@@ -1,233 +1,238 | |||||
1 | #ifndef GRLIB_REGS_H_INCLUDED |
|
1 | #ifndef GRLIB_REGS_H_INCLUDED | |
2 | #define GRLIB_REGS_H_INCLUDED |
|
2 | #define GRLIB_REGS_H_INCLUDED | |
3 |
|
3 | |||
4 | #define NB_GPTIMER 3 |
|
4 | #define NB_GPTIMER 3 | |
5 |
|
5 | |||
|
6 | #include <stdint.h> | |||
|
7 | ||||
6 | struct apbuart_regs_str{ |
|
8 | struct apbuart_regs_str{ | |
7 | volatile unsigned int data; |
|
9 | volatile unsigned int data; | |
8 | volatile unsigned int status; |
|
10 | volatile unsigned int status; | |
9 | volatile unsigned int ctrl; |
|
11 | volatile unsigned int ctrl; | |
10 | volatile unsigned int scaler; |
|
12 | volatile unsigned int scaler; | |
11 | volatile unsigned int fifoDebug; |
|
13 | volatile unsigned int fifoDebug; | |
12 | }; |
|
14 | }; | |
13 |
|
15 | |||
14 | struct grgpio_regs_str{ |
|
16 | struct grgpio_regs_str{ | |
15 | volatile int io_port_data_register; |
|
17 | volatile int io_port_data_register; | |
16 | int io_port_output_register; |
|
18 | int io_port_output_register; | |
17 | int io_port_direction_register; |
|
19 | int io_port_direction_register; | |
18 | int interrupt_mak_register; |
|
20 | int interrupt_mak_register; | |
19 | int interrupt_polarity_register; |
|
21 | int interrupt_polarity_register; | |
20 | int interrupt_edge_register; |
|
22 | int interrupt_edge_register; | |
21 | int bypass_register; |
|
23 | int bypass_register; | |
22 | int reserved; |
|
24 | int reserved; | |
23 | // 0x20-0x3c interrupt map register(s) |
|
25 | // 0x20-0x3c interrupt map register(s) | |
24 | }; |
|
26 | }; | |
25 |
|
27 | |||
26 | typedef struct { |
|
28 | typedef struct { | |
27 | volatile unsigned int counter; |
|
29 | volatile unsigned int counter; | |
28 | volatile unsigned int reload; |
|
30 | volatile unsigned int reload; | |
29 | volatile unsigned int ctrl; |
|
31 | volatile unsigned int ctrl; | |
30 | volatile unsigned int unused; |
|
32 | volatile unsigned int unused; | |
31 | } timer_regs_t; |
|
33 | } timer_regs_t; | |
32 |
|
34 | |||
33 | //************* |
|
35 | //************* | |
34 | //************* |
|
36 | //************* | |
35 | // GPTIMER_REGS |
|
37 | // GPTIMER_REGS | |
36 |
|
38 | |||
37 | #define GPTIMER_CLEAR_IRQ 0x00000010 // clear pending IRQ if any |
|
39 | #define GPTIMER_CLEAR_IRQ 0x00000010 // clear pending IRQ if any | |
38 | #define GPTIMER_LD 0x00000004 // LD load value from the reload register |
|
40 | #define GPTIMER_LD 0x00000004 // LD load value from the reload register | |
39 | #define GPTIMER_EN 0x00000001 // EN enable the timer |
|
41 | #define GPTIMER_EN 0x00000001 // EN enable the timer | |
40 | #define GPTIMER_EN_MASK 0xfffffffe // EN enable the timer |
|
42 | #define GPTIMER_EN_MASK 0xfffffffe // EN enable the timer | |
41 | #define GPTIMER_RS 0x00000002 // RS restart |
|
43 | #define GPTIMER_RS 0x00000002 // RS restart | |
42 | #define GPTIMER_IE 0x00000008 // IE interrupt enable |
|
44 | #define GPTIMER_IE 0x00000008 // IE interrupt enable | |
43 | #define GPTIMER_IE_MASK 0xffffffef // IE interrupt enable |
|
45 | #define GPTIMER_IE_MASK 0xffffffef // IE interrupt enable | |
44 |
|
46 | |||
45 | typedef struct { |
|
47 | typedef struct { | |
46 | volatile unsigned int scaler_value; |
|
48 | volatile unsigned int scaler_value; | |
47 | volatile unsigned int scaler_reload; |
|
49 | volatile unsigned int scaler_reload; | |
48 | volatile unsigned int conf; |
|
50 | volatile unsigned int conf; | |
49 | volatile unsigned int unused0; |
|
51 | volatile unsigned int unused0; | |
50 | timer_regs_t timer[NB_GPTIMER]; |
|
52 | timer_regs_t timer[NB_GPTIMER]; | |
51 | } gptimer_regs_t; |
|
53 | } gptimer_regs_t; | |
52 |
|
54 | |||
53 | //********************* |
|
55 | //********************* | |
54 | //********************* |
|
56 | //********************* | |
55 | // TIME_MANAGEMENT_REGS |
|
57 | // TIME_MANAGEMENT_REGS | |
56 |
|
58 | |||
57 | #define VAL_SOFTWARE_RESET 0x02 // [0010] software reset |
|
59 | #define VAL_SOFTWARE_RESET 0x02 // [0010] software reset | |
58 | #define VAL_LFR_SYNCHRONIZED 0x80000000 |
|
60 | #define VAL_LFR_SYNCHRONIZED 0x80000000 | |
59 | #define BIT_SYNCHRONIZATION 31 |
|
61 | #define BIT_SYNCHRONIZATION 31 | |
60 | #define COARSE_TIME_MASK 0x7fffffff |
|
62 | #define COARSE_TIME_MASK 0x7fffffff | |
61 | #define SYNC_BIT_MASK 0x7f |
|
63 | #define SYNC_BIT_MASK 0x7f | |
62 | #define SYNC_BIT 0x80 |
|
64 | #define SYNC_BIT 0x80 | |
63 | #define BIT_CAL_RELOAD 0x00000010 |
|
65 | #define BIT_CAL_RELOAD 0x00000010 | |
64 | #define MASK_CAL_RELOAD 0xffffffef // [1110 1111] |
|
66 | #define MASK_CAL_RELOAD 0xffffffef // [1110 1111] | |
65 | #define BIT_CAL_ENABLE 0x00000040 |
|
67 | #define BIT_CAL_ENABLE 0x00000040 | |
66 | #define MASK_CAL_ENABLE 0xffffffbf // [1011 1111] |
|
68 | #define MASK_CAL_ENABLE 0xffffffbf // [1011 1111] | |
67 | #define BIT_SET_INTERLEAVED 0x00000020 // [0010 0000] |
|
69 | #define BIT_SET_INTERLEAVED 0x00000020 // [0010 0000] | |
68 | #define MASK_SET_INTERLEAVED 0xffffffdf // [1101 1111] |
|
70 | #define MASK_SET_INTERLEAVED 0xffffffdf // [1101 1111] | |
69 | #define BIT_SOFT_RESET 0x00000004 // [0100] |
|
71 | #define BIT_SOFT_RESET 0x00000004 // [0100] | |
70 | #define MASK_SOFT_RESET 0xfffffffb // [1011] |
|
72 | #define MASK_SOFT_RESET 0xfffffffb // [1011] | |
71 |
|
73 | |||
72 | typedef struct { |
|
74 | typedef struct { | |
73 | volatile int ctrl; // bit 0 forces the load of the coarse_time_load value and resets the fine_time |
|
75 | volatile int ctrl; // bit 0 forces the load of the coarse_time_load value and resets the fine_time | |
74 | // bit 1 is the soft reset for the time management module |
|
76 | // bit 1 is the soft reset for the time management module | |
75 | // bit 2 is the soft reset for the waveform picker and the spectral matrix modules, set to 1 after HW reset |
|
77 | // bit 2 is the soft reset for the waveform picker and the spectral matrix modules, set to 1 after HW reset | |
76 | volatile int coarse_time_load; |
|
78 | volatile int coarse_time_load; | |
77 | volatile int coarse_time; |
|
79 | volatile int coarse_time; | |
78 | volatile int fine_time; |
|
80 | volatile int fine_time; | |
79 | // TEMPERATURES |
|
81 | // TEMPERATURES | |
80 | volatile int temp_pcb; // SEL1 = 0 SEL0 = 0 |
|
82 | volatile int temp_pcb; // SEL1 = 0 SEL0 = 0 | |
81 | volatile int temp_fpga; // SEL1 = 0 SEL0 = 1 |
|
83 | volatile int temp_fpga; // SEL1 = 0 SEL0 = 1 | |
82 | volatile int temp_scm; // SEL1 = 1 SEL0 = 0 |
|
84 | volatile int temp_scm; // SEL1 = 1 SEL0 = 0 | |
83 | // CALIBRATION |
|
85 | // CALIBRATION | |
84 | volatile unsigned int calDACCtrl; |
|
86 | volatile unsigned int calDACCtrl; | |
85 | volatile unsigned int calPrescaler; |
|
87 | volatile unsigned int calPrescaler; | |
86 | volatile unsigned int calDivisor; |
|
88 | volatile unsigned int calDivisor; | |
87 | volatile unsigned int calDataPtr; |
|
89 | volatile unsigned int calDataPtr; | |
88 | volatile unsigned int calData; |
|
90 | volatile unsigned int calData; | |
89 | } time_management_regs_t; |
|
91 | } time_management_regs_t; | |
90 |
|
92 | |||
91 | //********************* |
|
93 | //********************* | |
92 | //********************* |
|
94 | //********************* | |
93 | // WAVEFORM_PICKER_REGS |
|
95 | // WAVEFORM_PICKER_REGS | |
94 |
|
96 | |||
95 | #define BITS_WFP_STATUS_F3 0xc0 // [1100 0000] check the f3 full bits |
|
97 | #define BITS_WFP_STATUS_F3 0xc0 // [1100 0000] check the f3 full bits | |
96 | #define BIT_WFP_BUF_F3_0 0x40 // [0100 0000] f3 buffer 0 is full |
|
98 | #define BIT_WFP_BUF_F3_0 0x40 // [0100 0000] f3 buffer 0 is full | |
97 | #define BIT_WFP_BUF_F3_1 0x80 // [1000 0000] f3 buffer 1 is full |
|
99 | #define BIT_WFP_BUF_F3_1 0x80 // [1000 0000] f3 buffer 1 is full | |
98 | #define RST_WFP_F3_0 0x00008840 // [1000 1000 0100 0000] |
|
100 | #define RST_WFP_F3_0 0x00008840 // [1000 1000 0100 0000] | |
99 | #define RST_WFP_F3_1 0x00008880 // [1000 1000 1000 0000] |
|
101 | #define RST_WFP_F3_1 0x00008880 // [1000 1000 1000 0000] | |
100 |
|
102 | |||
101 | #define BITS_WFP_STATUS_F2 0x30 // [0011 0000] get the status bits for f2 |
|
103 | #define BITS_WFP_STATUS_F2 0x30 // [0011 0000] get the status bits for f2 | |
102 | #define SHIFT_WFP_STATUS_F2 4 |
|
104 | #define SHIFT_WFP_STATUS_F2 4 | |
103 | #define BIT_WFP_BUF_F2_0 0x10 // [0001 0000] f2 buffer 0 is full |
|
105 | #define BIT_WFP_BUF_F2_0 0x10 // [0001 0000] f2 buffer 0 is full | |
104 | #define BIT_WFP_BUF_F2_1 0x20 // [0010 0000] f2 buffer 1 is full |
|
106 | #define BIT_WFP_BUF_F2_1 0x20 // [0010 0000] f2 buffer 1 is full | |
105 | #define RST_WFP_F2_0 0x00004410 // [0100 0100 0001 0000] |
|
107 | #define RST_WFP_F2_0 0x00004410 // [0100 0100 0001 0000] | |
106 | #define RST_WFP_F2_1 0x00004420 // [0100 0100 0010 0000] |
|
108 | #define RST_WFP_F2_1 0x00004420 // [0100 0100 0010 0000] | |
107 |
|
109 | |||
108 | #define BITS_WFP_STATUS_F1 0x0c // [0000 1100] check the f1 full bits |
|
110 | #define BITS_WFP_STATUS_F1 0x0c // [0000 1100] check the f1 full bits | |
109 | #define BIT_WFP_BUF_F1_0 0x04 // [0000 0100] f1 buffer 0 is full |
|
111 | #define BIT_WFP_BUF_F1_0 0x04 // [0000 0100] f1 buffer 0 is full | |
110 | #define BIT_WFP_BUF_F1_1 0x08 // [0000 1000] f1 buffer 1 is full |
|
112 | #define BIT_WFP_BUF_F1_1 0x08 // [0000 1000] f1 buffer 1 is full | |
111 | #define RST_WFP_F1_0 0x00002204 // [0010 0010 0000 0100] f1 bits = 0 |
|
113 | #define RST_WFP_F1_0 0x00002204 // [0010 0010 0000 0100] f1 bits = 0 | |
112 | #define RST_WFP_F1_1 0x00002208 // [0010 0010 0000 1000] f1 bits = 0 |
|
114 | #define RST_WFP_F1_1 0x00002208 // [0010 0010 0000 1000] f1 bits = 0 | |
113 |
|
115 | |||
114 | #define BITS_WFP_STATUS_F0 0x03 // [0000 0011] check the f0 full bits |
|
116 | #define BITS_WFP_STATUS_F0 0x03 // [0000 0011] check the f0 full bits | |
115 | #define RST_WFP_F0_0 0x00001101 // [0001 0001 0000 0001] |
|
117 | #define RST_WFP_F0_0 0x00001101 // [0001 0001 0000 0001] | |
116 | #define RST_WFP_F0_1 0x00001102 // [0001 0001 0000 0010] |
|
118 | #define RST_WFP_F0_1 0x00001102 // [0001 0001 0000 0010] | |
117 |
|
119 | |||
118 | #define BIT_WFP_BUFFER_0 0x01 |
|
120 | #define BIT_WFP_BUFFER_0 0x01 | |
119 | #define BIT_WFP_BUFFER_1 0x02 |
|
121 | #define BIT_WFP_BUFFER_1 0x02 | |
120 |
|
122 | |||
121 | #define RST_BITS_RUN_BURST_EN 0x80 // [1000 0000] burst f2, f1, f0 enable f3, f2, f1, f0 |
|
123 | #define RST_BITS_RUN_BURST_EN 0x80 // [1000 0000] burst f2, f1, f0 enable f3, f2, f1, f0 | |
122 | #define BITS_WFP_ENABLE_ALL 0x0f // [0000 1111] enable f3, f2, f1, f0 |
|
124 | #define BITS_WFP_ENABLE_ALL 0x0f // [0000 1111] enable f3, f2, f1, f0 | |
123 | #define BITS_WFP_ENABLE_BURST 0x0c // [0000 1100] enable f3, f2 |
|
125 | #define BITS_WFP_ENABLE_BURST 0x0c // [0000 1100] enable f3, f2 | |
124 | #define RUN_BURST_ENABLE_SBM2 0x60 // [0110 0000] enable f2 and f1 burst |
|
126 | #define RUN_BURST_ENABLE_SBM2 0x60 // [0110 0000] enable f2 and f1 burst | |
125 | #define RUN_BURST_ENABLE_BURST 0x40 // [0100 0000] f2 burst enabled |
|
127 | #define RUN_BURST_ENABLE_BURST 0x40 // [0100 0000] f2 burst enabled | |
126 |
|
128 | |||
127 | #define DFLT_WFP_NB_DATA_BY_BUFFER 0xa7f // 0x30 *** 2688 - 1 => nb samples -1 |
|
129 | #define DFLT_WFP_NB_DATA_BY_BUFFER 0xa7f // 0x30 *** 2688 - 1 => nb samples -1 | |
128 | #define DFLT_WFP_SNAPSHOT_PARAM 0xa80 // 0x34 *** 2688 => nb samples |
|
130 | #define DFLT_WFP_SNAPSHOT_PARAM 0xa80 // 0x34 *** 2688 => nb samples | |
129 | #define DFLT_WFP_BUFFER_LENGTH 0x1f8 // buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8 |
|
131 | #define DFLT_WFP_BUFFER_LENGTH 0x1f8 // buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8 | |
130 | #define DFLT_WFP_DELTA_F0_2 0x30 // 48 = 11 0000, max 7 bits |
|
132 | #define DFLT_WFP_DELTA_F0_2 0x30 // 48 = 11 0000, max 7 bits | |
131 |
|
133 | |||
132 | // PDB >= 0.1.28, 0x80000f54 |
|
134 | // PDB >= 0.1.28, 0x80000f54 | |
133 | typedef struct{ |
|
135 | typedef struct{ | |
134 | int data_shaping; // 0x00 00 *** R2 R1 R0 SP1 SP0 BW |
|
136 | int data_shaping; // 0x00 00 *** R2 R1 R0 SP1 SP0 BW | |
135 | int run_burst_enable; // 0x04 01 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ] |
|
137 | int run_burst_enable; // 0x04 01 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ] | |
136 | int addr_data_f0_0; // 0x08 |
|
138 | int addr_data_f0_0; // 0x08 | |
137 | int addr_data_f0_1; // 0x0c |
|
139 | int addr_data_f0_1; // 0x0c | |
138 | int addr_data_f1_0; // 0x10 |
|
140 | int addr_data_f1_0; // 0x10 | |
139 | int addr_data_f1_1; // 0x14 |
|
141 | int addr_data_f1_1; // 0x14 | |
140 | int addr_data_f2_0; // 0x18 |
|
142 | int addr_data_f2_0; // 0x18 | |
141 | int addr_data_f2_1; // 0x1c |
|
143 | int addr_data_f2_1; // 0x1c | |
142 | int addr_data_f3_0; // 0x20 |
|
144 | int addr_data_f3_0; // 0x20 | |
143 | int addr_data_f3_1; // 0x24 |
|
145 | int addr_data_f3_1; // 0x24 | |
144 | volatile int status; // 0x28 |
|
146 | volatile int status; // 0x28 | |
145 | volatile int delta_snapshot; // 0x2c |
|
147 | volatile int delta_snapshot; // 0x2c | |
146 | int delta_f0; // 0x30 |
|
148 | int delta_f0; // 0x30 | |
147 | int delta_f0_2; // 0x34 |
|
149 | int delta_f0_2; // 0x34 | |
148 | int delta_f1; // 0x38 |
|
150 | int delta_f1; // 0x38 | |
149 | int delta_f2; // 0x3c |
|
151 | int delta_f2; // 0x3c | |
150 | int nb_data_by_buffer; // 0x40 number of samples in a buffer = 2688 |
|
152 | int nb_data_by_buffer; // 0x40 number of samples in a buffer = 2688 | |
151 | int snapshot_param; // 0x44 |
|
153 | int snapshot_param; // 0x44 | |
152 | int start_date; // 0x48 |
|
154 | int start_date; // 0x48 | |
153 | // |
|
155 | // | |
154 | volatile unsigned int f0_0_coarse_time; // 0x4c |
|
156 | volatile unsigned int f0_0_coarse_time; // 0x4c | |
155 | volatile unsigned int f0_0_fine_time; // 0x50 |
|
157 | volatile unsigned int f0_0_fine_time; // 0x50 | |
156 | volatile unsigned int f0_1_coarse_time; // 0x54 |
|
158 | volatile unsigned int f0_1_coarse_time; // 0x54 | |
157 | volatile unsigned int f0_1_fine_time; // 0x58 |
|
159 | volatile unsigned int f0_1_fine_time; // 0x58 | |
158 | // |
|
160 | // | |
159 | volatile unsigned int f1_0_coarse_time; // 0x5c |
|
161 | volatile unsigned int f1_0_coarse_time; // 0x5c | |
160 | volatile unsigned int f1_0_fine_time; // 0x60 |
|
162 | volatile unsigned int f1_0_fine_time; // 0x60 | |
161 | volatile unsigned int f1_1_coarse_time; // 0x64 |
|
163 | volatile unsigned int f1_1_coarse_time; // 0x64 | |
162 | volatile unsigned int f1_1_fine_time; // 0x68 |
|
164 | volatile unsigned int f1_1_fine_time; // 0x68 | |
163 | // |
|
165 | // | |
164 | volatile unsigned int f2_0_coarse_time; // 0x6c |
|
166 | volatile unsigned int f2_0_coarse_time; // 0x6c | |
165 | volatile unsigned int f2_0_fine_time; // 0x70 |
|
167 | volatile unsigned int f2_0_fine_time; // 0x70 | |
166 | volatile unsigned int f2_1_coarse_time; // 0x74 |
|
168 | volatile unsigned int f2_1_coarse_time; // 0x74 | |
167 | volatile unsigned int f2_1_fine_time; // 0x78 |
|
169 | volatile unsigned int f2_1_fine_time; // 0x78 | |
168 | // |
|
170 | // | |
169 | volatile unsigned int f3_0_coarse_time; // 0x7c => 0x7c + 0xf54 = 0xd0 |
|
171 | volatile unsigned int f3_0_coarse_time; // 0x7c => 0x7c + 0xf54 = 0xd0 | |
170 | volatile unsigned int f3_0_fine_time; // 0x80 |
|
172 | volatile unsigned int f3_0_fine_time; // 0x80 | |
171 | volatile unsigned int f3_1_coarse_time; // 0x84 |
|
173 | volatile unsigned int f3_1_coarse_time; // 0x84 | |
172 | volatile unsigned int f3_1_fine_time; // 0x88 |
|
174 | volatile unsigned int f3_1_fine_time; // 0x88 | |
173 | // |
|
175 | // | |
174 | unsigned int buffer_length; // 0x8c = buffer length in burst 2688 / 16 = 168 |
|
176 | unsigned int buffer_length; // 0x8c = buffer length in burst 2688 / 16 = 168 | |
175 | // |
|
177 | // | |
176 |
volatile |
|
178 | volatile int16_t v_dummy; // 0x90 | |
177 |
volatile |
|
179 | volatile int16_t v; // 0x90 | |
178 |
volatile |
|
180 | volatile int16_t e1_dummy; // 0x94 | |
|
181 | volatile int16_t e1; // 0x94 | |||
|
182 | volatile int16_t e2_dummy; // 0x98 | |||
|
183 | volatile int16_t e2; // 0x98 | |||
179 | } waveform_picker_regs_0_1_18_t; |
|
184 | } waveform_picker_regs_0_1_18_t; | |
180 |
|
185 | |||
181 | //********************* |
|
186 | //********************* | |
182 | //********************* |
|
187 | //********************* | |
183 | // SPECTRAL_MATRIX_REGS |
|
188 | // SPECTRAL_MATRIX_REGS | |
184 |
|
189 | |||
185 | #define BITS_STATUS_F0 0x03 // [0011] |
|
190 | #define BITS_STATUS_F0 0x03 // [0011] | |
186 | #define BITS_STATUS_F1 0x0c // [1100] |
|
191 | #define BITS_STATUS_F1 0x0c // [1100] | |
187 | #define BITS_STATUS_F2 0x30 // [0011 0000] |
|
192 | #define BITS_STATUS_F2 0x30 // [0011 0000] | |
188 | #define BITS_HK_AA_SM 0x780 // [0111 1000 0000] |
|
193 | #define BITS_HK_AA_SM 0x780 // [0111 1000 0000] | |
189 | #define BITS_SM_ERR 0x7c0 // [0111 1100 0000] |
|
194 | #define BITS_SM_ERR 0x7c0 // [0111 1100 0000] | |
190 | #define BITS_STATUS_REG 0x7ff // [0111 1111 1111] |
|
195 | #define BITS_STATUS_REG 0x7ff // [0111 1111 1111] | |
191 | #define BIT_READY_0 0x1 // [01] |
|
196 | #define BIT_READY_0 0x1 // [01] | |
192 | #define BIT_READY_1 0x2 // [10] |
|
197 | #define BIT_READY_1 0x2 // [10] | |
193 | #define BIT_READY_0_1 0x3 // [11] |
|
198 | #define BIT_READY_0_1 0x3 // [11] | |
194 | #define BIT_STATUS_F1_0 0x04 // [0100] |
|
199 | #define BIT_STATUS_F1_0 0x04 // [0100] | |
195 | #define BIT_STATUS_F1_1 0x08 // [1000] |
|
200 | #define BIT_STATUS_F1_1 0x08 // [1000] | |
196 | #define BIT_STATUS_F2_0 0x10 // [0001 0000] |
|
201 | #define BIT_STATUS_F2_0 0x10 // [0001 0000] | |
197 | #define BIT_STATUS_F2_1 0x20 // [0010 0000] |
|
202 | #define BIT_STATUS_F2_1 0x20 // [0010 0000] | |
198 | #define DEFAULT_MATRIX_LENGTH 0xc8 // 25 * 128 / 16 = 200 = 0xc8 |
|
203 | #define DEFAULT_MATRIX_LENGTH 0xc8 // 25 * 128 / 16 = 200 = 0xc8 | |
199 | #define BIT_IRQ_ON_NEW_MATRIX 0x01 |
|
204 | #define BIT_IRQ_ON_NEW_MATRIX 0x01 | |
200 | #define MASK_IRQ_ON_NEW_MATRIX 0xfffffffe |
|
205 | #define MASK_IRQ_ON_NEW_MATRIX 0xfffffffe | |
201 | #define BIT_IRQ_ON_ERROR 0x02 |
|
206 | #define BIT_IRQ_ON_ERROR 0x02 | |
202 | #define MASK_IRQ_ON_ERROR 0xfffffffd |
|
207 | #define MASK_IRQ_ON_ERROR 0xfffffffd | |
203 |
|
208 | |||
204 | typedef struct { |
|
209 | typedef struct { | |
205 | volatile int config; // 0x00 |
|
210 | volatile int config; // 0x00 | |
206 | volatile int status; // 0x04 |
|
211 | volatile int status; // 0x04 | |
207 | volatile int f0_0_address; // 0x08 |
|
212 | volatile int f0_0_address; // 0x08 | |
208 | volatile int f0_1_address; // 0x0C |
|
213 | volatile int f0_1_address; // 0x0C | |
209 | // |
|
214 | // | |
210 | volatile int f1_0_address; // 0x10 |
|
215 | volatile int f1_0_address; // 0x10 | |
211 | volatile int f1_1_address; // 0x14 |
|
216 | volatile int f1_1_address; // 0x14 | |
212 | volatile int f2_0_address; // 0x18 |
|
217 | volatile int f2_0_address; // 0x18 | |
213 | volatile int f2_1_address; // 0x1C |
|
218 | volatile int f2_1_address; // 0x1C | |
214 | // |
|
219 | // | |
215 | volatile unsigned int f0_0_coarse_time; // 0x20 |
|
220 | volatile unsigned int f0_0_coarse_time; // 0x20 | |
216 | volatile unsigned int f0_0_fine_time; // 0x24 |
|
221 | volatile unsigned int f0_0_fine_time; // 0x24 | |
217 | volatile unsigned int f0_1_coarse_time; // 0x28 |
|
222 | volatile unsigned int f0_1_coarse_time; // 0x28 | |
218 | volatile unsigned int f0_1_fine_time; // 0x2C |
|
223 | volatile unsigned int f0_1_fine_time; // 0x2C | |
219 | // |
|
224 | // | |
220 | volatile unsigned int f1_0_coarse_time; // 0x30 |
|
225 | volatile unsigned int f1_0_coarse_time; // 0x30 | |
221 | volatile unsigned int f1_0_fine_time; // 0x34 |
|
226 | volatile unsigned int f1_0_fine_time; // 0x34 | |
222 | volatile unsigned int f1_1_coarse_time; // 0x38 |
|
227 | volatile unsigned int f1_1_coarse_time; // 0x38 | |
223 | volatile unsigned int f1_1_fine_time; // 0x3C |
|
228 | volatile unsigned int f1_1_fine_time; // 0x3C | |
224 | // |
|
229 | // | |
225 | volatile unsigned int f2_0_coarse_time; // 0x40 |
|
230 | volatile unsigned int f2_0_coarse_time; // 0x40 | |
226 | volatile unsigned int f2_0_fine_time; // 0x44 |
|
231 | volatile unsigned int f2_0_fine_time; // 0x44 | |
227 | volatile unsigned int f2_1_coarse_time; // 0x48 |
|
232 | volatile unsigned int f2_1_coarse_time; // 0x48 | |
228 | volatile unsigned int f2_1_fine_time; // 0x4C |
|
233 | volatile unsigned int f2_1_fine_time; // 0x4C | |
229 | // |
|
234 | // | |
230 | unsigned int matrix_length; // 0x50, length of a spectral matrix in burst 3200 / 16 = 200 = 0xc8 |
|
235 | unsigned int matrix_length; // 0x50, length of a spectral matrix in burst 3200 / 16 = 200 = 0xc8 | |
231 | } spectral_matrix_regs_t; |
|
236 | } spectral_matrix_regs_t; | |
232 |
|
237 | |||
233 | #endif // GRLIB_REGS_H_INCLUDED |
|
238 | #endif // GRLIB_REGS_H_INCLUDED |
@@ -1,1001 +1,1001 | |||||
1 | /** General usage functions and RTEMS tasks. |
|
1 | /** General usage functions and RTEMS tasks. | |
2 | * |
|
2 | * | |
3 | * @file |
|
3 | * @file | |
4 | * @author P. LEROY |
|
4 | * @author P. LEROY | |
5 | * |
|
5 | * | |
6 | */ |
|
6 | */ | |
7 |
|
7 | |||
8 | #include "fsw_misc.h" |
|
8 | #include "fsw_misc.h" | |
9 |
|
9 | |||
10 | int16_t hk_lfr_sc_v_f3_as_int16 = 0; |
|
10 | int16_t hk_lfr_sc_v_f3_as_int16 = 0; | |
11 | int16_t hk_lfr_sc_e1_f3_as_int16 = 0; |
|
11 | int16_t hk_lfr_sc_e1_f3_as_int16 = 0; | |
12 | int16_t hk_lfr_sc_e2_f3_as_int16 = 0; |
|
12 | int16_t hk_lfr_sc_e2_f3_as_int16 = 0; | |
13 |
|
13 | |||
14 | void timer_configure(unsigned char timer, unsigned int clock_divider, |
|
14 | void timer_configure(unsigned char timer, unsigned int clock_divider, | |
15 | unsigned char interrupt_level, rtems_isr (*timer_isr)() ) |
|
15 | unsigned char interrupt_level, rtems_isr (*timer_isr)() ) | |
16 | { |
|
16 | { | |
17 | /** This function configures a GPTIMER timer instantiated in the VHDL design. |
|
17 | /** This function configures a GPTIMER timer instantiated in the VHDL design. | |
18 | * |
|
18 | * | |
19 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. |
|
19 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |
20 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). |
|
20 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). | |
21 | * @param clock_divider is the divider of the 1 MHz clock that will be configured. |
|
21 | * @param clock_divider is the divider of the 1 MHz clock that will be configured. | |
22 | * @param interrupt_level is the interrupt level that the timer drives. |
|
22 | * @param interrupt_level is the interrupt level that the timer drives. | |
23 | * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer. |
|
23 | * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer. | |
24 | * |
|
24 | * | |
25 | * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76 |
|
25 | * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76 | |
26 | * |
|
26 | * | |
27 | */ |
|
27 | */ | |
28 |
|
28 | |||
29 | rtems_status_code status; |
|
29 | rtems_status_code status; | |
30 | rtems_isr_entry old_isr_handler; |
|
30 | rtems_isr_entry old_isr_handler; | |
31 |
|
31 | |||
32 | old_isr_handler = NULL; |
|
32 | old_isr_handler = NULL; | |
33 |
|
33 | |||
34 | gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register |
|
34 | gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register | |
35 |
|
35 | |||
36 | status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels |
|
36 | status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels | |
37 | if (status!=RTEMS_SUCCESSFUL) |
|
37 | if (status!=RTEMS_SUCCESSFUL) | |
38 | { |
|
38 | { | |
39 | PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n") |
|
39 | PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n") | |
40 | } |
|
40 | } | |
41 |
|
41 | |||
42 | timer_set_clock_divider( timer, clock_divider); |
|
42 | timer_set_clock_divider( timer, clock_divider); | |
43 | } |
|
43 | } | |
44 |
|
44 | |||
45 | void timer_start(unsigned char timer) |
|
45 | void timer_start(unsigned char timer) | |
46 | { |
|
46 | { | |
47 | /** This function starts a GPTIMER timer. |
|
47 | /** This function starts a GPTIMER timer. | |
48 | * |
|
48 | * | |
49 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. |
|
49 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |
50 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). |
|
50 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). | |
51 | * |
|
51 | * | |
52 | */ |
|
52 | */ | |
53 |
|
53 | |||
54 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ; |
|
54 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ; | |
55 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD; |
|
55 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD; | |
56 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN; |
|
56 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN; | |
57 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS; |
|
57 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS; | |
58 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE; |
|
58 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE; | |
59 | } |
|
59 | } | |
60 |
|
60 | |||
61 | void timer_stop(unsigned char timer) |
|
61 | void timer_stop(unsigned char timer) | |
62 | { |
|
62 | { | |
63 | /** This function stops a GPTIMER timer. |
|
63 | /** This function stops a GPTIMER timer. | |
64 | * |
|
64 | * | |
65 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. |
|
65 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |
66 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). |
|
66 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). | |
67 | * |
|
67 | * | |
68 | */ |
|
68 | */ | |
69 |
|
69 | |||
70 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK; |
|
70 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK; | |
71 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK; |
|
71 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK; | |
72 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ; |
|
72 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ; | |
73 | } |
|
73 | } | |
74 |
|
74 | |||
75 | void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider) |
|
75 | void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider) | |
76 | { |
|
76 | { | |
77 | /** This function sets the clock divider of a GPTIMER timer. |
|
77 | /** This function sets the clock divider of a GPTIMER timer. | |
78 | * |
|
78 | * | |
79 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. |
|
79 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |
80 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). |
|
80 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). | |
81 | * @param clock_divider is the divider of the 1 MHz clock that will be configured. |
|
81 | * @param clock_divider is the divider of the 1 MHz clock that will be configured. | |
82 | * |
|
82 | * | |
83 | */ |
|
83 | */ | |
84 |
|
84 | |||
85 | gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz |
|
85 | gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz | |
86 | } |
|
86 | } | |
87 |
|
87 | |||
88 | // WATCHDOG |
|
88 | // WATCHDOG | |
89 |
|
89 | |||
90 | rtems_isr watchdog_isr( rtems_vector_number vector ) |
|
90 | rtems_isr watchdog_isr( rtems_vector_number vector ) | |
91 | { |
|
91 | { | |
92 | rtems_status_code status_code; |
|
92 | rtems_status_code status_code; | |
93 |
|
93 | |||
94 | status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 ); |
|
94 | status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 ); | |
95 |
|
95 | |||
96 | PRINTF("watchdog_isr *** this is the end, exit(0)\n"); |
|
96 | PRINTF("watchdog_isr *** this is the end, exit(0)\n"); | |
97 |
|
97 | |||
98 | exit(0); |
|
98 | exit(0); | |
99 | } |
|
99 | } | |
100 |
|
100 | |||
101 | void watchdog_configure(void) |
|
101 | void watchdog_configure(void) | |
102 | { |
|
102 | { | |
103 | /** This function configure the watchdog. |
|
103 | /** This function configure the watchdog. | |
104 | * |
|
104 | * | |
105 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. |
|
105 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |
106 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). |
|
106 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). | |
107 | * |
|
107 | * | |
108 | * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB. |
|
108 | * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB. | |
109 | * |
|
109 | * | |
110 | */ |
|
110 | */ | |
111 |
|
111 | |||
112 | LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration |
|
112 | LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration | |
113 |
|
113 | |||
114 | timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr ); |
|
114 | timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr ); | |
115 |
|
115 | |||
116 | LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt |
|
116 | LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt | |
117 | } |
|
117 | } | |
118 |
|
118 | |||
119 | void watchdog_stop(void) |
|
119 | void watchdog_stop(void) | |
120 | { |
|
120 | { | |
121 | LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line |
|
121 | LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line | |
122 | timer_stop( TIMER_WATCHDOG ); |
|
122 | timer_stop( TIMER_WATCHDOG ); | |
123 | LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt |
|
123 | LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt | |
124 | } |
|
124 | } | |
125 |
|
125 | |||
126 | void watchdog_reload(void) |
|
126 | void watchdog_reload(void) | |
127 | { |
|
127 | { | |
128 | /** This function reloads the watchdog timer counter with the timer reload value. |
|
128 | /** This function reloads the watchdog timer counter with the timer reload value. | |
129 | * |
|
129 | * | |
130 | * @param void |
|
130 | * @param void | |
131 | * |
|
131 | * | |
132 | * @return void |
|
132 | * @return void | |
133 | * |
|
133 | * | |
134 | */ |
|
134 | */ | |
135 |
|
135 | |||
136 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD; |
|
136 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD; | |
137 | } |
|
137 | } | |
138 |
|
138 | |||
139 | void watchdog_start(void) |
|
139 | void watchdog_start(void) | |
140 | { |
|
140 | { | |
141 | /** This function starts the watchdog timer. |
|
141 | /** This function starts the watchdog timer. | |
142 | * |
|
142 | * | |
143 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. |
|
143 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |
144 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). |
|
144 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). | |
145 | * |
|
145 | * | |
146 | */ |
|
146 | */ | |
147 |
|
147 | |||
148 | LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); |
|
148 | LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); | |
149 |
|
149 | |||
150 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ; |
|
150 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ; | |
151 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD; |
|
151 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD; | |
152 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN; |
|
152 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN; | |
153 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE; |
|
153 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE; | |
154 |
|
154 | |||
155 | LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG ); |
|
155 | LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG ); | |
156 |
|
156 | |||
157 | } |
|
157 | } | |
158 |
|
158 | |||
159 | int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register |
|
159 | int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register | |
160 | { |
|
160 | { | |
161 | struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART; |
|
161 | struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART; | |
162 |
|
162 | |||
163 | apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE; |
|
163 | apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE; | |
164 |
|
164 | |||
165 | return 0; |
|
165 | return 0; | |
166 | } |
|
166 | } | |
167 |
|
167 | |||
168 | void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value) |
|
168 | void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value) | |
169 | { |
|
169 | { | |
170 | /** This function sets the scaler reload register of the apbuart module |
|
170 | /** This function sets the scaler reload register of the apbuart module | |
171 | * |
|
171 | * | |
172 | * @param regs is the address of the apbuart registers in memory |
|
172 | * @param regs is the address of the apbuart registers in memory | |
173 | * @param value is the value that will be stored in the scaler register |
|
173 | * @param value is the value that will be stored in the scaler register | |
174 | * |
|
174 | * | |
175 | * The value shall be set by the software to get data on the serial interface. |
|
175 | * The value shall be set by the software to get data on the serial interface. | |
176 | * |
|
176 | * | |
177 | */ |
|
177 | */ | |
178 |
|
178 | |||
179 | struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs; |
|
179 | struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs; | |
180 |
|
180 | |||
181 | apbuart_regs->scaler = value; |
|
181 | apbuart_regs->scaler = value; | |
182 |
|
182 | |||
183 | BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value) |
|
183 | BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value) | |
184 | } |
|
184 | } | |
185 |
|
185 | |||
186 | //************ |
|
186 | //************ | |
187 | // RTEMS TASKS |
|
187 | // RTEMS TASKS | |
188 |
|
188 | |||
189 | rtems_task load_task(rtems_task_argument argument) |
|
189 | rtems_task load_task(rtems_task_argument argument) | |
190 | { |
|
190 | { | |
191 | BOOT_PRINTF("in LOAD *** \n") |
|
191 | BOOT_PRINTF("in LOAD *** \n") | |
192 |
|
192 | |||
193 | rtems_status_code status; |
|
193 | rtems_status_code status; | |
194 | unsigned int i; |
|
194 | unsigned int i; | |
195 | unsigned int j; |
|
195 | unsigned int j; | |
196 | rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic |
|
196 | rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic | |
197 | rtems_id watchdog_period_id; // id of the watchdog rate monotonic period |
|
197 | rtems_id watchdog_period_id; // id of the watchdog rate monotonic period | |
198 |
|
198 | |||
199 | watchdog_period_id = RTEMS_ID_NONE; |
|
199 | watchdog_period_id = RTEMS_ID_NONE; | |
200 |
|
200 | |||
201 | name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' ); |
|
201 | name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' ); | |
202 |
|
202 | |||
203 | status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id ); |
|
203 | status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id ); | |
204 | if( status != RTEMS_SUCCESSFUL ) { |
|
204 | if( status != RTEMS_SUCCESSFUL ) { | |
205 | PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status ) |
|
205 | PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status ) | |
206 | } |
|
206 | } | |
207 |
|
207 | |||
208 | i = 0; |
|
208 | i = 0; | |
209 | j = 0; |
|
209 | j = 0; | |
210 |
|
210 | |||
211 | watchdog_configure(); |
|
211 | watchdog_configure(); | |
212 |
|
212 | |||
213 | watchdog_start(); |
|
213 | watchdog_start(); | |
214 |
|
214 | |||
215 | set_sy_lfr_watchdog_enabled( true ); |
|
215 | set_sy_lfr_watchdog_enabled( true ); | |
216 |
|
216 | |||
217 | while(1){ |
|
217 | while(1){ | |
218 | status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD ); |
|
218 | status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD ); | |
219 | watchdog_reload(); |
|
219 | watchdog_reload(); | |
220 | i = i + 1; |
|
220 | i = i + 1; | |
221 | if ( i == WATCHDOG_LOOP_PRINTF ) |
|
221 | if ( i == WATCHDOG_LOOP_PRINTF ) | |
222 | { |
|
222 | { | |
223 | i = 0; |
|
223 | i = 0; | |
224 | j = j + 1; |
|
224 | j = j + 1; | |
225 | PRINTF1("%d\n", j) |
|
225 | PRINTF1("%d\n", j) | |
226 | } |
|
226 | } | |
227 | #ifdef DEBUG_WATCHDOG |
|
227 | #ifdef DEBUG_WATCHDOG | |
228 | if (j == WATCHDOG_LOOP_DEBUG ) |
|
228 | if (j == WATCHDOG_LOOP_DEBUG ) | |
229 | { |
|
229 | { | |
230 | status = rtems_task_delete(RTEMS_SELF); |
|
230 | status = rtems_task_delete(RTEMS_SELF); | |
231 | } |
|
231 | } | |
232 | #endif |
|
232 | #endif | |
233 | } |
|
233 | } | |
234 | } |
|
234 | } | |
235 |
|
235 | |||
236 | rtems_task hous_task(rtems_task_argument argument) |
|
236 | rtems_task hous_task(rtems_task_argument argument) | |
237 | { |
|
237 | { | |
238 | rtems_status_code status; |
|
238 | rtems_status_code status; | |
239 | rtems_status_code spare_status; |
|
239 | rtems_status_code spare_status; | |
240 | rtems_id queue_id; |
|
240 | rtems_id queue_id; | |
241 | rtems_rate_monotonic_period_status period_status; |
|
241 | rtems_rate_monotonic_period_status period_status; | |
242 | bool isSynchronized; |
|
242 | bool isSynchronized; | |
243 |
|
243 | |||
244 | queue_id = RTEMS_ID_NONE; |
|
244 | queue_id = RTEMS_ID_NONE; | |
245 | memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status)); |
|
245 | memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status)); | |
246 | isSynchronized = false; |
|
246 | isSynchronized = false; | |
247 |
|
247 | |||
248 | status = get_message_queue_id_send( &queue_id ); |
|
248 | status = get_message_queue_id_send( &queue_id ); | |
249 | if (status != RTEMS_SUCCESSFUL) |
|
249 | if (status != RTEMS_SUCCESSFUL) | |
250 | { |
|
250 | { | |
251 | PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status) |
|
251 | PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status) | |
252 | } |
|
252 | } | |
253 |
|
253 | |||
254 | BOOT_PRINTF("in HOUS ***\n"); |
|
254 | BOOT_PRINTF("in HOUS ***\n"); | |
255 |
|
255 | |||
256 | if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) { |
|
256 | if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) { | |
257 | status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id ); |
|
257 | status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id ); | |
258 | if( status != RTEMS_SUCCESSFUL ) { |
|
258 | if( status != RTEMS_SUCCESSFUL ) { | |
259 | PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status ); |
|
259 | PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status ); | |
260 | } |
|
260 | } | |
261 | } |
|
261 | } | |
262 |
|
262 | |||
263 | status = rtems_rate_monotonic_cancel(HK_id); |
|
263 | status = rtems_rate_monotonic_cancel(HK_id); | |
264 | if( status != RTEMS_SUCCESSFUL ) { |
|
264 | if( status != RTEMS_SUCCESSFUL ) { | |
265 | PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status ); |
|
265 | PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status ); | |
266 | } |
|
266 | } | |
267 | else { |
|
267 | else { | |
268 | DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n"); |
|
268 | DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n"); | |
269 | } |
|
269 | } | |
270 |
|
270 | |||
271 | // startup phase |
|
271 | // startup phase | |
272 | status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks ); |
|
272 | status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks ); | |
273 | status = rtems_rate_monotonic_get_status( HK_id, &period_status ); |
|
273 | status = rtems_rate_monotonic_get_status( HK_id, &period_status ); | |
274 | DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state) |
|
274 | DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state) | |
275 | while( (period_status.state != RATE_MONOTONIC_EXPIRED) |
|
275 | while( (period_status.state != RATE_MONOTONIC_EXPIRED) | |
276 | && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway |
|
276 | && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway | |
277 | { |
|
277 | { | |
278 | if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization |
|
278 | if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization | |
279 | { |
|
279 | { | |
280 | isSynchronized = true; |
|
280 | isSynchronized = true; | |
281 | } |
|
281 | } | |
282 | else |
|
282 | else | |
283 | { |
|
283 | { | |
284 | status = rtems_rate_monotonic_get_status( HK_id, &period_status ); |
|
284 | status = rtems_rate_monotonic_get_status( HK_id, &period_status ); | |
285 |
|
285 | |||
286 | status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms |
|
286 | status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms | |
287 | } |
|
287 | } | |
288 | } |
|
288 | } | |
289 | status = rtems_rate_monotonic_cancel(HK_id); |
|
289 | status = rtems_rate_monotonic_cancel(HK_id); | |
290 | DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state) |
|
290 | DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state) | |
291 |
|
291 | |||
292 | set_hk_lfr_reset_cause( POWER_ON ); |
|
292 | set_hk_lfr_reset_cause( POWER_ON ); | |
293 |
|
293 | |||
294 | while(1){ // launch the rate monotonic task |
|
294 | while(1){ // launch the rate monotonic task | |
295 | status = rtems_rate_monotonic_period( HK_id, HK_PERIOD ); |
|
295 | status = rtems_rate_monotonic_period( HK_id, HK_PERIOD ); | |
296 | if ( status != RTEMS_SUCCESSFUL ) { |
|
296 | if ( status != RTEMS_SUCCESSFUL ) { | |
297 | PRINTF1( "in HOUS *** ERR period: %d\n", status); |
|
297 | PRINTF1( "in HOUS *** ERR period: %d\n", status); | |
298 | spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 ); |
|
298 | spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 ); | |
299 | } |
|
299 | } | |
300 | else { |
|
300 | else { | |
301 | housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE); |
|
301 | housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE); | |
302 | housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK ); |
|
302 | housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK ); | |
303 | increment_seq_counter( &sequenceCounterHK ); |
|
303 | increment_seq_counter( &sequenceCounterHK ); | |
304 |
|
304 | |||
305 | housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES); |
|
305 | housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES); | |
306 | housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES); |
|
306 | housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES); | |
307 | housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE); |
|
307 | housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE); | |
308 | housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time); |
|
308 | housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time); | |
309 | housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE); |
|
309 | housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE); | |
310 | housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time); |
|
310 | housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time); | |
311 |
|
311 | |||
312 | spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] ); |
|
312 | spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] ); | |
313 |
|
313 | |||
314 | spacewire_read_statistics(); |
|
314 | spacewire_read_statistics(); | |
315 |
|
315 | |||
316 | update_hk_with_grspw_stats(); |
|
316 | update_hk_with_grspw_stats(); | |
317 |
|
317 | |||
318 | set_hk_lfr_time_not_synchro(); |
|
318 | set_hk_lfr_time_not_synchro(); | |
319 |
|
319 | |||
320 | housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max; |
|
320 | housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max; | |
321 | housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max; |
|
321 | housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max; | |
322 | housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max; |
|
322 | housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max; | |
323 | housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max; |
|
323 | housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max; | |
324 | housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max; |
|
324 | housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max; | |
325 |
|
325 | |||
326 | housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare; |
|
326 | housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare; | |
327 | housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters; |
|
327 | housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters; | |
328 | get_temperatures( housekeeping_packet.hk_lfr_temp_scm ); |
|
328 | get_temperatures( housekeeping_packet.hk_lfr_temp_scm ); | |
329 | get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 ); |
|
329 | get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 ); | |
330 | get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load ); |
|
330 | get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load ); | |
331 |
|
331 | |||
332 | hk_lfr_le_me_he_update(); |
|
332 | hk_lfr_le_me_he_update(); | |
333 |
|
333 | |||
334 | // SEND PACKET |
|
334 | // SEND PACKET | |
335 | status = rtems_message_queue_send( queue_id, &housekeeping_packet, |
|
335 | status = rtems_message_queue_send( queue_id, &housekeeping_packet, | |
336 | PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES); |
|
336 | PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES); | |
337 | if (status != RTEMS_SUCCESSFUL) { |
|
337 | if (status != RTEMS_SUCCESSFUL) { | |
338 | PRINTF1("in HOUS *** ERR send: %d\n", status) |
|
338 | PRINTF1("in HOUS *** ERR send: %d\n", status) | |
339 | } |
|
339 | } | |
340 | } |
|
340 | } | |
341 | } |
|
341 | } | |
342 |
|
342 | |||
343 | PRINTF("in HOUS *** deleting task\n") |
|
343 | PRINTF("in HOUS *** deleting task\n") | |
344 |
|
344 | |||
345 | status = rtems_task_delete( RTEMS_SELF ); // should not return |
|
345 | status = rtems_task_delete( RTEMS_SELF ); // should not return | |
346 |
|
346 | |||
347 | return; |
|
347 | return; | |
348 | } |
|
348 | } | |
349 |
|
349 | |||
350 | rtems_task avgv_task(rtems_task_argument argument) |
|
350 | rtems_task avgv_task(rtems_task_argument argument) | |
351 | { |
|
351 | { | |
352 | #define MOVING_AVERAGE 16 |
|
352 | #define MOVING_AVERAGE 16 | |
353 | rtems_status_code status; |
|
353 | rtems_status_code status; | |
354 |
static |
|
354 | static int32_t v[MOVING_AVERAGE] = {0}; | |
355 |
static |
|
355 | static int32_t e1[MOVING_AVERAGE] = {0}; | |
356 |
static |
|
356 | static int32_t e2[MOVING_AVERAGE] = {0}; | |
357 |
|
|
357 | int32_t average_v; | |
358 |
|
|
358 | int32_t average_e1; | |
359 |
|
|
359 | int32_t average_e2; | |
360 |
|
|
360 | int32_t newValue_v; | |
361 |
|
|
361 | int32_t newValue_e1; | |
362 |
|
|
362 | int32_t newValue_e2; | |
363 | unsigned char k; |
|
363 | unsigned char k; | |
364 | unsigned char indexOfOldValue; |
|
364 | unsigned char indexOfOldValue; | |
365 |
|
365 | |||
366 | BOOT_PRINTF("in AVGV ***\n"); |
|
366 | BOOT_PRINTF("in AVGV ***\n"); | |
367 |
|
367 | |||
368 |
if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, & |
|
368 | if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &AVGV_id) != RTEMS_SUCCESSFUL) { | |
369 | status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id ); |
|
369 | status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id ); | |
370 | if( status != RTEMS_SUCCESSFUL ) { |
|
370 | if( status != RTEMS_SUCCESSFUL ) { | |
371 | PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status ); |
|
371 | PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status ); | |
372 | } |
|
372 | } | |
373 | } |
|
373 | } | |
374 |
|
374 | |||
375 | status = rtems_rate_monotonic_cancel(AVGV_id); |
|
375 | status = rtems_rate_monotonic_cancel(AVGV_id); | |
376 | if( status != RTEMS_SUCCESSFUL ) { |
|
376 | if( status != RTEMS_SUCCESSFUL ) { | |
377 | PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status ); |
|
377 | PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status ); | |
378 | } |
|
378 | } | |
379 | else { |
|
379 | else { | |
380 | DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n"); |
|
380 | DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n"); | |
381 | } |
|
381 | } | |
382 |
|
382 | |||
383 | // initialize values |
|
383 | // initialize values | |
384 | indexOfOldValue = MOVING_AVERAGE - 1; |
|
384 | indexOfOldValue = MOVING_AVERAGE - 1; | |
385 |
average_v = |
|
385 | average_v = 0; | |
386 |
average_e1 = |
|
386 | average_e1 = 0; | |
387 |
average_e2 = |
|
387 | average_e2 = 0; | |
388 |
newValue_v = |
|
388 | newValue_v = 0; | |
389 |
newValue_e1 = |
|
389 | newValue_e1 = 0; | |
390 |
newValue_e2 = |
|
390 | newValue_e2 = 0; | |
391 |
|
391 | |||
392 | k = INIT_CHAR; |
|
392 | k = INIT_CHAR; | |
393 |
|
393 | |||
394 | while(1) |
|
394 | while(1) | |
395 | { // launch the rate monotonic task |
|
395 | { // launch the rate monotonic task | |
396 | status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD ); |
|
396 | status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD ); | |
397 | if ( status != RTEMS_SUCCESSFUL ) |
|
397 | if ( status != RTEMS_SUCCESSFUL ) | |
398 | { |
|
398 | { | |
399 | PRINTF1( "in AVGV *** ERR period: %d\n", status); |
|
399 | PRINTF1( "in AVGV *** ERR period: %d\n", status); | |
400 | } |
|
400 | } | |
401 | else |
|
401 | else | |
402 | { |
|
402 | { | |
403 | // get new values |
|
403 | // get new values | |
404 | newValue_v = waveform_picker_regs->v; |
|
404 | newValue_v = (int32_t) waveform_picker_regs->v; | |
405 | newValue_e1 = waveform_picker_regs->e1; |
|
405 | newValue_e1 = (int32_t) waveform_picker_regs->e1; | |
406 | newValue_e2 = waveform_picker_regs->e2; |
|
406 | newValue_e2 = (int32_t) waveform_picker_regs->e2; | |
407 |
|
407 | |||
408 | // compute the moving average |
|
408 | // compute the moving average | |
409 | average_v = average_v + newValue_v - v[k]; |
|
409 | average_v = average_v + newValue_v - v[k]; | |
410 | average_e1 = average_e1 + newValue_e1 - e1[k]; |
|
410 | average_e1 = average_e1 + newValue_e1 - e1[k]; | |
411 | average_e2 = average_e2 + newValue_e2 - e2[k]; |
|
411 | average_e2 = average_e2 + newValue_e2 - e2[k]; | |
412 |
|
412 | |||
413 | // store new values in buffers |
|
413 | // store new values in buffers | |
414 | v[k] = newValue_v; |
|
414 | v[k] = newValue_v; | |
415 | e1[k] = newValue_e1; |
|
415 | e1[k] = newValue_e1; | |
416 | e2[k] = newValue_e2; |
|
416 | e2[k] = newValue_e2; | |
417 | } |
|
417 | } | |
418 | if (k == (MOVING_AVERAGE-1)) |
|
418 | if (k == (MOVING_AVERAGE-1)) | |
419 | { |
|
419 | { | |
420 | k = 0; |
|
420 | k = 0; | |
421 | } |
|
421 | } | |
422 | else |
|
422 | else | |
423 | { |
|
423 | { | |
424 | k++; |
|
424 | k++; | |
425 | } |
|
425 | } | |
426 | //update int16 values |
|
426 | //update int16 values | |
427 |
hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / |
|
427 | hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / MOVING_AVERAGE ); | |
428 |
hk_lfr_sc_e1_f3_as_int16 = |
|
428 | hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / MOVING_AVERAGE ); | |
429 |
hk_lfr_sc_e2_f3_as_int16 = |
|
429 | hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / MOVING_AVERAGE ); | |
430 | } |
|
430 | } | |
431 |
|
431 | |||
432 | PRINTF("in AVGV *** deleting task\n"); |
|
432 | PRINTF("in AVGV *** deleting task\n"); | |
433 |
|
433 | |||
434 | status = rtems_task_delete( RTEMS_SELF ); // should not return |
|
434 | status = rtems_task_delete( RTEMS_SELF ); // should not return | |
435 |
|
435 | |||
436 | return; |
|
436 | return; | |
437 | } |
|
437 | } | |
438 |
|
438 | |||
439 | rtems_task dumb_task( rtems_task_argument unused ) |
|
439 | rtems_task dumb_task( rtems_task_argument unused ) | |
440 | { |
|
440 | { | |
441 | /** This RTEMS taks is used to print messages without affecting the general behaviour of the software. |
|
441 | /** This RTEMS taks is used to print messages without affecting the general behaviour of the software. | |
442 | * |
|
442 | * | |
443 | * @param unused is the starting argument of the RTEMS task |
|
443 | * @param unused is the starting argument of the RTEMS task | |
444 | * |
|
444 | * | |
445 | * The DUMB taks waits for RTEMS events and print messages depending on the incoming events. |
|
445 | * The DUMB taks waits for RTEMS events and print messages depending on the incoming events. | |
446 | * |
|
446 | * | |
447 | */ |
|
447 | */ | |
448 |
|
448 | |||
449 | unsigned int i; |
|
449 | unsigned int i; | |
450 | unsigned int intEventOut; |
|
450 | unsigned int intEventOut; | |
451 | unsigned int coarse_time = 0; |
|
451 | unsigned int coarse_time = 0; | |
452 | unsigned int fine_time = 0; |
|
452 | unsigned int fine_time = 0; | |
453 | rtems_event_set event_out; |
|
453 | rtems_event_set event_out; | |
454 |
|
454 | |||
455 | event_out = EVENT_SETS_NONE_PENDING; |
|
455 | event_out = EVENT_SETS_NONE_PENDING; | |
456 |
|
456 | |||
457 | BOOT_PRINTF("in DUMB *** \n") |
|
457 | BOOT_PRINTF("in DUMB *** \n") | |
458 |
|
458 | |||
459 | while(1){ |
|
459 | while(1){ | |
460 | rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3 |
|
460 | rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3 | |
461 | | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7 |
|
461 | | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7 | |
462 | | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13 |
|
462 | | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13 | |
463 | | RTEMS_EVENT_14, |
|
463 | | RTEMS_EVENT_14, | |
464 | RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT |
|
464 | RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT | |
465 | intEventOut = (unsigned int) event_out; |
|
465 | intEventOut = (unsigned int) event_out; | |
466 | for ( i=0; i<NB_RTEMS_EVENTS; i++) |
|
466 | for ( i=0; i<NB_RTEMS_EVENTS; i++) | |
467 | { |
|
467 | { | |
468 | if ( ((intEventOut >> i) & 1) != 0) |
|
468 | if ( ((intEventOut >> i) & 1) != 0) | |
469 | { |
|
469 | { | |
470 | coarse_time = time_management_regs->coarse_time; |
|
470 | coarse_time = time_management_regs->coarse_time; | |
471 | fine_time = time_management_regs->fine_time; |
|
471 | fine_time = time_management_regs->fine_time; | |
472 | if (i==EVENT_12) |
|
472 | if (i==EVENT_12) | |
473 | { |
|
473 | { | |
474 | PRINTF1("%s\n", DUMB_MESSAGE_12) |
|
474 | PRINTF1("%s\n", DUMB_MESSAGE_12) | |
475 | } |
|
475 | } | |
476 | if (i==EVENT_13) |
|
476 | if (i==EVENT_13) | |
477 | { |
|
477 | { | |
478 | PRINTF1("%s\n", DUMB_MESSAGE_13) |
|
478 | PRINTF1("%s\n", DUMB_MESSAGE_13) | |
479 | } |
|
479 | } | |
480 | if (i==EVENT_14) |
|
480 | if (i==EVENT_14) | |
481 | { |
|
481 | { | |
482 | PRINTF1("%s\n", DUMB_MESSAGE_1) |
|
482 | PRINTF1("%s\n", DUMB_MESSAGE_1) | |
483 | } |
|
483 | } | |
484 | } |
|
484 | } | |
485 | } |
|
485 | } | |
486 | } |
|
486 | } | |
487 | } |
|
487 | } | |
488 |
|
488 | |||
489 | //***************************** |
|
489 | //***************************** | |
490 | // init housekeeping parameters |
|
490 | // init housekeeping parameters | |
491 |
|
491 | |||
492 | void init_housekeeping_parameters( void ) |
|
492 | void init_housekeeping_parameters( void ) | |
493 | { |
|
493 | { | |
494 | /** This function initialize the housekeeping_packet global variable with default values. |
|
494 | /** This function initialize the housekeeping_packet global variable with default values. | |
495 | * |
|
495 | * | |
496 | */ |
|
496 | */ | |
497 |
|
497 | |||
498 | unsigned int i = 0; |
|
498 | unsigned int i = 0; | |
499 | unsigned char *parameters; |
|
499 | unsigned char *parameters; | |
500 | unsigned char sizeOfHK; |
|
500 | unsigned char sizeOfHK; | |
501 |
|
501 | |||
502 | sizeOfHK = sizeof( Packet_TM_LFR_HK_t ); |
|
502 | sizeOfHK = sizeof( Packet_TM_LFR_HK_t ); | |
503 |
|
503 | |||
504 | parameters = (unsigned char*) &housekeeping_packet; |
|
504 | parameters = (unsigned char*) &housekeeping_packet; | |
505 |
|
505 | |||
506 | for(i = 0; i< sizeOfHK; i++) |
|
506 | for(i = 0; i< sizeOfHK; i++) | |
507 | { |
|
507 | { | |
508 | parameters[i] = INIT_CHAR; |
|
508 | parameters[i] = INIT_CHAR; | |
509 | } |
|
509 | } | |
510 |
|
510 | |||
511 | housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID; |
|
511 | housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID; | |
512 | housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID; |
|
512 | housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID; | |
513 | housekeeping_packet.reserved = DEFAULT_RESERVED; |
|
513 | housekeeping_packet.reserved = DEFAULT_RESERVED; | |
514 | housekeeping_packet.userApplication = CCSDS_USER_APP; |
|
514 | housekeeping_packet.userApplication = CCSDS_USER_APP; | |
515 | housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE); |
|
515 | housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE); | |
516 | housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK); |
|
516 | housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK); | |
517 | housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE; |
|
517 | housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE; | |
518 | housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT; |
|
518 | housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT; | |
519 | housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE); |
|
519 | housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE); | |
520 | housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK ); |
|
520 | housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK ); | |
521 | housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2; |
|
521 | housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2; | |
522 | housekeeping_packet.serviceType = TM_TYPE_HK; |
|
522 | housekeeping_packet.serviceType = TM_TYPE_HK; | |
523 | housekeeping_packet.serviceSubType = TM_SUBTYPE_HK; |
|
523 | housekeeping_packet.serviceSubType = TM_SUBTYPE_HK; | |
524 | housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND; |
|
524 | housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND; | |
525 | housekeeping_packet.sid = SID_HK; |
|
525 | housekeeping_packet.sid = SID_HK; | |
526 |
|
526 | |||
527 | // init status word |
|
527 | // init status word | |
528 | housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0; |
|
528 | housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0; | |
529 | housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1; |
|
529 | housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1; | |
530 | // init software version |
|
530 | // init software version | |
531 | housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1; |
|
531 | housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1; | |
532 | housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2; |
|
532 | housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2; | |
533 | housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3; |
|
533 | housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3; | |
534 | housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4; |
|
534 | housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4; | |
535 | // init fpga version |
|
535 | // init fpga version | |
536 | parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION); |
|
536 | parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION); | |
537 | housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1 |
|
537 | housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1 | |
538 | housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2 |
|
538 | housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2 | |
539 | housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3 |
|
539 | housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3 | |
540 |
|
540 | |||
541 | housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND; |
|
541 | housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND; | |
542 | housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV; |
|
542 | housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV; | |
543 | housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0; |
|
543 | housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0; | |
544 | housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1; |
|
544 | housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1; | |
545 | housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2; |
|
545 | housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2; | |
546 | } |
|
546 | } | |
547 |
|
547 | |||
548 | void increment_seq_counter( unsigned short *packetSequenceControl ) |
|
548 | void increment_seq_counter( unsigned short *packetSequenceControl ) | |
549 | { |
|
549 | { | |
550 | /** This function increment the sequence counter passes in argument. |
|
550 | /** This function increment the sequence counter passes in argument. | |
551 | * |
|
551 | * | |
552 | * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0. |
|
552 | * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0. | |
553 | * |
|
553 | * | |
554 | */ |
|
554 | */ | |
555 |
|
555 | |||
556 | unsigned short segmentation_grouping_flag; |
|
556 | unsigned short segmentation_grouping_flag; | |
557 | unsigned short sequence_cnt; |
|
557 | unsigned short sequence_cnt; | |
558 |
|
558 | |||
559 | segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6 |
|
559 | segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6 | |
560 | sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111] |
|
560 | sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111] | |
561 |
|
561 | |||
562 | if ( sequence_cnt < SEQ_CNT_MAX) |
|
562 | if ( sequence_cnt < SEQ_CNT_MAX) | |
563 | { |
|
563 | { | |
564 | sequence_cnt = sequence_cnt + 1; |
|
564 | sequence_cnt = sequence_cnt + 1; | |
565 | } |
|
565 | } | |
566 | else |
|
566 | else | |
567 | { |
|
567 | { | |
568 | sequence_cnt = 0; |
|
568 | sequence_cnt = 0; | |
569 | } |
|
569 | } | |
570 |
|
570 | |||
571 | *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ; |
|
571 | *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ; | |
572 | } |
|
572 | } | |
573 |
|
573 | |||
574 | void getTime( unsigned char *time) |
|
574 | void getTime( unsigned char *time) | |
575 | { |
|
575 | { | |
576 | /** This function write the current local time in the time buffer passed in argument. |
|
576 | /** This function write the current local time in the time buffer passed in argument. | |
577 | * |
|
577 | * | |
578 | */ |
|
578 | */ | |
579 |
|
579 | |||
580 | time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES); |
|
580 | time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES); | |
581 | time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES); |
|
581 | time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES); | |
582 | time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE); |
|
582 | time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE); | |
583 | time[3] = (unsigned char) (time_management_regs->coarse_time); |
|
583 | time[3] = (unsigned char) (time_management_regs->coarse_time); | |
584 | time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE); |
|
584 | time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE); | |
585 | time[5] = (unsigned char) (time_management_regs->fine_time); |
|
585 | time[5] = (unsigned char) (time_management_regs->fine_time); | |
586 | } |
|
586 | } | |
587 |
|
587 | |||
588 | unsigned long long int getTimeAsUnsignedLongLongInt( ) |
|
588 | unsigned long long int getTimeAsUnsignedLongLongInt( ) | |
589 | { |
|
589 | { | |
590 | /** This function write the current local time in the time buffer passed in argument. |
|
590 | /** This function write the current local time in the time buffer passed in argument. | |
591 | * |
|
591 | * | |
592 | */ |
|
592 | */ | |
593 | unsigned long long int time; |
|
593 | unsigned long long int time; | |
594 |
|
594 | |||
595 | time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES ) |
|
595 | time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES ) | |
596 | + time_management_regs->fine_time; |
|
596 | + time_management_regs->fine_time; | |
597 |
|
597 | |||
598 | return time; |
|
598 | return time; | |
599 | } |
|
599 | } | |
600 |
|
600 | |||
601 | void send_dumb_hk( void ) |
|
601 | void send_dumb_hk( void ) | |
602 | { |
|
602 | { | |
603 | Packet_TM_LFR_HK_t dummy_hk_packet; |
|
603 | Packet_TM_LFR_HK_t dummy_hk_packet; | |
604 | unsigned char *parameters; |
|
604 | unsigned char *parameters; | |
605 | unsigned int i; |
|
605 | unsigned int i; | |
606 | rtems_id queue_id; |
|
606 | rtems_id queue_id; | |
607 |
|
607 | |||
608 | queue_id = RTEMS_ID_NONE; |
|
608 | queue_id = RTEMS_ID_NONE; | |
609 |
|
609 | |||
610 | dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID; |
|
610 | dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID; | |
611 | dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID; |
|
611 | dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID; | |
612 | dummy_hk_packet.reserved = DEFAULT_RESERVED; |
|
612 | dummy_hk_packet.reserved = DEFAULT_RESERVED; | |
613 | dummy_hk_packet.userApplication = CCSDS_USER_APP; |
|
613 | dummy_hk_packet.userApplication = CCSDS_USER_APP; | |
614 | dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE); |
|
614 | dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE); | |
615 | dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK); |
|
615 | dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK); | |
616 | dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE; |
|
616 | dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE; | |
617 | dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT; |
|
617 | dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT; | |
618 | dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE); |
|
618 | dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE); | |
619 | dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK ); |
|
619 | dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK ); | |
620 | dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2; |
|
620 | dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2; | |
621 | dummy_hk_packet.serviceType = TM_TYPE_HK; |
|
621 | dummy_hk_packet.serviceType = TM_TYPE_HK; | |
622 | dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK; |
|
622 | dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK; | |
623 | dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND; |
|
623 | dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND; | |
624 | dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES); |
|
624 | dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES); | |
625 | dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES); |
|
625 | dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES); | |
626 | dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE); |
|
626 | dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE); | |
627 | dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time); |
|
627 | dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time); | |
628 | dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE); |
|
628 | dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE); | |
629 | dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time); |
|
629 | dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time); | |
630 | dummy_hk_packet.sid = SID_HK; |
|
630 | dummy_hk_packet.sid = SID_HK; | |
631 |
|
631 | |||
632 | // init status word |
|
632 | // init status word | |
633 | dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F; |
|
633 | dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F; | |
634 | dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F; |
|
634 | dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F; | |
635 | // init software version |
|
635 | // init software version | |
636 | dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1; |
|
636 | dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1; | |
637 | dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2; |
|
637 | dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2; | |
638 | dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3; |
|
638 | dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3; | |
639 | dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4; |
|
639 | dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4; | |
640 | // init fpga version |
|
640 | // init fpga version | |
641 | parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV); |
|
641 | parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV); | |
642 | dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1 |
|
642 | dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1 | |
643 | dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2 |
|
643 | dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2 | |
644 | dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3 |
|
644 | dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3 | |
645 |
|
645 | |||
646 | parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load; |
|
646 | parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load; | |
647 |
|
647 | |||
648 | for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++) |
|
648 | for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++) | |
649 | { |
|
649 | { | |
650 | parameters[i] = INT8_ALL_F; |
|
650 | parameters[i] = INT8_ALL_F; | |
651 | } |
|
651 | } | |
652 |
|
652 | |||
653 | get_message_queue_id_send( &queue_id ); |
|
653 | get_message_queue_id_send( &queue_id ); | |
654 |
|
654 | |||
655 | rtems_message_queue_send( queue_id, &dummy_hk_packet, |
|
655 | rtems_message_queue_send( queue_id, &dummy_hk_packet, | |
656 | PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES); |
|
656 | PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES); | |
657 | } |
|
657 | } | |
658 |
|
658 | |||
659 | void get_temperatures( unsigned char *temperatures ) |
|
659 | void get_temperatures( unsigned char *temperatures ) | |
660 | { |
|
660 | { | |
661 | unsigned char* temp_scm_ptr; |
|
661 | unsigned char* temp_scm_ptr; | |
662 | unsigned char* temp_pcb_ptr; |
|
662 | unsigned char* temp_pcb_ptr; | |
663 | unsigned char* temp_fpga_ptr; |
|
663 | unsigned char* temp_fpga_ptr; | |
664 |
|
664 | |||
665 | // SEL1 SEL0 |
|
665 | // SEL1 SEL0 | |
666 | // 0 0 => PCB |
|
666 | // 0 0 => PCB | |
667 | // 0 1 => FPGA |
|
667 | // 0 1 => FPGA | |
668 | // 1 0 => SCM |
|
668 | // 1 0 => SCM | |
669 |
|
669 | |||
670 | temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm; |
|
670 | temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm; | |
671 | temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb; |
|
671 | temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb; | |
672 | temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga; |
|
672 | temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga; | |
673 |
|
673 | |||
674 | temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ]; |
|
674 | temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ]; | |
675 | temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ]; |
|
675 | temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ]; | |
676 | temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ]; |
|
676 | temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ]; | |
677 | temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ]; |
|
677 | temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ]; | |
678 | temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ]; |
|
678 | temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ]; | |
679 | temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ]; |
|
679 | temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ]; | |
680 | } |
|
680 | } | |
681 |
|
681 | |||
682 | void get_v_e1_e2_f3( unsigned char *spacecraft_potential ) |
|
682 | void get_v_e1_e2_f3( unsigned char *spacecraft_potential ) | |
683 | { |
|
683 | { | |
684 | unsigned char* v_ptr; |
|
684 | unsigned char* v_ptr; | |
685 | unsigned char* e1_ptr; |
|
685 | unsigned char* e1_ptr; | |
686 | unsigned char* e2_ptr; |
|
686 | unsigned char* e2_ptr; | |
687 |
|
687 | |||
688 | v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16; |
|
688 | v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16; | |
689 | e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16; |
|
689 | e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16; | |
690 | e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16; |
|
690 | e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16; | |
691 |
|
691 | |||
692 | spacecraft_potential[BYTE_0] = v_ptr[0]; |
|
692 | spacecraft_potential[BYTE_0] = v_ptr[0]; | |
693 | spacecraft_potential[BYTE_1] = v_ptr[1]; |
|
693 | spacecraft_potential[BYTE_1] = v_ptr[1]; | |
694 | spacecraft_potential[BYTE_2] = e1_ptr[0]; |
|
694 | spacecraft_potential[BYTE_2] = e1_ptr[0]; | |
695 | spacecraft_potential[BYTE_3] = e1_ptr[1]; |
|
695 | spacecraft_potential[BYTE_3] = e1_ptr[1]; | |
696 | spacecraft_potential[BYTE_4] = e2_ptr[0]; |
|
696 | spacecraft_potential[BYTE_4] = e2_ptr[0]; | |
697 | spacecraft_potential[BYTE_5] = e2_ptr[1]; |
|
697 | spacecraft_potential[BYTE_5] = e2_ptr[1]; | |
698 | } |
|
698 | } | |
699 |
|
699 | |||
700 | void get_cpu_load( unsigned char *resource_statistics ) |
|
700 | void get_cpu_load( unsigned char *resource_statistics ) | |
701 | { |
|
701 | { | |
702 | unsigned char cpu_load; |
|
702 | unsigned char cpu_load; | |
703 |
|
703 | |||
704 | cpu_load = lfr_rtems_cpu_usage_report(); |
|
704 | cpu_load = lfr_rtems_cpu_usage_report(); | |
705 |
|
705 | |||
706 | // HK_LFR_CPU_LOAD |
|
706 | // HK_LFR_CPU_LOAD | |
707 | resource_statistics[0] = cpu_load; |
|
707 | resource_statistics[0] = cpu_load; | |
708 |
|
708 | |||
709 | // HK_LFR_CPU_LOAD_MAX |
|
709 | // HK_LFR_CPU_LOAD_MAX | |
710 | if (cpu_load > resource_statistics[1]) |
|
710 | if (cpu_load > resource_statistics[1]) | |
711 | { |
|
711 | { | |
712 | resource_statistics[1] = cpu_load; |
|
712 | resource_statistics[1] = cpu_load; | |
713 | } |
|
713 | } | |
714 |
|
714 | |||
715 | // CPU_LOAD_AVE |
|
715 | // CPU_LOAD_AVE | |
716 | resource_statistics[BYTE_2] = 0; |
|
716 | resource_statistics[BYTE_2] = 0; | |
717 |
|
717 | |||
718 | #ifndef PRINT_TASK_STATISTICS |
|
718 | #ifndef PRINT_TASK_STATISTICS | |
719 | rtems_cpu_usage_reset(); |
|
719 | rtems_cpu_usage_reset(); | |
720 | #endif |
|
720 | #endif | |
721 |
|
721 | |||
722 | } |
|
722 | } | |
723 |
|
723 | |||
724 | void set_hk_lfr_sc_potential_flag( bool state ) |
|
724 | void set_hk_lfr_sc_potential_flag( bool state ) | |
725 | { |
|
725 | { | |
726 | if (state == true) |
|
726 | if (state == true) | |
727 | { |
|
727 | { | |
728 | housekeeping_packet.lfr_status_word[1] = |
|
728 | housekeeping_packet.lfr_status_word[1] = | |
729 | housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000] |
|
729 | housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000] | |
730 | } |
|
730 | } | |
731 | else |
|
731 | else | |
732 | { |
|
732 | { | |
733 | housekeeping_packet.lfr_status_word[1] = |
|
733 | housekeeping_packet.lfr_status_word[1] = | |
734 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111] |
|
734 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111] | |
735 | } |
|
735 | } | |
736 | } |
|
736 | } | |
737 |
|
737 | |||
738 | void set_sy_lfr_pas_filter_enabled( bool state ) |
|
738 | void set_sy_lfr_pas_filter_enabled( bool state ) | |
739 | { |
|
739 | { | |
740 | if (state == true) |
|
740 | if (state == true) | |
741 | { |
|
741 | { | |
742 | housekeeping_packet.lfr_status_word[1] = |
|
742 | housekeeping_packet.lfr_status_word[1] = | |
743 | housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000] |
|
743 | housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000] | |
744 | } |
|
744 | } | |
745 | else |
|
745 | else | |
746 | { |
|
746 | { | |
747 | housekeeping_packet.lfr_status_word[1] = |
|
747 | housekeeping_packet.lfr_status_word[1] = | |
748 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111] |
|
748 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111] | |
749 | } |
|
749 | } | |
750 | } |
|
750 | } | |
751 |
|
751 | |||
752 | void set_sy_lfr_watchdog_enabled( bool state ) |
|
752 | void set_sy_lfr_watchdog_enabled( bool state ) | |
753 | { |
|
753 | { | |
754 | if (state == true) |
|
754 | if (state == true) | |
755 | { |
|
755 | { | |
756 | housekeeping_packet.lfr_status_word[1] = |
|
756 | housekeeping_packet.lfr_status_word[1] = | |
757 | housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000] |
|
757 | housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000] | |
758 | } |
|
758 | } | |
759 | else |
|
759 | else | |
760 | { |
|
760 | { | |
761 | housekeeping_packet.lfr_status_word[1] = |
|
761 | housekeeping_packet.lfr_status_word[1] = | |
762 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111] |
|
762 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111] | |
763 | } |
|
763 | } | |
764 | } |
|
764 | } | |
765 |
|
765 | |||
766 | void set_hk_lfr_calib_enable( bool state ) |
|
766 | void set_hk_lfr_calib_enable( bool state ) | |
767 | { |
|
767 | { | |
768 | if (state == true) |
|
768 | if (state == true) | |
769 | { |
|
769 | { | |
770 | housekeeping_packet.lfr_status_word[1] = |
|
770 | housekeeping_packet.lfr_status_word[1] = | |
771 | housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000] |
|
771 | housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000] | |
772 | } |
|
772 | } | |
773 | else |
|
773 | else | |
774 | { |
|
774 | { | |
775 | housekeeping_packet.lfr_status_word[1] = |
|
775 | housekeeping_packet.lfr_status_word[1] = | |
776 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111] |
|
776 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111] | |
777 | } |
|
777 | } | |
778 | } |
|
778 | } | |
779 |
|
779 | |||
780 | void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause ) |
|
780 | void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause ) | |
781 | { |
|
781 | { | |
782 | housekeeping_packet.lfr_status_word[1] = |
|
782 | housekeeping_packet.lfr_status_word[1] = | |
783 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000] |
|
783 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000] | |
784 |
|
784 | |||
785 | housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] |
|
785 | housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | |
786 | | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111] |
|
786 | | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111] | |
787 |
|
787 | |||
788 | } |
|
788 | } | |
789 |
|
789 | |||
790 | void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter ) |
|
790 | void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter ) | |
791 | { |
|
791 | { | |
792 | int delta; |
|
792 | int delta; | |
793 |
|
793 | |||
794 | delta = 0; |
|
794 | delta = 0; | |
795 |
|
795 | |||
796 | if (newValue >= oldValue) |
|
796 | if (newValue >= oldValue) | |
797 | { |
|
797 | { | |
798 | delta = newValue - oldValue; |
|
798 | delta = newValue - oldValue; | |
799 | } |
|
799 | } | |
800 | else |
|
800 | else | |
801 | { |
|
801 | { | |
802 | delta = (CONST_256 - oldValue) + newValue; |
|
802 | delta = (CONST_256 - oldValue) + newValue; | |
803 | } |
|
803 | } | |
804 |
|
804 | |||
805 | *counter = *counter + delta; |
|
805 | *counter = *counter + delta; | |
806 | } |
|
806 | } | |
807 |
|
807 | |||
808 | void hk_lfr_le_update( void ) |
|
808 | void hk_lfr_le_update( void ) | |
809 | { |
|
809 | { | |
810 | static hk_lfr_le_t old_hk_lfr_le = {0}; |
|
810 | static hk_lfr_le_t old_hk_lfr_le = {0}; | |
811 | hk_lfr_le_t new_hk_lfr_le; |
|
811 | hk_lfr_le_t new_hk_lfr_le; | |
812 | unsigned int counter; |
|
812 | unsigned int counter; | |
813 |
|
813 | |||
814 | counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1]; |
|
814 | counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1]; | |
815 |
|
815 | |||
816 | // DPU |
|
816 | // DPU | |
817 | new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity; |
|
817 | new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity; | |
818 | new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect; |
|
818 | new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect; | |
819 | new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape; |
|
819 | new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape; | |
820 | new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit; |
|
820 | new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit; | |
821 | new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync; |
|
821 | new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync; | |
822 | // TIMECODE |
|
822 | // TIMECODE | |
823 | new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous; |
|
823 | new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous; | |
824 | new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing; |
|
824 | new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing; | |
825 | new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid; |
|
825 | new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid; | |
826 | // TIME |
|
826 | // TIME | |
827 | new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it; |
|
827 | new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it; | |
828 | new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro; |
|
828 | new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro; | |
829 | new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr; |
|
829 | new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr; | |
830 | //AHB |
|
830 | //AHB | |
831 | new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable; |
|
831 | new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable; | |
832 | // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver |
|
832 | // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver | |
833 | // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver |
|
833 | // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver | |
834 |
|
834 | |||
835 | // update the le counter |
|
835 | // update the le counter | |
836 | // DPU |
|
836 | // DPU | |
837 | increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter ); |
|
837 | increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter ); | |
838 | increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter ); |
|
838 | increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter ); | |
839 | increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter ); |
|
839 | increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter ); | |
840 | increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter ); |
|
840 | increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter ); | |
841 | increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter ); |
|
841 | increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter ); | |
842 | // TIMECODE |
|
842 | // TIMECODE | |
843 | increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter ); |
|
843 | increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter ); | |
844 | increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter ); |
|
844 | increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter ); | |
845 | increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter ); |
|
845 | increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter ); | |
846 | // TIME |
|
846 | // TIME | |
847 | increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter ); |
|
847 | increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter ); | |
848 | increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter ); |
|
848 | increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter ); | |
849 | increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter ); |
|
849 | increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter ); | |
850 | // AHB |
|
850 | // AHB | |
851 | increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter ); |
|
851 | increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter ); | |
852 |
|
852 | |||
853 | // DPU |
|
853 | // DPU | |
854 | old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity; |
|
854 | old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity; | |
855 | old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect; |
|
855 | old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect; | |
856 | old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape; |
|
856 | old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape; | |
857 | old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit; |
|
857 | old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit; | |
858 | old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync; |
|
858 | old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync; | |
859 | // TIMECODE |
|
859 | // TIMECODE | |
860 | old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous; |
|
860 | old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous; | |
861 | old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing; |
|
861 | old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing; | |
862 | old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid; |
|
862 | old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid; | |
863 | // TIME |
|
863 | // TIME | |
864 | old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it; |
|
864 | old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it; | |
865 | old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro; |
|
865 | old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro; | |
866 | old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr; |
|
866 | old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr; | |
867 | //AHB |
|
867 | //AHB | |
868 | old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable; |
|
868 | old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable; | |
869 | // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver |
|
869 | // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver | |
870 | // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver |
|
870 | // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver | |
871 |
|
871 | |||
872 | // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers |
|
872 | // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers | |
873 | // LE |
|
873 | // LE | |
874 | housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE); |
|
874 | housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE); | |
875 | housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK); |
|
875 | housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK); | |
876 | } |
|
876 | } | |
877 |
|
877 | |||
878 | void hk_lfr_me_update( void ) |
|
878 | void hk_lfr_me_update( void ) | |
879 | { |
|
879 | { | |
880 | static hk_lfr_me_t old_hk_lfr_me = {0}; |
|
880 | static hk_lfr_me_t old_hk_lfr_me = {0}; | |
881 | hk_lfr_me_t new_hk_lfr_me; |
|
881 | hk_lfr_me_t new_hk_lfr_me; | |
882 | unsigned int counter; |
|
882 | unsigned int counter; | |
883 |
|
883 | |||
884 | counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1]; |
|
884 | counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1]; | |
885 |
|
885 | |||
886 | // get the current values |
|
886 | // get the current values | |
887 | new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop; |
|
887 | new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop; | |
888 | new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr; |
|
888 | new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr; | |
889 | new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep; |
|
889 | new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep; | |
890 | new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big; |
|
890 | new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big; | |
891 |
|
891 | |||
892 | // update the me counter |
|
892 | // update the me counter | |
893 | increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter ); |
|
893 | increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter ); | |
894 | increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter ); |
|
894 | increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter ); | |
895 | increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter ); |
|
895 | increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter ); | |
896 | increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter ); |
|
896 | increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter ); | |
897 |
|
897 | |||
898 | // store the counters for the next time |
|
898 | // store the counters for the next time | |
899 | old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop; |
|
899 | old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop; | |
900 | old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr; |
|
900 | old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr; | |
901 | old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep; |
|
901 | old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep; | |
902 | old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big; |
|
902 | old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big; | |
903 |
|
903 | |||
904 | // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers |
|
904 | // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers | |
905 | // ME |
|
905 | // ME | |
906 | housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE); |
|
906 | housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE); | |
907 | housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK); |
|
907 | housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK); | |
908 | } |
|
908 | } | |
909 |
|
909 | |||
910 | void hk_lfr_le_me_he_update() |
|
910 | void hk_lfr_le_me_he_update() | |
911 | { |
|
911 | { | |
912 |
|
912 | |||
913 | unsigned int hk_lfr_he_cnt; |
|
913 | unsigned int hk_lfr_he_cnt; | |
914 |
|
914 | |||
915 | hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1]; |
|
915 | hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1]; | |
916 |
|
916 | |||
917 | //update the low severity error counter |
|
917 | //update the low severity error counter | |
918 | hk_lfr_le_update( ); |
|
918 | hk_lfr_le_update( ); | |
919 |
|
919 | |||
920 | //update the medium severity error counter |
|
920 | //update the medium severity error counter | |
921 | hk_lfr_me_update(); |
|
921 | hk_lfr_me_update(); | |
922 |
|
922 | |||
923 | //update the high severity error counter |
|
923 | //update the high severity error counter | |
924 | hk_lfr_he_cnt = 0; |
|
924 | hk_lfr_he_cnt = 0; | |
925 |
|
925 | |||
926 | // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers |
|
926 | // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers | |
927 | // HE |
|
927 | // HE | |
928 | housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE); |
|
928 | housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE); | |
929 | housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK); |
|
929 | housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK); | |
930 |
|
930 | |||
931 | } |
|
931 | } | |
932 |
|
932 | |||
933 | void set_hk_lfr_time_not_synchro() |
|
933 | void set_hk_lfr_time_not_synchro() | |
934 | { |
|
934 | { | |
935 | static unsigned char synchroLost = 1; |
|
935 | static unsigned char synchroLost = 1; | |
936 | int synchronizationBit; |
|
936 | int synchronizationBit; | |
937 |
|
937 | |||
938 | // get the synchronization bit |
|
938 | // get the synchronization bit | |
939 | synchronizationBit = |
|
939 | synchronizationBit = | |
940 | (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000 |
|
940 | (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000 | |
941 |
|
941 | |||
942 | switch (synchronizationBit) |
|
942 | switch (synchronizationBit) | |
943 | { |
|
943 | { | |
944 | case 0: |
|
944 | case 0: | |
945 | if (synchroLost == 1) |
|
945 | if (synchroLost == 1) | |
946 | { |
|
946 | { | |
947 | synchroLost = 0; |
|
947 | synchroLost = 0; | |
948 | } |
|
948 | } | |
949 | break; |
|
949 | break; | |
950 | case 1: |
|
950 | case 1: | |
951 | if (synchroLost == 0 ) |
|
951 | if (synchroLost == 0 ) | |
952 | { |
|
952 | { | |
953 | synchroLost = 1; |
|
953 | synchroLost = 1; | |
954 | increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro); |
|
954 | increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro); | |
955 | update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO ); |
|
955 | update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO ); | |
956 | } |
|
956 | } | |
957 | break; |
|
957 | break; | |
958 | default: |
|
958 | default: | |
959 | PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit); |
|
959 | PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit); | |
960 | break; |
|
960 | break; | |
961 | } |
|
961 | } | |
962 |
|
962 | |||
963 | } |
|
963 | } | |
964 |
|
964 | |||
965 | void set_hk_lfr_ahb_correctable() // CRITICITY L |
|
965 | void set_hk_lfr_ahb_correctable() // CRITICITY L | |
966 | { |
|
966 | { | |
967 | /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided |
|
967 | /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided | |
968 | * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the |
|
968 | * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the | |
969 | * detected errors in the cache, in the integer unit and in the floating point unit. |
|
969 | * detected errors in the cache, in the integer unit and in the floating point unit. | |
970 | * |
|
970 | * | |
971 | * @param void |
|
971 | * @param void | |
972 | * |
|
972 | * | |
973 | * @return void |
|
973 | * @return void | |
974 | * |
|
974 | * | |
975 | * All errors are summed to set the value of the hk_lfr_ahb_correctable counter. |
|
975 | * All errors are summed to set the value of the hk_lfr_ahb_correctable counter. | |
976 | * |
|
976 | * | |
977 | */ |
|
977 | */ | |
978 |
|
978 | |||
979 | unsigned int ahb_correctable; |
|
979 | unsigned int ahb_correctable; | |
980 | unsigned int instructionErrorCounter; |
|
980 | unsigned int instructionErrorCounter; | |
981 | unsigned int dataErrorCounter; |
|
981 | unsigned int dataErrorCounter; | |
982 | unsigned int fprfErrorCounter; |
|
982 | unsigned int fprfErrorCounter; | |
983 | unsigned int iurfErrorCounter; |
|
983 | unsigned int iurfErrorCounter; | |
984 |
|
984 | |||
985 | instructionErrorCounter = 0; |
|
985 | instructionErrorCounter = 0; | |
986 | dataErrorCounter = 0; |
|
986 | dataErrorCounter = 0; | |
987 | fprfErrorCounter = 0; |
|
987 | fprfErrorCounter = 0; | |
988 | iurfErrorCounter = 0; |
|
988 | iurfErrorCounter = 0; | |
989 |
|
989 | |||
990 | CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter); |
|
990 | CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter); | |
991 | ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter); |
|
991 | ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter); | |
992 |
|
992 | |||
993 | ahb_correctable = instructionErrorCounter |
|
993 | ahb_correctable = instructionErrorCounter | |
994 | + dataErrorCounter |
|
994 | + dataErrorCounter | |
995 | + fprfErrorCounter |
|
995 | + fprfErrorCounter | |
996 | + iurfErrorCounter |
|
996 | + iurfErrorCounter | |
997 | + housekeeping_packet.hk_lfr_ahb_correctable; |
|
997 | + housekeeping_packet.hk_lfr_ahb_correctable; | |
998 |
|
998 | |||
999 | housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111] |
|
999 | housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111] | |
1000 |
|
1000 | |||
1001 | } |
|
1001 | } |
General Comments 0
You need to be logged in to leave comments.
Login now