr_s2_bp_p0
237 237 if (flag == LFR_SUCCESSFUL)
238 238 {
239 239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
240 240 {
241 241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
242 242 flag = WRONG_APP_DATA;
243 243 }
244 244 }
245 245 // sy_lfr_s2_bp_p1
246 246 if (flag == LFR_SUCCESSFUL)
247 247 {
248 248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
249 249 {
250 250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
251 251 flag = WRONG_APP_DATA;
252 252 }
253 253 }
254 254 //******************************************************************
255 255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
256 256 if (flag == LFR_SUCCESSFUL)
257 257 {
258 258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
259 259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
260 260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
261 261 if (aux > FLOAT_EQUAL_ZERO)
262 262 {
263 263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
264 264 flag = LFR_DEFAULT;
265 265 }
266 266 }
267 267
268 268 // SET THE PARAMETERS
269 269 if (flag == LFR_SUCCESSFUL)
270 270 {
271 271 flag = set_sy_lfr_s2_bp_p0( TC );
272 272 flag = set_sy_lfr_s2_bp_p1( TC );
273 273 }
274 274
275 275 return flag;
276 276 }
277 277
278 278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 279 {
280 280 /** This function updates the LFR registers with the incoming sbm2 parameters.
281 281 *
282 282 * @param TC points to the TeleCommand packet that is being processed
283 283 * @param queue_id is the id of the queue which handles TM related to this execution step
284 284 *
285 285 */
286 286
287 287 int flag;
288 288
289 289 flag = LFR_DEFAULT;
290 290
291 291 flag = set_sy_lfr_kcoeff( TC, queue_id );
292 292
293 293 return flag;
294 294 }
295 295
296 296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
297 297 {
298 298 /** This function updates the LFR registers with the incoming sbm2 parameters.
299 299 *
300 300 * @param TC points to the TeleCommand packet that is being processed
301 301 * @param queue_id is the id of the queue which handles TM related to this execution step
302 302 *
303 303 */
304 304
305 305 int flag;
306 306
307 307 flag = LFR_DEFAULT;
308 308
309 309 flag = set_sy_lfr_fbins( TC );
310 310
311 311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
312 312 merge_fbins_masks();
313 313
314 314 return flag;
315 315 }
316 316
317 317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
318 318 {
319 319 /** This function updates the LFR registers with the incoming sbm2 parameters.
320 320 *
321 321 * @param TC points to the TeleCommand packet that is being processed
322 322 * @param queue_id is the id of the queue which handles TM related to this execution step
323 323 *
324 324 */
325 325
326 326 int flag;
327 327
328 328 flag = LFR_DEFAULT;
329 329
330 330 flag = check_sy_lfr_filter_parameters( TC, queue_id );
331 331
332 332 if (flag == LFR_SUCCESSFUL)
333 333 {
334 334 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
335 335 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
336 336 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
337 337 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
338 338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
339 339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
340 340 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
341 341 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
342 342 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
343 343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
344 344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
345 345 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
346 346 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
347 347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
348 348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
349 349
350 350 //****************************
351 351 // store PAS filter parameters
352 352 // sy_lfr_pas_filter_enabled
353 353 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
354 354 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
355 355 // sy_lfr_pas_filter_modulus
356 356 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
357 357 // sy_lfr_pas_filter_tbad
358 358 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
359 359 parameter_dump_packet.sy_lfr_pas_filter_tbad );
360 360 // sy_lfr_pas_filter_offset
361 361 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
362 362 // sy_lfr_pas_filter_shift
363 363 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
364 364 parameter_dump_packet.sy_lfr_pas_filter_shift );
365 365
366 366 //****************************************************
367 367 // store the parameter sy_lfr_sc_rw_delta_f as a float
368 368 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
369 369 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
370 370 }
371 371
372 372 return flag;
373 373 }
374 374
375 375 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
376 376 {
377 377 /** This function updates the LFR registers with the incoming sbm2 parameters.
378 378 *
379 379 * @param TC points to the TeleCommand packet that is being processed
380 380 * @param queue_id is the id of the queue which handles TM related to this execution step
381 381 *
382 382 */
383 383
384 384 unsigned int address;
385 385 rtems_status_code status;
386 386 unsigned int freq;
387 387 unsigned int bin;
388 388 unsigned int coeff;
389 389 unsigned char *kCoeffPtr;
390 390 unsigned char *kCoeffDumpPtr;
391 391
392 392 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
393 393 // F0 => 11 bins
394 394 // F1 => 13 bins
395 395 // F2 => 12 bins
396 396 // 36 bins to dump in two packets (30 bins max per packet)
397 397
398 398 //*********
399 399 // PACKET 1
400 400 // 11 F0 bins, 13 F1 bins and 6 F2 bins
401 401 kcoefficients_dump_1.destinationID = TC->sourceID;
402 402 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
403 403 for( freq = 0;
404 404 freq < NB_BINS_COMPRESSED_SM_F0;
405 405 freq++ )
406 406 {
407 407 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
408 408 bin = freq;
409 409 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
410 410 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
411 411 {
412 412 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
413 413 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
414 414 ]; // 2 for the kcoeff_frequency
415 415 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
416 416 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
417 417 }
418 418 }
419 419 for( freq = NB_BINS_COMPRESSED_SM_F0;
420 420 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
421 421 freq++ )
422 422 {
423 423 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
424 424 bin = freq - NB_BINS_COMPRESSED_SM_F0;
425 425 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
426 426 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
427 427 {
428 428 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
429 429 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
430 430 ]; // 2 for the kcoeff_frequency
431 431 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
432 432 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
433 433 }
434 434 }
435 435 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
436 436 freq < KCOEFF_BLK_NR_PKT1 ;
437 437 freq++ )
438 438 {
439 439 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
440 440 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
441 441 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
442 442 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
443 443 {
444 444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
445 445 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
446 446 ]; // 2 for the kcoeff_frequency
447 447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
448 448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
449 449 }
450 450 }
451 451 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
452 452 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
453 453 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
454 454 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
455 455 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
456 456 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
457 457 // SEND DATA
458 458 kcoefficient_node_1.status = 1;
459 459 address = (unsigned int) &kcoefficient_node_1;
460 460 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
461 461 if (status != RTEMS_SUCCESSFUL) {
462 462 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
463 463 }
464 464
465 465 //********
466 466 // PACKET 2
467 467 // 6 F2 bins
468 468 kcoefficients_dump_2.destinationID = TC->sourceID;
469 469 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
470 470 for( freq = 0;
471 471 freq < KCOEFF_BLK_NR_PKT2;
472 472 freq++ )
473 473 {
474 474 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
475 475 bin = freq + KCOEFF_BLK_NR_PKT2;
476 476 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
477 477 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
478 478 {
479 479 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
480 480 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
481 481 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
482 482 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
483 483 }
484 484 }
485 485 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
486 486 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
487 487 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
488 488 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
489 489 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
490 490 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
491 491 // SEND DATA
492 492 kcoefficient_node_2.status = 1;
493 493 address = (unsigned int) &kcoefficient_node_2;
494 494 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
495 495 if (status != RTEMS_SUCCESSFUL) {
496 496 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
497 497 }
498 498
499 499 return status;
500 500 }
501 501
502 502 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
503 503 {
504 504 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
505 505 *
506 506 * @param queue_id is the id of the queue which handles TM related to this execution step.
507 507 *
508 508 * @return RTEMS directive status codes:
509 509 * - RTEMS_SUCCESSFUL - message sent successfully
510 510 * - RTEMS_INVALID_ID - invalid queue id
511 511 * - RTEMS_INVALID_SIZE - invalid message size
512 512 * - RTEMS_INVALID_ADDRESS - buffer is NULL
513 513 * - RTEMS_UNSATISFIED - out of message buffers
514 514 * - RTEMS_TOO_MANY - queue s limit has been reached
515 515 *
516 516 */
517 517
518 518 int status;
519 519
520 520 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
521 521 parameter_dump_packet.destinationID = TC->sourceID;
522 522
523 523 // UPDATE TIME
524 524 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
525 525 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
526 526 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
527 527 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
528 528 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
529 529 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
530 530 // SEND DATA
531 531 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
532 532 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
533 533 if (status != RTEMS_SUCCESSFUL) {
534 534 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
535 535 }
536 536
537 537 return status;
538 538 }
539 539
540 540 //***********************
541 541 // NORMAL MODE PARAMETERS
542 542
543 543 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
544 544 {
545 545 unsigned char msb;
546 546 unsigned char lsb;
547 547 int flag;
548 548 float aux;
549 549 rtems_status_code status;
550 550
551 551 unsigned int sy_lfr_n_swf_l;
552 552 unsigned int sy_lfr_n_swf_p;
553 553 unsigned int sy_lfr_n_asm_p;
554 554 unsigned char sy_lfr_n_bp_p0;
555 555 unsigned char sy_lfr_n_bp_p1;
556 556 unsigned char sy_lfr_n_cwf_long_f3;
557 557
558 558 flag = LFR_SUCCESSFUL;
559 559
560 560 //***************
561 561 // get parameters
562 562 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
563 563 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
564 564 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
565 565
566 566 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
567 567 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
568 568 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
569 569
570 570 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
571 571 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
572 572 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
573 573
574 574 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
575 575
576 576 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
577 577
578 578 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
579 579
580 580 //******************
581 581 // check consistency
582 582 // sy_lfr_n_swf_l
583 583 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
584 584 {
585 585 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
586 586 flag = WRONG_APP_DATA;
587 587 }
588 588 // sy_lfr_n_swf_p
589 589 if (flag == LFR_SUCCESSFUL)
590 590 {
591 591 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
592 592 {
593 593 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
594 594 flag = WRONG_APP_DATA;
595 595 }
596 596 }
597 597 // sy_lfr_n_bp_p0
598 598 if (flag == LFR_SUCCESSFUL)
599 599 {
600 600 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
601 601 {
602 602 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
603 603 flag = WRONG_APP_DATA;
604 604 }
605 605 }
606 606 // sy_lfr_n_asm_p
607 607 if (flag == LFR_SUCCESSFUL)
608 608 {
609 609 if (sy_lfr_n_asm_p == 0)
610 610 {
611 611 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
612 612 flag = WRONG_APP_DATA;
613 613 }
614 614 }
615 615 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
616 616 if (flag == LFR_SUCCESSFUL)
617 617 {
618 618 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
619 619 if (aux > FLOAT_EQUAL_ZERO)
620 620 {
621 621 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
622 622 flag = WRONG_APP_DATA;
623 623 }
624 624 }
625 625 // sy_lfr_n_bp_p1
626 626 if (flag == LFR_SUCCESSFUL)
627 627 {
628 628 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
629 629 {
630 630 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
631 631 flag = WRONG_APP_DATA;
632 632 }
633 633 }
634 634 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
635 635 if (flag == LFR_SUCCESSFUL)
636 636 {
637 637 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
638 638 if (aux > FLOAT_EQUAL_ZERO)
639 639 {
640 640 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
641 641 flag = LFR_DEFAULT;
642 642 }
643 643 }
644 644 // sy_lfr_n_cwf_long_f3
645 645
646 646 return flag;
647 647 }
648 648
649 649 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
650 650 {
651 651 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
652 652 *
653 653 * @param TC points to the TeleCommand packet that is being processed
654 654 * @param queue_id is the id of the queue which handles TM related to this execution step
655 655 *
656 656 */
657 657
658 658 int result;
659 659
660 660 result = LFR_SUCCESSFUL;
661 661
662 662 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
663 663 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
664 664
665 665 return result;
666 666 }
667 667
668 668 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
669 669 {
670 670 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
671 671 *
672 672 * @param TC points to the TeleCommand packet that is being processed
673 673 * @param queue_id is the id of the queue which handles TM related to this execution step
674 674 *
675 675 */
676 676
677 677 int result;
678 678
679 679 result = LFR_SUCCESSFUL;
680 680
681 681 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
682 682 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
683 683
684 684 return result;
685 685 }
686 686
687 687 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
688 688 {
689 689 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
690 690 *
691 691 * @param TC points to the TeleCommand packet that is being processed
692 692 * @param queue_id is the id of the queue which handles TM related to this execution step
693 693 *
694 694 */
695 695
696 696 int result;
697 697
698 698 result = LFR_SUCCESSFUL;
699 699
700 700 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
701 701 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
702 702
703 703 return result;
704 704 }
705 705
706 706 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
707 707 {
708 708 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
709 709 *
710 710 * @param TC points to the TeleCommand packet that is being processed
711 711 * @param queue_id is the id of the queue which handles TM related to this execution step
712 712 *
713 713 */
714 714
715 715 int status;
716 716
717 717 status = LFR_SUCCESSFUL;
718 718
719 719 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
720 720
721 721 return status;
722 722 }
723 723
724 724 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
725 725 {
726 726 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
727 727 *
728 728 * @param TC points to the TeleCommand packet that is being processed
729 729 * @param queue_id is the id of the queue which handles TM related to this execution step
730 730 *
731 731 */
732 732
733 733 int status;
734 734
735 735 status = LFR_SUCCESSFUL;
736 736
737 737 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
738 738
739 739 return status;
740 740 }
741 741
742 742 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
743 743 {
744 744 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
745 745 *
746 746 * @param TC points to the TeleCommand packet that is being processed
747 747 * @param queue_id is the id of the queue which handles TM related to this execution step
748 748 *
749 749 */
750 750
751 751 int status;
752 752
753 753 status = LFR_SUCCESSFUL;
754 754
755 755 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
756 756
757 757 return status;
758 758 }
759 759
760 760 //**********************
761 761 // BURST MODE PARAMETERS
762 762 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
763 763 {
764 764 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
765 765 *
766 766 * @param TC points to the TeleCommand packet that is being processed
767 767 * @param queue_id is the id of the queue which handles TM related to this execution step
768 768 *
769 769 */
770 770
771 771 int status;
772 772
773 773 status = LFR_SUCCESSFUL;
774 774
775 775 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
776 776
777 777 return status;
778 778 }
779 779
780 780 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
781 781 {
782 782 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
783 783 *
784 784 * @param TC points to the TeleCommand packet that is being processed
785 785 * @param queue_id is the id of the queue which handles TM related to this execution step
786 786 *
787 787 */
788 788
789 789 int status;
790 790
791 791 status = LFR_SUCCESSFUL;
792 792
793 793 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
794 794
795 795 return status;
796 796 }
797 797
798 798 //*********************
799 799 // SBM1 MODE PARAMETERS
800 800 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
801 801 {
802 802 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
803 803 *
804 804 * @param TC points to the TeleCommand packet that is being processed
805 805 * @param queue_id is the id of the queue which handles TM related to this execution step
806 806 *
807 807 */
808 808
809 809 int status;
810 810
811 811 status = LFR_SUCCESSFUL;
812 812
813 813 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
814 814
815 815 return status;
816 816 }
817 817
818 818 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
819 819 {
820 820 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
821 821 *
822 822 * @param TC points to the TeleCommand packet that is being processed
823 823 * @param queue_id is the id of the queue which handles TM related to this execution step
824 824 *
825 825 */
826 826
827 827 int status;
828 828
829 829 status = LFR_SUCCESSFUL;
830 830
831 831 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
832 832
833 833 return status;
834 834 }
835 835
836 836 //*********************
837 837 // SBM2 MODE PARAMETERS
838 838 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
839 839 {
840 840 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
841 841 *
842 842 * @param TC points to the TeleCommand packet that is being processed
843 843 * @param queue_id is the id of the queue which handles TM related to this execution step
844 844 *
845 845 */
846 846
847 847 int status;
848 848
849 849 status = LFR_SUCCESSFUL;
850 850
851 851 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
852 852
853 853 return status;
854 854 }
855 855
856 856 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
857 857 {
858 858 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
859 859 *
860 860 * @param TC points to the TeleCommand packet that is being processed
861 861 * @param queue_id is the id of the queue which handles TM related to this execution step
862 862 *
863 863 */
864 864
865 865 int status;
866 866
867 867 status = LFR_SUCCESSFUL;
868 868
869 869 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
870 870
871 871 return status;
872 872 }
873 873
874 874 //*******************
875 875 // TC_LFR_UPDATE_INFO
876 876 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
877 877 {
878 878 unsigned int status;
879 879
880 880 status = LFR_DEFAULT;
881 881
882 882 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
883 883 || (mode == LFR_MODE_BURST)
884 884 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
885 885 {
886 886 status = LFR_SUCCESSFUL;
887 887 }
888 888 else
889 889 {
890 890 status = LFR_DEFAULT;
891 891 }
892 892
893 893 return status;
894 894 }
895 895
896 896 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
897 897 {
898 898 unsigned int status;
899 899
900 900 status = LFR_DEFAULT;
901 901
902 902 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
903 903 || (mode == TDS_MODE_BURST)
904 904 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
905 905 || (mode == TDS_MODE_LFM))
906 906 {
907 907 status = LFR_SUCCESSFUL;
908 908 }
909 909 else
910 910 {
911 911 status = LFR_DEFAULT;
912 912 }
913 913
914 914 return status;
915 915 }
916 916
917 917 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
918 918 {
919 919 unsigned int status;
920 920
921 921 status = LFR_DEFAULT;
922 922
923 923 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
924 924 || (mode == THR_MODE_BURST))
925 925 {
926 926 status = LFR_SUCCESSFUL;
927 927 }
928 928 else
929 929 {
930 930 status = LFR_DEFAULT;
931 931 }
932 932
933 933 return status;
934 934 }
935 935
936 936 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
937 937 {
938 938 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
939 939 *
940 940 * @param TC points to the TeleCommand packet that is being processed
941 941 *
942 942 */
943 943
944 944 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
945 945
946 946 bytePosPtr = (unsigned char *) &TC->packetID;
947 947
948 948 // cp_rpw_sc_rw1_f1
949 949 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f1,
950 950 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
951 951
952 952 // cp_rpw_sc_rw1_f2
953 953 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f2,
954 954 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
955 955
956 956 // cp_rpw_sc_rw2_f1
957 957 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f1,
958 958 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
959 959
960 960 // cp_rpw_sc_rw2_f2
961 961 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f2,
962 962 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
963 963
964 964 // cp_rpw_sc_rw3_f1
965 965 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f1,
966 966 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
967 967
968 968 // cp_rpw_sc_rw3_f2
969 969 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f2,
970 970 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
971 971
972 972 // cp_rpw_sc_rw4_f1
973 973 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f1,
974 974 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
975 975
976 976 // cp_rpw_sc_rw4_f2
977 977 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f2,
978 978 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
979 979 }
980 980
981 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag )
981 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag, float sy_lfr_rw_k )
982 982 {
983 983 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
984 984 *
985 985 * @param fbins_mask
986 986 * @param rw_f is the reaction wheel frequency to filter
987 987 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
988 988 * @param flag [true] filtering enabled [false] filtering disabled
989 989 *
990 990 * @return void
991 991 *
992 992 */
993 993
994 994 float f_RW_min;
995 995 float f_RW_MAX;
996 996 float fi_min;
997 997 float fi_MAX;
998 998 float fi;
999 999 float deltaBelow;
1000 1000 float deltaAbove;
1001 float freqToFilterOut;
1001 1002 int binBelow;
1002 1003 int binAbove;
1003 1004 int closestBin;
1004 1005 unsigned int whichByte;
1005 1006 int selectedByte;
1006 1007 int bin;
1007 1008 int binToRemove[NB_BINS_TO_REMOVE];
1008 1009 int k;
1010 bool filteringSet;
1009 1011
1010 1012 closestBin = 0;
1011 1013 whichByte = 0;
1012 1014 bin = 0;
1015 filteringSet = false;
1013 1016
1014 1017 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1015 1018 {
1016 1019 binToRemove[k] = -1;
1017 1020 }
1018 1021
1019 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
1020 f_RW_min = rw_f - (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1021 f_RW_MAX = rw_f + (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1022 // compute the frequency range to filter [ rw_f - delta_f; rw_f + delta_f ]
1023 f_RW_min = rw_f - ((filterPar.sy_lfr_sc_rw_delta_f) * sy_lfr_rw_k);
1024 f_RW_MAX = rw_f + ((filterPar.sy_lfr_sc_rw_delta_f) * sy_lfr_rw_k);
1022 1025
1023 // compute the index of the frequency bin immediately below rw_f
1024 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1025 deltaBelow = rw_f - binBelow * deltaFreq;
1026 freqToFilterOut = f_RW_min;
1027 while ( filteringSet == false )
1028 {
1029 // compute the index of the frequency bin immediately below rw_f
1030 binBelow = (int) ( floor( ((double) freqToFilterOut) / ((double) deltaFreq)) );
1031 deltaBelow = freqToFilterOut - binBelow * deltaFreq;
1026 1032
1027 // compute the index of the frequency bin immediately above rw_f
1028 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1029 deltaAbove = binAbove * deltaFreq - rw_f;
1033 // compute the index of the frequency bin immediately above rw_f
1034 binAbove = (int) ( ceil( ((double) freqToFilterOut) / ((double) deltaFreq)) );
1035 deltaAbove = binAbove * deltaFreq - freqToFilterOut;
1030 1036
1031 // search the closest bin
1032 if (deltaAbove > deltaBelow)
1033 {
1034 closestBin = binBelow;
1035 }
1036 else
1037 {
1038 closestBin = binAbove;
1039 }
1037 // search the closest bin
1038 if (deltaAbove > deltaBelow)
1039 {
1040 closestBin = binBelow;
1041 }
1042 else
1043 {
1044 closestBin = binAbove;
1045 }
1040 1046
1041 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1042 fi = closestBin * deltaFreq;
1043 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1044 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1047 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1048 fi = closestBin * deltaFreq;
1049 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1050 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1051
1052 //**************************************************************************************
1053 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1054 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1055 //**************************************************************************************
1045 1056
1046 //**************************************************************************************
1047 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1048 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1049 //**************************************************************************************
1057 // 1. IF freqToFilterOut is included in [ fi_min; fi_MAX ]
1058 // => remove f_(i), f_(i-1) and f_(i+1)
1059 if ( ( freqToFilterOut > fi_min ) && ( freqToFilterOut < fi_MAX ) )
1060 {
1061 binToRemove[0] = (closestBin - 1) - 1;
1062 binToRemove[1] = (closestBin) - 1;
1063 binToRemove[2] = (closestBin + 1) - 1;
1064 }
1065 // 2. ELSE
1066 // => remove the two f_(i) which are around f_RW
1067 else
1068 {
1069 binToRemove[0] = (binBelow) - 1;
1070 binToRemove[1] = (binAbove) - 1;
1071 binToRemove[2] = (-1);
1072 }
1050 1073
1051 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1052 // => remove f_(i), f_(i-1) and f_(i+1)
1053 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1054 {
1055 binToRemove[0] = (closestBin - 1) - 1;
1056 binToRemove[1] = (closestBin) - 1;
1057 binToRemove[2] = (closestBin + 1) - 1;
1058 }
1059 // 2. ELSE
1060 // => remove the two f_(i) which are around f_RW
1061 else
1062 {
1063 binToRemove[0] = (binBelow) - 1;
1064 binToRemove[1] = (binAbove) - 1;
1065 binToRemove[2] = (-1);
1066 }
1074 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1075 {
1076 bin = binToRemove[k];
1077 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1078 {
1079 if (flag == 1)
1080 {
1081 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1082 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1083 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1084 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1085 }
1086 }
1087 }
1067 1088
1068 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1069 {
1070 bin = binToRemove[k];
1071 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1089 // update freqToFilterOut
1090 if ( freqToFilterOut == f_RW_MAX )
1091 {
1092 filteringSet = true; // end of the loop
1093 }
1094 else
1072 1095 {
1073 if (flag == 1)
1074 {
1075 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1076 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1077 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1078 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1079 }
1096 freqToFilterOut = freqToFilterOut + deltaFreq;
1097 }
1098
1099 if ( freqToFilterOut > f_RW_MAX)
1100 {
1101 freqToFilterOut = f_RW_MAX;
1080 1102 }
1081 1103 }
1082 1104 }
1083 1105
1084 1106 void build_sy_lfr_rw_mask( unsigned int channel )
1085 1107 {
1086 1108 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1087 1109 unsigned char *maskPtr;
1088 1110 double deltaF;
1089 1111 unsigned k;
1090 1112
1091 1113 k = 0;
1092 1114
1093 1115 maskPtr = NULL;
1094 1116 deltaF = DELTAF_F2;
1095 1117
1096 1118 switch (channel)
1097 1119 {
1098 1120 case CHANNELF0:
1099 1121 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1100 1122 deltaF = DELTAF_F0;
1101 1123 break;
1102 1124 case CHANNELF1:
1103 1125 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1104 1126 deltaF = DELTAF_F1;
1105 1127 break;
1106 1128 case CHANNELF2:
1107 1129 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1108 1130 deltaF = DELTAF_F2;
1109 1131 break;
1110 1132 default:
1111 1133 break;
1112 1134 }
1113 1135
1114 1136 for (k = 0; k < BYTES_PER_MASK; k++)
1115 1137 {
1116 1138 local_rw_fbins_mask[k] = INT8_ALL_F;
1117 1139 }
1118 1140
1119 1141 // RW1 F1
1120 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F1) >> SHIFT_7_BITS ); // [1000 0000]
1142 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F1) >> SHIFT_7_BITS, 1. ); // [1000 0000]
1121 1143
1122 1144 // RW1 F2
1123 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F2) >> SHIFT_6_BITS ); // [0100 0000]
1145 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F2) >> SHIFT_6_BITS, 1. ); // [0100 0000]
1124 1146
1125 1147 // RW2 F1
1126 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F1) >> SHIFT_5_BITS ); // [0010 0000]
1148 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F1) >> SHIFT_5_BITS, 1. ); // [0010 0000]
1127 1149
1128 1150 // RW2 F2
1129 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F2) >> SHIFT_4_BITS ); // [0001 0000]
1151 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F2) >> SHIFT_4_BITS, 1. ); // [0001 0000]
1130 1152
1131 1153 // RW3 F1
1132 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F1) >> SHIFT_3_BITS ); // [0000 1000]
1154 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F1) >> SHIFT_3_BITS, 1. ); // [0000 1000]
1133 1155
1134 1156 // RW3 F2
1135 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F2) >> SHIFT_2_BITS ); // [0000 0100]
1157 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F2) >> SHIFT_2_BITS, 1. ); // [0000 0100]
1136 1158
1137 1159 // RW4 F1
1138 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F1) >> 1 ); // [0000 0010]
1160 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F1) >> 1 , 1. ); // [0000 0010]
1139 1161
1140 1162 // RW4 F2
1141 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F2) ); // [0000 0001]
1163 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F2) , 1.); // [0000 0001]
1142 1164
1143 1165 // update the value of the fbins related to reaction wheels frequency filtering
1144 1166 if (maskPtr != NULL)
1145 1167 {
1146 1168 for (k = 0; k < BYTES_PER_MASK; k++)
1147 1169 {
1148 1170 maskPtr[k] = local_rw_fbins_mask[k];
1149 1171 }
1150 1172 }
1151 1173 }
1152 1174
1153 1175 void build_sy_lfr_rw_masks( void )
1154 1176 {
1155 1177 build_sy_lfr_rw_mask( CHANNELF0 );
1156 1178 build_sy_lfr_rw_mask( CHANNELF1 );
1157 1179 build_sy_lfr_rw_mask( CHANNELF2 );
1158 1180 }
1159 1181
1160 1182 void merge_fbins_masks( void )
1161 1183 {
1162 1184 unsigned char k;
1163 1185
1164 1186 unsigned char *fbins_f0;
1165 1187 unsigned char *fbins_f1;
1166 1188 unsigned char *fbins_f2;
1167 1189 unsigned char *rw_mask_f0;
1168 1190 unsigned char *rw_mask_f1;
1169 1191 unsigned char *rw_mask_f2;
1170 1192
1171 1193 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1172 1194 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1173 1195 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1174 1196 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1175 1197 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1176 1198 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1177 1199
1178 1200 for( k=0; k < BYTES_PER_MASK; k++ )
1179 1201 {
1180 1202 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1181 1203 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1182 1204 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1183 1205 }
1184 1206 }
1185 1207
1186 1208 //***********
1187 1209 // FBINS MASK
1188 1210
1189 1211 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1190 1212 {
1191 1213 int status;
1192 1214 unsigned int k;
1193 1215 unsigned char *fbins_mask_dump;
1194 1216 unsigned char *fbins_mask_TC;
1195 1217
1196 1218 status = LFR_SUCCESSFUL;
1197 1219
1198 1220 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1199 1221 fbins_mask_TC = TC->dataAndCRC;
1200 1222
1201 1223 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1202 1224 {
1203 1225 fbins_mask_dump[k] = fbins_mask_TC[k];
1204 1226 }
1205 1227
1206 1228 return status;
1207 1229 }
1208 1230
1209 1231 //***************************
1210 1232 // TC_LFR_LOAD_PAS_FILTER_PAR
1211 1233
1212 1234 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1213 1235 {
1214 1236 int flag;
1215 1237 rtems_status_code status;
1216 1238
1217 1239 unsigned char sy_lfr_pas_filter_enabled;
1218 1240 unsigned char sy_lfr_pas_filter_modulus;
1219 1241 float sy_lfr_pas_filter_tbad;
1220 1242 unsigned char sy_lfr_pas_filter_offset;
1221 1243 float sy_lfr_pas_filter_shift;
1222 1244 float sy_lfr_sc_rw_delta_f;
1223 1245 char *parPtr;
1224 1246
1225 1247 flag = LFR_SUCCESSFUL;
1226 1248 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1227 1249 sy_lfr_pas_filter_shift = INIT_FLOAT;
1228 1250 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1229 1251 parPtr = NULL;
1230 1252
1231 1253 //***************
1232 1254 // get parameters
1233 1255 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1234 1256 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1235 1257 copyFloatByChar(
1236 1258 (unsigned char*) &sy_lfr_pas_filter_tbad,
1237 1259 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1238 1260 );
1239 1261 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1240 1262 copyFloatByChar(
1241 1263 (unsigned char*) &sy_lfr_pas_filter_shift,
1242 1264 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1243 1265 );
1244 1266 copyFloatByChar(
1245 1267 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1246 1268 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1247 1269 );
1248 1270
1249 1271 //******************
1250 1272 // CHECK CONSISTENCY
1251 1273
1252 1274 //**************************
1253 1275 // sy_lfr_pas_filter_enabled
1254 1276 // nothing to check, value is 0 or 1
1255 1277
1256 1278 //**************************
1257 1279 // sy_lfr_pas_filter_modulus
1258 1280 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1259 1281 {
1260 1282 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1261 1283 flag = WRONG_APP_DATA;
1262 1284 }
1263 1285
1264 1286 //***********************
1265 1287 // sy_lfr_pas_filter_tbad
1266 1288 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1267 1289 {
1268 1290 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1269 1291 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1270 1292 flag = WRONG_APP_DATA;
1271 1293 }
1272 1294
1273 1295 //*************************
1274 1296 // sy_lfr_pas_filter_offset
1275 1297 if (flag == LFR_SUCCESSFUL)
1276 1298 {
1277 1299 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1278 1300 {
1279 1301 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1280 1302 flag = WRONG_APP_DATA;
1281 1303 }
1282 1304 }
1283 1305
1284 1306 //************************
1285 1307 // sy_lfr_pas_filter_shift
1286 1308 if (flag == LFR_SUCCESSFUL)
1287 1309 {
1288 1310 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1289 1311 {
1290 1312 parPtr = (char*) &sy_lfr_pas_filter_shift;
1291 1313 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1292 1314 flag = WRONG_APP_DATA;
1293 1315 }
1294 1316 }
1295 1317
1296 1318 //*************************************
1297 1319 // check global coherency of the values
1298 1320 if (flag == LFR_SUCCESSFUL)
1299 1321 {
1300 1322 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1301 1323 {
1302 1324 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1303 1325 flag = WRONG_APP_DATA;
1304 1326 }
1305 1327 }
1306 1328
1307 1329 //*********************
1308 1330 // sy_lfr_sc_rw_delta_f
1309 1331 // nothing to check, no default value in the ICD
1310 1332
1311 1333 return flag;
1312 1334 }
1313 1335
1314 1336 //**************
1315 1337 // KCOEFFICIENTS
1316 1338 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1317 1339 {
1318 1340 unsigned int kcoeff;
1319 1341 unsigned short sy_lfr_kcoeff_frequency;
1320 1342 unsigned short bin;
1321 1343 float *kcoeffPtr_norm;
1322 1344 float *kcoeffPtr_sbm;
1323 1345 int status;
1324 1346 unsigned char *kcoeffLoadPtr;
1325 1347 unsigned char *kcoeffNormPtr;
1326 1348 unsigned char *kcoeffSbmPtr_a;
1327 1349 unsigned char *kcoeffSbmPtr_b;
1328 1350
1329 1351 sy_lfr_kcoeff_frequency = 0;
1330 1352 bin = 0;
1331 1353 kcoeffPtr_norm = NULL;
1332 1354 kcoeffPtr_sbm = NULL;
1333 1355 status = LFR_SUCCESSFUL;
1334 1356
1335 1357 // copy the value of the frequency byte by byte DO NOT USE A SHORT* POINTER
1336 1358 copyInt16ByChar( (unsigned char*) &sy_lfr_kcoeff_frequency, &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY] );
1337 1359
1338 1360 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1339 1361 {
1340 1362 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1341 1363 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1342 1364 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1343 1365 status = LFR_DEFAULT;
1344 1366 }
1345 1367 else
1346 1368 {
1347 1369 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1348 1370 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1349 1371 {
1350 1372 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1351 1373 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1352 1374 bin = sy_lfr_kcoeff_frequency;
1353 1375 }
1354 1376 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1355 1377 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1356 1378 {
1357 1379 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1358 1380 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1359 1381 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1360 1382 }
1361 1383 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1362 1384 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1363 1385 {
1364 1386 kcoeffPtr_norm = k_coeff_intercalib_f2;
1365 1387 kcoeffPtr_sbm = NULL;
1366 1388 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1367 1389 }
1368 1390 }
1369 1391
1370 1392 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1371 1393 {
1372 1394 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1373 1395 {
1374 1396 // destination
1375 1397 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1376 1398 // source
1377 1399 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1378 1400 // copy source to destination
1379 1401 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1380 1402 }
1381 1403 }
1382 1404
1383 1405 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1384 1406 {
1385 1407 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1386 1408 {
1387 1409 // destination
1388 1410 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1389 1411 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1390 1412 // source
1391 1413 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1392 1414 // copy source to destination
1393 1415 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1394 1416 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1395 1417 }
1396 1418 }
1397 1419
1398 1420 //print_k_coeff();
1399 1421
1400 1422 return status;
1401 1423 }
1402 1424
1403 1425 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1404 1426 {
1405 1427 destination[BYTE_0] = source[BYTE_0];
1406 1428 destination[BYTE_1] = source[BYTE_1];
1407 1429 destination[BYTE_2] = source[BYTE_2];
1408 1430 destination[BYTE_3] = source[BYTE_3];
1409 1431 }
1410 1432
1411 1433 void copyInt32ByChar( unsigned char *destination, unsigned char *source )
1412 1434 {
1413 1435 destination[BYTE_0] = source[BYTE_0];
1414 1436 destination[BYTE_1] = source[BYTE_1];
1415 1437 destination[BYTE_2] = source[BYTE_2];
1416 1438 destination[BYTE_3] = source[BYTE_3];
1417 1439 }
1418 1440
1419 1441 void copyInt16ByChar( unsigned char *destination, unsigned char *source )
1420 1442 {
1421 1443 destination[BYTE_0] = source[BYTE_0];
1422 1444 destination[BYTE_1] = source[BYTE_1];
1423 1445 }
1424 1446
1425 1447 void floatToChar( float value, unsigned char* ptr)
1426 1448 {
1427 1449 unsigned char* valuePtr;
1428 1450
1429 1451 valuePtr = (unsigned char*) &value;
1430 1452
1431 1453 ptr[BYTE_0] = valuePtr[BYTE_0];
1432 1454 ptr[BYTE_1] = valuePtr[BYTE_1];
1433 1455 ptr[BYTE_2] = valuePtr[BYTE_2];
1434 1456 ptr[BYTE_3] = valuePtr[BYTE_3];
1435 1457 }
1436 1458
1437 1459 //**********
1438 1460 // init dump
1439 1461
1440 1462 void init_parameter_dump( void )
1441 1463 {
1442 1464 /** This function initialize the parameter_dump_packet global variable with default values.
1443 1465 *
1444 1466 */
1445 1467
1446 1468 unsigned int k;
1447 1469
1448 1470 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1449 1471 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1450 1472 parameter_dump_packet.reserved = CCSDS_RESERVED;
1451 1473 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1452 1474 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1453 1475 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1454 1476 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1455 1477 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1456 1478 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1457 1479 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1458 1480 // DATA FIELD HEADER
1459 1481 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1460 1482 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1461 1483 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1462 1484 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1463 1485 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1464 1486 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1465 1487 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1466 1488 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1467 1489 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1468 1490 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1469 1491 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1470 1492
1471 1493 //******************
1472 1494 // COMMON PARAMETERS
1473 1495 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1474 1496 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1475 1497
1476 1498 //******************
1477 1499 // NORMAL PARAMETERS
1478 1500 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1479 1501 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1480 1502 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1481 1503 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1482 1504 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1483 1505 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1484 1506 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1485 1507 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1486 1508 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1487 1509
1488 1510 //*****************
1489 1511 // BURST PARAMETERS
1490 1512 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1491 1513 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1492 1514
1493 1515 //****************
1494 1516 // SBM1 PARAMETERS
1495 1517 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1496 1518 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1497 1519
1498 1520 //****************
1499 1521 // SBM2 PARAMETERS
1500 1522 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1501 1523 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1502 1524
1503 1525 //************
1504 1526 // FBINS MASKS
1505 1527 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1506 1528 {
1507 1529 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = INT8_ALL_F;
1508 1530 }
1509 1531
1510 1532 // PAS FILTER PARAMETERS
1511 1533 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1512 1534 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1513 1535 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1514 1536 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1515 1537 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1516 1538 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1517 1539 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1518 1540
1519 1541 // LFR_RW_MASK
1520 1542 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1521 1543 {
1522 1544 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = INT8_ALL_F;
1523 1545 }
1524 1546
1525 1547 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1526 1548 merge_fbins_masks();
1527 1549 }
1528 1550
1529 1551 void init_kcoefficients_dump( void )
1530 1552 {
1531 1553 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1532 1554 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1533 1555
1534 1556 kcoefficient_node_1.previous = NULL;
1535 1557 kcoefficient_node_1.next = NULL;
1536 1558 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1537 1559 kcoefficient_node_1.coarseTime = INIT_CHAR;
1538 1560 kcoefficient_node_1.fineTime = INIT_CHAR;
1539 1561 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1540 1562 kcoefficient_node_1.status = INIT_CHAR;
1541 1563
1542 1564 kcoefficient_node_2.previous = NULL;
1543 1565 kcoefficient_node_2.next = NULL;
1544 1566 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1545 1567 kcoefficient_node_2.coarseTime = INIT_CHAR;
1546 1568 kcoefficient_node_2.fineTime = INIT_CHAR;
1547 1569 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1548 1570 kcoefficient_node_2.status = INIT_CHAR;
1549 1571 }
1550 1572
1551 1573 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1552 1574 {
1553 1575 unsigned int k;
1554 1576 unsigned int packetLength;
1555 1577
1556 1578 packetLength =
1557 1579 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1558 1580
1559 1581 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1560 1582 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1561 1583 kcoefficients_dump->reserved = CCSDS_RESERVED;
1562 1584 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1563 1585 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1564 1586 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1565 1587 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1566 1588 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1567 1589 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1568 1590 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1569 1591 // DATA FIELD HEADER
1570 1592 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1571 1593 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1572 1594 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1573 1595 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1574 1596 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1575 1597 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1576 1598 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1577 1599 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1578 1600 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1579 1601 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1580 1602 kcoefficients_dump->sid = SID_K_DUMP;
1581 1603
1582 1604 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1583 1605 kcoefficients_dump->pkt_nr = PKTNR_1;
1584 1606 kcoefficients_dump->blk_nr = blk_nr;
1585 1607
1586 1608 //******************
1587 1609 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1588 1610 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1589 1611 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1590 1612 {
1591 1613 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1592 1614 }
1593 1615 }
1594 1616
1595 1617 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1596 1618 {
1597 1619 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1598 1620 *
1599 1621 * @param packet_sequence_control points to the packet sequence control which will be incremented
1600 1622 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1601 1623 *
1602 1624 * If the destination ID is not known, a dedicated counter is incremented.
1603 1625 *
1604 1626 */
1605 1627
1606 1628 unsigned short sequence_cnt;
1607 1629 unsigned short segmentation_grouping_flag;
1608 1630 unsigned short new_packet_sequence_control;
1609 1631 unsigned char i;
1610 1632
1611 1633 switch (destination_id)
1612 1634 {
1613 1635 case SID_TC_GROUND:
1614 1636 i = GROUND;
1615 1637 break;
1616 1638 case SID_TC_MISSION_TIMELINE:
1617 1639 i = MISSION_TIMELINE;
1618 1640 break;
1619 1641 case SID_TC_TC_SEQUENCES:
1620 1642 i = TC_SEQUENCES;
1621 1643 break;
1622 1644 case SID_TC_RECOVERY_ACTION_CMD:
1623 1645 i = RECOVERY_ACTION_CMD;
1624 1646 break;
1625 1647 case SID_TC_BACKUP_MISSION_TIMELINE:
1626 1648 i = BACKUP_MISSION_TIMELINE;
1627 1649 break;
1628 1650 case SID_TC_DIRECT_CMD:
1629 1651 i = DIRECT_CMD;
1630 1652 break;
1631 1653 case SID_TC_SPARE_GRD_SRC1:
1632 1654 i = SPARE_GRD_SRC1;
1633 1655 break;
1634 1656 case SID_TC_SPARE_GRD_SRC2:
1635 1657 i = SPARE_GRD_SRC2;
1636 1658 break;
1637 1659 case SID_TC_OBCP:
1638 1660 i = OBCP;
1639 1661 break;
1640 1662 case SID_TC_SYSTEM_CONTROL:
1641 1663 i = SYSTEM_CONTROL;
1642 1664 break;
1643 1665 case SID_TC_AOCS:
1644 1666 i = AOCS;
1645 1667 break;
1646 1668 case SID_TC_RPW_INTERNAL:
1647 1669 i = RPW_INTERNAL;
1648 1670 break;
1649 1671 default:
1650 1672 i = GROUND;
1651 1673 break;
1652 1674 }
1653 1675
1654 1676 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1655 1677 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1656 1678
1657 1679 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1658 1680
1659 1681 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1660 1682 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1661 1683
1662 1684 // increment the sequence counter
1663 1685 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1664 1686 {
1665 1687 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1666 1688 }
1667 1689 else
1668 1690 {
1669 1691 sequenceCounters_TM_DUMP[ i ] = 0;
1670 1692 }
1671 1693 }
General Comments 0
You need to be logged in to leave comments. Login now