##// END OF EJS Templates
3.2.0.8...
paul -
r358:b7b6742fb439 R3++ draft
parent child
Show More
@@ -1,107 +1,107
1 1 cmake_minimum_required (VERSION 2.6)
2 2 project (fsw)
3 3
4 4 include(sparc-rtems)
5 5 include(cppcheck)
6 6
7 7 include_directories("../header"
8 8 "../header/lfr_common_headers"
9 9 "../header/processing"
10 10 "../LFR_basic-parameters"
11 11 "../src")
12 12
13 13 set(SOURCES wf_handler.c
14 14 tc_handler.c
15 15 fsw_misc.c
16 16 fsw_init.c
17 17 fsw_globals.c
18 18 fsw_spacewire.c
19 19 tc_load_dump_parameters.c
20 20 tm_lfr_tc_exe.c
21 21 tc_acceptance.c
22 22 processing/fsw_processing.c
23 23 processing/avf0_prc0.c
24 24 processing/avf1_prc1.c
25 25 processing/avf2_prc2.c
26 26 lfr_cpu_usage_report.c
27 27 ${LFR_BP_SRC}
28 28 ../header/wf_handler.h
29 29 ../header/tc_handler.h
30 30 ../header/grlib_regs.h
31 31 ../header/fsw_misc.h
32 32 ../header/fsw_init.h
33 33 ../header/fsw_spacewire.h
34 34 ../header/tc_load_dump_parameters.h
35 35 ../header/tm_lfr_tc_exe.h
36 36 ../header/tc_acceptance.h
37 37 ../header/processing/fsw_processing.h
38 38 ../header/processing/avf0_prc0.h
39 39 ../header/processing/avf1_prc1.h
40 40 ../header/processing/avf2_prc2.h
41 41 ../header/fsw_params_wf_handler.h
42 42 ../header/lfr_cpu_usage_report.h
43 43 ../header/lfr_common_headers/ccsds_types.h
44 44 ../header/lfr_common_headers/fsw_params.h
45 45 ../header/lfr_common_headers/fsw_params_nb_bytes.h
46 46 ../header/lfr_common_headers/fsw_params_processing.h
47 47 ../header/lfr_common_headers/tm_byte_positions.h
48 48 ../LFR_basic-parameters/basic_parameters.h
49 49 ../LFR_basic-parameters/basic_parameters_params.h
50 50 ../header/GscMemoryLPP.hpp
51 51 )
52 52
53 53
54 54 option(FSW_verbose "Enable verbose LFR" OFF)
55 55 option(FSW_boot_messages "Enable LFR boot messages" OFF)
56 56 option(FSW_debug_messages "Enable LFR debug messages" OFF)
57 57 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
58 58 option(FSW_stack_report "Enable LFR stack report" OFF)
59 59 option(FSW_vhdl_dev "?" OFF)
60 60 option(FSW_lpp_dpu_destid "Set to debug at LPP" ON)
61 61 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
62 62 option(FSW_debug_tch "?" OFF)
63 63
64 64 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
65 65 set(SW_VERSION_N2 "2" CACHE STRING "Choose N2 FSW Version." FORCE)
66 66 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
67 set(SW_VERSION_N4 "7" CACHE STRING "Choose N4 FSW Version." FORCE)
67 set(SW_VERSION_N4 "8" CACHE STRING "Choose N4 FSW Version." FORCE)
68 68
69 69 if(FSW_verbose)
70 70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
71 71 endif()
72 72 if(FSW_boot_messages)
73 73 add_definitions(-DBOOT_MESSAGES)
74 74 endif()
75 75 if(FSW_debug_messages)
76 76 add_definitions(-DDEBUG_MESSAGES)
77 77 endif()
78 78 if(FSW_cpu_usage_report)
79 79 add_definitions(-DPRINT_TASK_STATISTICS)
80 80 endif()
81 81 if(FSW_stack_report)
82 82 add_definitions(-DPRINT_STACK_REPORT)
83 83 endif()
84 84 if(FSW_vhdl_dev)
85 85 add_definitions(-DVHDL_DEV)
86 86 endif()
87 87 if(FSW_lpp_dpu_destid)
88 88 add_definitions(-DLPP_DPU_DESTID)
89 89 endif()
90 90 if(FSW_debug_watchdog)
91 91 add_definitions(-DDEBUG_WATCHDOG)
92 92 endif()
93 93 if(FSW_debug_tch)
94 94 add_definitions(-DDEBUG_TCH)
95 95 endif()
96 96
97 97 add_definitions(-DMSB_FIRST_TCH)
98 98
99 99 add_definitions(-DSWVERSION=-1-0)
100 100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
101 101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
102 102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
103 103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
104 104
105 105 add_executable(fsw ${SOURCES})
106 106 add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE)
107 107
@@ -1,1040 +1,1040
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
11 11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
12 12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
13 13
14 14 void timer_configure(unsigned char timer, unsigned int clock_divider,
15 15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
16 16 {
17 17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
18 18 *
19 19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
20 20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
21 21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
22 22 * @param interrupt_level is the interrupt level that the timer drives.
23 23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
24 24 *
25 25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
26 26 *
27 27 */
28 28
29 29 rtems_status_code status;
30 30 rtems_isr_entry old_isr_handler;
31 31
32 32 old_isr_handler = NULL;
33 33
34 34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
35 35
36 36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
37 37 if (status!=RTEMS_SUCCESSFUL)
38 38 {
39 39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
40 40 }
41 41
42 42 timer_set_clock_divider( timer, clock_divider);
43 43 }
44 44
45 45 void timer_start(unsigned char timer)
46 46 {
47 47 /** This function starts a GPTIMER timer.
48 48 *
49 49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
50 50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
51 51 *
52 52 */
53 53
54 54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
55 55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
56 56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
57 57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
58 58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
59 59 }
60 60
61 61 void timer_stop(unsigned char timer)
62 62 {
63 63 /** This function stops a GPTIMER timer.
64 64 *
65 65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
66 66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
67 67 *
68 68 */
69 69
70 70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
71 71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
72 72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
73 73 }
74 74
75 75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
76 76 {
77 77 /** This function sets the clock divider of a GPTIMER timer.
78 78 *
79 79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
80 80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
81 81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
82 82 *
83 83 */
84 84
85 85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
86 86 }
87 87
88 88 // WATCHDOG
89 89
90 90 rtems_isr watchdog_isr( rtems_vector_number vector )
91 91 {
92 92 rtems_status_code status_code;
93 93
94 94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
95 95
96 96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
97 97
98 98 exit(0);
99 99 }
100 100
101 101 void watchdog_configure(void)
102 102 {
103 103 /** This function configure the watchdog.
104 104 *
105 105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
106 106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
107 107 *
108 108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
109 109 *
110 110 */
111 111
112 112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
113 113
114 114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
115 115
116 116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
117 117 }
118 118
119 119 void watchdog_stop(void)
120 120 {
121 121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
122 122 timer_stop( TIMER_WATCHDOG );
123 123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
124 124 }
125 125
126 126 void watchdog_reload(void)
127 127 {
128 128 /** This function reloads the watchdog timer counter with the timer reload value.
129 129 *
130 130 * @param void
131 131 *
132 132 * @return void
133 133 *
134 134 */
135 135
136 136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
137 137 }
138 138
139 139 void watchdog_start(void)
140 140 {
141 141 /** This function starts the watchdog timer.
142 142 *
143 143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
144 144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
145 145 *
146 146 */
147 147
148 148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
149 149
150 150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
151 151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
152 152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
153 153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
154 154
155 155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
156 156
157 157 }
158 158
159 159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
160 160 {
161 161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
162 162
163 163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
164 164
165 165 return 0;
166 166 }
167 167
168 168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
169 169 {
170 170 /** This function sets the scaler reload register of the apbuart module
171 171 *
172 172 * @param regs is the address of the apbuart registers in memory
173 173 * @param value is the value that will be stored in the scaler register
174 174 *
175 175 * The value shall be set by the software to get data on the serial interface.
176 176 *
177 177 */
178 178
179 179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
180 180
181 181 apbuart_regs->scaler = value;
182 182
183 183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
184 184 }
185 185
186 186 //************
187 187 // RTEMS TASKS
188 188
189 189 rtems_task load_task(rtems_task_argument argument)
190 190 {
191 191 BOOT_PRINTF("in LOAD *** \n")
192 192
193 193 rtems_status_code status;
194 194 unsigned int i;
195 195 unsigned int j;
196 196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
197 197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
198 198
199 199 watchdog_period_id = RTEMS_ID_NONE;
200 200
201 201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
202 202
203 203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
204 204 if( status != RTEMS_SUCCESSFUL ) {
205 205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
206 206 }
207 207
208 208 i = 0;
209 209 j = 0;
210 210
211 211 watchdog_configure();
212 212
213 213 watchdog_start();
214 214
215 215 set_sy_lfr_watchdog_enabled( true );
216 216
217 217 while(1){
218 218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
219 219 watchdog_reload();
220 220 i = i + 1;
221 221 if ( i == WATCHDOG_LOOP_PRINTF )
222 222 {
223 223 i = 0;
224 224 j = j + 1;
225 225 PRINTF1("%d\n", j)
226 226 }
227 227 #ifdef DEBUG_WATCHDOG
228 228 if (j == WATCHDOG_LOOP_DEBUG )
229 229 {
230 230 status = rtems_task_delete(RTEMS_SELF);
231 231 }
232 232 #endif
233 233 }
234 234 }
235 235
236 236 rtems_task hous_task(rtems_task_argument argument)
237 237 {
238 238 rtems_status_code status;
239 239 rtems_status_code spare_status;
240 240 rtems_id queue_id;
241 241 rtems_rate_monotonic_period_status period_status;
242 242 bool isSynchronized;
243 243
244 244 queue_id = RTEMS_ID_NONE;
245 245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
246 246 isSynchronized = false;
247 247
248 248 status = get_message_queue_id_send( &queue_id );
249 249 if (status != RTEMS_SUCCESSFUL)
250 250 {
251 251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
252 252 }
253 253
254 254 BOOT_PRINTF("in HOUS ***\n");
255 255
256 256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
257 257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
258 258 if( status != RTEMS_SUCCESSFUL ) {
259 259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
260 260 }
261 261 }
262 262
263 263 status = rtems_rate_monotonic_cancel(HK_id);
264 264 if( status != RTEMS_SUCCESSFUL ) {
265 265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
266 266 }
267 267 else {
268 268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
269 269 }
270 270
271 271 // startup phase
272 272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
273 273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
274 274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
275 275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
276 276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
277 277 {
278 278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
279 279 {
280 280 isSynchronized = true;
281 281 }
282 282 else
283 283 {
284 284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
285 285
286 286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
287 287 }
288 288 }
289 289 status = rtems_rate_monotonic_cancel(HK_id);
290 290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
291 291
292 292 set_hk_lfr_reset_cause( POWER_ON );
293 293
294 294 while(1){ // launch the rate monotonic task
295 295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
296 296 if ( status != RTEMS_SUCCESSFUL ) {
297 297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
298 298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
299 299 }
300 300 else {
301 301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
302 302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
303 303 increment_seq_counter( &sequenceCounterHK );
304 304
305 305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
306 306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
307 307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
308 308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
309 309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
310 310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
311 311
312 312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
313 313
314 314 spacewire_read_statistics();
315 315
316 316 update_hk_with_grspw_stats();
317 317
318 318 set_hk_lfr_time_not_synchro();
319 319
320 320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
321 321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
322 322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
323 323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
324 324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
325 325
326 326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
327 327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
328 328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
329 329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
330 330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
331 331
332 332 hk_lfr_le_me_he_update();
333 333
334 334 // SEND PACKET
335 335 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
336 336 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
337 337 if (status != RTEMS_SUCCESSFUL) {
338 338 PRINTF1("in HOUS *** ERR send: %d\n", status)
339 339 }
340 340 }
341 341 }
342 342
343 343 PRINTF("in HOUS *** deleting task\n")
344 344
345 345 status = rtems_task_delete( RTEMS_SELF ); // should not return
346 346
347 347 return;
348 348 }
349 349
350 350 int32_t getIntFromShort( int reg )
351 351 {
352 352 int16_t ret_as_int16;
353 353 int32_t ret_as_int32;
354 354 char *regPtr;
355 355 char *ret_as_int16_ptr;
356 356
357 357 regPtr = (char*) ®
358 358 ret_as_int16_ptr = (char*) &ret_as_int16;
359 359
360 360 ret_as_int16_ptr[BYTE_0] = regPtr[BYTE_3];
361 361 ret_as_int16_ptr[BYTE_1] = regPtr[BYTE_4];
362 362
363 363 ret_as_int32 = (int32_t) ret_as_int16;
364 364
365 365 return ret_as_int32;
366 366 }
367 367
368 368 rtems_task avgv_task(rtems_task_argument argument)
369 369 {
370 370 #define MOVING_AVERAGE 16
371 371 rtems_status_code status;
372 372 static int32_t v[MOVING_AVERAGE] = {0};
373 373 static int32_t e1[MOVING_AVERAGE] = {0};
374 374 static int32_t e2[MOVING_AVERAGE] = {0};
375 375 static int old_v = 0;
376 376 static int old_e1 = 0;
377 377 static int old_e2 = 0;
378 378 int current_v;
379 379 int current_e1;
380 380 int current_e2;
381 381 int32_t average_v;
382 382 int32_t average_e1;
383 383 int32_t average_e2;
384 384 int32_t newValue_v;
385 385 int32_t newValue_e1;
386 386 int32_t newValue_e2;
387 387 unsigned char k;
388 388 unsigned char indexOfOldValue;
389 389
390 390 BOOT_PRINTF("in AVGV ***\n");
391 391
392 392 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &AVGV_id) != RTEMS_SUCCESSFUL) {
393 393 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
394 394 if( status != RTEMS_SUCCESSFUL ) {
395 395 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
396 396 }
397 397 }
398 398
399 399 status = rtems_rate_monotonic_cancel(AVGV_id);
400 400 if( status != RTEMS_SUCCESSFUL ) {
401 401 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
402 402 }
403 403 else {
404 404 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
405 405 }
406 406
407 407 // initialize values
408 408 indexOfOldValue = MOVING_AVERAGE - 1;
409 409 current_v = 0;
410 410 current_e1 = 0;
411 411 current_e2 = 0;
412 412 average_v = 0;
413 413 average_e1 = 0;
414 414 average_e2 = 0;
415 415 newValue_v = 0;
416 416 newValue_e1 = 0;
417 417 newValue_e2 = 0;
418 418
419 419 k = INIT_CHAR;
420 420
421 421 while(1)
422 422 { // launch the rate monotonic task
423 423 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
424 424 if ( status != RTEMS_SUCCESSFUL )
425 425 {
426 426 PRINTF1( "in AVGV *** ERR period: %d\n", status);
427 427 }
428 428 else
429 429 {
430 430 current_v = waveform_picker_regs->v;
431 431 current_e1 = waveform_picker_regs->e1;
432 432 current_e2 = waveform_picker_regs->e2;
433 if ( (current_v != old_v)
434 && (current_e1 != old_e1)
435 && (current_e2 != old_e2))
436 {
433 // if ( (current_v != old_v)
434 // && (current_e1 != old_e1)
435 // && (current_e2 != old_e2))
436 // {
437 437 // get new values
438 438 newValue_v = getIntFromShort( current_v );
439 439 newValue_e1 = getIntFromShort( current_e1 );
440 440 newValue_e2 = getIntFromShort( current_e2 );
441 441
442 442 // compute the moving average
443 443 average_v = average_v + newValue_v - v[k];
444 444 average_e1 = average_e1 + newValue_e1 - e1[k];
445 445 average_e2 = average_e2 + newValue_e2 - e2[k];
446 446
447 447 // store new values in buffers
448 448 v[k] = newValue_v;
449 449 e1[k] = newValue_e1;
450 450 e2[k] = newValue_e2;
451 451
452 452 if (k == (MOVING_AVERAGE-1))
453 453 {
454 454 k = 0;
455 455 }
456 456 else
457 457 {
458 458 k++;
459 459 }
460 460 //update int16 values
461 461 hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / MOVING_AVERAGE );
462 462 hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / MOVING_AVERAGE );
463 463 hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / MOVING_AVERAGE );
464 }
464 // }
465 465 old_v = current_v;
466 466 old_e1 = current_e1;
467 467 old_e2 = current_e2;
468 468 }
469 469 }
470 470
471 471 PRINTF("in AVGV *** deleting task\n");
472 472
473 473 status = rtems_task_delete( RTEMS_SELF ); // should not return
474 474
475 475 return;
476 476 }
477 477
478 478 rtems_task dumb_task( rtems_task_argument unused )
479 479 {
480 480 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
481 481 *
482 482 * @param unused is the starting argument of the RTEMS task
483 483 *
484 484 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
485 485 *
486 486 */
487 487
488 488 unsigned int i;
489 489 unsigned int intEventOut;
490 490 unsigned int coarse_time = 0;
491 491 unsigned int fine_time = 0;
492 492 rtems_event_set event_out;
493 493
494 494 event_out = EVENT_SETS_NONE_PENDING;
495 495
496 496 BOOT_PRINTF("in DUMB *** \n")
497 497
498 498 while(1){
499 499 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
500 500 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
501 501 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
502 502 | RTEMS_EVENT_14,
503 503 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
504 504 intEventOut = (unsigned int) event_out;
505 505 for ( i=0; i<NB_RTEMS_EVENTS; i++)
506 506 {
507 507 if ( ((intEventOut >> i) & 1) != 0)
508 508 {
509 509 coarse_time = time_management_regs->coarse_time;
510 510 fine_time = time_management_regs->fine_time;
511 511 if (i==EVENT_12)
512 512 {
513 513 PRINTF1("%s\n", DUMB_MESSAGE_12)
514 514 }
515 515 if (i==EVENT_13)
516 516 {
517 517 PRINTF1("%s\n", DUMB_MESSAGE_13)
518 518 }
519 519 if (i==EVENT_14)
520 520 {
521 521 PRINTF1("%s\n", DUMB_MESSAGE_1)
522 522 }
523 523 }
524 524 }
525 525 }
526 526 }
527 527
528 528 //*****************************
529 529 // init housekeeping parameters
530 530
531 531 void init_housekeeping_parameters( void )
532 532 {
533 533 /** This function initialize the housekeeping_packet global variable with default values.
534 534 *
535 535 */
536 536
537 537 unsigned int i = 0;
538 538 unsigned char *parameters;
539 539 unsigned char sizeOfHK;
540 540
541 541 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
542 542
543 543 parameters = (unsigned char*) &housekeeping_packet;
544 544
545 545 for(i = 0; i< sizeOfHK; i++)
546 546 {
547 547 parameters[i] = INIT_CHAR;
548 548 }
549 549
550 550 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
551 551 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
552 552 housekeeping_packet.reserved = DEFAULT_RESERVED;
553 553 housekeeping_packet.userApplication = CCSDS_USER_APP;
554 554 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
555 555 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
556 556 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
557 557 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
558 558 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
559 559 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
560 560 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
561 561 housekeeping_packet.serviceType = TM_TYPE_HK;
562 562 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
563 563 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
564 564 housekeeping_packet.sid = SID_HK;
565 565
566 566 // init status word
567 567 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
568 568 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
569 569 // init software version
570 570 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
571 571 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
572 572 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
573 573 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
574 574 // init fpga version
575 575 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
576 576 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
577 577 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
578 578 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
579 579
580 580 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
581 581 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
582 582 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
583 583 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
584 584 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
585 585 }
586 586
587 587 void increment_seq_counter( unsigned short *packetSequenceControl )
588 588 {
589 589 /** This function increment the sequence counter passes in argument.
590 590 *
591 591 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
592 592 *
593 593 */
594 594
595 595 unsigned short segmentation_grouping_flag;
596 596 unsigned short sequence_cnt;
597 597
598 598 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
599 599 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
600 600
601 601 if ( sequence_cnt < SEQ_CNT_MAX)
602 602 {
603 603 sequence_cnt = sequence_cnt + 1;
604 604 }
605 605 else
606 606 {
607 607 sequence_cnt = 0;
608 608 }
609 609
610 610 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
611 611 }
612 612
613 613 void getTime( unsigned char *time)
614 614 {
615 615 /** This function write the current local time in the time buffer passed in argument.
616 616 *
617 617 */
618 618
619 619 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
620 620 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
621 621 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
622 622 time[3] = (unsigned char) (time_management_regs->coarse_time);
623 623 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
624 624 time[5] = (unsigned char) (time_management_regs->fine_time);
625 625 }
626 626
627 627 unsigned long long int getTimeAsUnsignedLongLongInt( )
628 628 {
629 629 /** This function write the current local time in the time buffer passed in argument.
630 630 *
631 631 */
632 632 unsigned long long int time;
633 633
634 634 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
635 635 + time_management_regs->fine_time;
636 636
637 637 return time;
638 638 }
639 639
640 640 void send_dumb_hk( void )
641 641 {
642 642 Packet_TM_LFR_HK_t dummy_hk_packet;
643 643 unsigned char *parameters;
644 644 unsigned int i;
645 645 rtems_id queue_id;
646 646
647 647 queue_id = RTEMS_ID_NONE;
648 648
649 649 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
650 650 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
651 651 dummy_hk_packet.reserved = DEFAULT_RESERVED;
652 652 dummy_hk_packet.userApplication = CCSDS_USER_APP;
653 653 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
654 654 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
655 655 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
656 656 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
657 657 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
658 658 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
659 659 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
660 660 dummy_hk_packet.serviceType = TM_TYPE_HK;
661 661 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
662 662 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
663 663 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
664 664 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
665 665 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
666 666 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
667 667 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
668 668 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
669 669 dummy_hk_packet.sid = SID_HK;
670 670
671 671 // init status word
672 672 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
673 673 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
674 674 // init software version
675 675 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
676 676 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
677 677 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
678 678 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
679 679 // init fpga version
680 680 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
681 681 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
682 682 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
683 683 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
684 684
685 685 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
686 686
687 687 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
688 688 {
689 689 parameters[i] = INT8_ALL_F;
690 690 }
691 691
692 692 get_message_queue_id_send( &queue_id );
693 693
694 694 rtems_message_queue_send( queue_id, &dummy_hk_packet,
695 695 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
696 696 }
697 697
698 698 void get_temperatures( unsigned char *temperatures )
699 699 {
700 700 unsigned char* temp_scm_ptr;
701 701 unsigned char* temp_pcb_ptr;
702 702 unsigned char* temp_fpga_ptr;
703 703
704 704 // SEL1 SEL0
705 705 // 0 0 => PCB
706 706 // 0 1 => FPGA
707 707 // 1 0 => SCM
708 708
709 709 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
710 710 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
711 711 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
712 712
713 713 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
714 714 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
715 715 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
716 716 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
717 717 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
718 718 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
719 719 }
720 720
721 721 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
722 722 {
723 723 unsigned char* v_ptr;
724 724 unsigned char* e1_ptr;
725 725 unsigned char* e2_ptr;
726 726
727 727 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
728 728 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
729 729 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
730 730
731 731 spacecraft_potential[BYTE_0] = v_ptr[0];
732 732 spacecraft_potential[BYTE_1] = v_ptr[1];
733 733 spacecraft_potential[BYTE_2] = e1_ptr[0];
734 734 spacecraft_potential[BYTE_3] = e1_ptr[1];
735 735 spacecraft_potential[BYTE_4] = e2_ptr[0];
736 736 spacecraft_potential[BYTE_5] = e2_ptr[1];
737 737 }
738 738
739 739 void get_cpu_load( unsigned char *resource_statistics )
740 740 {
741 741 unsigned char cpu_load;
742 742
743 743 cpu_load = lfr_rtems_cpu_usage_report();
744 744
745 745 // HK_LFR_CPU_LOAD
746 746 resource_statistics[0] = cpu_load;
747 747
748 748 // HK_LFR_CPU_LOAD_MAX
749 749 if (cpu_load > resource_statistics[1])
750 750 {
751 751 resource_statistics[1] = cpu_load;
752 752 }
753 753
754 754 // CPU_LOAD_AVE
755 755 resource_statistics[BYTE_2] = 0;
756 756
757 757 #ifndef PRINT_TASK_STATISTICS
758 758 rtems_cpu_usage_reset();
759 759 #endif
760 760
761 761 }
762 762
763 763 void set_hk_lfr_sc_potential_flag( bool state )
764 764 {
765 765 if (state == true)
766 766 {
767 767 housekeeping_packet.lfr_status_word[1] =
768 768 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
769 769 }
770 770 else
771 771 {
772 772 housekeeping_packet.lfr_status_word[1] =
773 773 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
774 774 }
775 775 }
776 776
777 777 void set_sy_lfr_pas_filter_enabled( bool state )
778 778 {
779 779 if (state == true)
780 780 {
781 781 housekeeping_packet.lfr_status_word[1] =
782 782 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
783 783 }
784 784 else
785 785 {
786 786 housekeeping_packet.lfr_status_word[1] =
787 787 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
788 788 }
789 789 }
790 790
791 791 void set_sy_lfr_watchdog_enabled( bool state )
792 792 {
793 793 if (state == true)
794 794 {
795 795 housekeeping_packet.lfr_status_word[1] =
796 796 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
797 797 }
798