##// END OF EJS Templates
Bug 60 corrected...
paul -
r102:b37996d46c77 VHDLib206
parent child
Show More
@@ -1,253 +1,253
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Wed Feb 19 13:04:42 2014
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Fri Feb 21 15:32:25 2014
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=2 -DPRINT_MESSAGES_ON_CONSOLE -DDEBUG_MESSAGES -DPRINT_TASK_STATISTICS
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=2 -DPRINT_MESSAGES_ON_CONSOLE
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../../LFR_basic-parameters
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_processing.c \
49 49 ../src/fsw_misc.c \
50 50 ../src/fsw_init.c \
51 51 ../src/fsw_globals.c \
52 52 ../src/fsw_spacewire.c \
53 53 ../src/tc_load_dump_parameters.c \
54 54 ../src/tm_lfr_tc_exe.c \
55 55 ../src/tc_acceptance.c \
56 56 ../../LFR_basic-parameters/basic_parameters.c
57 57 OBJECTS = obj/wf_handler.o \
58 58 obj/tc_handler.o \
59 59 obj/fsw_processing.o \
60 60 obj/fsw_misc.o \
61 61 obj/fsw_init.o \
62 62 obj/fsw_globals.o \
63 63 obj/fsw_spacewire.o \
64 64 obj/tc_load_dump_parameters.o \
65 65 obj/tm_lfr_tc_exe.o \
66 66 obj/tc_acceptance.o \
67 67 obj/basic_parameters.o
68 68 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
69 69 /usr/lib64/qt4/mkspecs/common/linux.conf \
70 70 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
71 71 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
72 72 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
73 73 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
74 74 /usr/lib64/qt4/mkspecs/qconfig.pri \
75 75 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
76 76 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
77 77 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
78 78 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
79 79 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
80 80 sparc.pri \
81 81 /usr/lib64/qt4/mkspecs/features/release.prf \
82 82 /usr/lib64/qt4/mkspecs/features/default_post.prf \
83 83 /usr/lib64/qt4/mkspecs/features/shared.prf \
84 84 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
85 85 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
86 86 /usr/lib64/qt4/mkspecs/features/resources.prf \
87 87 /usr/lib64/qt4/mkspecs/features/uic.prf \
88 88 /usr/lib64/qt4/mkspecs/features/yacc.prf \
89 89 /usr/lib64/qt4/mkspecs/features/lex.prf \
90 90 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
91 91 fsw-qt.pro
92 92 QMAKE_TARGET = fsw
93 93 DESTDIR = bin/
94 94 TARGET = bin/fsw
95 95
96 96 first: all
97 97 ####### Implicit rules
98 98
99 99 .SUFFIXES: .o .c .cpp .cc .cxx .C
100 100
101 101 .cpp.o:
102 102 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
103 103
104 104 .cc.o:
105 105 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
106 106
107 107 .cxx.o:
108 108 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
109 109
110 110 .C.o:
111 111 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
112 112
113 113 .c.o:
114 114 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
115 115
116 116 ####### Build rules
117 117
118 118 all: Makefile $(TARGET)
119 119
120 120 $(TARGET): $(OBJECTS)
121 121 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
122 122 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
123 123
124 124 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
125 125 /usr/lib64/qt4/mkspecs/common/linux.conf \
126 126 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
127 127 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
128 128 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
129 129 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
130 130 /usr/lib64/qt4/mkspecs/qconfig.pri \
131 131 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
132 132 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
133 133 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
134 134 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
135 135 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
136 136 sparc.pri \
137 137 /usr/lib64/qt4/mkspecs/features/release.prf \
138 138 /usr/lib64/qt4/mkspecs/features/default_post.prf \
139 139 /usr/lib64/qt4/mkspecs/features/shared.prf \
140 140 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
141 141 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
142 142 /usr/lib64/qt4/mkspecs/features/resources.prf \
143 143 /usr/lib64/qt4/mkspecs/features/uic.prf \
144 144 /usr/lib64/qt4/mkspecs/features/yacc.prf \
145 145 /usr/lib64/qt4/mkspecs/features/lex.prf \
146 146 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
147 147 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
148 148 /usr/lib64/qt4/mkspecs/common/unix.conf:
149 149 /usr/lib64/qt4/mkspecs/common/linux.conf:
150 150 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
151 151 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
152 152 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
153 153 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
154 154 /usr/lib64/qt4/mkspecs/qconfig.pri:
155 155 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
156 156 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
157 157 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
158 158 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
159 159 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
160 160 sparc.pri:
161 161 /usr/lib64/qt4/mkspecs/features/release.prf:
162 162 /usr/lib64/qt4/mkspecs/features/default_post.prf:
163 163 /usr/lib64/qt4/mkspecs/features/shared.prf:
164 164 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
165 165 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
166 166 /usr/lib64/qt4/mkspecs/features/resources.prf:
167 167 /usr/lib64/qt4/mkspecs/features/uic.prf:
168 168 /usr/lib64/qt4/mkspecs/features/yacc.prf:
169 169 /usr/lib64/qt4/mkspecs/features/lex.prf:
170 170 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
171 171 qmake: FORCE
172 172 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
173 173
174 174 dist:
175 175 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
176 176 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
177 177
178 178
179 179 clean:compiler_clean
180 180 -$(DEL_FILE) $(OBJECTS)
181 181 -$(DEL_FILE) *~ core *.core
182 182
183 183
184 184 ####### Sub-libraries
185 185
186 186 distclean: clean
187 187 -$(DEL_FILE) $(TARGET)
188 188 -$(DEL_FILE) Makefile
189 189
190 190
191 191 grmon:
192 192 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
193 193
194 194 check: first
195 195
196 196 compiler_rcc_make_all:
197 197 compiler_rcc_clean:
198 198 compiler_uic_make_all:
199 199 compiler_uic_clean:
200 200 compiler_image_collection_make_all: qmake_image_collection.cpp
201 201 compiler_image_collection_clean:
202 202 -$(DEL_FILE) qmake_image_collection.cpp
203 203 compiler_yacc_decl_make_all:
204 204 compiler_yacc_decl_clean:
205 205 compiler_yacc_impl_make_all:
206 206 compiler_yacc_impl_clean:
207 207 compiler_lex_make_all:
208 208 compiler_lex_clean:
209 209 compiler_clean:
210 210
211 211 ####### Compile
212 212
213 213 obj/wf_handler.o: ../src/wf_handler.c
214 214 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
215 215
216 216 obj/tc_handler.o: ../src/tc_handler.c
217 217 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
218 218
219 219 obj/fsw_processing.o: ../src/fsw_processing.c ../src/fsw_processing_globals.c
220 220 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/fsw_processing.c
221 221
222 222 obj/fsw_misc.o: ../src/fsw_misc.c
223 223 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
224 224
225 225 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
226 226 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
227 227
228 228 obj/fsw_globals.o: ../src/fsw_globals.c
229 229 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
230 230
231 231 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
232 232 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
233 233
234 234 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
235 235 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
236 236
237 237 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
238 238 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
239 239
240 240 obj/tc_acceptance.o: ../src/tc_acceptance.c
241 241 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
242 242
243 243 obj/basic_parameters.o: ../../LFR_basic-parameters/basic_parameters.c ../../LFR_basic-parameters/basic_parameters.h
244 244 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../../LFR_basic-parameters/basic_parameters.c
245 245
246 246 ####### Install
247 247
248 248 install: FORCE
249 249
250 250 uninstall: FORCE
251 251
252 252 FORCE:
253 253
@@ -1,16 +1,20
1 1 #!/usr/bin/lppmon -e
2 2
3 3 address_to_read = 0x80000f08
4 4 val = RMAPPlugin0.Read( address_to_read, 1)
5 5 matrixF0_Address0 = val[0]
6 6 print hex(matrixF0_Address0)
7 7
8 8 # BUILD THE DATA
9 9 dataToWrite = []
10 10 for frequencyBin in range(128):
11 11 for component in range (25):
12 12 dataToWrite.append( component )
13 13
14 #for frequencyBin in range(64):
15 # for component in range (25):
16 # dataToWrite.append( 2 * component )
17
14 18 # WRITE THE DATA
15 19 print len(dataToWrite)
16 20 RMAPPlugin0.Write( matrixF0_Address0, dataToWrite )
@@ -1,78 +1,78
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report
4 CONFIG += console verbose cpu_usage_report debug_messages
4 CONFIG += console verbose
5 5 CONFIG -= qt
6 6
7 7 include(./sparc.pri)
8 8
9 9 # flight software version
10 10 SWVERSION=-1-0
11 11 DEFINES += SW_VERSION_N1=1 # major
12 12 DEFINES += SW_VERSION_N2=0 # minor
13 13 DEFINES += SW_VERSION_N3=0 # patch
14 14 DEFINES += SW_VERSION_N4=2 # internal
15 15
16 16 contains( CONFIG, verbose ) {
17 17 DEFINES += PRINT_MESSAGES_ON_CONSOLE
18 18 }
19 19
20 20 contains( CONFIG, debug_messages ) {
21 21 DEFINES += DEBUG_MESSAGES
22 22 }
23 23
24 24 contains( CONFIG, cpu_usage_report ) {
25 25 DEFINES += PRINT_TASK_STATISTICS
26 26 }
27 27
28 28 contains( CONFIG, stack_report ) {
29 29 DEFINES += PRINT_STACK_REPORT
30 30 }
31 31
32 32 contains( CONFIG, boot_messages ) {
33 33 DEFINES += BOOT_MESSAGES
34 34 }
35 35
36 36 #doxygen.target = doxygen
37 37 #doxygen.commands = doxygen ../doc/Doxyfile
38 38 #QMAKE_EXTRA_TARGETS += doxygen
39 39
40 40 TARGET = fsw
41 41
42 42 INCLUDEPATH += \
43 43 ../src \
44 44 ../header \
45 45 ../../LFR_basic-parameters
46 46
47 47 SOURCES += \
48 48 ../src/wf_handler.c \
49 49 ../src/tc_handler.c \
50 50 ../src/fsw_processing.c \
51 51 ../src/fsw_misc.c \
52 52 ../src/fsw_init.c \
53 53 ../src/fsw_globals.c \
54 54 ../src/fsw_spacewire.c \
55 55 ../src/tc_load_dump_parameters.c \
56 56 ../src/tm_lfr_tc_exe.c \
57 57 ../src/tc_acceptance.c \
58 58 ../../LFR_basic-parameters/basic_parameters.c
59 59
60 60
61 61 HEADERS += \
62 62 ../header/wf_handler.h \
63 63 ../header/tc_handler.h \
64 64 ../header/grlib_regs.h \
65 65 ../header/fsw_processing.h \
66 66 ../header/fsw_params.h \
67 67 ../header/fsw_misc.h \
68 68 ../header/fsw_init.h \
69 69 ../header/ccsds_types.h \
70 70 ../header/fsw_params_processing.h \
71 71 ../header/fsw_spacewire.h \
72 72 ../header/tm_byte_positions.h \
73 73 ../header/tc_load_dump_parameters.h \
74 74 ../header/tm_lfr_tc_exe.h \
75 75 ../header/tc_acceptance.h \
76 76 ../header/fsw_params_nb_bytes.h \
77 77 ../../LFR_basic-parameters/basic_parameters.h
78 78
@@ -1,339 +1,339
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.0, 2014-02-20T06:55:01. -->
3 <!-- Written by QtCreator 3.0.0, 2014-02-21T15:56:03. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">1</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop</value>
55 55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop</value>
56 56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{e04e3924-0bd8-4708-be18-f1474e45608e}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 72 </valuemap>
73 73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 79 <value type="QString">-w</value>
80 80 <value type="QString">-r</value>
81 81 </valuelist>
82 82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 85 </valuemap>
86 86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 90 </valuemap>
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 98 <value type="QString">-w</value>
99 99 <value type="QString">-r</value>
100 100 </valuelist>
101 101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 104 </valuemap>
105 105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 109 </valuemap>
110 110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 118 </valuemap>
119 119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 126 </valuemap>
127 127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 131 </valuemap>
132 132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 153 <value type="int">0</value>
154 154 <value type="int">1</value>
155 155 <value type="int">2</value>
156 156 <value type="int">3</value>
157 157 <value type="int">4</value>
158 158 <value type="int">5</value>
159 159 <value type="int">6</value>
160 160 <value type="int">7</value>
161 161 <value type="int">8</value>
162 162 <value type="int">9</value>
163 163 <value type="int">10</value>
164 164 <value type="int">11</value>
165 165 <value type="int">12</value>
166 166 <value type="int">13</value>
167 167 <value type="int">14</value>
168 168 </valuelist>
169 169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 180 <value type="bool" key="RunConfiguration.UseCppDebugger">false</value>
181 181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">true</value>
182 182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 185 </valuemap>
186 186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 187 </valuemap>
188 188 </data>
189 189 <data>
190 190 <variable>ProjectExplorer.Project.Target.1</variable>
191 191 <valuemap type="QVariantMap">
192 192 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
193 193 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
194 194 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
195 195 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
196 196 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
197 197 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
198 198 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
199 199 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
200 200 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
201 201 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
202 202 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
203 203 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
204 204 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
205 205 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
206 206 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
207 207 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
208 208 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
209 209 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
210 210 </valuemap>
211 211 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
212 212 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
213 213 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
214 214 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
215 215 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
216 216 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
217 217 <value type="QString">-w</value>
218 218 <value type="QString">-r</value>
219 219 </valuelist>
220 220 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
221 221 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
222 222 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
223 223 </valuemap>
224 224 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
225 225 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
226 226 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
227 227 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
228 228 </valuemap>
229 229 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
230 230 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
231 231 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
232 232 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
233 233 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
234 234 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
235 235 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
236 236 <value type="QString">-w</value>
237 237 <value type="QString">-r</value>
238 238 </valuelist>
239 239 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
240 240 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
241 241 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
242 242 </valuemap>
243 243 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
244 244 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
245 245 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
246 246 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
247 247 </valuemap>
248 248 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
249 249 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
250 250 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
251 251 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
252 252 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
253 253 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
254 254 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
255 255 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
256 256 </valuemap>
257 257 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
258 258 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
259 259 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
260 260 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
261 261 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
262 262 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
263 263 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
264 264 </valuemap>
265 265 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
266 266 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
267 267 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
268 268 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
269 269 </valuemap>
270 270 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
271 271 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
272 272 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
273 273 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
274 274 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
275 275 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
276 276 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
277 277 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
278 278 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
279 279 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
280 280 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
281 281 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
282 282 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
283 283 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
284 284 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
285 285 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
286 286 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
287 287 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
288 288 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
289 289 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
290 290 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
291 291 <value type="int">0</value>
292 292 <value type="int">1</value>
293 293 <value type="int">2</value>
294 294 <value type="int">3</value>
295 295 <value type="int">4</value>
296 296 <value type="int">5</value>
297 297 <value type="int">6</value>
298 298 <value type="int">7</value>
299 299 <value type="int">8</value>
300 300 <value type="int">9</value>
301 301 <value type="int">10</value>
302 302 <value type="int">11</value>
303 303 <value type="int">12</value>
304 304 <value type="int">13</value>
305 305 <value type="int">14</value>
306 306 </valuelist>
307 307 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
308 308 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
309 309 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
310 310 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
311 311 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
312 312 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
313 313 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
314 314 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
315 315 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
316 316 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
317 317 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
318 318 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
319 319 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
320 320 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
321 321 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
322 322 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
323 323 </valuemap>
324 324 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
325 325 </valuemap>
326 326 </data>
327 327 <data>
328 328 <variable>ProjectExplorer.Project.TargetCount</variable>
329 329 <value type="int">2</value>
330 330 </data>
331 331 <data>
332 332 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
333 333 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
334 334 </data>
335 335 <data>
336 336 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
337 337 <value type="int">15</value>
338 338 </data>
339 339 </qtcreator>
@@ -1,212 +1,212
1 1 #ifndef FSW_PARAMS_H_INCLUDED
2 2 #define FSW_PARAMS_H_INCLUDED
3 3
4 4 #include "grlib_regs.h"
5 5 #include "fsw_params_processing.h"
6 6 #include "tm_byte_positions.h"
7 7 #include "ccsds_types.h"
8 8
9 9 #define GRSPW_DEVICE_NAME "/dev/grspw0"
10 10 #define UART_DEVICE_NAME "/dev/console"
11 11
12 12 typedef struct ring_node
13 13 {
14 14 struct ring_node *previous;
15 15 int buffer_address;
16 16 struct ring_node *next;
17 17 unsigned int status;
18 18 } ring_node;
19 19
20 20 //************************
21 21 // flight software version
22 22 // this parameters is handled by the Qt project options
23 23
24 24 #define NB_PACKETS_PER_GROUP_OF_CWF 8 // 8 packets containing 336 blk
25 25 #define NB_PACKETS_PER_GROUP_OF_CWF_LIGHT 4 // 4 packets containing 672 blk
26 26 #define NB_SAMPLES_PER_SNAPSHOT 2688 // 336 * 8 = 672 * 4 = 2688
27 27 #define TIME_OFFSET 2
28 28 #define TIME_OFFSET_IN_BYTES 8
29 29 #define WAVEFORM_EXTENDED_HEADER_OFFSET 22
30 30 #define NB_BYTES_SWF_BLK (2 * 6)
31 31 #define NB_WORDS_SWF_BLK 3
32 32 #define NB_BYTES_CWF3_LIGHT_BLK 6
33 33 #define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
34 34 #define NB_RING_NODES_F0 3 // AT LEAST 3
35 35 #define NB_RING_NODES_F1 5 // AT LEAST 3
36 36 #define NB_RING_NODES_F2 5 // AT LEAST 3
37 37 #define NB_RING_NODES_ASM_F0 12 // AT LEAST 3
38 38 #define NB_RING_NODES_ASM_F1 2 // AT LEAST 3
39 39 #define NB_RING_NODES_ASM_F2 2 // AT LEAST 3
40 40
41 41 //**********
42 42 // LFR MODES
43 43 #define LFR_MODE_STANDBY 0
44 44 #define LFR_MODE_NORMAL 1
45 45 #define LFR_MODE_BURST 2
46 46 #define LFR_MODE_SBM1 3
47 47 #define LFR_MODE_SBM2 4
48 48 #define LFR_MODE_NORMAL_CWF_F3 5
49 49
50 50 #define RTEMS_EVENT_MODE_STANDBY RTEMS_EVENT_0
51 51 #define RTEMS_EVENT_MODE_NORMAL RTEMS_EVENT_1
52 52 #define RTEMS_EVENT_MODE_BURST RTEMS_EVENT_2
53 53 #define RTEMS_EVENT_MODE_SBM1 RTEMS_EVENT_3
54 54 #define RTEMS_EVENT_MODE_SBM2 RTEMS_EVENT_4
55 55 #define RTEMS_EVENT_MODE_SBM2_WFRM RTEMS_EVENT_5
56 56 #define RTEMS_EVENT_MODE_NORMAL_SWF_F0 RTEMS_EVENT_6
57 57 #define RTEMS_EVENT_MODE_NORMAL_SWF_F1 RTEMS_EVENT_7
58 58 #define RTEMS_EVENT_MODE_NORMAL_SWF_F2 RTEMS_EVENT_8
59 59
60 60 //****************************
61 61 // LFR DEFAULT MODE PARAMETERS
62 62 // COMMON
63 63 #define DEFAULT_SY_LFR_COMMON0 0x00
64 64 #define DEFAULT_SY_LFR_COMMON1 0x10 // default value 0 0 0 1 0 0 0 0
65 65 // NORM
66 66 #define SY_LFR_N_SWF_L 2048 // nb sample
67 67 #define SY_LFR_N_SWF_P 300 // sec
68 68 #define SY_LFR_N_ASM_P 3600 // sec
69 69 #define SY_LFR_N_BP_P0 4 // sec
70 70 #define SY_LFR_N_BP_P1 20 // sec
71 71 #define SY_LFR_N_CWF_LONG_F3 0 // 0 => production of light continuous waveforms at f3
72 72 #define MIN_DELTA_SNAPSHOT 16 // sec
73 73 // BURST
74 74 #define DEFAULT_SY_LFR_B_BP_P0 1 // sec
75 75 #define DEFAULT_SY_LFR_B_BP_P1 5 // sec
76 76 // SBM1
77 77 #define DEFAULT_SY_LFR_S1_BP_P0 1 // sec
78 78 #define DEFAULT_SY_LFR_S1_BP_P1 1 // sec
79 79 // SBM2
80 80 #define DEFAULT_SY_LFR_S2_BP_P0 1 // sec
81 81 #define DEFAULT_SY_LFR_S2_BP_P1 5 // sec
82 82 // ADDITIONAL PARAMETERS
83 83 #define TIME_BETWEEN_TWO_SWF_PACKETS 30 // nb x 10 ms => 300 ms
84 84 #define TIME_BETWEEN_TWO_CWF3_PACKETS 1000 // nb x 10 ms => 10 s
85 85 // STATUS WORD
86 86 #define DEFAULT_STATUS_WORD_BYTE0 0x0d // [0000] [1] [101] mode 4 bits / SPW enabled 1 bit / state is run 3 bits
87 87 #define DEFAULT_STATUS_WORD_BYTE1 0x00
88 88 //
89 89 #define SY_LFR_DPU_CONNECT_TIMEOUT 100 // 100 * 10 ms = 1 s
90 90 #define SY_LFR_DPU_CONNECT_ATTEMPT 3
91 91 //****************************
92 92
93 93 //*****************************
94 94 // APB REGISTERS BASE ADDRESSES
95 95 #define REGS_ADDR_APBUART 0x80000100
96 96 #define REGS_ADDR_GPTIMER 0x80000300
97 97 #define REGS_ADDR_GRSPW 0x80000500
98 98 #define REGS_ADDR_TIME_MANAGEMENT 0x80000600
99 99 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
100 100 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f20
101 101
102 102 #define APBUART_CTRL_REG_MASK_DB 0xfffff7ff
103 103 #define APBUART_CTRL_REG_MASK_TE 0x00000002
104 104 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400 (0x50)
105 105
106 106 //**********
107 107 // IRQ LINES
108 108 #define IRQ_SM_SIMULATOR 9
109 109 #define IRQ_SPARC_SM_SIMULATOR 0x19 // see sparcv8.pdf p.76 for interrupt levels
110 110 #define IRQ_WAVEFORM_PICKER 14
111 111 #define IRQ_SPARC_WAVEFORM_PICKER 0x1e // see sparcv8.pdf p.76 for interrupt levels
112 112 #define IRQ_SPECTRAL_MATRIX 6
113 113 #define IRQ_SPARC_SPECTRAL_MATRIX 0x16 // see sparcv8.pdf p.76 for interrupt levels
114 114
115 115 //*****
116 116 // TIME
117 117 #define CLKDIV_SM_SIMULATOR (10000 - 1) // 10 ms
118 118 #define TIMER_SM_SIMULATOR 1
119 119 #define HK_PERIOD 100 // 100 * 10ms => 1sec
120 120
121 121 //**********
122 122 // LPP CODES
123 123 #define LFR_SUCCESSFUL 0
124 124 #define LFR_DEFAULT 1
125 125
126 126 //******
127 127 // RTEMS
128 128 #define TASKID_RECV 1
129 129 #define TASKID_ACTN 2
130 130 #define TASKID_SPIQ 3
131 131 #define TASKID_SMIQ 4
132 132 #define TASKID_STAT 5
133 133 #define TASKID_AVF0 6
134 #define TASKID_BPF0 7
134 //#define TASKID_BPF0 7
135 135 #define TASKID_WFRM 8
136 136 #define TASKID_DUMB 9
137 137 #define TASKID_HOUS 10
138 138 #define TASKID_MATR 11
139 139 #define TASKID_CWF3 12
140 140 #define TASKID_CWF2 13
141 141 #define TASKID_CWF1 14
142 142 #define TASKID_SEND 15
143 143 #define TASKID_WTDG 16
144 144
145 145 #define TASK_PRIORITY_SPIQ 5
146 146 #define TASK_PRIORITY_SMIQ 10
147 147 #define TASK_PRIORITY_WTDG 20
148 148 #define TASK_PRIORITY_HOUS 30
149 149 #define TASK_PRIORITY_CWF1 35 // CWF1 and CWF2 are never running together
150 150 #define TASK_PRIORITY_CWF2 35 //
151 151 #define TASK_PRIORITY_WFRM 40
152 152 #define TASK_PRIORITY_CWF3 40 // there is a printf in this function, be careful with its priority wrt CWF1
153 153 #define TASK_PRIORITY_SEND 45
154 154 #define TASK_PRIORITY_RECV 50
155 155 #define TASK_PRIORITY_ACTN 50
156 156 #define TASK_PRIORITY_AVF0 60
157 157 #define TASK_PRIORITY_BPF0 60
158 158 #define TASK_PRIORITY_MATR 100
159 159 #define TASK_PRIORITY_STAT 200
160 160 #define TASK_PRIORITY_DUMB 200
161 161
162 162 #define ACTION_MSG_QUEUE_COUNT 10
163 163 #define ACTION_MSG_PKTS_COUNT 50
164 164 #define ACTION_MSG_PKTS_MAX_SIZE (PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES)
165 165 #define ACTION_MSG_SPW_IOCTL_SEND_SIZE 24 // hlen *hdr dlen *data sent options
166 166
167 167 #define QUEUE_RECV 0
168 168 #define QUEUE_SEND 1
169 169
170 170 //*******
171 171 // MACROS
172 172 #ifdef PRINT_MESSAGES_ON_CONSOLE
173 173 #define PRINTF(x) printf(x);
174 174 #define PRINTF1(x,y) printf(x,y);
175 175 #define PRINTF2(x,y,z) printf(x,y,z);
176 176 #else
177 177 #define PRINTF(x) ;
178 178 #define PRINTF1(x,y) ;
179 179 #define PRINTF2(x,y,z) ;
180 180 #endif
181 181
182 182 #ifdef BOOT_MESSAGES
183 183 #define BOOT_PRINTF(x) printf(x);
184 184 #define BOOT_PRINTF1(x,y) printf(x,y);
185 185 #define BOOT_PRINTF2(x,y,z) printf(x,y,z);
186 186 #else
187 187 #define BOOT_PRINTF(x) ;
188 188 #define BOOT_PRINTF1(x,y) ;
189 189 #define BOOT_PRINTF2(x,y,z) ;
190 190 #endif
191 191
192 192 #ifdef DEBUG_MESSAGES
193 193 #define DEBUG_PRINTF(x) printf(x);
194 194 #define DEBUG_PRINTF1(x,y) printf(x,y);
195 195 #define DEBUG_PRINTF2(x,y,z) printf(x,y,z);
196 196 #else
197 197 #define DEBUG_PRINTF(x) ;
198 198 #define DEBUG_PRINTF1(x,y) ;
199 199 #define DEBUG_PRINTF2(x,y,z) ;
200 200 #endif
201 201
202 202 #define CPU_USAGE_REPORT_PERIOD 6 // * 10 s = period
203 203
204 204 struct param_local_str{
205 205 unsigned int local_sbm1_nb_cwf_sent;
206 206 unsigned int local_sbm1_nb_cwf_max;
207 207 unsigned int local_sbm2_nb_cwf_sent;
208 208 unsigned int local_sbm2_nb_cwf_max;
209 209 unsigned int local_nb_interrupt_f0_MAX;
210 210 };
211 211
212 212 #endif // FSW_PARAMS_H_INCLUDED
@@ -1,45 +1,51
1 1 #ifndef FSW_PARAMS_PROCESSING_H
2 2 #define FSW_PARAMS_PROCESSING_H
3 3
4 4 #define NB_BINS_PER_SM 128 //
5 5 #define NB_VALUES_PER_SM 25 //
6 6 #define TOTAL_SIZE_SM 3200 // 25 * 128
7 7 #define SM_HEADER 0 //
8 8 //
9 9 #define NB_BINS_PER_ASM_F0 88
10 10 #define NB_BINS_PER_PKT_ASM_F0 44
11 11 #define TOTAL_SIZE_ASM_F0_IN_BYTES 4400 // 25 * 88 * 2
12 12 #define ASM_F0_INDICE_START 17 // 88 bins
13 13 #define ASM_F0_INDICE_STOP 104 // 2 packets of 44 bins
14 14 //
15 15 #define NB_BINS_PER_ASM_F1 104
16 16 #define NB_BINS_PER_PKT_ASM_F1 52
17 17 #define TOTAL_SIZE_ASM_F1 2600 // 25 * 104
18 18 #define ASM_F1_INDICE_START 6 // 104 bins
19 19 #define ASM_F1_INDICE_STOP 109 // 2 packets of 52 bins
20 20 //
21 21 #define NB_BINS_PER_ASM_F2 96
22 22 #define NB_BINS_PER_PKT_ASM_F2 48
23 23 #define TOTAL_SIZE_ASM_F2 2400 // 25 * 96
24 24 #define ASM_F2_INDICE_START 7 // 96 bins
25 25 #define ASM_F2_INDICE_STOP 102 // 2 packets of 48 bins
26 26 //
27 27 #define NB_BINS_COMPRESSED_SM_F0 11
28 28 #define NB_BINS_COMPRESSED_SM_F1 13
29 29 #define NB_BINS_COMPRESSED_SM_F2 12
30 30 //
31 #define TOTAL_SIZE_COMPRESSED_MATRIX_f0 (NB_BINS_COMPRESSED_SM_F0 * NB_VALUES_PER_SM)
31 #define NB_BINS_TO_AVERAGE_ASM_F0 8
32 #define NB_BINS_TO_AVERAGE_ASM_F1 8
33 #define NB_BINS_TO_AVERAGE_ASM_F2 8
34 //
35 #define TOTAL_SIZE_COMPRESSED_ASM_F0 275 // 11 * 25
36 #define TOTAL_SIZE_COMPRESSED_ASM_F1 325 // 13 * 25
37 #define TOTAL_SIZE_COMPRESSED_ASM_F2 300 // 12 * 25
32 38 #define NB_AVERAGE_NORMAL_f0 96*4
33 39 #define NB_SM_TO_RECEIVE_BEFORE_AVF0 8
34 40
35 41 typedef struct {
36 42 volatile unsigned char PE[2];
37 43 volatile unsigned char PB[2];
38 44 volatile unsigned char V0;
39 45 volatile unsigned char V1;
40 46 volatile unsigned char V2_ELLIP_DOP;
41 47 volatile unsigned char SZ;
42 48 volatile unsigned char VPHI;
43 49 } BP1_t;
44 50
45 51 #endif // FSW_PARAMS_PROCESSING_H
@@ -1,56 +1,54
1 1 #ifndef FSW_PROCESSING_H_INCLUDED
2 2 #define FSW_PROCESSING_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <math.h>
7 7 #include <stdlib.h> // abs() is in the stdlib
8 8 #include <stdio.h> // printf()
9 9 #include <math.h>
10 10
11 11 #include "fsw_params.h"
12 12 #include "fsw_spacewire.h"
13 13 #include "basic_parameters.h"
14 14
15 15 extern volatile int sm_f0[ ][ SM_HEADER + TOTAL_SIZE_SM ];
16 16 extern volatile int sm_f1[ ][ SM_HEADER + TOTAL_SIZE_SM ];
17 17 extern volatile int sm_f2[ ][ SM_HEADER + TOTAL_SIZE_SM ];
18 18
19 19 // parameters
20 20 extern struct param_local_str param_local;
21 21
22 22 // registers
23 23 extern time_management_regs_t *time_management_regs;
24 24 extern spectral_matrix_regs_t *spectral_matrix_regs;
25 25
26 26 extern rtems_name misc_name[5];
27 27 extern rtems_id Task_id[20]; /* array of task ids */
28 28
29 29 void init_sm_rings( void );
30 30 void reset_current_sm_ring_nodes( void );
31 31
32 32 // ISR
33 33 void reset_nb_sm_f0( void );
34 34 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
35 35 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
36 36
37 37 // RTEMS TASKS
38 rtems_task spw_bppr_task(rtems_task_argument argument);
39 38 rtems_task avf0_task(rtems_task_argument argument);
40 rtems_task bpf0_task(rtems_task_argument argument);
41 39 rtems_task smiq_task(rtems_task_argument argument); // added to test the spectral matrix simulator
42 40 rtems_task matr_task(rtems_task_argument argument);
43 41
44 void matrix_compression(volatile float *averaged_spec_mat, unsigned char fChannel, float *compressed_spec_mat);
45 42 void matrix_reset(volatile float *averaged_spec_mat);
46 43 void BP1_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * LFR_BP1);
47 44 void BP2_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat);
48 45 //
49 46 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header);
50 void send_spectral_matrix(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
47 void compress_averaged_spectral_matrix( float *averaged_spec_mat, unsigned char fChannel, float *compressed_spec_mat );
48 void convert_averaged_spectral_matrix(volatile float *input_matrix, char *output_matrix);
49 void send_averaged_spectral_matrix(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
51 50 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id);
52 void convert_averaged_spectral_matrix(volatile float *input_matrix, char *output_matrix);
53 51 void fill_averaged_spectral_matrix( void );
54 52 void reset_spectral_matrix_regs();
55 53
56 54 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,610 +1,594
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 36 #define CONFIGURE_MAXIMUM_PERIODS 5
37 37 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 38 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 2
39 39 #ifdef PRINT_STACK_REPORT
40 40 #define CONFIGURE_STACK_CHECKER_ENABLED
41 41 #endif
42 42
43 43 #include <rtems/confdefs.h>
44 44
45 45 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 46 #ifdef RTEMS_DRVMGR_STARTUP
47 47 #ifdef LEON3
48 48 /* Add Timer and UART Driver */
49 49 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 50 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 51 #endif
52 52 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 54 #endif
55 55 #endif
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 57 #include <drvmgr/drvmgr_confdefs.h>
58 58 #endif
59 59
60 60 #include "fsw_init.h"
61 61 #include "fsw_config.c"
62 62
63 63 rtems_task Init( rtems_task_argument ignored )
64 64 {
65 65 /** This is the RTEMS INIT taks, it the first task launched by the system.
66 66 *
67 67 * @param unused is the starting argument of the RTEMS task
68 68 *
69 69 * The INIT task create and run all other RTEMS tasks.
70 70 *
71 71 */
72 72
73 73
74 74 rtems_status_code status;
75 75 rtems_status_code status_spw;
76 76 rtems_isr_entry old_isr_handler;
77 77
78 78 // UART settings
79 79 send_console_outputs_on_apbuart_port();
80 80 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
81 81 enable_apbuart_transmitter();
82 82 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
83 83
84 84 PRINTF("\n\n\n\n\n")
85 85 PRINTF("*************************\n")
86 86 PRINTF("** LFR Flight Software **\n")
87 87 PRINTF1("** %d.", SW_VERSION_N1)
88 88 PRINTF1("%d.", SW_VERSION_N2)
89 89 PRINTF1("%d.", SW_VERSION_N3)
90 90 PRINTF1("%d **\n", SW_VERSION_N4)
91 91 PRINTF("*************************\n")
92 92 PRINTF("\n\n")
93 93
94 94 reset_wfp_burst_enable(); // stop the waveform picker if it was running
95 95 init_waveform_rings(); // initialize the waveform rings
96 96 init_sm_rings();
97 97
98 98 init_parameter_dump();
99 99 init_local_mode_parameters();
100 100 init_housekeeping_parameters();
101 101
102 102 updateLFRCurrentMode();
103 103
104 104 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
105 105
106 106 create_names(); // create all names
107 107
108 108 status = create_message_queues(); // create message queues
109 109 if (status != RTEMS_SUCCESSFUL)
110 110 {
111 111 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
112 112 }
113 113
114 114 status = create_all_tasks(); // create all tasks
115 115 if (status != RTEMS_SUCCESSFUL)
116 116 {
117 117 PRINTF1("in INIT *** ERR in create_all_tasks, code %d", status)
118 118 }
119 119
120 120 // **************************
121 121 // <SPACEWIRE INITIALIZATION>
122 122 grspw_timecode_callback = &timecode_irq_handler;
123 123
124 124 status_spw = spacewire_open_link(); // (1) open the link
125 125 if ( status_spw != RTEMS_SUCCESSFUL )
126 126 {
127 127 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
128 128 }
129 129
130 130 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
131 131 {
132 132 status_spw = spacewire_configure_link( fdSPW );
133 133 if ( status_spw != RTEMS_SUCCESSFUL )
134 134 {
135 135 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
136 136 }
137 137 }
138 138
139 139 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
140 140 {
141 141 status_spw = spacewire_start_link( fdSPW );
142 142 if ( status_spw != RTEMS_SUCCESSFUL )
143 143 {
144 144 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
145 145 }
146 146 }
147 147 // </SPACEWIRE INITIALIZATION>
148 148 // ***************************
149 149
150 150 status = start_all_tasks(); // start all tasks
151 151 if (status != RTEMS_SUCCESSFUL)
152 152 {
153 153 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
154 154 }
155 155
156 156 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
157 157 status = start_recv_send_tasks();
158 158 if ( status != RTEMS_SUCCESSFUL )
159 159 {
160 160 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
161 161 }
162 162
163 163 // suspend science tasks. they will be restarted later depending on the mode
164 164 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
165 165 if (status != RTEMS_SUCCESSFUL)
166 166 {
167 167 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
168 168 }
169 169
170 170 //******************************
171 171 // <SPECTRAL MATRICES SIMULATOR>
172 172 LEON_Mask_interrupt( IRQ_SM_SIMULATOR );
173 173 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
174 174 IRQ_SPARC_SM_SIMULATOR, spectral_matrices_isr_simu );
175 175 // </SPECTRAL MATRICES SIMULATOR>
176 176 //*******************************
177 177
178 178 // configure IRQ handling for the waveform picker unit
179 179 status = rtems_interrupt_catch( waveforms_isr,
180 180 IRQ_SPARC_WAVEFORM_PICKER,
181 181 &old_isr_handler) ;
182 182
183 183 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
184 184 if ( status_spw != RTEMS_SUCCESSFUL )
185 185 {
186 186 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
187 187 if ( status != RTEMS_SUCCESSFUL ) {
188 188 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
189 189 }
190 190 }
191 191
192 192 BOOT_PRINTF("delete INIT\n")
193 193
194 194 status = rtems_task_delete(RTEMS_SELF);
195 195
196 196 }
197 197
198 198 void init_local_mode_parameters( void )
199 199 {
200 200 /** This function initialize the param_local global variable with default values.
201 201 *
202 202 */
203 203
204 204 unsigned int i;
205 205
206 206 // LOCAL PARAMETERS
207 207 set_local_nb_interrupt_f0_MAX();
208 208
209 209 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
210 210 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
211 211 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
212 212
213 213 // init sequence counters
214 214
215 215 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
216 216 {
217 217 sequenceCounters_TC_EXE[i] = 0x00;
218 218 }
219 219 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
220 220 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
221 221 }
222 222
223 223 void create_names( void ) // create all names for tasks and queues
224 224 {
225 225 /** This function creates all RTEMS names used in the software for tasks and queues.
226 226 *
227 227 * @return RTEMS directive status codes:
228 228 * - RTEMS_SUCCESSFUL - successful completion
229 229 *
230 230 */
231 231
232 232 // task names
233 233 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
234 234 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
235 235 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
236 236 Task_name[TASKID_SMIQ] = rtems_build_name( 'S', 'M', 'I', 'Q' );
237 237 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
238 238 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
239 Task_name[TASKID_BPF0] = rtems_build_name( 'B', 'P', 'F', '0' );
239 // Task_name[TASKID_BPF0] = rtems_build_name( 'B', 'P', 'F', '0' );
240 240 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
241 241 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
242 242 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
243 243 Task_name[TASKID_MATR] = rtems_build_name( 'M', 'A', 'T', 'R' );
244 244 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
245 245 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
246 246 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
247 247 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
248 248 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
249 249
250 250 // rate monotonic period names
251 251 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
252 252
253 253 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
254 254 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
255 255 }
256 256
257 257 int create_all_tasks( void ) // create all tasks which run in the software
258 258 {
259 259 /** This function creates all RTEMS tasks used in the software.
260 260 *
261 261 * @return RTEMS directive status codes:
262 262 * - RTEMS_SUCCESSFUL - task created successfully
263 263 * - RTEMS_INVALID_ADDRESS - id is NULL
264 264 * - RTEMS_INVALID_NAME - invalid task name
265 265 * - RTEMS_INVALID_PRIORITY - invalid task priority
266 266 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
267 267 * - RTEMS_TOO_MANY - too many tasks created
268 268 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
269 269 * - RTEMS_TOO_MANY - too many global objects
270 270 *
271 271 */
272 272
273 273 rtems_status_code status;
274 274
275 275 // RECV
276 276 status = rtems_task_create(
277 277 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
278 278 RTEMS_DEFAULT_MODES,
279 279 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
280 280 );
281 281
282 282 if (status == RTEMS_SUCCESSFUL) // ACTN
283 283 {
284 284 status = rtems_task_create(
285 285 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
286 286 RTEMS_DEFAULT_MODES,
287 287 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
288 288 );
289 289 }
290 290 if (status == RTEMS_SUCCESSFUL) // SPIQ
291 291 {
292 292 status = rtems_task_create(
293 293 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
294 294 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
295 295 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
296 296 );
297 297 }
298 298 if (status == RTEMS_SUCCESSFUL) // SMIQ
299 299 {
300 300 status = rtems_task_create(
301 301 Task_name[TASKID_SMIQ], TASK_PRIORITY_SMIQ, RTEMS_MINIMUM_STACK_SIZE,
302 302 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
303 303 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SMIQ]
304 304 );
305 305 }
306 306 if (status == RTEMS_SUCCESSFUL) // STAT
307 307 {
308 308 status = rtems_task_create(
309 309 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
310 310 RTEMS_DEFAULT_MODES,
311 311 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
312 312 );
313 313 }
314 314 if (status == RTEMS_SUCCESSFUL) // AVF0
315 315 {
316 316 status = rtems_task_create(
317 317 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
318 318 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
319 319 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
320 320 );
321 321 }
322 if (status == RTEMS_SUCCESSFUL) // BPF0
323 {
324 status = rtems_task_create(
325 Task_name[TASKID_BPF0], TASK_PRIORITY_BPF0, RTEMS_MINIMUM_STACK_SIZE,
326 RTEMS_DEFAULT_MODES,
327 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_BPF0]
328 );
329 }
330 322 if (status == RTEMS_SUCCESSFUL) // WFRM
331 323 {
332 324 status = rtems_task_create(
333 325 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
334 326 RTEMS_DEFAULT_MODES,
335 327 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
336 328 );
337 329 }
338 330 if (status == RTEMS_SUCCESSFUL) // DUMB
339 331 {
340 332 status = rtems_task_create(
341 333 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
342 334 RTEMS_DEFAULT_MODES,
343 335 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
344 336 );
345 337 }
346 338 if (status == RTEMS_SUCCESSFUL) // HOUS
347 339 {
348 340 status = rtems_task_create(
349 341 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
350 342 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
351 343 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_HOUS]
352 344 );
353 345 }
354 346 if (status == RTEMS_SUCCESSFUL) // MATR
355 347 {
356 348 status = rtems_task_create(
357 349 Task_name[TASKID_MATR], TASK_PRIORITY_MATR, RTEMS_MINIMUM_STACK_SIZE,
358 350 RTEMS_DEFAULT_MODES,
359 351 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_MATR]
360 352 );
361 353 }
362 354 if (status == RTEMS_SUCCESSFUL) // CWF3
363 355 {
364 356 status = rtems_task_create(
365 357 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
366 358 RTEMS_DEFAULT_MODES,
367 359 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
368 360 );
369 361 }
370 362 if (status == RTEMS_SUCCESSFUL) // CWF2
371 363 {
372 364 status = rtems_task_create(
373 365 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
374 366 RTEMS_DEFAULT_MODES,
375 367 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
376 368 );
377 369 }
378 370 if (status == RTEMS_SUCCESSFUL) // CWF1
379 371 {
380 372 status = rtems_task_create(
381 373 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
382 374 RTEMS_DEFAULT_MODES,
383 375 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
384 376 );
385 377 }
386 378 if (status == RTEMS_SUCCESSFUL) // SEND
387 379 {
388 380 status = rtems_task_create(
389 381 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
390 382 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
391 383 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
392 384 );
393 385 }
394 386 if (status == RTEMS_SUCCESSFUL) // WTDG
395 387 {
396 388 status = rtems_task_create(
397 389 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
398 390 RTEMS_DEFAULT_MODES,
399 391 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
400 392 );
401 393 }
402 394
403 395 return status;
404 396 }
405 397
406 398 int start_recv_send_tasks( void )
407 399 {
408 400 rtems_status_code status;
409 401
410 402 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
411 403 if (status!=RTEMS_SUCCESSFUL) {
412 404 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
413 405 }
414 406
415 407 if (status == RTEMS_SUCCESSFUL) // SEND
416 408 {
417 409 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
418 410 if (status!=RTEMS_SUCCESSFUL) {
419 411 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
420 412 }
421 413 }
422 414
423 415 return status;
424 416 }
425 417
426 418 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
427 419 {
428 420 /** This function starts all RTEMS tasks used in the software.
429 421 *
430 422 * @return RTEMS directive status codes:
431 423 * - RTEMS_SUCCESSFUL - ask started successfully
432 424 * - RTEMS_INVALID_ADDRESS - invalid task entry point
433 425 * - RTEMS_INVALID_ID - invalid task id
434 426 * - RTEMS_INCORRECT_STATE - task not in the dormant state
435 427 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
436 428 *
437 429 */
438 430 // starts all the tasks fot eh flight software
439 431
440 432 rtems_status_code status;
441 433
442 434 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
443 435 if (status!=RTEMS_SUCCESSFUL) {
444 436 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
445 437 }
446 438
447 439 if (status == RTEMS_SUCCESSFUL) // WTDG
448 440 {
449 441 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
450 442 if (status!=RTEMS_SUCCESSFUL) {
451 443 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
452 444 }
453 445 }
454 446
455 447 if (status == RTEMS_SUCCESSFUL) // SMIQ
456 448 {
457 449 status = rtems_task_start( Task_id[TASKID_SMIQ], smiq_task, 1 );
458 450 if (status!=RTEMS_SUCCESSFUL) {
459 451 BOOT_PRINTF("in INIT *** Error starting TASK_BPPR\n")
460 452 }
461 453 }
462 454
463 455 if (status == RTEMS_SUCCESSFUL) // ACTN
464 456 {
465 457 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
466 458 if (status!=RTEMS_SUCCESSFUL) {
467 459 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
468 460 }
469 461 }
470 462
471 463 if (status == RTEMS_SUCCESSFUL) // STAT
472 464 {
473 465 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
474 466 if (status!=RTEMS_SUCCESSFUL) {
475 467 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
476 468 }
477 469 }
478 470
479 471 if (status == RTEMS_SUCCESSFUL) // AVF0
480 472 {
481 473 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, 1 );
482 474 if (status!=RTEMS_SUCCESSFUL) {
483 475 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
484 476 }
485 477 }
486 478
487 if (status == RTEMS_SUCCESSFUL) // BPF0
488 {
489 status = rtems_task_start( Task_id[TASKID_BPF0], bpf0_task, 1 );
490 if (status!=RTEMS_SUCCESSFUL) {
491 BOOT_PRINTF("in INIT *** Error starting TASK_BPF0\n")
492 }
493 }
494
495 479 if (status == RTEMS_SUCCESSFUL) // WFRM
496 480 {
497 481 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
498 482 if (status!=RTEMS_SUCCESSFUL) {
499 483 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
500 484 }
501 485 }
502 486
503 487 if (status == RTEMS_SUCCESSFUL) // DUMB
504 488 {
505 489 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
506 490 if (status!=RTEMS_SUCCESSFUL) {
507 491 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
508 492 }
509 493 }
510 494
511 495 if (status == RTEMS_SUCCESSFUL) // HOUS
512 496 {
513 497 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
514 498 if (status!=RTEMS_SUCCESSFUL) {
515 499 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
516 500 }
517 501 }
518 502
519 503 if (status == RTEMS_SUCCESSFUL) // MATR
520 504 {
521 505 status = rtems_task_start( Task_id[TASKID_MATR], matr_task, 1 );
522 506 if (status!=RTEMS_SUCCESSFUL) {
523 507 BOOT_PRINTF("in INIT *** Error starting TASK_MATR\n")
524 508 }
525 509 }
526 510
527 511 if (status == RTEMS_SUCCESSFUL) // CWF3
528 512 {
529 513 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
530 514 if (status!=RTEMS_SUCCESSFUL) {
531 515 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
532 516 }
533 517 }
534 518
535 519 if (status == RTEMS_SUCCESSFUL) // CWF2
536 520 {
537 521 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
538 522 if (status!=RTEMS_SUCCESSFUL) {
539 523 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
540 524 }
541 525 }
542 526
543 527 if (status == RTEMS_SUCCESSFUL) // CWF1
544 528 {
545 529 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
546 530 if (status!=RTEMS_SUCCESSFUL) {
547 531 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
548 532 }
549 533 }
550 534 return status;
551 535 }
552 536
553 537 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
554 538 {
555 539 rtems_status_code status_recv;
556 540 rtems_status_code status_send;
557 541 rtems_status_code ret;
558 542 rtems_id queue_id;
559 543
560 544 // create the queue for handling valid TCs
561 545 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
562 546 ACTION_MSG_QUEUE_COUNT, CCSDS_TC_PKT_MAX_SIZE,
563 547 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
564 548 if ( status_recv != RTEMS_SUCCESSFUL ) {
565 549 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
566 550 }
567 551
568 552 // create the queue for handling TM packet sending
569 553 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
570 554 ACTION_MSG_PKTS_COUNT, ACTION_MSG_PKTS_MAX_SIZE,
571 555 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
572 556 if ( status_send != RTEMS_SUCCESSFUL ) {
573 557 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
574 558 }
575 559
576 560 if ( status_recv != RTEMS_SUCCESSFUL )
577 561 {
578 562 ret = status_recv;
579 563 }
580 564 else
581 565 {
582 566 ret = status_send;
583 567 }
584 568
585 569 return ret;
586 570 }
587 571
588 572 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
589 573 {
590 574 rtems_status_code status;
591 575 rtems_name queue_name;
592 576
593 577 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
594 578
595 579 status = rtems_message_queue_ident( queue_name, 0, queue_id );
596 580
597 581 return status;
598 582 }
599 583
600 584 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
601 585 {
602 586 rtems_status_code status;
603 587 rtems_name queue_name;
604 588
605 589 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
606 590
607 591 status = rtems_message_queue_ident( queue_name, 0, queue_id );
608 592
609 593 return status;
610 594 }
@@ -1,686 +1,679
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include <fsw_processing.h>
11 11
12 12 #include "fsw_processing_globals.c"
13 13
14 14 //************************
15 15 // spectral matrices rings
16 16 ring_node sm_ring_f0[NB_RING_NODES_ASM_F0];
17 17 ring_node sm_ring_f1[NB_RING_NODES_ASM_F1];
18 18 ring_node sm_ring_f2[NB_RING_NODES_ASM_F2];
19 19 ring_node *current_ring_node_sm_f0;
20 20 ring_node *ring_node_for_averaging_sm_f0;
21 21 ring_node *current_ring_node_sm_f1;
22 22 ring_node *current_ring_node_sm_f2;
23 23
24 24 BP1_t data_BP1[ NB_BINS_COMPRESSED_SM_F0 ];
25 25 float averaged_sm_f0[ TOTAL_SIZE_SM ];
26 26 char averaged_sm_f0_char[ TOTAL_SIZE_SM * 2 ];
27 float compressed_sm_f0[ TOTAL_SIZE_COMPRESSED_MATRIX_f0 ];
27 float compressed_sm_f0[ TOTAL_SIZE_COMPRESSED_ASM_F0 ];
28 28
29 29 unsigned int nb_sm_f0;
30 30
31 31 void init_sm_rings( void )
32 32 {
33 33 unsigned char i;
34 34
35 35 // F0 RING
36 36 sm_ring_f0[0].next = (ring_node*) &sm_ring_f0[1];
37 37 sm_ring_f0[0].previous = (ring_node*) &sm_ring_f0[NB_RING_NODES_ASM_F0-1];
38 38 sm_ring_f0[0].buffer_address = (int) &sm_f0[0][0];
39 39
40 40 sm_ring_f0[NB_RING_NODES_ASM_F0-1].next = (ring_node*) &sm_ring_f0[0];
41 41 sm_ring_f0[NB_RING_NODES_ASM_F0-1].previous = (ring_node*) &sm_ring_f0[NB_RING_NODES_ASM_F0-2];
42 42 sm_ring_f0[NB_RING_NODES_ASM_F0-1].buffer_address = (int) &sm_f0[NB_RING_NODES_ASM_F0-1][0];
43 43
44 44 for(i=1; i<NB_RING_NODES_ASM_F0-1; i++)
45 45 {
46 46 sm_ring_f0[i].next = (ring_node*) &sm_ring_f0[i+1];
47 47 sm_ring_f0[i].previous = (ring_node*) &sm_ring_f0[i-1];
48 48 sm_ring_f0[i].buffer_address = (int) &sm_f0[i][0];
49 49 }
50 50
51 51 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
52 52
53 53 spectral_matrix_regs->matrixF0_Address0 = sm_ring_f0[0].buffer_address;
54 54 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->matrixF0_Address0)
55 55 }
56 56
57 57 void reset_current_sm_ring_nodes( void )
58 58 {
59 59 current_ring_node_sm_f0 = sm_ring_f0;
60 60 ring_node_for_averaging_sm_f0 = sm_ring_f0;
61 61 }
62 62
63 63 //***********************************************************
64 64 // Interrupt Service Routine for spectral matrices processing
65 65 void reset_nb_sm_f0( void )
66 66 {
67 67 nb_sm_f0 = 0;
68 68 }
69 69
70 70 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
71 71 {
72 72 // unsigned char status;
73 73 // unsigned char i;
74 74
75 75 // status = spectral_matrix_regs->status; //[f2 f1 f0_1 f0_0]
76 76 // for (i=0; i<4; i++)
77 77 // {
78 78 // if ( ( (status >> i) & 0x01) == 1) // (1) buffer rotation
79 79 // {
80 80 // switch(i)
81 81 // {
82 82 // case 0:
83 83 // current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
84 84 // spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
85 85 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe;
86 86 // nb_interrupt_f0 = nb_interrupt_f0 + 1;
87 87 // if (nb_interrupt_f0 == NB_SM_TO_RECEIVE_BEFORE_AVF0 ){
88 88 // ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
89 89 // if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
90 90 // {
91 91 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
92 92 // }
93 93 // nb_interrupt_f0 = 0;
94 94 // }
95 95 // break;
96 96 // case 1:
97 97 // break;
98 98 // case 2:
99 99 // break;
100 100 // default:
101 101 // break;
102 102 // }
103 103 // }
104 104 // }
105 105
106 106 // // reset error codes to 0
107 107 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // [1100 1111]
108 108 }
109 109
110 110 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
111 111 {
112 //current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
113 //spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
114 //spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe;
112 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
113 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
114 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe;
115 115
116 116 if (nb_sm_f0 == (NB_SM_TO_RECEIVE_BEFORE_AVF0-1) )
117 117 {
118 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
118 // ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
119 ring_node_for_averaging_sm_f0 = &sm_ring_f0[NB_SM_TO_RECEIVE_BEFORE_AVF0-1];
119 120 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
120 121 {
121 122 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
122 123 }
123 124 nb_sm_f0 = 0;
124 125 }
125 126 else
126 127 {
127 128 nb_sm_f0 = nb_sm_f0 + 1;
128 129 }
129 130 }
130 131
131 132 //************
132 133 // RTEMS TASKS
133 134
134 135 rtems_task smiq_task(rtems_task_argument argument) // process the Spectral Matrices IRQ
135 136 {
136 137 rtems_event_set event_out;
137 138
138 139 BOOT_PRINTF("in SMIQ *** \n")
139 140
140 141 while(1){
141 142 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
142 143 }
143 144 }
144 145
145 rtems_task spw_bppr_task(rtems_task_argument argument)
146 {
147 rtems_status_code status;
148 rtems_event_set event_out;
149
150 BOOT_PRINTF("in BPPR ***\n");
151
152 while( true ){ // wait for an event to begin with the processing
153 status = rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out);
154 }
155 }
156
157 146 rtems_task avf0_task(rtems_task_argument argument)
158 147 {
159 148 int i;
160 149 static int nb_average;
161 150 rtems_event_set event_out;
162 151 rtems_status_code status;
163 152 ring_node *ring_node_tab[8];
164 153
165 154 nb_average = 0;
166 155
167 156 BOOT_PRINTF("in AVFO *** \n")
168 157
169 158 while(1){
170 159 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
171 ring_node_for_averaging_sm_f0 = &sm_ring_f0[NB_SM_TO_RECEIVE_BEFORE_AVF0-1];
172 160 ring_node_tab[NB_SM_TO_RECEIVE_BEFORE_AVF0-1] = ring_node_for_averaging_sm_f0;
173 161 for (i=2; i<NB_SM_TO_RECEIVE_BEFORE_AVF0+1; i++)
174 162 {
175 163 ring_node_for_averaging_sm_f0 = ring_node_for_averaging_sm_f0->previous;
176 164 ring_node_tab[NB_SM_TO_RECEIVE_BEFORE_AVF0-i] = ring_node_for_averaging_sm_f0;
177 165 }
178 166 for(i=0; i<TOTAL_SIZE_SM; i++)
179 167 {
180 168 averaged_sm_f0[i] = ( (int *) (ring_node_tab[0]->buffer_address) ) [i]
181 169 + ( (int *) (ring_node_tab[1]->buffer_address) ) [i]
182 170 + ( (int *) (ring_node_tab[2]->buffer_address) ) [i]
183 171 + ( (int *) (ring_node_tab[3]->buffer_address) ) [i]
184 172 + ( (int *) (ring_node_tab[4]->buffer_address) ) [i]
185 173 + ( (int *) (ring_node_tab[5]->buffer_address) ) [i]
186 174 + ( (int *) (ring_node_tab[6]->buffer_address) ) [i]
187 175 + ( (int *) (ring_node_tab[7]->buffer_address) ) [i];
188 176 }
189 177 nb_average = nb_average + NB_SM_TO_RECEIVE_BEFORE_AVF0;
190 178 if (nb_average == NB_AVERAGE_NORMAL_f0) {
191 179 nb_average = 0;
192 180 status = rtems_event_send( Task_id[TASKID_MATR], RTEMS_EVENT_0 ); // sending an event to the task 7, BPF0
193 181 if (status != RTEMS_SUCCESSFUL) {
194 182 printf("in AVF0 *** Error sending RTEMS_EVENT_0, code %d\n", status);
195 183 }
196 184 }
197 185 }
198 186 }
199 187
200 rtems_task bpf0_task(rtems_task_argument argument)
201 {
202 rtems_event_set event_out;
203 static unsigned char LFR_BP1_F0[ NB_BINS_COMPRESSED_SM_F0 * 9 ];
204
205 BOOT_PRINTF("in BPFO *** \n")
206
207 while(1){
208 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
209 matrix_compression(averaged_sm_f0, 0, compressed_sm_f0);
210 BP1_set(compressed_sm_f0, NB_BINS_COMPRESSED_SM_F0, LFR_BP1_F0);
211 }
212 }
213
214 188 rtems_task matr_task(rtems_task_argument argument)
215 189 {
216 190 spw_ioctl_pkt_send spw_ioctl_send_ASM;
217 191 rtems_event_set event_out;
218 192 rtems_status_code status;
219 193 rtems_id queue_id;
220 194 Header_TM_LFR_SCIENCE_ASM_t headerASM;
221 195
222 196 init_header_asm( &headerASM );
223 197
224 198 status = get_message_queue_id_send( &queue_id );
225 199 if (status != RTEMS_SUCCESSFUL)
226 200 {
227 201 PRINTF1("in MATR *** ERR get_message_queue_id_send %d\n", status)
228 202 }
229 203
230 204 BOOT_PRINTF("in MATR *** \n")
231 205
232 206 fill_averaged_spectral_matrix( );
233 207
234 208 while(1){
235 209 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
236 // 1) convert the float array in a char array
210 // 1) compress the matrix for Basic Parameters calculation
211 compress_averaged_spectral_matrix( averaged_sm_f0, 0, compressed_sm_f0 );
212 // 2)
213 //BP1_set(compressed_sm_f0, NB_BINS_COMPRESSED_SM_F0, LFR_BP1_F0);
214 // 3) convert the float array in a char array
237 215 convert_averaged_spectral_matrix( averaged_sm_f0, averaged_sm_f0_char);
238 // 2) send the spectral matrix packets
239 send_spectral_matrix( &headerASM, averaged_sm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
216 // 4) send the spectral matrix packets
217 send_averaged_spectral_matrix( &headerASM, averaged_sm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
240 218 }
241 219 }
242 220
243 221 //*****************************
244 222 // Spectral matrices processing
245 223
246 224 void matrix_reset(volatile float *averaged_spec_mat)
247 225 {
248 226 int i;
249 227 for(i=0; i<TOTAL_SIZE_SM; i++){
250 228 averaged_spec_mat[i] = 0;
251 229 }
252 230 }
253 231
254 void matrix_compression(volatile float *averaged_spec_mat, unsigned char fChannel, float *compressed_spec_mat)
232 void compress_averaged_spectral_matrix( float *averaged_spec_mat, unsigned char fChannel, float *compressed_spec_mat )
255 233 {
256 int i;
257 int j;
234 int frequencyBin;
235 int asmComponent;
236 int offsetASM;
237 int generalOffsetASM;
238 int offsetCompressed;
239 int k;
240
258 241 switch (fChannel){
259 case 0:
260 for(i=0;i<NB_BINS_COMPRESSED_SM_F0;i++){
261 j = 17 + (i * 8);
262 compressed_spec_mat[i] = (averaged_spec_mat[j]
263 + averaged_spec_mat[j+1]
264 + averaged_spec_mat[j+2]
265 + averaged_spec_mat[j+3]
266 + averaged_spec_mat[j+4]
267 + averaged_spec_mat[j+5]
268 + averaged_spec_mat[j+6]
269 + averaged_spec_mat[j+7])/(8*NB_AVERAGE_NORMAL_f0);
242 case 0:
243 generalOffsetASM = ASM_F0_INDICE_START * NB_VALUES_PER_SM;
244 for( frequencyBin = 0; frequencyBin < NB_BINS_COMPRESSED_SM_F0; frequencyBin++ )
245 {
246 offsetCompressed = frequencyBin * NB_VALUES_PER_SM;
247 offsetASM = generalOffsetASM + frequencyBin * NB_BINS_TO_AVERAGE_ASM_F0 * NB_VALUES_PER_SM;
248 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
249 {
250 compressed_spec_mat[ offsetCompressed + asmComponent ] = 0;
251 for ( k = 0; k < NB_BINS_TO_AVERAGE_ASM_F0; k++ )
252 {
253 compressed_spec_mat[ offsetCompressed + asmComponent ] =
254 compressed_spec_mat[ offsetCompressed + asmComponent ]
255 + averaged_spec_mat[ offsetASM + (k*NB_VALUES_PER_SM) + asmComponent ];
270 256 }
271 break;
272 case 1:
257 compressed_spec_mat[ offsetCompressed + asmComponent ] =
258 compressed_spec_mat[ offsetCompressed + asmComponent ] / NB_BINS_TO_AVERAGE_ASM_F0;
259 }
260 }
261 break;
262
263 case 1:
264 // case fChannel = f1 to be completed later
265 break;
266
267 case 2:
273 268 // case fChannel = f1 to be completed later
269 break;
270
271 default:
272 break;
273 }
274 }
275
276 void convert_averaged_spectral_matrix( volatile float *input_matrix, char *output_matrix)
277 {
278 unsigned int i;
279 unsigned int j;
280 char * pt_char_input;
281 char * pt_char_output;
282
283 pt_char_input = NULL;
284 pt_char_output = NULL;
285
286 for( i=0; i<NB_BINS_PER_SM; i++)
287 {
288 for ( j=0; j<NB_VALUES_PER_SM; j++)
289 {
290 pt_char_input = (char*) &input_matrix [ (i*NB_VALUES_PER_SM) + j ];
291 pt_char_output = (char*) &output_matrix[ 2 * ( (i*NB_VALUES_PER_SM) + j ) ];
292 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
293 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
294 }
295 }
296 }
297
298 void send_averaged_spectral_matrix(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
299 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
300 {
301 unsigned int i;
302 unsigned int length = 0;
303 rtems_status_code status;
304
305 for (i=0; i<2; i++)
306 {
307 // (1) BUILD THE DATA
308 switch(sid)
309 {
310 case SID_NORM_ASM_F0:
311 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2;
312 spw_ioctl_send->data = &spectral_matrix[ ( (ASM_F0_INDICE_START+ (i*NB_BINS_PER_PKT_ASM_F0)) * NB_VALUES_PER_SM) * 2 ];
313 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
314 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
315 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
274 316 break;
275 case 2:
276 // case fChannel = f1 to be completed later
317 case SID_NORM_ASM_F1:
318 break;
319 case SID_NORM_ASM_F2:
277 320 break;
278 321 default:
322 PRINTF1("ERR *** in send_averaged_spectral_matrix *** unexpected sid %d\n", sid)
279 323 break;
324 }
325 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
326 spw_ioctl_send->hdr = (char *) header;
327 spw_ioctl_send->options = 0;
328
329 // (2) BUILD THE HEADER
330 header->packetLength[0] = (unsigned char) (length>>8);
331 header->packetLength[1] = (unsigned char) (length);
332 header->sid = (unsigned char) sid; // SID
333 header->pa_lfr_pkt_cnt_asm = 2;
334 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
335
336 // (3) SET PACKET TIME
337 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
338 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
339 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
340 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
341 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
342 header->time[5] = (unsigned char) (time_management_regs->fine_time);
343 //
344 header->acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
345 header->acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
346 header->acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
347 header->acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
348 header->acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
349 header->acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
350
351 // (4) SEND PACKET
352 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
353 if (status != RTEMS_SUCCESSFUL) {
354 printf("in send_averaged_spectral_matrix *** ERR %d\n", (int) status);
355 }
280 356 }
281 357 }
282 358
283 359 void BP1_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * LFR_BP1){
284 360 int i;
285 361 int j;
286 362 unsigned char tmp_u_char;
287 363 unsigned char * pt_char = NULL;
288 364 float PSDB, PSDE;
289 365 float NVEC_V0;
290 366 float NVEC_V1;
291 367 float NVEC_V2;
292 368 //float significand;
293 369 //int exponent;
294 370 float aux;
295 371 float tr_SB_SB;
296 372 float tmp;
297 373 float sx_re;
298 374 float sx_im;
299 375 float nebx_re = 0;
300 376 float nebx_im = 0;
301 377 float ny = 0;
302 378 float nz = 0;
303 379 float bx_bx_star = 0;
304 380 for(i=0; i<nb_bins_compressed_spec_mat; i++){
305 381 //==============================================
306 382 // BP1 PSD == B PAR_LFR_SC_BP1_PE_FL0 == 16 bits
307 383 PSDB = compressed_spec_mat[i*30] // S11
308 384 + compressed_spec_mat[(i*30) + 10] // S22
309 385 + compressed_spec_mat[(i*30) + 18]; // S33
310 386 //significand = frexp(PSDB, &exponent);
311 387 pt_char = (unsigned char*) &PSDB;
312 388 LFR_BP1[(i*9) + 2] = pt_char[0]; // bits 31 downto 24 of the float
313 389 LFR_BP1[(i*9) + 3] = pt_char[1]; // bits 23 downto 16 of the float
314 390 //==============================================
315 391 // BP1 PSD == E PAR_LFR_SC_BP1_PB_FL0 == 16 bits
316 392 PSDE = compressed_spec_mat[(i*30) + 24] * K44_pe // S44
317 393 + compressed_spec_mat[(i*30) + 28] * K55_pe // S55
318 394 + compressed_spec_mat[(i*30) + 26] * K45_pe_re // S45
319 395 - compressed_spec_mat[(i*30) + 27] * K45_pe_im; // S45
320 396 pt_char = (unsigned char*) &PSDE;
321 397 LFR_BP1[(i*9) + 0] = pt_char[0]; // bits 31 downto 24 of the float
322 398 LFR_BP1[(i*9) + 1] = pt_char[1]; // bits 23 downto 16 of the float
323 399 //==============================================================================
324 400 // BP1 normal wave vector == PAR_LFR_SC_BP1_NVEC_V0_F0 == 8 bits
325 401 // == PAR_LFR_SC_BP1_NVEC_V1_F0 == 8 bits
326 402 // == PAR_LFR_SC_BP1_NVEC_V2_F0 == 1 bits
327 403 tmp = sqrt(
328 404 compressed_spec_mat[(i*30) + 3]*compressed_spec_mat[(i*30) + 3] //Im S12
329 405 +compressed_spec_mat[(i*30) + 5]*compressed_spec_mat[(i*30) + 5] //Im S13
330 406 +compressed_spec_mat[(i*30) + 13]*compressed_spec_mat[(i*30) + 13] //Im S23
331 407 );
332 408 NVEC_V0 = compressed_spec_mat[(i*30) + 13] / tmp; // Im S23
333 409 NVEC_V1 = -compressed_spec_mat[(i*30) + 5] / tmp; // Im S13
334 410 NVEC_V2 = compressed_spec_mat[(i*30) + 3] / tmp; // Im S12
335 411 LFR_BP1[(i*9) + 4] = (char) (NVEC_V0*127);
336 412 LFR_BP1[(i*9) + 5] = (char) (NVEC_V1*127);
337 413 pt_char = (unsigned char*) &NVEC_V2;
338 414 LFR_BP1[(i*9) + 6] = pt_char[0] & 0x80; // extract the sign of NVEC_V2
339 415 //=======================================================
340 416 // BP1 ellipticity == PAR_LFR_SC_BP1_ELLIP_F0 == 4 bits
341 417 aux = 2*tmp / PSDB; // compute the ellipticity
342 418 tmp_u_char = (unsigned char) (aux*(16-1)); // convert the ellipticity
343 419 LFR_BP1[i*9+6] = LFR_BP1[i*9+6] | ((tmp_u_char&0x0f)<<3); // keeps 4 bits of the resulting unsigned char
344 420 //==============================================================
345 421 // BP1 degree of polarization == PAR_LFR_SC_BP1_DOP_F0 == 3 bits
346 422 for(j = 0; j<NB_VALUES_PER_SM;j++){
347 423 tr_SB_SB = compressed_spec_mat[i*30] * compressed_spec_mat[i*30]
348 424 + compressed_spec_mat[(i*30) + 10] * compressed_spec_mat[(i*30) + 10]
349 425 + compressed_spec_mat[(i*30) + 18] * compressed_spec_mat[(i*30) + 18]
350 426 + 2 * compressed_spec_mat[(i*30) + 2] * compressed_spec_mat[(i*30) + 2]
351 427 + 2 * compressed_spec_mat[(i*30) + 3] * compressed_spec_mat[(i*30) + 3]
352 428 + 2 * compressed_spec_mat[(i*30) + 4] * compressed_spec_mat[(i*30) + 4]
353 429 + 2 * compressed_spec_mat[(i*30) + 5] * compressed_spec_mat[(i*30) + 5]
354 430 + 2 * compressed_spec_mat[(i*30) + 12] * compressed_spec_mat[(i*30) + 12]
355 431 + 2 * compressed_spec_mat[(i*30) + 13] * compressed_spec_mat[(i*30) + 13];
356 432 }
357 433 aux = PSDB*PSDB;
358 434 tmp = sqrt( abs( ( 3*tr_SB_SB - aux ) / ( 2 * aux ) ) );
359 435 tmp_u_char = (unsigned char) (NVEC_V0*(8-1));
360 436 LFR_BP1[(i*9) + 6] = LFR_BP1[(i*9) + 6] | (tmp_u_char & 0x07); // keeps 3 bits of the resulting unsigned char
361 437 //=======================================================================================
362 438 // BP1 x-component of the normalized Poynting flux == PAR_LFR_SC_BP1_SZ_F0 == 8 bits (7+1)
363 439 sx_re = compressed_spec_mat[(i*30) + 20] * K34_sx_re
364 440 + compressed_spec_mat[(i*30) + 6] * K14_sx_re
365 441 + compressed_spec_mat[(i*30) + 8] * K15_sx_re
366 442 + compressed_spec_mat[(i*30) + 14] * K24_sx_re
367 443 + compressed_spec_mat[(i*30) + 16] * K25_sx_re
368 444 + compressed_spec_mat[(i*30) + 22] * K35_sx_re;
369 445 sx_im = compressed_spec_mat[(i*30) + 21] * K34_sx_im
370 446 + compressed_spec_mat[(i*30) + 7] * K14_sx_im
371 447 + compressed_spec_mat[(i*30) + 9] * K15_sx_im
372 448 + compressed_spec_mat[(i*30) + 15] * K24_sx_im
373 449 + compressed_spec_mat[(i*30) + 17] * K25_sx_im
374 450 + compressed_spec_mat[(i*30) + 23] * K35_sx_im;
375 451 LFR_BP1[(i*9) + 7] = ((unsigned char) (sx_re * 128)) & 0x7f; // cf DOC for the compression
376 452 if ( abs(sx_re) > abs(sx_im) ) {
377 453 LFR_BP1[(i*9) + 7] = LFR_BP1[(i*9) + 1] | (0x80); // extract the sector of sx
378 454 }
379 455 else {
380 456 LFR_BP1[(i*9) + 7] = LFR_BP1[(i*9) + 1] & (0x7f); // extract the sector of sx
381 457 }
382 458 //======================================================================
383 459 // BP1 phase velocity estimator == PAR_LFR_SC_BP1_VPHI_F0 == 8 bits (7+1)
384 460 ny = sin(Alpha_M)*NVEC_V1 + cos(Alpha_M)*NVEC_V2;
385 461 nz = NVEC_V0;
386 462 bx_bx_star = cos(Alpha_M) * cos(Alpha_M) * compressed_spec_mat[i*30+10] // re S22
387 463 + sin(Alpha_M) * sin(Alpha_M) * compressed_spec_mat[i*30+18] // re S33
388 464 - 2 * sin(Alpha_M) * cos(Alpha_M) * compressed_spec_mat[i*30+12]; // re S23
389 465 nebx_re = ny * (compressed_spec_mat[(i*30) + 14] * K24_ny_re
390 466 +compressed_spec_mat[(i*30) + 16] * K25_ny_re
391 467 +compressed_spec_mat[(i*30) + 20] * K34_ny_re
392 468 +compressed_spec_mat[(i*30) + 22] * K35_ny_re)
393 469 + nz * (compressed_spec_mat[(i*30) + 14] * K24_nz_re
394 470 +compressed_spec_mat[(i*30) + 16] * K25_nz_re
395 471 +compressed_spec_mat[(i*30) + 20] * K34_nz_re
396 472 +compressed_spec_mat[(i*30) + 22] * K35_nz_re);
397 473 nebx_im = ny * (compressed_spec_mat[(i*30) + 15]*K24_ny_re
398 474 +compressed_spec_mat[(i*30) + 17] * K25_ny_re
399 475 +compressed_spec_mat[(i*30) + 21] * K34_ny_re
400 476 +compressed_spec_mat[(i*30) + 23] * K35_ny_re)
401 477 + nz * (compressed_spec_mat[(i*30) + 15] * K24_nz_im
402 478 +compressed_spec_mat[(i*30) + 17] * K25_nz_im
403 479 +compressed_spec_mat[(i*30) + 21] * K34_nz_im
404 480 +compressed_spec_mat[(i*30) + 23] * K35_nz_im);
405 481 tmp = nebx_re / bx_bx_star;
406 482 LFR_BP1[(i*9) + 8] = ((unsigned char) (tmp * 128)) & 0x7f; // cf DOC for the compression
407 483 if ( abs(nebx_re) > abs(nebx_im) ) {
408 484 LFR_BP1[(i*9) + 8] = LFR_BP1[(i*9) + 8] | (0x80); // extract the sector of nebx
409 485 }
410 486 else {
411 487 LFR_BP1[(i*9) + 8] = LFR_BP1[(i*9) + 8] & (0x7f); // extract the sector of nebx
412 488 }
413 489 }
414 490
415 491 }
416 492
417 493 void BP2_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat){
418 494 // BP2 autocorrelation
419 495 int i;
420 496 int aux = 0;
421 497
422 498 for(i = 0; i<nb_bins_compressed_spec_mat; i++){
423 499 // S12
424 500 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 10]);
425 501 compressed_spec_mat[(i*30) + 2] = compressed_spec_mat[(i*30) + 2] / aux;
426 502 compressed_spec_mat[(i*30) + 3] = compressed_spec_mat[(i*30) + 3] / aux;
427 503 // S13
428 504 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 18]);
429 505 compressed_spec_mat[(i*30) + 4] = compressed_spec_mat[(i*30) + 4] / aux;
430 506 compressed_spec_mat[(i*30) + 5] = compressed_spec_mat[(i*30) + 5] / aux;
431 507 // S23
432 508 aux = sqrt(compressed_spec_mat[i*30+12]*compressed_spec_mat[(i*30) + 18]);
433 509 compressed_spec_mat[(i*30) + 12] = compressed_spec_mat[(i*30) + 12] / aux;
434 510 compressed_spec_mat[(i*30) + 13] = compressed_spec_mat[(i*30) + 13] / aux;
435 511 // S45
436 512 aux = sqrt(compressed_spec_mat[i*30+24]*compressed_spec_mat[(i*30) + 28]);
437 513 compressed_spec_mat[(i*30) + 26] = compressed_spec_mat[(i*30) + 26] / aux;
438 514 compressed_spec_mat[(i*30) + 27] = compressed_spec_mat[(i*30) + 27] / aux;
439 515 // S14
440 516 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) +24]);
441 517 compressed_spec_mat[(i*30) + 6] = compressed_spec_mat[(i*30) + 6] / aux;
442 518 compressed_spec_mat[(i*30) + 7] = compressed_spec_mat[(i*30) + 7] / aux;
443 519 // S15
444 520 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 28]);
445 521 compressed_spec_mat[(i*30) + 8] = compressed_spec_mat[(i*30) + 8] / aux;
446 522 compressed_spec_mat[(i*30) + 9] = compressed_spec_mat[(i*30) + 9] / aux;
447 523 // S24
448 524 aux = sqrt(compressed_spec_mat[i*10]*compressed_spec_mat[(i*30) + 24]);
449 525 compressed_spec_mat[(i*30) + 14] = compressed_spec_mat[(i*30) + 14] / aux;
450 526 compressed_spec_mat[(i*30) + 15] = compressed_spec_mat[(i*30) + 15] / aux;
451 527 // S25
452 528 aux = sqrt(compressed_spec_mat[i*10]*compressed_spec_mat[(i*30) + 28]);
453 529 compressed_spec_mat[(i*30) + 16] = compressed_spec_mat[(i*30) + 16] / aux;
454 530 compressed_spec_mat[(i*30) + 17] = compressed_spec_mat[(i*30) + 17] / aux;
455 531 // S34
456 532 aux = sqrt(compressed_spec_mat[i*18]*compressed_spec_mat[(i*30) + 24]);
457 533 compressed_spec_mat[(i*30) + 20] = compressed_spec_mat[(i*30) + 20] / aux;
458 534 compressed_spec_mat[(i*30) + 21] = compressed_spec_mat[(i*30) + 21] / aux;
459 535 // S35
460 536 aux = sqrt(compressed_spec_mat[i*18]*compressed_spec_mat[(i*30) + 28]);
461 537 compressed_spec_mat[(i*30) + 22] = compressed_spec_mat[(i*30) + 22] / aux;
462 538 compressed_spec_mat[(i*30) + 23] = compressed_spec_mat[(i*30) + 23] / aux;
463 539 }
464 540 }
465 541
466 542 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header)
467 543 {
468 544 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
469 545 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
470 546 header->reserved = 0x00;
471 547 header->userApplication = CCSDS_USER_APP;
472 548 header->packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
473 549 header->packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
474 550 header->packetSequenceControl[0] = 0xc0;
475 551 header->packetSequenceControl[1] = 0x00;
476 552 header->packetLength[0] = 0x00;
477 553 header->packetLength[1] = 0x00;
478 554 // DATA FIELD HEADER
479 555 header->spare1_pusVersion_spare2 = 0x10;
480 556 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
481 557 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
482 558 header->destinationID = TM_DESTINATION_ID_GROUND;
483 559 // AUXILIARY DATA HEADER
484 560 header->sid = 0x00;
485 561 header->biaStatusInfo = 0x00;
486 562 header->pa_lfr_pkt_cnt_asm = 0x00;
487 563 header->pa_lfr_pkt_nr_asm = 0x00;
488 564 header->time[0] = 0x00;
489 565 header->time[0] = 0x00;
490 566 header->time[0] = 0x00;
491 567 header->time[0] = 0x00;
492 568 header->time[0] = 0x00;
493 569 header->time[0] = 0x00;
494 570 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
495 571 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
496 572 }
497 573
498 void send_spectral_matrix(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
499 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
500 {
501 unsigned int i;
502 unsigned int length = 0;
503 rtems_status_code status;
504
505 for (i=0; i<2; i++)
506 {
507 // (1) BUILD THE DATA
508 switch(sid)
509 {
510 case SID_NORM_ASM_F0:
511 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2;
512 spw_ioctl_send->data = &spectral_matrix[ ( (ASM_F0_INDICE_START+ (i*NB_BINS_PER_PKT_ASM_F0)) * NB_VALUES_PER_SM) * 2 ];
513 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
514 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
515 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
516 break;
517 case SID_NORM_ASM_F1:
518 break;
519 case SID_NORM_ASM_F2:
520 break;
521 default:
522 PRINTF1("ERR *** in send_spectral_matrix *** unexpected sid %d\n", sid)
523 break;
524 }
525 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
526 spw_ioctl_send->hdr = (char *) header;
527 spw_ioctl_send->options = 0;
528
529 // (2) BUILD THE HEADER
530 header->packetLength[0] = (unsigned char) (length>>8);
531 header->packetLength[1] = (unsigned char) (length);
532 header->sid = (unsigned char) sid; // SID
533 header->pa_lfr_pkt_cnt_asm = 2;
534 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
535
536 // (3) SET PACKET TIME
537 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
538 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
539 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
540 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
541 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
542 header->time[5] = (unsigned char) (time_management_regs->fine_time);
543 //
544 header->acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
545 header->acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
546 header->acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
547 header->acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
548 header->acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
549 header->acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
550
551 // (4) SEND PACKET
552 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
553 if (status != RTEMS_SUCCESSFUL) {
554 printf("in send_spectral_matrix *** ERR %d\n", (int) status);
555 }
556 }
557 }
558
559 void convert_averaged_spectral_matrix( volatile float *input_matrix, char *output_matrix)
560 {
561 unsigned int i;
562 unsigned int j;
563 char * pt_char_input;
564 char * pt_char_output;
565
566 pt_char_input = NULL;
567 pt_char_output = NULL;
568
569 for( i=0; i<NB_BINS_PER_SM; i++)
570 {
571 for ( j=0; j<NB_VALUES_PER_SM; j++)
572 {
573 pt_char_input = (char*) &input_matrix [ (i*NB_VALUES_PER_SM) + j ];
574 pt_char_output = (char*) &output_matrix[ 2 * ( (i*NB_VALUES_PER_SM) + j ) ];
575 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
576 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
577 }
578 }
579 }
580
581 574 void fill_averaged_spectral_matrix(void)
582 575 {
583 576 /** This function fills spectral matrices related buffers with arbitrary data.
584 577 *
585 578 * This function is for testing purpose only.
586 579 *
587 580 */
588 581
589 582 float offset;
590 583 float coeff;
591 584
592 585 offset = 10.;
593 586 coeff = 100000.;
594 587 averaged_sm_f0[ 0 + 25 * 0 ] = 0. + offset;
595 588 averaged_sm_f0[ 0 + 25 * 1 ] = 1. + offset;
596 589 averaged_sm_f0[ 0 + 25 * 2 ] = 2. + offset;
597 590 averaged_sm_f0[ 0 + 25 * 3 ] = 3. + offset;
598 591 averaged_sm_f0[ 0 + 25 * 4 ] = 4. + offset;
599 592 averaged_sm_f0[ 0 + 25 * 5 ] = 5. + offset;
600 593 averaged_sm_f0[ 0 + 25 * 6 ] = 6. + offset;
601 594 averaged_sm_f0[ 0 + 25 * 7 ] = 7. + offset;
602 595 averaged_sm_f0[ 0 + 25 * 8 ] = 8. + offset;
603 596 averaged_sm_f0[ 0 + 25 * 9 ] = 9. + offset;
604 597 averaged_sm_f0[ 0 + 25 * 10 ] = 10. + offset;
605 598 averaged_sm_f0[ 0 + 25 * 11 ] = 11. + offset;
606 599 averaged_sm_f0[ 0 + 25 * 12 ] = 12. + offset;
607 600 averaged_sm_f0[ 0 + 25 * 13 ] = 13. + offset;
608 601 averaged_sm_f0[ 0 + 25 * 14 ] = 14. + offset;
609 602 averaged_sm_f0[ 9 + 25 * 0 ] = -(0. + offset)* coeff;
610 603 averaged_sm_f0[ 9 + 25 * 1 ] = -(1. + offset)* coeff;
611 604 averaged_sm_f0[ 9 + 25 * 2 ] = -(2. + offset)* coeff;
612 605 averaged_sm_f0[ 9 + 25 * 3 ] = -(3. + offset)* coeff;
613 606 averaged_sm_f0[ 9 + 25 * 4 ] = -(4. + offset)* coeff;
614 607 averaged_sm_f0[ 9 + 25 * 5 ] = -(5. + offset)* coeff;
615 608 averaged_sm_f0[ 9 + 25 * 6 ] = -(6. + offset)* coeff;
616 609 averaged_sm_f0[ 9 + 25 * 7 ] = -(7. + offset)* coeff;
617 610 averaged_sm_f0[ 9 + 25 * 8 ] = -(8. + offset)* coeff;
618 611 averaged_sm_f0[ 9 + 25 * 9 ] = -(9. + offset)* coeff;
619 612 averaged_sm_f0[ 9 + 25 * 10 ] = -(10. + offset)* coeff;
620 613 averaged_sm_f0[ 9 + 25 * 11 ] = -(11. + offset)* coeff;
621 614 averaged_sm_f0[ 9 + 25 * 12 ] = -(12. + offset)* coeff;
622 615 averaged_sm_f0[ 9 + 25 * 13 ] = -(13. + offset)* coeff;
623 616 averaged_sm_f0[ 9 + 25 * 14 ] = -(14. + offset)* coeff;
624 617
625 618 offset = 10000000;
626 619 averaged_sm_f0[ 16 + 25 * 0 ] = (0. + offset)* coeff;
627 620 averaged_sm_f0[ 16 + 25 * 1 ] = (1. + offset)* coeff;
628 621 averaged_sm_f0[ 16 + 25 * 2 ] = (2. + offset)* coeff;
629 622 averaged_sm_f0[ 16 + 25 * 3 ] = (3. + offset)* coeff;
630 623 averaged_sm_f0[ 16 + 25 * 4 ] = (4. + offset)* coeff;
631 624 averaged_sm_f0[ 16 + 25 * 5 ] = (5. + offset)* coeff;
632 625 averaged_sm_f0[ 16 + 25 * 6 ] = (6. + offset)* coeff;
633 626 averaged_sm_f0[ 16 + 25 * 7 ] = (7. + offset)* coeff;
634 627 averaged_sm_f0[ 16 + 25 * 8 ] = (8. + offset)* coeff;
635 628 averaged_sm_f0[ 16 + 25 * 9 ] = (9. + offset)* coeff;
636 629 averaged_sm_f0[ 16 + 25 * 10 ] = (10. + offset)* coeff;
637 630 averaged_sm_f0[ 16 + 25 * 11 ] = (11. + offset)* coeff;
638 631 averaged_sm_f0[ 16 + 25 * 12 ] = (12. + offset)* coeff;
639 632 averaged_sm_f0[ 16 + 25 * 13 ] = (13. + offset)* coeff;
640 633 averaged_sm_f0[ 16 + 25 * 14 ] = (14. + offset)* coeff;
641 634
642 635 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 0 ] = averaged_sm_f0[ 0 ];
643 636 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 1 ] = averaged_sm_f0[ 1 ];
644 637 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 2 ] = averaged_sm_f0[ 2 ];
645 638 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 3 ] = averaged_sm_f0[ 3 ];
646 639 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 4 ] = averaged_sm_f0[ 4 ];
647 640 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 5 ] = averaged_sm_f0[ 5 ];
648 641 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 6 ] = averaged_sm_f0[ 6 ];
649 642 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 7 ] = averaged_sm_f0[ 7 ];
650 643 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 8 ] = averaged_sm_f0[ 8 ];
651 644 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 9 ] = averaged_sm_f0[ 9 ];
652 645 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 10 ] = averaged_sm_f0[ 10 ];
653 646 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 11 ] = averaged_sm_f0[ 11 ];
654 647 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 12 ] = averaged_sm_f0[ 12 ];
655 648 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 13 ] = averaged_sm_f0[ 13 ];
656 649 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 14 ] = averaged_sm_f0[ 14 ];
657 650 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 15 ] = averaged_sm_f0[ 15 ];
658 651 }
659 652
660 653 void reset_spectral_matrix_regs()
661 654 {
662 655 /** This function resets the spectral matrices module registers.
663 656 *
664 657 * The registers affected by this function are located at the following offset addresses:
665 658 *
666 659 * - 0x00 config
667 660 * - 0x04 status
668 661 * - 0x08 matrixF0_Address0
669 662 * - 0x10 matrixFO_Address1
670 663 * - 0x14 matrixF1_Address
671 664 * - 0x18 matrixF2_Address
672 665 *
673 666 */
674 667
675 668 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
676 669 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
677 670 spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
678 671 spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
679 672 }
680 673
681 674 //******************
682 675 // general functions
683 676
684 677
685 678
686 679
@@ -1,748 +1,733
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14
15 15 //***********
16 16 // RTEMS TASK
17 17
18 18 rtems_task actn_task( rtems_task_argument unused )
19 19 {
20 20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 21 *
22 22 * @param unused is the starting argument of the RTEMS task
23 23 *
24 24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 25 * on the incoming TeleCommand.
26 26 *
27 27 */
28 28
29 29 int result;
30 30 rtems_status_code status; // RTEMS status code
31 31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 32 size_t size; // size of the incoming TC packet
33 33 unsigned char subtype; // subtype of the current TC packet
34 34 unsigned char time[6];
35 35 rtems_id queue_rcv_id;
36 36 rtems_id queue_snd_id;
37 37
38 38 status = get_message_queue_id_recv( &queue_rcv_id );
39 39 if (status != RTEMS_SUCCESSFUL)
40 40 {
41 41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 42 }
43 43
44 44 status = get_message_queue_id_send( &queue_snd_id );
45 45 if (status != RTEMS_SUCCESSFUL)
46 46 {
47 47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 48 }
49 49
50 50 result = LFR_SUCCESSFUL;
51 51 subtype = 0; // subtype of the current TC packet
52 52
53 53 BOOT_PRINTF("in ACTN *** \n")
54 54
55 55 while(1)
56 56 {
57 57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 59 getTime( time ); // set time to the current time
60 60 if (status!=RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 63 }
64 64 else
65 65 {
66 66 subtype = TC.serviceSubType;
67 67 switch(subtype)
68 68 {
69 69 case TC_SUBTYPE_RESET:
70 70 result = action_reset( &TC, queue_snd_id, time );
71 71 close_action( &TC, result, queue_snd_id, time );
72 72 break;
73 73 //
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id, time );
77 77 break;
78 78 //
79 79 case TC_SUBTYPE_LOAD_NORM:
80 80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 81 close_action( &TC, result, queue_snd_id, time );
82 82 break;
83 83 //
84 84 case TC_SUBTYPE_LOAD_BURST:
85 85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 86 close_action( &TC, result, queue_snd_id, time );
87 87 break;
88 88 //
89 89 case TC_SUBTYPE_LOAD_SBM1:
90 90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 91 close_action( &TC, result, queue_snd_id, time );
92 92 break;
93 93 //
94 94 case TC_SUBTYPE_LOAD_SBM2:
95 95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 96 close_action( &TC, result, queue_snd_id, time );
97 97 break;
98 98 //
99 99 case TC_SUBTYPE_DUMP:
100 100 result = action_dump_par( queue_snd_id );
101 101 close_action( &TC, result, queue_snd_id, time );
102 102 break;
103 103 //
104 104 case TC_SUBTYPE_ENTER:
105 105 result = action_enter_mode( &TC, queue_snd_id, time );
106 106 close_action( &TC, result, queue_snd_id, time );
107 107 break;
108 108 //
109 109 case TC_SUBTYPE_UPDT_INFO:
110 110 result = action_update_info( &TC, queue_snd_id );
111 111 close_action( &TC, result, queue_snd_id, time );
112 112 break;
113 113 //
114 114 case TC_SUBTYPE_EN_CAL:
115 115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id, time );
117 117 break;
118 118 //
119 119 case TC_SUBTYPE_DIS_CAL:
120 120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 121 close_action( &TC, result, queue_snd_id, time );
122 122 break;
123 123 //
124 124 case TC_SUBTYPE_UPDT_TIME:
125 125 result = action_update_time( &TC );
126 126 close_action( &TC, result, queue_snd_id, time );
127 127 break;
128 128 //
129 129 default:
130 130 break;
131 131 }
132 132 }
133 133 }
134 134 }
135 135
136 136 //***********
137 137 // TC ACTIONS
138 138
139 139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 140 {
141 141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 142 *
143 143 * @param TC points to the TeleCommand packet that is being processed
144 144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 145 *
146 146 */
147 147
148 148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 149 return LFR_DEFAULT;
150 150 }
151 151
152 152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
153 153 {
154 154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 158 *
159 159 */
160 160
161 161 rtems_status_code status;
162 162 unsigned char requestedMode;
163 163
164 164 requestedMode = TC->dataAndCRC[1];
165 165
166 166 if ( (requestedMode != LFR_MODE_STANDBY)
167 167 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
168 168 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
169 169 {
170 170 status = RTEMS_UNSATISFIED;
171 171 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_LFR_MODE, requestedMode, time );
172 172 }
173 173 else
174 174 {
175 175 printf("in action_enter_mode *** enter mode %d\n", requestedMode);
176 176
177 177 status = transition_validation(requestedMode);
178 178
179 179 if ( status == LFR_SUCCESSFUL ) {
180 180 if ( lfrCurrentMode != LFR_MODE_STANDBY)
181 181 {
182 182 status = stop_current_mode();
183 183 }
184 184 if (status != RTEMS_SUCCESSFUL)
185 185 {
186 186 PRINTF("ERR *** in action_enter *** stop_current_mode\n")
187 187 }
188 188 status = enter_mode( requestedMode );
189 189 }
190 190 else
191 191 {
192 192 PRINTF("ERR *** in action_enter *** transition rejected\n")
193 193 send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
194 194 }
195 195 }
196 196
197 197 return status;
198 198 }
199 199
200 200 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
201 201 {
202 202 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
203 203 *
204 204 * @param TC points to the TeleCommand packet that is being processed
205 205 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
206 206 *
207 207 * @return LFR directive status code:
208 208 * - LFR_DEFAULT
209 209 * - LFR_SUCCESSFUL
210 210 *
211 211 */
212 212
213 213 unsigned int val;
214 214 int result;
215 215
216 216 result = LFR_SUCCESSFUL;
217 217
218 218 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
219 219 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
220 220 val++;
221 221 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
222 222 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
223 223
224 224 return result;
225 225 }
226 226
227 227 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
228 228 {
229 229 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
230 230 *
231 231 * @param TC points to the TeleCommand packet that is being processed
232 232 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
233 233 *
234 234 */
235 235
236 236 int result;
237 237 unsigned char lfrMode;
238 238
239 239 result = LFR_DEFAULT;
240 240 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
241 241
242 242 if ( (lfrMode == LFR_MODE_STANDBY) || (lfrMode == LFR_MODE_BURST) || (lfrMode == LFR_MODE_SBM2) ) {
243 243 send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
244 244 result = LFR_DEFAULT;
245 245 }
246 246 else {
247 247 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
248 248 result = LFR_DEFAULT;
249 249 }
250 250 return result;
251 251 }
252 252
253 253 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
254 254 {
255 255 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
256 256 *
257 257 * @param TC points to the TeleCommand packet that is being processed
258 258 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
259 259 *
260 260 */
261 261
262 262 int result;
263 263 unsigned char lfrMode;
264 264
265 265 result = LFR_DEFAULT;
266 266 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
267 267
268 268 if ( (lfrMode == LFR_MODE_STANDBY) || (lfrMode == LFR_MODE_BURST) || (lfrMode == LFR_MODE_SBM2) ) {
269 269 send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
270 270 result = LFR_DEFAULT;
271 271 }
272 272 else {
273 273 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
274 274 result = LFR_DEFAULT;
275 275 }
276 276 return result;
277 277 }
278 278
279 279 int action_update_time(ccsdsTelecommandPacket_t *TC)
280 280 {
281 281 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
282 282 *
283 283 * @param TC points to the TeleCommand packet that is being processed
284 284 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
285 285 *
286 286 * @return LFR_SUCCESSFUL
287 287 *
288 288 */
289 289
290 290 unsigned int val;
291 291
292 292 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
293 293 + (TC->dataAndCRC[1] << 16)
294 294 + (TC->dataAndCRC[2] << 8)
295 295 + TC->dataAndCRC[3];
296 296 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
297 297 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
298 298 val++;
299 299 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
300 300 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
301 301 time_management_regs->ctrl = time_management_regs->ctrl | 1;
302 302
303 303 return LFR_SUCCESSFUL;
304 304 }
305 305
306 306 //*******************
307 307 // ENTERING THE MODES
308 308
309 309 int transition_validation(unsigned char requestedMode)
310 310 {
311 311 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
312 312 *
313 313 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
314 314 *
315 315 * @return LFR directive status codes:
316 316 * - LFR_SUCCESSFUL - the transition is authorized
317 317 * - LFR_DEFAULT - the transition is not authorized
318 318 *
319 319 */
320 320
321 321 int status;
322 322
323 323 switch (requestedMode)
324 324 {
325 325 case LFR_MODE_STANDBY:
326 326 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
327 327 status = LFR_DEFAULT;
328 328 }
329 329 else
330 330 {
331 331 status = LFR_SUCCESSFUL;
332 332 }
333 333 break;
334 334 case LFR_MODE_NORMAL:
335 335 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
336 336 status = LFR_DEFAULT;
337 337 }
338 338 else {
339 339 status = LFR_SUCCESSFUL;
340 340 }
341 341 break;
342 342 case LFR_MODE_BURST:
343 343 if ( lfrCurrentMode == LFR_MODE_BURST ) {
344 344 status = LFR_DEFAULT;
345 345 }
346 346 else {
347 347 status = LFR_SUCCESSFUL;
348 348 }
349 349 break;
350 350 case LFR_MODE_SBM1:
351 351 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
352 352 status = LFR_DEFAULT;
353 353 }
354 354 else {
355 355 status = LFR_SUCCESSFUL;
356 356 }
357 357 break;
358 358 case LFR_MODE_SBM2:
359 359 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
360 360 status = LFR_DEFAULT;
361 361 }
362 362 else {
363 363 status = LFR_SUCCESSFUL;
364 364 }
365 365 break;
366 366 default:
367 367 status = LFR_DEFAULT;
368 368 break;
369 369 }
370 370
371 371 return status;
372 372 }
373 373
374 374 int stop_current_mode(void)
375 375 {
376 376 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
377 377 *
378 378 * @return RTEMS directive status codes:
379 379 * - RTEMS_SUCCESSFUL - task restarted successfully
380 380 * - RTEMS_INVALID_ID - task id invalid
381 381 * - RTEMS_ALREADY_SUSPENDED - task already suspended
382 382 *
383 383 */
384 384
385 385 rtems_status_code status;
386 386
387 387 status = RTEMS_SUCCESSFUL;
388 388
389 389 // (1) mask interruptions
390 390 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
391 391 //LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
392 392
393 393 // (2) clear interruptions
394 394 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
395 395 //LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
396 396
397 397 // (3) reset registers
398 398 reset_wfp_burst_enable(); // reset burst and enable bits
399 399 reset_wfp_status(); // reset all the status bits
400 400
401 401 // <Spectral Matrices simulator>
402 402 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
403 403 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
404 404 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
405 405 // </Spectral Matrices simulator>
406 406
407 407 // suspend several tasks
408 408 if (lfrCurrentMode != LFR_MODE_STANDBY) {
409 409 status = suspend_science_tasks();
410 410 }
411 411
412 412 if (status != RTEMS_SUCCESSFUL)
413 413 {
414 414 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
415 415 }
416 416
417 417 return status;
418 418 }
419 419
420 420 int enter_mode(unsigned char mode )
421 421 {
422 422 /** This function is launched after a mode transition validation.
423 423 *
424 424 * @param mode is the mode in which LFR will be put.
425 425 *
426 426 * @return RTEMS directive status codes:
427 427 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
428 428 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
429 429 *
430 430 */
431 431
432 432 rtems_status_code status;
433 433
434 434 status = RTEMS_UNSATISFIED;
435 435
436 436 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((mode << 4) + 0x0d);
437 437 updateLFRCurrentMode();
438 438
439 439 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
440 440 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
441 441 {
442 442 #ifdef PRINT_TASK_STATISTICS
443 443 rtems_cpu_usage_reset();
444 444 maxCount = 0;
445 445 #endif
446 446 status = restart_science_tasks();
447 447 launch_waveform_picker( mode );
448 launch_spectral_matrix( mode );
448 //launch_spectral_matrix( mode );
449 449 }
450 450 else if ( mode == LFR_MODE_STANDBY )
451 451 {
452 452 #ifdef PRINT_TASK_STATISTICS
453 453 rtems_cpu_usage_report();
454 454 #endif
455 455
456 456 #ifdef PRINT_STACK_REPORT
457 457 rtems_stack_checker_report_usage();
458 458 #endif
459 459 status = stop_current_mode();
460 460 PRINTF1("maxCount = %d\n", maxCount)
461 461 }
462 462 else
463 463 {
464 464 status = RTEMS_UNSATISFIED;
465 465 }
466 466
467 467 if (status != RTEMS_SUCCESSFUL)
468 468 {
469 469 PRINTF1("in enter_mode *** ERR = %d\n", status)
470 470 status = RTEMS_UNSATISFIED;
471 471 }
472 472
473 473 return status;
474 474 }
475 475
476 476 int restart_science_tasks()
477 477 {
478 478 /** This function is used to restart all science tasks.
479 479 *
480 480 * @return RTEMS directive status codes:
481 481 * - RTEMS_SUCCESSFUL - task restarted successfully
482 482 * - RTEMS_INVALID_ID - task id invalid
483 483 * - RTEMS_INCORRECT_STATE - task never started
484 484 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
485 485 *
486 486 * Science tasks are AVF0, BPF0, WFRM, CWF3, CW2, CWF1
487 487 *
488 488 */
489 489
490 490 rtems_status_code status[6];
491 491 rtems_status_code ret;
492 492
493 493 ret = RTEMS_SUCCESSFUL;
494 494
495 495 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], 1 );
496 496 if (status[0] != RTEMS_SUCCESSFUL)
497 497 {
498 498 PRINTF1("in restart_science_task *** 0 ERR %d\n", status[0])
499 499 }
500 500
501 status[1] = rtems_task_restart( Task_id[TASKID_BPF0],1 );
502 if (status[1] != RTEMS_SUCCESSFUL)
503 {
504 PRINTF1("in restart_science_task *** 1 ERR %d\n", status[1])
505 }
506
507 501 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
508 502 if (status[2] != RTEMS_SUCCESSFUL)
509 503 {
510 504 PRINTF1("in restart_science_task *** 2 ERR %d\n", status[2])
511 505 }
512 506
513 507 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
514 508 if (status[3] != RTEMS_SUCCESSFUL)
515 509 {
516 510 PRINTF1("in restart_science_task *** 3 ERR %d\n", status[3])
517 511 }
518 512
519 513 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
520 514 if (status[4] != RTEMS_SUCCESSFUL)
521 515 {
522 516 PRINTF1("in restart_science_task *** 4 ERR %d\n", status[4])
523 517 }
524 518
525 519 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
526 520 if (status[5] != RTEMS_SUCCESSFUL)
527 521 {
528 522 PRINTF1("in restart_science_task *** 5 ERR %d\n", status[5])
529 523 }
530 524
531 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) || (status[2] != RTEMS_SUCCESSFUL) ||
525 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[2] != RTEMS_SUCCESSFUL) ||
532 526 (status[3] != RTEMS_SUCCESSFUL) || (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
533 527 {
534 528 ret = RTEMS_UNSATISFIED;
535 529 }
536 530
537 531 return ret;
538 532 }
539 533
540 534 int suspend_science_tasks()
541 535 {
542 536 /** This function suspends the science tasks.
543 537 *
544 538 * @return RTEMS directive status codes:
545 539 * - RTEMS_SUCCESSFUL - task restarted successfully
546 540 * - RTEMS_INVALID_ID - task id invalid
547 541 * - RTEMS_ALREADY_SUSPENDED - task already suspended
548 542 *
549 543 */
550 544
551 545 rtems_status_code status;
552 546
553 547 status = rtems_task_suspend( Task_id[TASKID_AVF0] );
554 548 if (status != RTEMS_SUCCESSFUL)
555 549 {
556 550 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
557 551 }
558 552
559 if (status == RTEMS_SUCCESSFUL) // suspend BPF0
560 {
561 status = rtems_task_suspend( Task_id[TASKID_BPF0] );
562 if (status != RTEMS_SUCCESSFUL)
563 {
564 PRINTF1("in suspend_science_task *** BPF0 ERR %d\n", status)
565 }
566 }
567
568 553 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
569 554 {
570 555 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
571 556 if (status != RTEMS_SUCCESSFUL)
572 557 {
573 558 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
574 559 }
575 560 }
576 561
577 562 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
578 563 {
579 564 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
580 565 if (status != RTEMS_SUCCESSFUL)
581 566 {
582 567 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
583 568 }
584 569 }
585 570
586 571 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
587 572 {
588 573 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
589 574 if (status != RTEMS_SUCCESSFUL)
590 575 {
591 576 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
592 577 }
593 578 }
594 579
595 580 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
596 581 {
597 582 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
598 583 if (status != RTEMS_SUCCESSFUL)
599 584 {
600 585 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
601 586 }
602 587 }
603 588
604 589 return status;
605 590 }
606 591
607 592 void launch_waveform_picker( unsigned char mode )
608 593 {
609 594 int startDate;
610 595
611 596 reset_current_ring_nodes();
612 597 reset_waveform_picker_regs();
613 598 set_wfp_burst_enable_register( mode );
614 599 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
615 600 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
616 601 startDate = time_management_regs->coarse_time + 2;
617 602 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
618 603 waveform_picker_regs->start_date = startDate;
619 604 }
620 605
621 606 void launch_spectral_matrix( unsigned char mode )
622 607 {
623 608 reset_nb_sm_f0();
624 609 reset_current_sm_ring_nodes();
625 610 reset_spectral_matrix_regs();
626 611
627 612 // Spectral Matrices simulator
628 613 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
629 614 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
630 615 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
631 616 set_local_nb_interrupt_f0_MAX();
632 617 }
633 618
634 619 //****************
635 620 // CLOSING ACTIONS
636 621 void update_last_TC_exe(ccsdsTelecommandPacket_t *TC, unsigned char *time)
637 622 {
638 623 /** This function is used to update the HK packets statistics after a successful TC execution.
639 624 *
640 625 * @param TC points to the TC being processed
641 626 * @param time is the time used to date the TC execution
642 627 *
643 628 */
644 629
645 630 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
646 631 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
647 632 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
648 633 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
649 634 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
650 635 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
651 636 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
652 637 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
653 638 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
654 639 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
655 640 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
656 641 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
657 642 }
658 643
659 644 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char *time)
660 645 {
661 646 /** This function is used to update the HK packets statistics after a TC rejection.
662 647 *
663 648 * @param TC points to the TC being processed
664 649 * @param time is the time used to date the TC rejection
665 650 *
666 651 */
667 652
668 653 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
669 654 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
670 655 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
671 656 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
672 657 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
673 658 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
674 659 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
675 660 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
676 661 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
677 662 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
678 663 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
679 664 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
680 665 }
681 666
682 667 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id, unsigned char *time)
683 668 {
684 669 /** This function is the last step of the TC execution workflow.
685 670 *
686 671 * @param TC points to the TC being processed
687 672 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
688 673 * @param queue_id is the id of the RTEMS message queue used to send TM packets
689 674 * @param time is the time used to date the TC execution
690 675 *
691 676 */
692 677
693 678 unsigned int val = 0;
694 679
695 680 if (result == LFR_SUCCESSFUL)
696 681 {
697 682 if ( !( (TC->serviceType==TC_TYPE_TIME) && (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
698 683 &&
699 684 !( (TC->serviceType==TC_TYPE_GEN) && (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
700 685 )
701 686 {
702 687 send_tm_lfr_tc_exe_success( TC, queue_id, time );
703 688 }
704 689 update_last_TC_exe( TC, time );
705 690 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
706 691 val++;
707 692 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
708 693 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
709 694 }
710 695 else
711 696 {
712 697 update_last_TC_rej( TC, time );
713 698 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
714 699 val++;
715 700 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
716 701 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
717 702 }
718 703 }
719 704
720 705 //***************************
721 706 // Interrupt Service Routines
722 707 rtems_isr commutation_isr1( rtems_vector_number vector )
723 708 {
724 709 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
725 710 printf("In commutation_isr1 *** Error sending event to DUMB\n");
726 711 }
727 712 }
728 713
729 714 rtems_isr commutation_isr2( rtems_vector_number vector )
730 715 {
731 716 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
732 717 printf("In commutation_isr2 *** Error sending event to DUMB\n");
733 718 }
734 719 }
735 720
736 721 //****************
737 722 // OTHER FUNCTIONS
738 723 void updateLFRCurrentMode()
739 724 {
740 725 /** This function updates the value of the global variable lfrCurrentMode.
741 726 *
742 727 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
743 728 *
744 729 */
745 730 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
746 731 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
747 732 }
748 733
@@ -1,1300 +1,1305
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //*****************
13 13 // waveform headers
14 14 // SWF
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
16 16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
17 17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
18 18 // CWF
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[ NB_PACKETS_PER_GROUP_OF_CWF ];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[ NB_PACKETS_PER_GROUP_OF_CWF ];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[ NB_PACKETS_PER_GROUP_OF_CWF ];
22 22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[ NB_PACKETS_PER_GROUP_OF_CWF ];
23 23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[ NB_PACKETS_PER_GROUP_OF_CWF_LIGHT ];
24 24
25 25 //**************
26 26 // waveform ring
27 27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
28 28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
29 29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
30 30 ring_node *current_ring_node_f0;
31 31 ring_node *ring_node_to_send_swf_f0;
32 32 ring_node *current_ring_node_f1;
33 33 ring_node *ring_node_to_send_swf_f1;
34 34 ring_node *ring_node_to_send_cwf_f1;
35 35 ring_node *current_ring_node_f2;
36 36 ring_node *ring_node_to_send_swf_f2;
37 37 ring_node *ring_node_to_send_cwf_f2;
38 38
39 39 rtems_isr waveforms_isr( rtems_vector_number vector )
40 40 {
41 41 /** This is the interrupt sub routine called by the waveform picker core.
42 42 *
43 43 * This ISR launch different actions depending mainly on two pieces of information:
44 44 * 1. the values read in the registers of the waveform picker.
45 45 * 2. the current LFR mode.
46 46 *
47 47 */
48 48
49 49 static unsigned char nb_swf = 0;
50 50
51 51 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
52 52 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
53 53 { // in modes other than STANDBY and BURST, send the CWF_F3 data
54 54 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
55 55 // (1) change the receiving buffer for the waveform picker
56 56 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
57 57 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_b);
58 58 }
59 59 else {
60 60 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a);
61 61 }
62 62 // (2) send an event for the waveforms transmission
63 63 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
64 64 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
65 65 }
66 66 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
67 67 }
68 68 }
69 69
70 70 switch(lfrCurrentMode)
71 71 {
72 72 //********
73 73 // STANDBY
74 74 case(LFR_MODE_STANDBY):
75 75 break;
76 76
77 77 //******
78 78 // NORMAL
79 79 case(LFR_MODE_NORMAL):
80 80 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
81 81 {
82 82 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
83 83 }
84 84 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
85 85 {
86 86 // change F0 ring node
87 87 ring_node_to_send_swf_f0 = current_ring_node_f0;
88 88 current_ring_node_f0 = current_ring_node_f0->next;
89 89 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
90 90 // change F1 ring node
91 91 ring_node_to_send_swf_f1 = current_ring_node_f1;
92 92 current_ring_node_f1 = current_ring_node_f1->next;
93 93 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
94 94 // change F2 ring node
95 95 ring_node_to_send_swf_f2 = current_ring_node_f2;
96 96 current_ring_node_f2 = current_ring_node_f2->next;
97 97 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
98 98 //
99 99 // if (nb_swf < 2)
100 100 if (true)
101 101 {
102 102 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
103 103 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
104 104 }
105 105 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
106 106 nb_swf = nb_swf + 1;
107 107 }
108 108 else
109 109 {
110 110 reset_wfp_burst_enable();
111 111 nb_swf = 0;
112 112 }
113 113
114 114 }
115 115
116 116 break;
117 117
118 118 //******
119 119 // BURST
120 120 case(LFR_MODE_BURST):
121 121 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
122 122 // (1) change the receiving buffer for the waveform picker
123 123 ring_node_to_send_cwf_f2 = current_ring_node_f2;
124 124 current_ring_node_f2 = current_ring_node_f2->next;
125 125 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
126 126 // (2) send an event for the waveforms transmission
127 127 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
128 128 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
129 129 }
130 130 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
131 131 }
132 132 break;
133 133
134 134 //*****
135 135 // SBM1
136 136 case(LFR_MODE_SBM1):
137 137 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
138 138 // (1) change the receiving buffer for the waveform picker
139 139 ring_node_to_send_cwf_f1 = current_ring_node_f1;
140 140 current_ring_node_f1 = current_ring_node_f1->next;
141 141 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
142 142 // (2) send an event for the waveforms transmission
143 143 if (rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 ) != RTEMS_SUCCESSFUL) {
144 144 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
145 145 }
146 146 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bit = 0
147 147 }
148 148 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
149 149 ring_node_to_send_swf_f1 = current_ring_node_f1->previous;
150 150 }
151 151 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
152 152 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
153 153 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
154 154 }
155 155 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2 and f0 bits = 0
156 156 }
157 157 break;
158 158
159 159 //*****
160 160 // SBM2
161 161 case(LFR_MODE_SBM2):
162 162 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
163 163 // (1) change the receiving buffer for the waveform picker
164 164 ring_node_to_send_cwf_f2 = current_ring_node_f2;
165 165 current_ring_node_f2 = current_ring_node_f2->next;
166 166 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
167 167 // (2) send an event for the waveforms transmission
168 168 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
169 169 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
170 170 }
171 171 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
172 172 }
173 173 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
174 174 ring_node_to_send_swf_f2 = current_ring_node_f2->previous;
175 175 }
176 176 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
177 177 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
178 178 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
179 179 }
180 180 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
181 181 }
182 182 break;
183 183
184 184 //********
185 185 // DEFAULT
186 186 default:
187 187 break;
188 188 }
189 189 }
190 190
191 191 rtems_isr waveforms_isr_alt( rtems_vector_number vector )
192 192 {
193 193 /** This is the interrupt sub routine called by the waveform picker core.
194 194 *
195 195 * This ISR launch different actions depending mainly on two pieces of information:
196 196 * 1. the values read in the registers of the waveform picker.
197 197 * 2. the current LFR mode.
198 198 *
199 199 */
200 200
201 201 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
202 202 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
203 203 { // in modes other than STANDBY and BURST, send the CWF_F3 data
204 204 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
205 205 // (1) change the receiving buffer for the waveform picker
206 206 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
207 207 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_b);
208 208 }
209 209 else {
210 210 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a);
211 211 }
212 212 // (2) send an event for the waveforms transmission
213 213 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
214 214 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
215 215 }
216 216 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
217 217 }
218 218 }
219 219
220 220 switch(lfrCurrentMode)
221 221 {
222 222 //********
223 223 // STANDBY
224 224 case(LFR_MODE_STANDBY):
225 225 break;
226 226
227 227 //******
228 228 // NORMAL
229 229 case(LFR_MODE_NORMAL):
230 230 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
231 231 {
232 232 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
233 233 }
234 234 if ( (waveform_picker_regs->status & 0x01) == 0x01) // [0001] check the f0 full bit
235 235 {
236 236 // change F0 ring node
237 237 ring_node_to_send_swf_f0 = current_ring_node_f0;
238 238 current_ring_node_f0 = current_ring_node_f0->next;
239 239 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
240 240 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1110 1110 1110]
241 241 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL_SWF_F0 ) != RTEMS_SUCCESSFUL) {
242 242 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
243 243 }
244 244 }
245 245 if ( (waveform_picker_regs->status & 0x02) == 0x02) // [0010] check the f1 full bit
246 246 {
247 247 // change F1 ring node
248 248 ring_node_to_send_swf_f1 = current_ring_node_f1;
249 249 current_ring_node_f1 = current_ring_node_f1->next;
250 250 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
251 251 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1101 1101 1101]
252 252 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL_SWF_F1 ) != RTEMS_SUCCESSFUL) {
253 253 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
254 254 }
255 255 }
256 256 if ( (waveform_picker_regs->status & 0x04) == 0x04) // [0100] check the f2 full bit
257 257 {
258 258 // change F2 ring node
259 259 ring_node_to_send_swf_f2 = current_ring_node_f2;
260 260 current_ring_node_f2 = current_ring_node_f2->next;
261 261 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
262 262 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1011 1011 1011]
263 263 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL_SWF_F2 ) != RTEMS_SUCCESSFUL) {
264 264 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
265 265 }
266 266 }
267 267 break;
268 268
269 269 //******
270 270 // BURST
271 271 case(LFR_MODE_BURST):
272 272 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
273 273 // (1) change the receiving buffer for the waveform picker
274 274 ring_node_to_send_cwf_f2 = current_ring_node_f2;
275 275 current_ring_node_f2 = current_ring_node_f2->next;
276 276 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
277 277 // (2) send an event for the waveforms transmission
278 278 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
279 279 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
280 280 }
281 281 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
282 282 }
283 283 break;
284 284
285 285 //*****
286 286 // SBM1
287 287 case(LFR_MODE_SBM1):
288 288 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
289 289 // (1) change the receiving buffer for the waveform picker
290 290 ring_node_to_send_cwf_f1 = current_ring_node_f1;
291 291 current_ring_node_f1 = current_ring_node_f1->next;
292 292 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
293 293 // (2) send an event for the waveforms transmission
294 294 if (rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 ) != RTEMS_SUCCESSFUL) {
295 295 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
296 296 }
297 297 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bit = 0
298 298 }
299 299 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
300 300 ring_node_to_send_swf_f1 = current_ring_node_f1->previous;
301 301 }
302 302 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
303 303 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
304 304 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
305 305 }
306 306 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2 and f0 bits = 0
307 307 }
308 308 break;
309 309
310 310 //*****
311 311 // SBM2
312 312 case(LFR_MODE_SBM2):
313 313 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
314 314 // (1) change the receiving buffer for the waveform picker
315 315 ring_node_to_send_cwf_f2 = current_ring_node_f2;
316 316 current_ring_node_f2 = current_ring_node_f2->next;
317 317 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
318 318 // (2) send an event for the waveforms transmission
319 319 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
320 320 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
321 321 }
322 322 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
323 323 }
324 324 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
325 325 ring_node_to_send_swf_f2 = current_ring_node_f2->previous;
326 326 }
327 327 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
328 328 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
329 329 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
330 330 }
331 331 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
332 332 }
333 333 break;
334 334
335 335 //********
336 336 // DEFAULT
337 337 default:
338 338 break;
339 339 }
340 340 }
341 341
342 342 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
343 343 {
344 344 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
345 345 *
346 346 * @param unused is the starting argument of the RTEMS task
347 347 *
348 348 * The following data packets are sent by this task:
349 349 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
350 350 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
351 351 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
352 352 *
353 353 */
354 354
355 355 rtems_event_set event_out;
356 356 rtems_id queue_id;
357 357 rtems_status_code status;
358 358
359 359 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
360 360 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
361 361 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
362 362
363 363 init_waveforms();
364 364
365 365 status = get_message_queue_id_send( &queue_id );
366 366 if (status != RTEMS_SUCCESSFUL)
367 367 {
368 368 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
369 369 }
370 370
371 371 BOOT_PRINTF("in WFRM ***\n")
372 372
373 373 while(1){
374 374 // wait for an RTEMS_EVENT
375 375 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
376 376 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM
377 377 | RTEMS_EVENT_MODE_NORMAL_SWF_F0
378 378 | RTEMS_EVENT_MODE_NORMAL_SWF_F1
379 379 | RTEMS_EVENT_MODE_NORMAL_SWF_F2,
380 380 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
381 381 if (event_out == RTEMS_EVENT_MODE_NORMAL)
382 382 {
383 383 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
384 384 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
385 385 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
386 386 }
387 387 if ( (event_out & RTEMS_EVENT_MODE_NORMAL_SWF_F0) == RTEMS_EVENT_MODE_NORMAL_SWF_F0)
388 388 {
389 389 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
390 390 }
391 391 if ( (event_out & RTEMS_EVENT_MODE_NORMAL_SWF_F1) == RTEMS_EVENT_MODE_NORMAL_SWF_F1)
392 392 {
393 393 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
394 394 }
395 395 if ( (event_out & RTEMS_EVENT_MODE_NORMAL_SWF_F2) == RTEMS_EVENT_MODE_NORMAL_SWF_F2)
396 396 {
397 397 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
398 398 }
399 399 }
400 400 }
401 401
402 402 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
403 403 {
404 404 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
405 405 *
406 406 * @param unused is the starting argument of the RTEMS task
407 407 *
408 408 * The following data packet is sent by this task:
409 409 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
410 410 *
411 411 */
412 412
413 413 rtems_event_set event_out;
414 414 rtems_id queue_id;
415 415 rtems_status_code status;
416 416
417 417 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
418 418 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
419 419
420 420 status = get_message_queue_id_send( &queue_id );
421 421 if (status != RTEMS_SUCCESSFUL)
422 422 {
423 423 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
424 424 }
425 425
426 426 BOOT_PRINTF("in CWF3 ***\n")
427 427
428 428 while(1){
429 429 // wait for an RTEMS_EVENT
430 430 rtems_event_receive( RTEMS_EVENT_0,
431 431 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
432 432 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
433 433 {
434 434 PRINTF("send CWF_LONG_F3\n")
435 435 }
436 436 else
437 437 {
438 438 PRINTF("send CWF_F3 (light)\n")
439 439 }
440 440 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
441 441 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
442 442 {
443 443 send_waveform_CWF( wf_cont_f3_b, SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
444 444 }
445 445 else
446 446 {
447 447 send_waveform_CWF3_light( wf_cont_f3_b, headerCWF_F3_light, queue_id );
448 448 }
449 449 }
450 450 else
451 451 {
452 452 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
453 453 {
454 454 send_waveform_CWF( wf_cont_f3_a, SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
455 455 }
456 456 else
457 457 {
458 458 send_waveform_CWF3_light( wf_cont_f3_a, headerCWF_F3_light, queue_id );
459 459 }
460 460
461 461 }
462 462 }
463 463 }
464 464
465 465 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
466 466 {
467 467 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
468 468 *
469 469 * @param unused is the starting argument of the RTEMS task
470 470 *
471 471 * The following data packet is sent by this function:
472 472 * - TM_LFR_SCIENCE_BURST_CWF_F2
473 473 * - TM_LFR_SCIENCE_SBM2_CWF_F2
474 474 *
475 475 */
476 476
477 477 rtems_event_set event_out;
478 478 rtems_id queue_id;
479 479 rtems_status_code status;
480 480
481 481 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
482 482 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
483 483
484 484 status = get_message_queue_id_send( &queue_id );
485 485 if (status != RTEMS_SUCCESSFUL)
486 486 {
487 487 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
488 488 }
489 489
490 490 BOOT_PRINTF("in CWF2 ***\n")
491 491
492 492 while(1){
493 493 // wait for an RTEMS_EVENT
494 494 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
495 495 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
496 496 if (event_out == RTEMS_EVENT_MODE_BURST)
497 497 {
498 498 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
499 499 }
500 500 if (event_out == RTEMS_EVENT_MODE_SBM2)
501 501 {
502 502 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
503 503 }
504 504 }
505 505 }
506 506
507 507 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
508 508 {
509 509 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
510 510 *
511 511 * @param unused is the starting argument of the RTEMS task
512 512 *
513 513 * The following data packet is sent by this function:
514 514 * - TM_LFR_SCIENCE_SBM1_CWF_F1
515 515 *
516 516 */
517 517
518 518 rtems_event_set event_out;
519 519 rtems_id queue_id;
520 520 rtems_status_code status;
521 521
522 522 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
523 523
524 524 status = get_message_queue_id_send( &queue_id );
525 525 if (status != RTEMS_SUCCESSFUL)
526 526 {
527 527 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
528 528 }
529 529
530 530 BOOT_PRINTF("in CWF1 ***\n")
531 531
532 532 while(1){
533 533 // wait for an RTEMS_EVENT
534 534 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
535 535 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
536 536 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
537 537 }
538 538 }
539 539
540 540 //******************
541 541 // general functions
542 542 void init_waveforms( void )
543 543 {
544 544 int i = 0;
545 545
546 546 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
547 547 {
548 548 //***
549 549 // F0
550 550 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x88887777; //
551 551 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111; //
552 552 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0x44443333; //
553 553
554 554 //***
555 555 // F1
556 556 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x22221111;
557 557 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x44443333;
558 558 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
559 559
560 560 //***
561 561 // F2
562 562 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x44443333;
563 563 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111;
564 564 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
565 565
566 566 //***
567 567 // F3
568 568 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 0 ] = val1;
569 569 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 1 ] = val2;
570 570 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 2 ] = 0xaaaa0000;
571 571 }
572 572 }
573 573
574 574 void init_waveform_rings( void )
575 575 {
576 576 unsigned char i;
577 577
578 578 // F0 RING
579 579 waveform_ring_f0[0].next = (ring_node*) &waveform_ring_f0[1];
580 580 waveform_ring_f0[0].previous = (ring_node*) &waveform_ring_f0[NB_RING_NODES_F0-1];
581 581 waveform_ring_f0[0].buffer_address = (int) &wf_snap_f0[0][0];
582 582
583 583 waveform_ring_f0[NB_RING_NODES_F0-1].next = (ring_node*) &waveform_ring_f0[0];
584 584 waveform_ring_f0[NB_RING_NODES_F0-1].previous = (ring_node*) &waveform_ring_f0[NB_RING_NODES_F0-2];
585 585 waveform_ring_f0[NB_RING_NODES_F0-1].buffer_address = (int) &wf_snap_f0[NB_RING_NODES_F0-1][0];
586 586
587 587 for(i=1; i<NB_RING_NODES_F0-1; i++)
588 588 {
589 589 waveform_ring_f0[i].next = (ring_node*) &waveform_ring_f0[i+1];
590 590 waveform_ring_f0[i].previous = (ring_node*) &waveform_ring_f0[i-1];
591 591 waveform_ring_f0[i].buffer_address = (int) &wf_snap_f0[i][0];
592 592 }
593 593
594 594 // F1 RING
595 595 waveform_ring_f1[0].next = (ring_node*) &waveform_ring_f1[1];
596 596 waveform_ring_f1[0].previous = (ring_node*) &waveform_ring_f1[NB_RING_NODES_F1-1];
597 597 waveform_ring_f1[0].buffer_address = (int) &wf_snap_f1[0][0];
598 598
599 599 waveform_ring_f1[NB_RING_NODES_F1-1].next = (ring_node*) &waveform_ring_f1[0];
600 600 waveform_ring_f1[NB_RING_NODES_F1-1].previous = (ring_node*) &waveform_ring_f1[NB_RING_NODES_F1-2];
601 601 waveform_ring_f1[NB_RING_NODES_F1-1].buffer_address = (int) &wf_snap_f1[NB_RING_NODES_F1-1][0];
602 602
603 603 for(i=1; i<NB_RING_NODES_F1-1; i++)
604 604 {
605 605 waveform_ring_f1[i].next = (ring_node*) &waveform_ring_f1[i+1];
606 606 waveform_ring_f1[i].previous = (ring_node*) &waveform_ring_f1[i-1];
607 607 waveform_ring_f1[i].buffer_address = (int) &wf_snap_f1[i][0];
608 608 }
609 609
610 610 // F2 RING
611 611 waveform_ring_f2[0].next = (ring_node*) &waveform_ring_f2[1];
612 612 waveform_ring_f2[0].previous = (ring_node*) &waveform_ring_f2[NB_RING_NODES_F2-1];
613 613 waveform_ring_f2[0].buffer_address = (int) &wf_snap_f2[0][0];
614 614
615 615 waveform_ring_f2[NB_RING_NODES_F2-1].next = (ring_node*) &waveform_ring_f2[0];
616 616 waveform_ring_f2[NB_RING_NODES_F2-1].previous = (ring_node*) &waveform_ring_f2[NB_RING_NODES_F2-2];
617 617 waveform_ring_f2[NB_RING_NODES_F2-1].buffer_address = (int) &wf_snap_f2[NB_RING_NODES_F2-1][0];
618 618
619 619 for(i=1; i<NB_RING_NODES_F2-1; i++)
620 620 {
621 621 waveform_ring_f2[i].next = (ring_node*) &waveform_ring_f2[i+1];
622 622 waveform_ring_f2[i].previous = (ring_node*) &waveform_ring_f2[i-1];
623 623 waveform_ring_f2[i].buffer_address = (int) &wf_snap_f2[i][0];
624 624 }
625 625
626 626 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
627 627 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
628 628 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
629 629
630 630 }
631 631
632 632 void reset_current_ring_nodes( void )
633 633 {
634 634 current_ring_node_f0 = waveform_ring_f0;
635 635 ring_node_to_send_swf_f0 = waveform_ring_f0;
636 636
637 637 current_ring_node_f1 = waveform_ring_f1;
638 638 ring_node_to_send_cwf_f1 = waveform_ring_f1;
639 639 ring_node_to_send_swf_f1 = waveform_ring_f1;
640 640
641 641 current_ring_node_f2 = waveform_ring_f2;
642 642 ring_node_to_send_cwf_f2 = waveform_ring_f2;
643 643 ring_node_to_send_swf_f2 = waveform_ring_f2;
644 644 }
645 645
646 646 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
647 647 {
648 648 unsigned char i;
649 649
650 650 for (i=0; i<7; i++)
651 651 {
652 652 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
653 653 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
654 654 headerSWF[ i ].reserved = DEFAULT_RESERVED;
655 655 headerSWF[ i ].userApplication = CCSDS_USER_APP;
656 656 headerSWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
657 657 headerSWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
658 658 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
659 659 if (i == 6)
660 660 {
661 661 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
662 662 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
663 663 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
664 664 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
665 665 }
666 666 else
667 667 {
668 668 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
669 669 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
670 670 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
671 671 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
672 672 }
673 673 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
674 674 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
675 675 headerSWF[ i ].pktNr = i+1; // PKT_NR
676 676 // DATA FIELD HEADER
677 677 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
678 678 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
679 679 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
680 680 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
681 681 // AUXILIARY DATA HEADER
682 682 headerSWF[ i ].time[0] = 0x00;
683 683 headerSWF[ i ].time[0] = 0x00;
684 684 headerSWF[ i ].time[0] = 0x00;
685 685 headerSWF[ i ].time[0] = 0x00;
686 686 headerSWF[ i ].time[0] = 0x00;
687 687 headerSWF[ i ].time[0] = 0x00;
688 688 headerSWF[ i ].sid = sid;
689 689 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
690 690 }
691 691 return LFR_SUCCESSFUL;
692 692 }
693 693
694 694 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
695 695 {
696 696 unsigned int i;
697 697
698 698 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++)
699 699 {
700 700 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
701 701 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
702 702 headerCWF[ i ].reserved = DEFAULT_RESERVED;
703 703 headerCWF[ i ].userApplication = CCSDS_USER_APP;
704 704 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
705 705 {
706 706 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2 >> 8);
707 707 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2);
708 708 }
709 709 else
710 710 {
711 711 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
712 712 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
713 713 }
714 714 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
715 715 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
716 716 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
717 717 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
718 718 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
719 719 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
720 720 // DATA FIELD HEADER
721 721 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
722 722 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
723 723 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
724 724 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
725 725 // AUXILIARY DATA HEADER
726 726 headerCWF[ i ].sid = sid;
727 727 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
728 728 headerCWF[ i ].time[0] = 0x00;
729 729 headerCWF[ i ].time[0] = 0x00;
730 730 headerCWF[ i ].time[0] = 0x00;
731 731 headerCWF[ i ].time[0] = 0x00;
732 732 headerCWF[ i ].time[0] = 0x00;
733 733 headerCWF[ i ].time[0] = 0x00;
734 734 }
735 735 return LFR_SUCCESSFUL;
736 736 }
737 737
738 738 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
739 739 {
740 740 unsigned int i;
741 741
742 742 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++)
743 743 {
744 744 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
745 745 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
746 746 headerCWF[ i ].reserved = DEFAULT_RESERVED;
747 747 headerCWF[ i ].userApplication = CCSDS_USER_APP;
748 748
749 749 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
750 750 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
751 751
752 752 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
753 753 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
754 754 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
755 755 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
756 756 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
757 757
758 758 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
759 759 // DATA FIELD HEADER
760 760 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
761 761 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
762 762 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
763 763 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
764 764 // AUXILIARY DATA HEADER
765 765 headerCWF[ i ].sid = SID_NORM_CWF_F3;
766 766 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
767 767 headerCWF[ i ].time[0] = 0x00;
768 768 headerCWF[ i ].time[0] = 0x00;
769 769 headerCWF[ i ].time[0] = 0x00;
770 770 headerCWF[ i ].time[0] = 0x00;
771 771 headerCWF[ i ].time[0] = 0x00;
772 772 headerCWF[ i ].time[0] = 0x00;
773 773 }
774 774 return LFR_SUCCESSFUL;
775 775 }
776 776
777 777 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
778 778 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
779 779 {
780 780 /** This function sends SWF CCSDS packets (F2, F1 or F0).
781 781 *
782 782 * @param waveform points to the buffer containing the data that will be send.
783 783 * @param sid is the source identifier of the data that will be sent.
784 784 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
785 785 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
786 786 * contain information to setup the transmission of the data packets.
787 787 *
788 788 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
789 789 *
790 790 */
791 791
792 792 unsigned int i;
793 793 int ret;
794 794 unsigned int coarseTime;
795 795 unsigned int fineTime;
796 796 rtems_status_code status;
797 797 spw_ioctl_pkt_send spw_ioctl_send_SWF;
798 798
799 799 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
800 800 spw_ioctl_send_SWF.options = 0;
801 801
802 802 ret = LFR_DEFAULT;
803 803
804 804 DEBUG_PRINTF1("sid = %d, ", sid)
805 805 DEBUG_PRINTF2("coarse = %x, fine = %x\n", waveform[0], waveform[1])
806 806
807 807 coarseTime = waveform[0];
808 808 fineTime = waveform[1];
809 809
810 810 for (i=0; i<7; i++) // send waveform
811 811 {
812 812 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
813 813 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
814 814 // BUILD THE DATA
815 815 if (i==6) {
816 816 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
817 817 }
818 818 else {
819 819 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
820 820 }
821 821 // SET PACKET SEQUENCE COUNTER
822 822 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
823 823 // SET PACKET TIME
824 824 compute_acquisition_time( coarseTime, fineTime, sid, i, headerSWF[ i ].acquisitionTime );
825 825 //
826 826 headerSWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
827 827 headerSWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
828 828 headerSWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
829 829 headerSWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
830 830 headerSWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
831 831 headerSWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
832 832 // SEND PACKET
833 833 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
834 834 if (status != RTEMS_SUCCESSFUL) {
835 835 printf("%d-%d, ERR %d\n", sid, i, (int) status);
836 836 ret = LFR_DEFAULT;
837 837 }
838 838 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
839 839 }
840 840
841 841 return ret;
842 842 }
843 843
844 844 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
845 845 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
846 846 {
847 847 /** This function sends CWF CCSDS packets (F2, F1 or F0).
848 848 *
849 849 * @param waveform points to the buffer containing the data that will be send.
850 850 * @param sid is the source identifier of the data that will be sent.
851 851 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
852 852 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
853 853 * contain information to setup the transmission of the data packets.
854 854 *
855 855 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
856 856 *
857 857 */
858 858
859 859 unsigned int i;
860 860 int ret;
861 861 unsigned int coarseTime;
862 862 unsigned int fineTime;
863 863 rtems_status_code status;
864 864 spw_ioctl_pkt_send spw_ioctl_send_CWF;
865 865
866 866 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
867 867 spw_ioctl_send_CWF.options = 0;
868 868
869 869 ret = LFR_DEFAULT;
870 870
871 871 coarseTime = waveform[0];
872 872 fineTime = waveform[1];
873 873
874 874 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
875 875 {
876 876 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
877 877 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
878 878 // BUILD THE DATA
879 879 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
880 880 // SET PACKET SEQUENCE COUNTER
881 881 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
882 882 // SET PACKET TIME
883 883 compute_acquisition_time( coarseTime, fineTime, sid, i, headerCWF[ i ].acquisitionTime);
884 884 //
885 885 headerCWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
886 886 headerCWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
887 887 headerCWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
888 888 headerCWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
889 889 headerCWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
890 890 headerCWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
891 891 // SEND PACKET
892 892 if (sid == SID_NORM_CWF_LONG_F3)
893 893 {
894 894 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
895 895 if (status != RTEMS_SUCCESSFUL) {
896 896 printf("%d-%d, ERR %d\n", sid, i, (int) status);
897 897 ret = LFR_DEFAULT;
898 898 }
899 899 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
900 900 }
901 901 else
902 902 {
903 903 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
904 904 if (status != RTEMS_SUCCESSFUL) {
905 905 printf("%d-%d, ERR %d\n", sid, i, (int) status);
906 906 ret = LFR_DEFAULT;
907 907 }
908 908 }
909 909 }
910 910
911 911 return ret;
912 912 }
913 913
914 914 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
915 915 {
916 916 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
917 917 *
918 918 * @param waveform points to the buffer containing the data that will be send.
919 919 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
920 920 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
921 921 * contain information to setup the transmission of the data packets.
922 922 *
923 923 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
924 924 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
925 925 *
926 926 */
927 927
928 928 unsigned int i;
929 929 int ret;
930 930 unsigned int coarseTime;
931 931 unsigned int fineTime;
932 932 rtems_status_code status;
933 933 spw_ioctl_pkt_send spw_ioctl_send_CWF;
934 934 char *sample;
935 935
936 936 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
937 937 spw_ioctl_send_CWF.options = 0;
938 938
939 939 ret = LFR_DEFAULT;
940 940
941 941 //**********************
942 942 // BUILD CWF3_light DATA
943 943 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
944 944 {
945 945 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
946 946 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
947 947 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
948 948 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
949 949 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
950 950 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
951 951 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
952 952 }
953 953
954 954 coarseTime = waveform[0];
955 955 fineTime = waveform[1];
956 956
957 957 //*********************
958 958 // SEND CWF3_light DATA
959 959 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
960 960 {
961 961 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
962 962 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
963 963 // BUILD THE DATA
964 964 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
965 965 // SET PACKET SEQUENCE COUNTER
966 966 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
967 967 // SET PACKET TIME
968 968 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, headerCWF[ i ].acquisitionTime );
969 969 //
970 970 headerCWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
971 971 headerCWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
972 972 headerCWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
973 973 headerCWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
974 974 headerCWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
975 975 headerCWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
976 976 // SEND PACKET
977 977 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
978 978 if (status != RTEMS_SUCCESSFUL) {
979 979 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
980 980 ret = LFR_DEFAULT;
981 981 }
982 982 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
983 983 }
984 984
985 985 return ret;
986 986 }
987 987
988 988 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
989 989 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
990 990 {
991 991 unsigned long long int acquisitionTimeAsLong;
992 992 unsigned char localAcquisitionTime[6];
993 993 double deltaT = 0.;
994 994
995 995 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 8 );
996 996 localAcquisitionTime[1] = (unsigned char) ( coarseTime );
997 997 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 24 );
998 998 localAcquisitionTime[3] = (unsigned char) ( coarseTime >> 16 );
999 999 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 24 );
1000 1000 localAcquisitionTime[5] = (unsigned char) ( fineTime >> 16 );
1001 1001
1002 1002 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
1003 1003 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
1004 1004 + ( localAcquisitionTime[2] << 24 )
1005 1005 + ( localAcquisitionTime[3] << 16 )
1006 1006 + ( localAcquisitionTime[4] << 8 )
1007 1007 + ( localAcquisitionTime[5] );
1008 1008
1009 1009 switch( sid )
1010 1010 {
1011 1011 case SID_NORM_SWF_F0:
1012 1012 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
1013 1013 break;
1014 1014
1015 1015 case SID_NORM_SWF_F1:
1016 1016 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
1017 1017 break;
1018 1018
1019 case SID_NORM_SWF_F2:
1020 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
1021 break;
1022
1019 1023 case SID_SBM1_CWF_F1:
1020 1024 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
1021 1025 break;
1022 1026
1023 case SID_NORM_SWF_F2:
1024 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
1027 case SID_SBM2_CWF_F2:
1028 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
1025 1029 break;
1026 1030
1027 case SID_SBM2_CWF_F2:
1031 case SID_BURST_CWF_F2:
1028 1032 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
1029 1033 break;
1030 1034
1031 1035 case SID_NORM_CWF_F3:
1032 1036 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
1033 1037 break;
1034 1038
1035 1039 case SID_NORM_CWF_LONG_F3:
1036 1040 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
1037 1041 break;
1038 1042
1039 1043 default:
1044 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
1040 1045 deltaT = 0.;
1041 1046 break;
1042 1047 }
1043 1048
1044 1049 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
1045 1050 //
1046 1051 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
1047 1052 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
1048 1053 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
1049 1054 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
1050 1055 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
1051 1056 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
1052 1057 }
1053 1058
1054 1059 //**************
1055 1060 // wfp registers
1056 1061 void reset_wfp_burst_enable(void)
1057 1062 {
1058 1063 /** This function resets the waveform picker burst_enable register.
1059 1064 *
1060 1065 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1061 1066 *
1062 1067 */
1063 1068
1064 1069 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1065 1070 }
1066 1071
1067 1072 void reset_wfp_status( void )
1068 1073 {
1069 1074 /** This function resets the waveform picker status register.
1070 1075 *
1071 1076 * All status bits are set to 0 [new_err full_err full].
1072 1077 *
1073 1078 */
1074 1079
1075 1080 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1076 1081 }
1077 1082
1078 1083 void reset_waveform_picker_regs(void)
1079 1084 {
1080 1085 /** This function resets the waveform picker module registers.
1081 1086 *
1082 1087 * The registers affected by this function are located at the following offset addresses:
1083 1088 * - 0x00 data_shaping
1084 1089 * - 0x04 run_burst_enable
1085 1090 * - 0x08 addr_data_f0
1086 1091 * - 0x0C addr_data_f1
1087 1092 * - 0x10 addr_data_f2
1088 1093 * - 0x14 addr_data_f3
1089 1094 * - 0x18 status
1090 1095 * - 0x1C delta_snapshot
1091 1096 * - 0x20 delta_f0
1092 1097 * - 0x24 delta_f0_2
1093 1098 * - 0x28 delta_f1
1094 1099 * - 0x2c delta_f2
1095 1100 * - 0x30 nb_data_by_buffer
1096 1101 * - 0x34 nb_snapshot_param
1097 1102 * - 0x38 start_date
1098 1103 * - 0x3c nb_word_in_buffer
1099 1104 *
1100 1105 */
1101 1106
1102 1107 waveform_picker_regs->data_shaping = 0x01; // 0x00 *** R1 R0 SP1 SP0 BW
1103 1108 waveform_picker_regs->run_burst_enable = 0x00; // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1104 1109 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1105 1110 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1106 1111 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1107 1112 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a); // 0x14
1108 1113 waveform_picker_regs->status = 0x00; // 0x18
1109 1114 //
1110 1115 set_wfp_delta_snapshot(); // 0x1c
1111 1116 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1112 1117 set_wfp_delta_f1(); // 0x28
1113 1118 set_wfp_delta_f2(); // 0x2c
1114 1119 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1115 1120 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1116 1121 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1117 1122 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1118 1123 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1119 1124 // 2688 = 8 * 336
1120 1125 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1121 1126 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1122 1127 waveform_picker_regs->start_date = 0x00; // 0x38
1123 1128 waveform_picker_regs->nb_word_in_buffer = 0x1f82; // 0x3c *** 2688 * 3 + 2 = 8066
1124 1129 }
1125 1130
1126 1131 void set_wfp_data_shaping( void )
1127 1132 {
1128 1133 /** This function sets the data_shaping register of the waveform picker module.
1129 1134 *
1130 1135 * The value is read from one field of the parameter_dump_packet structure:\n
1131 1136 * bw_sp0_sp1_r0_r1
1132 1137 *
1133 1138 */
1134 1139
1135 1140 unsigned char data_shaping;
1136 1141
1137 1142 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1138 1143 // waveform picker : [R1 R0 SP1 SP0 BW]
1139 1144
1140 1145 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1141 1146
1142 1147 waveform_picker_regs->data_shaping =
1143 1148 ( (data_shaping & 0x10) >> 4 ) // BW
1144 1149 + ( (data_shaping & 0x08) >> 2 ) // SP0
1145 1150 + ( (data_shaping & 0x04) ) // SP1
1146 1151 + ( (data_shaping & 0x02) << 2 ) // R0
1147 1152 + ( (data_shaping & 0x01) << 4 ); // R1
1148 1153 }
1149 1154
1150 1155 void set_wfp_burst_enable_register( unsigned char mode )
1151 1156 {
1152 1157 /** This function sets the waveform picker burst_enable register depending on the mode.
1153 1158 *
1154 1159 * @param mode is the LFR mode to launch.
1155 1160 *
1156 1161 * The burst bits shall be before the enable bits.
1157 1162 *
1158 1163 */
1159 1164
1160 1165 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1161 1166 // the burst bits shall be set first, before the enable bits
1162 1167 switch(mode) {
1163 1168 case(LFR_MODE_NORMAL):
1164 1169 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1165 1170 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1166 1171 break;
1167 1172 case(LFR_MODE_BURST):
1168 1173 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1169 1174 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1170 1175 break;
1171 1176 case(LFR_MODE_SBM1):
1172 1177 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1173 1178 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1174 1179 break;
1175 1180 case(LFR_MODE_SBM2):
1176 1181 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1177 1182 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1178 1183 break;
1179 1184 default:
1180 1185 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1181 1186 break;
1182 1187 }
1183 1188 }
1184 1189
1185 1190 void set_wfp_delta_snapshot( void )
1186 1191 {
1187 1192 /** This function sets the delta_snapshot register of the waveform picker module.
1188 1193 *
1189 1194 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1190 1195 * - sy_lfr_n_swf_p[0]
1191 1196 * - sy_lfr_n_swf_p[1]
1192 1197 *
1193 1198 */
1194 1199
1195 1200 unsigned int delta_snapshot;
1196 1201 unsigned int delta_snapshot_in_T2;
1197 1202
1198 1203 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1199 1204 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1200 1205
1201 1206 delta_snapshot_in_T2 = delta_snapshot * 256;
1202 1207 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2; // max 4 bytes
1203 1208 }
1204 1209
1205 1210 void set_wfp_delta_f0_f0_2( void )
1206 1211 {
1207 1212 unsigned int delta_snapshot;
1208 1213 unsigned int nb_samples_per_snapshot;
1209 1214 float delta_f0_in_float;
1210 1215
1211 1216 delta_snapshot = waveform_picker_regs->delta_snapshot;
1212 1217 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1213 1218 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1214 1219
1215 1220 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1216 1221 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1217 1222 }
1218 1223
1219 1224 void set_wfp_delta_f1( void )
1220 1225 {
1221 1226 unsigned int delta_snapshot;
1222 1227 unsigned int nb_samples_per_snapshot;
1223 1228 float delta_f1_in_float;
1224 1229
1225 1230 delta_snapshot = waveform_picker_regs->delta_snapshot;
1226 1231 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1227 1232 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1228 1233
1229 1234 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1230 1235 }
1231 1236
1232 1237 void set_wfp_delta_f2()
1233 1238 {
1234 1239 unsigned int delta_snapshot;
1235 1240 unsigned int nb_samples_per_snapshot;
1236 1241
1237 1242 delta_snapshot = waveform_picker_regs->delta_snapshot;
1238 1243 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1239 1244
1240 1245 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1241 1246 }
1242 1247
1243 1248 //*****************
1244 1249 // local parameters
1245 1250 void set_local_nb_interrupt_f0_MAX( void )
1246 1251 {
1247 1252 /** This function sets the value of the nb_interrupt_f0_MAX local parameter.
1248 1253 *
1249 1254 * This parameter is used for the SM validation only.\n
1250 1255 * The software waits param_local.local_nb_interrupt_f0_MAX interruptions from the spectral matrices
1251 1256 * module before launching a basic processing.
1252 1257 *
1253 1258 */
1254 1259
1255 1260 param_local.local_nb_interrupt_f0_MAX = ( (parameter_dump_packet.sy_lfr_n_asm_p[0]) * 256
1256 1261 + parameter_dump_packet.sy_lfr_n_asm_p[1] ) * 100;
1257 1262 }
1258 1263
1259 1264 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1260 1265 {
1261 1266 unsigned short *sequence_cnt;
1262 1267 unsigned short segmentation_grouping_flag;
1263 1268 unsigned short new_packet_sequence_control;
1264 1269
1265 1270 if ( (sid ==SID_NORM_SWF_F0) || (sid ==SID_NORM_SWF_F1) || (sid ==SID_NORM_SWF_F2)
1266 1271 || (sid ==SID_NORM_CWF_F3) || (sid==SID_NORM_CWF_LONG_F3) || (sid ==SID_BURST_CWF_F2) )
1267 1272 {
1268 1273 sequence_cnt = &sequenceCounters_SCIENCE_NORMAL_BURST;
1269 1274 }
1270 1275 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2) )
1271 1276 {
1272 1277 sequence_cnt = &sequenceCounters_SCIENCE_SBM1_SBM2;
1273 1278 }
1274 1279 else
1275 1280 {
1276 1281 sequence_cnt = NULL;
1277 1282 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1278 1283 }
1279 1284
1280 1285 if (sequence_cnt != NULL)
1281 1286 {
1282 1287 segmentation_grouping_flag = (packet_sequence_control[ 0 ] & 0xc0) << 8;
1283 1288 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1284 1289
1285 1290 new_packet_sequence_control = segmentation_grouping_flag | *sequence_cnt ;
1286 1291
1287 1292 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1288 1293 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1289 1294
1290 1295 // increment the sequence counter for the next packet
1291 1296 if ( *sequence_cnt < SEQ_CNT_MAX)
1292 1297 {
1293 1298 *sequence_cnt = *sequence_cnt + 1;
1294 1299 }
1295 1300 else
1296 1301 {
1297 1302 *sequence_cnt = 0;
1298 1303 }
1299 1304 }
1300 1305 }
General Comments 0
You need to be logged in to leave comments. Login now