##// END OF EJS Templates
rev 3.0.0.6...
paul -
r214:a9666078ac0b R3
parent child
Show More
@@ -1,2 +1,2
1 a586fe639ac179e95bdc150ebdbab0312f31dc30 LFR_basic-parameters
1 b054211408845ff1f92ddeaae6e651e90d996ffb LFR_basic-parameters
2 bb9afa759d57093f7646d3be18f4a9923a4cbf84 header/lfr_common_headers
2 bb9afa759d57093f7646d3be18f4a9923a4cbf84 header/lfr_common_headers
@@ -1,112 +1,112
1 TEMPLATE = app
1 TEMPLATE = app
2 # CONFIG += console v8 sim
2 # CONFIG += console v8 sim
3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
4 # lpp_dpu_destid
4 # lpp_dpu_destid
5 CONFIG += console verbose lpp_dpu_destid
5 CONFIG += console verbose lpp_dpu_destid
6 CONFIG -= qt
6 CONFIG -= qt
7
7
8 include(./sparc.pri)
8 include(./sparc.pri)
9
9
10 # flight software version
10 # flight software version
11 SWVERSION=-1-0
11 SWVERSION=-1-0
12 DEFINES += SW_VERSION_N1=3 # major
12 DEFINES += SW_VERSION_N1=3 # major
13 DEFINES += SW_VERSION_N2=0 # minor
13 DEFINES += SW_VERSION_N2=0 # minor
14 DEFINES += SW_VERSION_N3=0 # patch
14 DEFINES += SW_VERSION_N3=0 # patch
15 DEFINES += SW_VERSION_N4=5 # internal
15 DEFINES += SW_VERSION_N4=6 # internal
16
16
17 # <GCOV>
17 # <GCOV>
18 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
18 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
19 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
19 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
20 # </GCOV>
20 # </GCOV>
21
21
22 # <CHANGE BEFORE FLIGHT>
22 # <CHANGE BEFORE FLIGHT>
23 contains( CONFIG, lpp_dpu_destid ) {
23 contains( CONFIG, lpp_dpu_destid ) {
24 DEFINES += LPP_DPU_DESTID
24 DEFINES += LPP_DPU_DESTID
25 }
25 }
26 # </CHANGE BEFORE FLIGHT>
26 # </CHANGE BEFORE FLIGHT>
27
27
28 contains( CONFIG, debug_tch ) {
28 contains( CONFIG, debug_tch ) {
29 DEFINES += DEBUG_TCH
29 DEFINES += DEBUG_TCH
30 }
30 }
31 DEFINES += MSB_FIRST_TCH
31 DEFINES += MSB_FIRST_TCH
32
32
33 contains( CONFIG, vhdl_dev ) {
33 contains( CONFIG, vhdl_dev ) {
34 DEFINES += VHDL_DEV
34 DEFINES += VHDL_DEV
35 }
35 }
36
36
37 contains( CONFIG, verbose ) {
37 contains( CONFIG, verbose ) {
38 DEFINES += PRINT_MESSAGES_ON_CONSOLE
38 DEFINES += PRINT_MESSAGES_ON_CONSOLE
39 }
39 }
40
40
41 contains( CONFIG, debug_messages ) {
41 contains( CONFIG, debug_messages ) {
42 DEFINES += DEBUG_MESSAGES
42 DEFINES += DEBUG_MESSAGES
43 }
43 }
44
44
45 contains( CONFIG, cpu_usage_report ) {
45 contains( CONFIG, cpu_usage_report ) {
46 DEFINES += PRINT_TASK_STATISTICS
46 DEFINES += PRINT_TASK_STATISTICS
47 }
47 }
48
48
49 contains( CONFIG, stack_report ) {
49 contains( CONFIG, stack_report ) {
50 DEFINES += PRINT_STACK_REPORT
50 DEFINES += PRINT_STACK_REPORT
51 }
51 }
52
52
53 contains( CONFIG, boot_messages ) {
53 contains( CONFIG, boot_messages ) {
54 DEFINES += BOOT_MESSAGES
54 DEFINES += BOOT_MESSAGES
55 }
55 }
56
56
57 #doxygen.target = doxygen
57 #doxygen.target = doxygen
58 #doxygen.commands = doxygen ../doc/Doxyfile
58 #doxygen.commands = doxygen ../doc/Doxyfile
59 #QMAKE_EXTRA_TARGETS += doxygen
59 #QMAKE_EXTRA_TARGETS += doxygen
60
60
61 TARGET = fsw
61 TARGET = fsw
62
62
63 INCLUDEPATH += \
63 INCLUDEPATH += \
64 $${PWD}/../src \
64 $${PWD}/../src \
65 $${PWD}/../header \
65 $${PWD}/../header \
66 $${PWD}/../header/lfr_common_headers \
66 $${PWD}/../header/lfr_common_headers \
67 $${PWD}/../header/processing \
67 $${PWD}/../header/processing \
68 $${PWD}/../LFR_basic-parameters
68 $${PWD}/../LFR_basic-parameters
69
69
70 SOURCES += \
70 SOURCES += \
71 ../src/wf_handler.c \
71 ../src/wf_handler.c \
72 ../src/tc_handler.c \
72 ../src/tc_handler.c \
73 ../src/fsw_misc.c \
73 ../src/fsw_misc.c \
74 ../src/fsw_init.c \
74 ../src/fsw_init.c \
75 ../src/fsw_globals.c \
75 ../src/fsw_globals.c \
76 ../src/fsw_spacewire.c \
76 ../src/fsw_spacewire.c \
77 ../src/tc_load_dump_parameters.c \
77 ../src/tc_load_dump_parameters.c \
78 ../src/tm_lfr_tc_exe.c \
78 ../src/tm_lfr_tc_exe.c \
79 ../src/tc_acceptance.c \
79 ../src/tc_acceptance.c \
80 ../src/processing/fsw_processing.c \
80 ../src/processing/fsw_processing.c \
81 ../src/processing/avf0_prc0.c \
81 ../src/processing/avf0_prc0.c \
82 ../src/processing/avf1_prc1.c \
82 ../src/processing/avf1_prc1.c \
83 ../src/processing/avf2_prc2.c \
83 ../src/processing/avf2_prc2.c \
84 ../src/lfr_cpu_usage_report.c \
84 ../src/lfr_cpu_usage_report.c \
85 ../LFR_basic-parameters/basic_parameters.c
85 ../LFR_basic-parameters/basic_parameters.c
86
86
87 HEADERS += \
87 HEADERS += \
88 ../header/wf_handler.h \
88 ../header/wf_handler.h \
89 ../header/tc_handler.h \
89 ../header/tc_handler.h \
90 ../header/grlib_regs.h \
90 ../header/grlib_regs.h \
91 ../header/fsw_misc.h \
91 ../header/fsw_misc.h \
92 ../header/fsw_init.h \
92 ../header/fsw_init.h \
93 ../header/fsw_spacewire.h \
93 ../header/fsw_spacewire.h \
94 ../header/tc_load_dump_parameters.h \
94 ../header/tc_load_dump_parameters.h \
95 ../header/tm_lfr_tc_exe.h \
95 ../header/tm_lfr_tc_exe.h \
96 ../header/tc_acceptance.h \
96 ../header/tc_acceptance.h \
97 ../header/processing/fsw_processing.h \
97 ../header/processing/fsw_processing.h \
98 ../header/processing/avf0_prc0.h \
98 ../header/processing/avf0_prc0.h \
99 ../header/processing/avf1_prc1.h \
99 ../header/processing/avf1_prc1.h \
100 ../header/processing/avf2_prc2.h \
100 ../header/processing/avf2_prc2.h \
101 ../header/fsw_params_wf_handler.h \
101 ../header/fsw_params_wf_handler.h \
102 ../header/lfr_cpu_usage_report.h \
102 ../header/lfr_cpu_usage_report.h \
103 ../header/lfr_common_headers/ccsds_types.h \
103 ../header/lfr_common_headers/ccsds_types.h \
104 ../header/lfr_common_headers/fsw_params.h \
104 ../header/lfr_common_headers/fsw_params.h \
105 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
105 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
106 ../header/lfr_common_headers/fsw_params_processing.h \
106 ../header/lfr_common_headers/fsw_params_processing.h \
107 ../header/lfr_common_headers/TC_types.h \
107 ../header/lfr_common_headers/TC_types.h \
108 ../header/lfr_common_headers/tm_byte_positions.h \
108 ../header/lfr_common_headers/tm_byte_positions.h \
109 ../LFR_basic-parameters/basic_parameters.h \
109 ../LFR_basic-parameters/basic_parameters.h \
110 ../LFR_basic-parameters/basic_parameters_params.h \
110 ../LFR_basic-parameters/basic_parameters_params.h \
111 ../header/GscMemoryLPP.hpp
111 ../header/GscMemoryLPP.hpp
112
112
@@ -1,38 +1,38
1 #ifndef AVF0_PRC0_H_INCLUDED
1 #ifndef AVF0_PRC0_H_INCLUDED
2 #define AVF0_PRC0_H_INCLUDED
2 #define AVF0_PRC0_H_INCLUDED
3
3
4 #include "fsw_processing.h"
4 #include "fsw_processing.h"
5 #include "basic_parameters.h"
5 #include "basic_parameters.h"
6 #include "fsw_init.h"
6 #include "fsw_init.h"
7
7
8 typedef struct {
8 typedef struct {
9 unsigned int norm_bp1;
9 unsigned int norm_bp1;
10 unsigned int norm_bp2;
10 unsigned int norm_bp2;
11 unsigned int norm_asm;
11 unsigned int norm_asm;
12 unsigned int burst_sbm_bp1;
12 unsigned int burst_sbm_bp1;
13 unsigned int burst_sbm_bp2;
13 unsigned int burst_sbm_bp2;
14 unsigned int burst_bp1;
14 unsigned int burst_bp1;
15 unsigned int burst_bp2;
15 unsigned int burst_bp2;
16 unsigned int sbm1_bp1;
16 unsigned int sbm1_bp1;
17 unsigned int sbm1_bp2;
17 unsigned int sbm1_bp2;
18 unsigned int sbm2_bp1;
18 unsigned int sbm2_bp1;
19 unsigned int sbm2_bp2;
19 unsigned int sbm2_bp2;
20 } nb_sm_before_bp_asm_f0;
20 } nb_sm_before_bp_asm_f0;
21
21
22 //************
22 //************
23 // RTEMS TASKS
23 // RTEMS TASKS
24 rtems_task avf0_task( rtems_task_argument lfrRequestedMode );
24 rtems_task avf0_task( rtems_task_argument lfrRequestedMode );
25 rtems_task prc0_task( rtems_task_argument lfrRequestedMode );
25 rtems_task prc0_task( rtems_task_argument lfrRequestedMode );
26
26
27 //**********
27 //**********
28 // FUNCTIONS
28 // FUNCTIONS
29
29
30 void reset_nb_sm_f0( unsigned char lfrMode );
30 void reset_nb_sm_f0( unsigned char lfrMode );
31 void init_k_coefficients_f0( void );
31 void init_k_coefficients_prc0( void );
32 void test_TCH( void );
32 void test_TCH( void );
33
33
34 //*******
34 //*******
35 // EXTERN
35 // EXTERN
36 extern rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id );
36 extern rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id );
37
37
38 #endif // AVF0_PRC0_H_INCLUDED
38 #endif // AVF0_PRC0_H_INCLUDED
@@ -1,35 +1,35
1 #ifndef AVF1_PRC1_H
1 #ifndef AVF1_PRC1_H
2 #define AVF1_PRC1_H
2 #define AVF1_PRC1_H
3
3
4 #include "fsw_processing.h"
4 #include "fsw_processing.h"
5 #include "basic_parameters.h"
5 #include "basic_parameters.h"
6 #include "fsw_init.h"
6 #include "fsw_init.h"
7
7
8 typedef struct {
8 typedef struct {
9 unsigned int norm_bp1;
9 unsigned int norm_bp1;
10 unsigned int norm_bp2;
10 unsigned int norm_bp2;
11 unsigned int norm_asm;
11 unsigned int norm_asm;
12 unsigned int burst_sbm_bp1;
12 unsigned int burst_sbm_bp1;
13 unsigned int burst_sbm_bp2;
13 unsigned int burst_sbm_bp2;
14 unsigned int burst_bp1;
14 unsigned int burst_bp1;
15 unsigned int burst_bp2;
15 unsigned int burst_bp2;
16 unsigned int sbm2_bp1;
16 unsigned int sbm2_bp1;
17 unsigned int sbm2_bp2;
17 unsigned int sbm2_bp2;
18 } nb_sm_before_bp_asm_f1;
18 } nb_sm_before_bp_asm_f1;
19
19
20 //************
20 //************
21 // RTEMS TASKS
21 // RTEMS TASKS
22 rtems_task avf1_task( rtems_task_argument lfrRequestedMode );
22 rtems_task avf1_task( rtems_task_argument lfrRequestedMode );
23 rtems_task prc1_task( rtems_task_argument lfrRequestedMode );
23 rtems_task prc1_task( rtems_task_argument lfrRequestedMode );
24
24
25 //**********
25 //**********
26 // FUNCTIONS
26 // FUNCTIONS
27
27
28 void reset_nb_sm_f1( unsigned char lfrMode );
28 void reset_nb_sm_f1( unsigned char lfrMode );
29 void init_k_coefficients_f1( void );
29 void init_k_coefficients_prc1( void );
30
30
31 //*******
31 //*******
32 // EXTERN
32 // EXTERN
33 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
33 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
34
34
35 #endif // AVF1_PRC1_H
35 #endif // AVF1_PRC1_H
@@ -1,30 +1,30
1 #ifndef AVF2_PRC2_H
1 #ifndef AVF2_PRC2_H
2 #define AVF2_PRC2_H
2 #define AVF2_PRC2_H
3
3
4 #include "fsw_processing.h"
4 #include "fsw_processing.h"
5 #include "basic_parameters.h"
5 #include "basic_parameters.h"
6 #include "fsw_init.h"
6 #include "fsw_init.h"
7
7
8 typedef struct {
8 typedef struct {
9 unsigned int norm_bp1;
9 unsigned int norm_bp1;
10 unsigned int norm_bp2;
10 unsigned int norm_bp2;
11 unsigned int norm_asm;
11 unsigned int norm_asm;
12 } nb_sm_before_bp_asm_f2;
12 } nb_sm_before_bp_asm_f2;
13
13
14 //************
14 //************
15 // RTEMS TASKS
15 // RTEMS TASKS
16 rtems_task avf2_task( rtems_task_argument lfrRequestedMode );
16 rtems_task avf2_task( rtems_task_argument lfrRequestedMode );
17 rtems_task prc2_task( rtems_task_argument lfrRequestedMode );
17 rtems_task prc2_task( rtems_task_argument lfrRequestedMode );
18
18
19 //**********
19 //**********
20 // FUNCTIONS
20 // FUNCTIONS
21
21
22 void reset_nb_sm_f2( void );
22 void reset_nb_sm_f2( void );
23 void SM_average_f2(float *averaged_spec_mat_f2, ring_node *ring_node, unsigned int nbAverageNormF2 , asm_msg *msgForMATR);
23 void SM_average_f2(float *averaged_spec_mat_f2, ring_node *ring_node, unsigned int nbAverageNormF2 , asm_msg *msgForMATR);
24 void init_k_coefficients_f2( void );
24 void init_k_coefficients_prc2( void );
25
25
26 //*******
26 //*******
27 // EXTERN
27 // EXTERN
28 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
28 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
29
29
30 #endif // AVF2_PRC2_H
30 #endif // AVF2_PRC2_H
@@ -1,323 +1,325
1 #ifndef FSW_PROCESSING_H_INCLUDED
1 #ifndef FSW_PROCESSING_H_INCLUDED
2 #define FSW_PROCESSING_H_INCLUDED
2 #define FSW_PROCESSING_H_INCLUDED
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <grspw.h>
5 #include <grspw.h>
6 #include <math.h>
6 #include <math.h>
7 #include <stdlib.h> // abs() is in the stdlib
7 #include <stdlib.h> // abs() is in the stdlib
8 #include <stdio.h> // printf()
8 #include <stdio.h> // printf()
9 #include <math.h>
9 #include <math.h>
10 #include <grlib_regs.h>
10 #include <grlib_regs.h>
11
11
12 #include "fsw_params.h"
12 #include "fsw_params.h"
13
13
14 typedef struct ring_node_asm
14 typedef struct ring_node_asm
15 {
15 {
16 struct ring_node_asm *next;
16 struct ring_node_asm *next;
17 float matrix[ TOTAL_SIZE_SM ];
17 float matrix[ TOTAL_SIZE_SM ];
18 unsigned int status;
18 unsigned int status;
19 } ring_node_asm;
19 } ring_node_asm;
20
20
21 typedef struct
21 typedef struct
22 {
22 {
23 unsigned char targetLogicalAddress;
23 unsigned char targetLogicalAddress;
24 unsigned char protocolIdentifier;
24 unsigned char protocolIdentifier;
25 unsigned char reserved;
25 unsigned char reserved;
26 unsigned char userApplication;
26 unsigned char userApplication;
27 unsigned char packetID[2];
27 unsigned char packetID[2];
28 unsigned char packetSequenceControl[2];
28 unsigned char packetSequenceControl[2];
29 unsigned char packetLength[2];
29 unsigned char packetLength[2];
30 // DATA FIELD HEADER
30 // DATA FIELD HEADER
31 unsigned char spare1_pusVersion_spare2;
31 unsigned char spare1_pusVersion_spare2;
32 unsigned char serviceType;
32 unsigned char serviceType;
33 unsigned char serviceSubType;
33 unsigned char serviceSubType;
34 unsigned char destinationID;
34 unsigned char destinationID;
35 unsigned char time[6];
35 unsigned char time[6];
36 // AUXILIARY HEADER
36 // AUXILIARY HEADER
37 unsigned char sid;
37 unsigned char sid;
38 unsigned char biaStatusInfo;
38 unsigned char biaStatusInfo;
39 unsigned char sy_lfr_common_parameters_spare;
39 unsigned char sy_lfr_common_parameters_spare;
40 unsigned char sy_lfr_common_parameters;
40 unsigned char sy_lfr_common_parameters;
41 unsigned char acquisitionTime[6];
41 unsigned char acquisitionTime[6];
42 unsigned char pa_lfr_bp_blk_nr[2];
42 unsigned char pa_lfr_bp_blk_nr[2];
43 // SOURCE DATA
43 // SOURCE DATA
44 unsigned char data[ 780 ]; // MAX size is 26 bins * 30 Bytes [TM_LFR_SCIENCE_BURST_BP2_F1]
44 unsigned char data[ 780 ]; // MAX size is 26 bins * 30 Bytes [TM_LFR_SCIENCE_BURST_BP2_F1]
45 } bp_packet;
45 } bp_packet;
46
46
47 typedef struct
47 typedef struct
48 {
48 {
49 unsigned char targetLogicalAddress;
49 unsigned char targetLogicalAddress;
50 unsigned char protocolIdentifier;
50 unsigned char protocolIdentifier;
51 unsigned char reserved;
51 unsigned char reserved;
52 unsigned char userApplication;
52 unsigned char userApplication;
53 unsigned char packetID[2];
53 unsigned char packetID[2];
54 unsigned char packetSequenceControl[2];
54 unsigned char packetSequenceControl[2];
55 unsigned char packetLength[2];
55 unsigned char packetLength[2];
56 // DATA FIELD HEADER
56 // DATA FIELD HEADER
57 unsigned char spare1_pusVersion_spare2;
57 unsigned char spare1_pusVersion_spare2;
58 unsigned char serviceType;
58 unsigned char serviceType;
59 unsigned char serviceSubType;
59 unsigned char serviceSubType;
60 unsigned char destinationID;
60 unsigned char destinationID;
61 unsigned char time[6];
61 unsigned char time[6];
62 // AUXILIARY HEADER
62 // AUXILIARY HEADER
63 unsigned char sid;
63 unsigned char sid;
64 unsigned char biaStatusInfo;
64 unsigned char biaStatusInfo;
65 unsigned char sy_lfr_common_parameters_spare;
65 unsigned char sy_lfr_common_parameters_spare;
66 unsigned char sy_lfr_common_parameters;
66 unsigned char sy_lfr_common_parameters;
67 unsigned char acquisitionTime[6];
67 unsigned char acquisitionTime[6];
68 unsigned char source_data_spare;
68 unsigned char source_data_spare;
69 unsigned char pa_lfr_bp_blk_nr[2];
69 unsigned char pa_lfr_bp_blk_nr[2];
70 // SOURCE DATA
70 // SOURCE DATA
71 unsigned char data[ 117 ]; // 13 bins * 9 Bytes only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
71 unsigned char data[ 117 ]; // 13 bins * 9 Bytes only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
72 } bp_packet_with_spare;
72 } bp_packet_with_spare;
73
73
74 typedef struct asm_msg
74 typedef struct asm_msg
75 {
75 {
76 ring_node_asm *norm;
76 ring_node_asm *norm;
77 ring_node_asm *burst_sbm;
77 ring_node_asm *burst_sbm;
78 rtems_event_set event;
78 rtems_event_set event;
79 unsigned int coarseTimeNORM;
79 unsigned int coarseTimeNORM;
80 unsigned int fineTimeNORM;
80 unsigned int fineTimeNORM;
81 unsigned int coarseTimeSBM;
81 unsigned int coarseTimeSBM;
82 unsigned int fineTimeSBM;
82 unsigned int fineTimeSBM;
83 } asm_msg;
83 } asm_msg;
84
84
85 extern volatile int sm_f0[ ];
85 extern volatile int sm_f0[ ];
86 extern volatile int sm_f1[ ];
86 extern volatile int sm_f1[ ];
87 extern volatile int sm_f2[ ];
87 extern volatile int sm_f2[ ];
88
88
89 // parameters
89 // parameters
90 extern struct param_local_str param_local;
90 extern struct param_local_str param_local;
91 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
91 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
92
92
93 // registers
93 // registers
94 extern time_management_regs_t *time_management_regs;
94 extern time_management_regs_t *time_management_regs;
95 extern volatile spectral_matrix_regs_t *spectral_matrix_regs;
95 extern volatile spectral_matrix_regs_t *spectral_matrix_regs;
96
96
97 extern rtems_name misc_name[5];
97 extern rtems_name misc_name[5];
98 extern rtems_id Task_id[20]; /* array of task ids */
98 extern rtems_id Task_id[20]; /* array of task ids */
99
99
100 //
100 //
101 ring_node * getRingNodeForAveraging( unsigned char frequencyChannel);
101 ring_node * getRingNodeForAveraging( unsigned char frequencyChannel);
102 // ISR
102 // ISR
103 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
103 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
104 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
104 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
105
105
106 //******************
106 //******************
107 // Spectral Matrices
107 // Spectral Matrices
108 void reset_nb_sm( void );
108 void reset_nb_sm( void );
109 // SM
109 // SM
110 void SM_init_rings( void );
110 void SM_init_rings( void );
111 void SM_reset_current_ring_nodes( void );
111 void SM_reset_current_ring_nodes( void );
112 // ASM
112 // ASM
113 void ASM_generic_init_ring(ring_node_asm *ring, unsigned char nbNodes );
113 void ASM_generic_init_ring(ring_node_asm *ring, unsigned char nbNodes );
114
114
115 //*****************
115 //*****************
116 // Basic Parameters
116 // Basic Parameters
117
117
118 void BP_reset_current_ring_nodes( void );
118 void BP_reset_current_ring_nodes( void );
119 void BP_init_header(bp_packet *packet,
119 void BP_init_header(bp_packet *packet,
120 unsigned int apid, unsigned char sid,
120 unsigned int apid, unsigned char sid,
121 unsigned int packetLength , unsigned char blkNr);
121 unsigned int packetLength , unsigned char blkNr);
122 void BP_init_header_with_spare(bp_packet_with_spare *packet,
122 void BP_init_header_with_spare(bp_packet_with_spare *packet,
123 unsigned int apid, unsigned char sid,
123 unsigned int apid, unsigned char sid,
124 unsigned int packetLength, unsigned char blkNr );
124 unsigned int packetLength, unsigned char blkNr );
125 void BP_send( char *data,
125 void BP_send( char *data,
126 rtems_id queue_id ,
126 rtems_id queue_id ,
127 unsigned int nbBytesToSend , unsigned int sid );
127 unsigned int nbBytesToSend , unsigned int sid );
128
128
129 //******************
129 //******************
130 // general functions
130 // general functions
131 void reset_sm_status( void );
131 void reset_sm_status( void );
132 void reset_spectral_matrix_regs( void );
132 void reset_spectral_matrix_regs( void );
133 void set_time(unsigned char *time, unsigned char *timeInBuffer );
133 void set_time(unsigned char *time, unsigned char *timeInBuffer );
134 unsigned long long int get_acquisition_time( unsigned char *timePtr );
134 unsigned long long int get_acquisition_time( unsigned char *timePtr );
135 unsigned char getSID( rtems_event_set event );
135 unsigned char getSID( rtems_event_set event );
136
136
137 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
137 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
138 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
138 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
139
139
140 //***************************************
140 //***************************************
141 // DEFINITIONS OF STATIC INLINE FUNCTIONS
141 // DEFINITIONS OF STATIC INLINE FUNCTIONS
142 static inline void SM_average(float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
142 static inline void SM_average(float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
143 ring_node *ring_node_tab[],
143 ring_node *ring_node_tab[],
144 unsigned int nbAverageNORM, unsigned int nbAverageSBM,
144 unsigned int nbAverageNORM, unsigned int nbAverageSBM,
145 asm_msg *msgForMATR );
145 asm_msg *msgForMATR );
146
146
147 static inline void SM_average_debug(float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
147 static inline void SM_average_debug(float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
148 ring_node *ring_node_tab[],
148 ring_node *ring_node_tab[],
149 unsigned int nbAverageNORM, unsigned int nbAverageSBM,
149 unsigned int nbAverageNORM, unsigned int nbAverageSBM,
150 asm_msg *msgForMATR );
150 asm_msg *msgForMATR );
151
151
152 void ASM_patch( float *inputASM, float *outputASM );
152 void ASM_patch( float *inputASM, float *outputASM );
153
153
154 void extractReImVectors(float *inputASM, float *outputASM, unsigned int asmComponent );
154 void extractReImVectors(float *inputASM, float *outputASM, unsigned int asmComponent );
155
155
156 static inline void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
156 static inline void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
157 float divider );
157 float divider );
158
158
159 static inline void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
159 static inline void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
160 float divider,
160 float divider,
161 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
161 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
162
162
163 static inline void ASM_convert(volatile float *input_matrix, char *output_matrix);
163 static inline void ASM_convert(volatile float *input_matrix, char *output_matrix);
164
164
165 void SM_average( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
165 void SM_average( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
166 ring_node *ring_node_tab[],
166 ring_node *ring_node_tab[],
167 unsigned int nbAverageNORM, unsigned int nbAverageSBM,
167 unsigned int nbAverageNORM, unsigned int nbAverageSBM,
168 asm_msg *msgForMATR )
168 asm_msg *msgForMATR )
169 {
169 {
170 float sum;
170 float sum;
171 unsigned int i;
171 unsigned int i;
172
172
173 for(i=0; i<TOTAL_SIZE_SM; i++)
173 for(i=0; i<TOTAL_SIZE_SM; i++)
174 {
174 {
175 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
175 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
176 + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
176 + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
177 + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
177 + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
178 + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
178 + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
179 + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
179 + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
180 + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
180 + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
181 + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
181 + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
182 + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
182 + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
183
183
184 if ( (nbAverageNORM == 0) && (nbAverageSBM == 0) )
184 if ( (nbAverageNORM == 0) && (nbAverageSBM == 0) )
185 {
185 {
186 averaged_spec_mat_NORM[ i ] = sum;
186 averaged_spec_mat_NORM[ i ] = sum;
187 averaged_spec_mat_SBM[ i ] = sum;
187 averaged_spec_mat_SBM[ i ] = sum;
188 msgForMATR->coarseTimeNORM = ring_node_tab[0]->coarseTime;
188 msgForMATR->coarseTimeNORM = ring_node_tab[0]->coarseTime;
189 msgForMATR->fineTimeNORM = ring_node_tab[0]->fineTime;
189 msgForMATR->fineTimeNORM = ring_node_tab[0]->fineTime;
190 msgForMATR->coarseTimeSBM = ring_node_tab[0]->coarseTime;
190 msgForMATR->coarseTimeSBM = ring_node_tab[0]->coarseTime;
191 msgForMATR->fineTimeSBM = ring_node_tab[0]->fineTime;
191 msgForMATR->fineTimeSBM = ring_node_tab[0]->fineTime;
192 }
192 }
193 else if ( (nbAverageNORM != 0) && (nbAverageSBM != 0) )
193 else if ( (nbAverageNORM != 0) && (nbAverageSBM != 0) )
194 {
194 {
195 averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
195 averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
196 averaged_spec_mat_SBM[ i ] = ( averaged_spec_mat_SBM[ i ] + sum );
196 averaged_spec_mat_SBM[ i ] = ( averaged_spec_mat_SBM[ i ] + sum );
197 }
197 }
198 else if ( (nbAverageNORM != 0) && (nbAverageSBM == 0) )
198 else if ( (nbAverageNORM != 0) && (nbAverageSBM == 0) )
199 {
199 {
200 averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
200 averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
201 averaged_spec_mat_SBM[ i ] = sum;
201 averaged_spec_mat_SBM[ i ] = sum;
202 msgForMATR->coarseTimeSBM = ring_node_tab[0]->coarseTime;
202 msgForMATR->coarseTimeSBM = ring_node_tab[0]->coarseTime;
203 msgForMATR->fineTimeSBM = ring_node_tab[0]->fineTime;
203 msgForMATR->fineTimeSBM = ring_node_tab[0]->fineTime;
204 }
204 }
205 else
205 else
206 {
206 {
207 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNORM, nbAverageSBM)
207 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNORM, nbAverageSBM)
208 }
208 }
209 }
209 }
210 }
210 }
211
211
212 void SM_average_debug( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
212 void SM_average_debug( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
213 ring_node *ring_node_tab[],
213 ring_node *ring_node_tab[],
214 unsigned int nbAverageNORM, unsigned int nbAverageSBM,
214 unsigned int nbAverageNORM, unsigned int nbAverageSBM,
215 asm_msg *msgForMATR )
215 asm_msg *msgForMATR )
216 {
216 {
217 float sum;
217 float sum;
218 unsigned int i;
218 unsigned int i;
219
219
220 for(i=0; i<TOTAL_SIZE_SM; i++)
220 for(i=0; i<TOTAL_SIZE_SM; i++)
221 {
221 {
222 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ];
222 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ];
223 averaged_spec_mat_NORM[ i ] = sum;
223 averaged_spec_mat_NORM[ i ] = sum;
224 averaged_spec_mat_SBM[ i ] = sum;
224 averaged_spec_mat_SBM[ i ] = sum;
225 msgForMATR->coarseTimeNORM = ring_node_tab[0]->coarseTime;
225 msgForMATR->coarseTimeNORM = ring_node_tab[0]->coarseTime;
226 msgForMATR->fineTimeNORM = ring_node_tab[0]->fineTime;
226 msgForMATR->fineTimeNORM = ring_node_tab[0]->fineTime;
227 msgForMATR->coarseTimeSBM = ring_node_tab[0]->coarseTime;
227 msgForMATR->coarseTimeSBM = ring_node_tab[0]->coarseTime;
228 msgForMATR->fineTimeSBM = ring_node_tab[0]->fineTime;
228 msgForMATR->fineTimeSBM = ring_node_tab[0]->fineTime;
229 }
229 }
230 }
230 }
231
231
232 void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
232 void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
233 {
233 {
234 int frequencyBin;
234 int frequencyBin;
235 int asmComponent;
235 int asmComponent;
236 unsigned int offsetASM;
236 unsigned int offsetASM;
237 unsigned int offsetASMReorganized;
237 unsigned int offsetASMReorganized;
238
238
239 // BUILD DATA
239 // BUILD DATA
240 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
240 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
241 {
241 {
242 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
242 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
243 {
243 {
244 offsetASMReorganized =
244 offsetASMReorganized =
245 frequencyBin * NB_VALUES_PER_SM
245 frequencyBin * NB_VALUES_PER_SM
246 + asmComponent;
246 + asmComponent;
247 offsetASM =
247 offsetASM =
248 asmComponent * NB_BINS_PER_SM
248 asmComponent * NB_BINS_PER_SM
249 + frequencyBin;
249 + frequencyBin;
250 averaged_spec_mat_reorganized[offsetASMReorganized ] =
250 averaged_spec_mat_reorganized[offsetASMReorganized ] =
251 averaged_spec_mat[ offsetASM ] / divider;
251 averaged_spec_mat[ offsetASM ] / divider;
252 }
252 }
253 }
253 }
254 }
254 }
255
255
256 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
256 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
257 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
257 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
258 {
258 {
259 int frequencyBin;
259 int frequencyBin;
260 int asmComponent;
260 int asmComponent;
261 int offsetASM;
261 int offsetASM;
262 int offsetCompressed;
262 int offsetCompressed;
263 int k;
263 int k;
264
264
265 // BUILD DATA
265 // BUILD DATA
266 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
266 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
267 {
267 {
268 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
268 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
269 {
269 {
270 offsetCompressed = // NO TIME OFFSET
270 offsetCompressed = // NO TIME OFFSET
271 frequencyBin * NB_VALUES_PER_SM
271 frequencyBin * NB_VALUES_PER_SM
272 + asmComponent;
272 + asmComponent;
273 offsetASM = // NO TIME OFFSET
273 offsetASM = // NO TIME OFFSET
274 asmComponent * NB_BINS_PER_SM
274 asmComponent * NB_BINS_PER_SM
275 + ASMIndexStart
275 + ASMIndexStart
276 + frequencyBin * nbBinsToAverage;
276 + frequencyBin * nbBinsToAverage;
277 compressed_spec_mat[ offsetCompressed ] = 0;
277 compressed_spec_mat[ offsetCompressed ] = 0;
278 for ( k = 0; k < nbBinsToAverage; k++ )
278 for ( k = 0; k < nbBinsToAverage; k++ )
279 {
279 {
280 compressed_spec_mat[offsetCompressed ] =
280 compressed_spec_mat[offsetCompressed ] =
281 ( compressed_spec_mat[ offsetCompressed ]
281 ( compressed_spec_mat[ offsetCompressed ]
282 + averaged_spec_mat[ offsetASM + k ] );
282 + averaged_spec_mat[ offsetASM + k ] );
283 }
283 }
284 compressed_spec_mat[ offsetCompressed ] =
284 compressed_spec_mat[ offsetCompressed ] =
285 compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
285 compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
286 }
286 }
287 }
287 }
288 }
288 }
289
289
290 void ASM_convert( volatile float *input_matrix, char *output_matrix)
290 void ASM_convert( volatile float *input_matrix, char *output_matrix)
291 {
291 {
292 unsigned int frequencyBin;
292 unsigned int frequencyBin;
293 unsigned int asmComponent;
293 unsigned int asmComponent;
294 char * pt_char_input;
294 char * pt_char_input;
295 char * pt_char_output;
295 char * pt_char_output;
296 unsigned int offsetInput;
296 unsigned int offsetInput;
297 unsigned int offsetOutput;
297 unsigned int offsetOutput;
298
298
299 pt_char_input = (char*) &input_matrix;
299 pt_char_input = (char*) &input_matrix;
300 pt_char_output = (char*) &output_matrix;
300 pt_char_output = (char*) &output_matrix;
301
301
302 // convert all other data
302 // convert all other data
303 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
303 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
304 {
304 {
305 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
305 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
306 {
306 {
307 offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
307 offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
308 offsetOutput = 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
308 offsetOutput = 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
309 pt_char_input = (char*) &input_matrix [ offsetInput ];
309 pt_char_input = (char*) &input_matrix [ offsetInput ];
310 pt_char_output = (char*) &output_matrix[ offsetOutput ];
310 pt_char_output = (char*) &output_matrix[ offsetOutput ];
311 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
311 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
312 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
312 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
313 }
313 }
314 }
314 }
315 }
315 }
316
316
317 void ASM_compress_reorganize_and_divide_mask(float *averaged_spec_mat, float *compressed_spec_mat,
317 void ASM_compress_reorganize_and_divide_mask(float *averaged_spec_mat, float *compressed_spec_mat,
318 float divider,
318 float divider,
319 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
319 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
320
320
321 int getFBinMask(int k);
321 int getFBinMask(int k);
322
322
323 void init_kcoeff_sbm_from_kcoeff_norm( float *input_kcoeff, float *output_kcoeff, unsigned char nb_bins_norm);
324
323 #endif // FSW_PROCESSING_H_INCLUDED
325 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,70 +1,71
1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
2 #define TC_LOAD_DUMP_PARAMETERS_H
2 #define TC_LOAD_DUMP_PARAMETERS_H
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <stdio.h>
5 #include <stdio.h>
6
6
7 #include "fsw_params.h"
7 #include "fsw_params.h"
8 #include "wf_handler.h"
8 #include "wf_handler.h"
9 #include "tm_lfr_tc_exe.h"
9 #include "tm_lfr_tc_exe.h"
10 #include "fsw_misc.h"
10 #include "fsw_misc.h"
11 #include "basic_parameters_params.h"
11 #include "basic_parameters_params.h"
12 #include "avf0_prc0.h"
12 #include "avf0_prc0.h"
13
13
14 #define FLOAT_EQUAL_ZERO 0.001
14 #define FLOAT_EQUAL_ZERO 0.001
15
15
16 extern unsigned short sequenceCounterParameterDump;
16 extern unsigned short sequenceCounterParameterDump;
17 extern float k_coeff_intercalib_f0_norm[ ];
17 extern float k_coeff_intercalib_f0_norm[ ];
18 extern float k_coeff_intercalib_f0_sbm[ ];
18 extern float k_coeff_intercalib_f0_sbm[ ];
19 extern float k_coeff_intercalib_f1_norm[ ];
19 extern float k_coeff_intercalib_f1_norm[ ];
20 extern float k_coeff_intercalib_f1_sbm[ ];
20 extern float k_coeff_intercalib_f1_sbm[ ];
21 extern float k_coeff_intercalib_f2[ ];
21 extern float k_coeff_intercalib_f2[ ];
22
22
23 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
23 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
24 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
24 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
25 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
25 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
26 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
26 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
27 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
27 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
28 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
28 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
29 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
29 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
30 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
30 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
31 int action_dump_par(rtems_id queue_id );
31 int action_dump_par(rtems_id queue_id );
32
32
33 // NORMAL
33 // NORMAL
34 int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
34 int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
35 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
35 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
36 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
36 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
37 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
37 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
38 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
38 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
39 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
39 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
40 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
40 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
41
41
42 // BURST
42 // BURST
43 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
43 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
44 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
44 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
45
45
46 // SBM1
46 // SBM1
47 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
47 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
48 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
48 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
49
49
50 // SBM2
50 // SBM2
51 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
51 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
52 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
52 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
53
53
54 // TC_LFR_UPDATE_INFO
54 // TC_LFR_UPDATE_INFO
55 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
55 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
56 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
56 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
57 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
57 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
58
58
59 // FBINS_MASK
59 // FBINS_MASK
60 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
60 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
61
61
62 // KCOEFFICIENTS
62 // KCOEFFICIENTS
63 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
63 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
64 void copyFloatByChar( unsigned char *destination, unsigned char *source );
64 void copyFloatByChar( unsigned char *destination, unsigned char *source );
65
65
66 void init_parameter_dump( void );
66 void init_parameter_dump( void );
67 void init_kcoefficients_dump( void );
67 void init_kcoefficients_dump( void );
68 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
68 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
69 void print_k_coeff();
69
70
70 #endif // TC_LOAD_DUMP_PARAMETERS_H
71 #endif // TC_LOAD_DUMP_PARAMETERS_H
@@ -1,869 +1,869
1 /** This is the RTEMS initialization module.
1 /** This is the RTEMS initialization module.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * This module contains two very different information:
6 * This module contains two very different information:
7 * - specific instructions to configure the compilation of the RTEMS executive
7 * - specific instructions to configure the compilation of the RTEMS executive
8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 *
9 *
10 */
10 */
11
11
12 //*************************
12 //*************************
13 // GPL reminder to be added
13 // GPL reminder to be added
14 //*************************
14 //*************************
15
15
16 #include <rtems.h>
16 #include <rtems.h>
17
17
18 /* configuration information */
18 /* configuration information */
19
19
20 #define CONFIGURE_INIT
20 #define CONFIGURE_INIT
21
21
22 #include <bsp.h> /* for device driver prototypes */
22 #include <bsp.h> /* for device driver prototypes */
23
23
24 /* configuration information */
24 /* configuration information */
25
25
26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28
28
29 #define CONFIGURE_MAXIMUM_TASKS 20
29 #define CONFIGURE_MAXIMUM_TASKS 20
30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
35 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
36 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 #define CONFIGURE_MAXIMUM_DRIVERS 16
37 #define CONFIGURE_MAXIMUM_PERIODS 5
37 #define CONFIGURE_MAXIMUM_PERIODS 5
38 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
39 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
39 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
40 #ifdef PRINT_STACK_REPORT
40 #ifdef PRINT_STACK_REPORT
41 #define CONFIGURE_STACK_CHECKER_ENABLED
41 #define CONFIGURE_STACK_CHECKER_ENABLED
42 #endif
42 #endif
43
43
44 #include <rtems/confdefs.h>
44 #include <rtems/confdefs.h>
45
45
46 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
47 #ifdef RTEMS_DRVMGR_STARTUP
47 #ifdef RTEMS_DRVMGR_STARTUP
48 #ifdef LEON3
48 #ifdef LEON3
49 /* Add Timer and UART Driver */
49 /* Add Timer and UART Driver */
50 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
51 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
52 #endif
52 #endif
53 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
54 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
55 #endif
55 #endif
56 #endif
56 #endif
57 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
58 #include <drvmgr/drvmgr_confdefs.h>
58 #include <drvmgr/drvmgr_confdefs.h>
59 #endif
59 #endif
60
60
61 #include "fsw_init.h"
61 #include "fsw_init.h"
62 #include "fsw_config.c"
62 #include "fsw_config.c"
63 #include "GscMemoryLPP.hpp"
63 #include "GscMemoryLPP.hpp"
64
64
65 void initCache()
65 void initCache()
66 {
66 {
67 unsigned int cacheControlRegister;
67 unsigned int cacheControlRegister;
68
68
69 cacheControlRegister = getCacheControlRegister();
69 cacheControlRegister = getCacheControlRegister();
70 printf("(0) cacheControlRegister = %x\n", cacheControlRegister);
70 printf("(0) cacheControlRegister = %x\n", cacheControlRegister);
71
71
72 resetCacheControlRegister();
72 resetCacheControlRegister();
73
73
74 enableInstructionCache();
74 enableInstructionCache();
75 enableDataCache();
75 enableDataCache();
76 enableInstructionBurstFetch();
76 enableInstructionBurstFetch();
77
77
78 cacheControlRegister = getCacheControlRegister();
78 cacheControlRegister = getCacheControlRegister();
79 printf("(1) cacheControlRegister = %x\n", cacheControlRegister);
79 printf("(1) cacheControlRegister = %x\n", cacheControlRegister);
80 }
80 }
81
81
82 rtems_task Init( rtems_task_argument ignored )
82 rtems_task Init( rtems_task_argument ignored )
83 {
83 {
84 /** This is the RTEMS INIT taks, it is the first task launched by the system.
84 /** This is the RTEMS INIT taks, it is the first task launched by the system.
85 *
85 *
86 * @param unused is the starting argument of the RTEMS task
86 * @param unused is the starting argument of the RTEMS task
87 *
87 *
88 * The INIT task create and run all other RTEMS tasks.
88 * The INIT task create and run all other RTEMS tasks.
89 *
89 *
90 */
90 */
91
91
92 //***********
92 //***********
93 // INIT CACHE
93 // INIT CACHE
94
94
95 unsigned char *vhdlVersion;
95 unsigned char *vhdlVersion;
96
96
97 reset_lfr();
97 reset_lfr();
98
98
99 reset_local_time();
99 reset_local_time();
100
100
101 rtems_cpu_usage_reset();
101 rtems_cpu_usage_reset();
102
102
103 rtems_status_code status;
103 rtems_status_code status;
104 rtems_status_code status_spw;
104 rtems_status_code status_spw;
105 rtems_isr_entry old_isr_handler;
105 rtems_isr_entry old_isr_handler;
106
106
107 // UART settings
107 // UART settings
108 send_console_outputs_on_apbuart_port();
108 send_console_outputs_on_apbuart_port();
109 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
109 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
110 enable_apbuart_transmitter();
110 enable_apbuart_transmitter();
111
111
112 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
112 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
113
113
114
114
115 PRINTF("\n\n\n\n\n")
115 PRINTF("\n\n\n\n\n")
116
116
117 initCache();
117 initCache();
118
118
119 PRINTF("*************************\n")
119 PRINTF("*************************\n")
120 PRINTF("** LFR Flight Software **\n")
120 PRINTF("** LFR Flight Software **\n")
121 PRINTF1("** %d.", SW_VERSION_N1)
121 PRINTF1("** %d.", SW_VERSION_N1)
122 PRINTF1("%d." , SW_VERSION_N2)
122 PRINTF1("%d." , SW_VERSION_N2)
123 PRINTF1("%d." , SW_VERSION_N3)
123 PRINTF1("%d." , SW_VERSION_N3)
124 PRINTF1("%d **\n", SW_VERSION_N4)
124 PRINTF1("%d **\n", SW_VERSION_N4)
125
125
126 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
126 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
127 PRINTF("** VHDL **\n")
127 PRINTF("** VHDL **\n")
128 PRINTF1("** %d.", vhdlVersion[1])
128 PRINTF1("** %d.", vhdlVersion[1])
129 PRINTF1("%d." , vhdlVersion[2])
129 PRINTF1("%d." , vhdlVersion[2])
130 PRINTF1("%d **\n", vhdlVersion[3])
130 PRINTF1("%d **\n", vhdlVersion[3])
131 PRINTF("*************************\n")
131 PRINTF("*************************\n")
132 PRINTF("\n\n")
132 PRINTF("\n\n")
133
133
134 init_parameter_dump();
134 init_parameter_dump();
135 init_kcoefficients_dump();
135 init_kcoefficients_dump();
136 init_local_mode_parameters();
136 init_local_mode_parameters();
137 init_housekeeping_parameters();
137 init_housekeeping_parameters();
138 init_k_coefficients_f0();
138 init_k_coefficients_prc0();
139 init_k_coefficients_f1();
139 init_k_coefficients_prc1();
140 init_k_coefficients_f2();
140 init_k_coefficients_prc2();
141
141
142 // waveform picker initialization
142 // waveform picker initialization
143 WFP_init_rings(); // initialize the waveform rings
143 WFP_init_rings(); // initialize the waveform rings
144 WFP_reset_current_ring_nodes();
144 WFP_reset_current_ring_nodes();
145 reset_waveform_picker_regs();
145 reset_waveform_picker_regs();
146
146
147 // spectral matrices initialization
147 // spectral matrices initialization
148 SM_init_rings(); // initialize spectral matrices rings
148 SM_init_rings(); // initialize spectral matrices rings
149 SM_reset_current_ring_nodes();
149 SM_reset_current_ring_nodes();
150 reset_spectral_matrix_regs();
150 reset_spectral_matrix_regs();
151
151
152 // configure calibration
152 // configure calibration
153 configureCalibration( false ); // true means interleaved mode, false is for normal mode
153 configureCalibration( false ); // true means interleaved mode, false is for normal mode
154
154
155 updateLFRCurrentMode();
155 updateLFRCurrentMode();
156
156
157 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
157 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
158
158
159 create_names(); // create all names
159 create_names(); // create all names
160
160
161 status = create_message_queues(); // create message queues
161 status = create_message_queues(); // create message queues
162 if (status != RTEMS_SUCCESSFUL)
162 if (status != RTEMS_SUCCESSFUL)
163 {
163 {
164 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
164 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
165 }
165 }
166
166
167 status = create_all_tasks(); // create all tasks
167 status = create_all_tasks(); // create all tasks
168 if (status != RTEMS_SUCCESSFUL)
168 if (status != RTEMS_SUCCESSFUL)
169 {
169 {
170 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
170 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
171 }
171 }
172
172
173 // **************************
173 // **************************
174 // <SPACEWIRE INITIALIZATION>
174 // <SPACEWIRE INITIALIZATION>
175 grspw_timecode_callback = &timecode_irq_handler;
175 grspw_timecode_callback = &timecode_irq_handler;
176
176
177 status_spw = spacewire_open_link(); // (1) open the link
177 status_spw = spacewire_open_link(); // (1) open the link
178 if ( status_spw != RTEMS_SUCCESSFUL )
178 if ( status_spw != RTEMS_SUCCESSFUL )
179 {
179 {
180 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
180 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
181 }
181 }
182
182
183 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
183 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
184 {
184 {
185 status_spw = spacewire_configure_link( fdSPW );
185 status_spw = spacewire_configure_link( fdSPW );
186 if ( status_spw != RTEMS_SUCCESSFUL )
186 if ( status_spw != RTEMS_SUCCESSFUL )
187 {
187 {
188 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
188 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
189 }
189 }
190 }
190 }
191
191
192 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
192 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
193 {
193 {
194 status_spw = spacewire_start_link( fdSPW );
194 status_spw = spacewire_start_link( fdSPW );
195 if ( status_spw != RTEMS_SUCCESSFUL )
195 if ( status_spw != RTEMS_SUCCESSFUL )
196 {
196 {
197 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
197 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
198 }
198 }
199 }
199 }
200 // </SPACEWIRE INITIALIZATION>
200 // </SPACEWIRE INITIALIZATION>
201 // ***************************
201 // ***************************
202
202
203 status = start_all_tasks(); // start all tasks
203 status = start_all_tasks(); // start all tasks
204 if (status != RTEMS_SUCCESSFUL)
204 if (status != RTEMS_SUCCESSFUL)
205 {
205 {
206 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
206 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
207 }
207 }
208
208
209 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
209 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
210 status = start_recv_send_tasks();
210 status = start_recv_send_tasks();
211 if ( status != RTEMS_SUCCESSFUL )
211 if ( status != RTEMS_SUCCESSFUL )
212 {
212 {
213 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
213 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
214 }
214 }
215
215
216 // suspend science tasks, they will be restarted later depending on the mode
216 // suspend science tasks, they will be restarted later depending on the mode
217 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
217 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
218 if (status != RTEMS_SUCCESSFUL)
218 if (status != RTEMS_SUCCESSFUL)
219 {
219 {
220 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
220 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
221 }
221 }
222
222
223 //******************************
223 //******************************
224 // <SPECTRAL MATRICES SIMULATOR>
224 // <SPECTRAL MATRICES SIMULATOR>
225 LEON_Mask_interrupt( IRQ_SM_SIMULATOR );
225 LEON_Mask_interrupt( IRQ_SM_SIMULATOR );
226 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
226 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
227 IRQ_SPARC_SM_SIMULATOR, spectral_matrices_isr_simu );
227 IRQ_SPARC_SM_SIMULATOR, spectral_matrices_isr_simu );
228 // </SPECTRAL MATRICES SIMULATOR>
228 // </SPECTRAL MATRICES SIMULATOR>
229 //*******************************
229 //*******************************
230
230
231 // configure IRQ handling for the waveform picker unit
231 // configure IRQ handling for the waveform picker unit
232 status = rtems_interrupt_catch( waveforms_isr,
232 status = rtems_interrupt_catch( waveforms_isr,
233 IRQ_SPARC_WAVEFORM_PICKER,
233 IRQ_SPARC_WAVEFORM_PICKER,
234 &old_isr_handler) ;
234 &old_isr_handler) ;
235 // configure IRQ handling for the spectral matrices unit
235 // configure IRQ handling for the spectral matrices unit
236 status = rtems_interrupt_catch( spectral_matrices_isr,
236 status = rtems_interrupt_catch( spectral_matrices_isr,
237 IRQ_SPARC_SPECTRAL_MATRIX,
237 IRQ_SPARC_SPECTRAL_MATRIX,
238 &old_isr_handler) ;
238 &old_isr_handler) ;
239
239
240 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
240 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
241 if ( status_spw != RTEMS_SUCCESSFUL )
241 if ( status_spw != RTEMS_SUCCESSFUL )
242 {
242 {
243 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
243 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
244 if ( status != RTEMS_SUCCESSFUL ) {
244 if ( status != RTEMS_SUCCESSFUL ) {
245 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
245 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
246 }
246 }
247 }
247 }
248
248
249 BOOT_PRINTF("delete INIT\n")
249 BOOT_PRINTF("delete INIT\n")
250
250
251 status = rtems_task_delete(RTEMS_SELF);
251 status = rtems_task_delete(RTEMS_SELF);
252
252
253 }
253 }
254
254
255 void init_local_mode_parameters( void )
255 void init_local_mode_parameters( void )
256 {
256 {
257 /** This function initialize the param_local global variable with default values.
257 /** This function initialize the param_local global variable with default values.
258 *
258 *
259 */
259 */
260
260
261 unsigned int i;
261 unsigned int i;
262
262
263 // LOCAL PARAMETERS
263 // LOCAL PARAMETERS
264
264
265 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
265 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
266 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
266 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
267 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
267 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
268
268
269 // init sequence counters
269 // init sequence counters
270
270
271 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
271 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
272 {
272 {
273 sequenceCounters_TC_EXE[i] = 0x00;
273 sequenceCounters_TC_EXE[i] = 0x00;
274 }
274 }
275 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
275 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
276 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
276 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
277 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
277 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
278 sequenceCounterParameterDump = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
278 sequenceCounterParameterDump = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
279 }
279 }
280
280
281 void reset_local_time( void )
281 void reset_local_time( void )
282 {
282 {
283 time_management_regs->ctrl = time_management_regs->ctrl | 0x02; // [0010] software reset, coarse time = 0x80000000
283 time_management_regs->ctrl = time_management_regs->ctrl | 0x02; // [0010] software reset, coarse time = 0x80000000
284 }
284 }
285
285
286 void create_names( void ) // create all names for tasks and queues
286 void create_names( void ) // create all names for tasks and queues
287 {
287 {
288 /** This function creates all RTEMS names used in the software for tasks and queues.
288 /** This function creates all RTEMS names used in the software for tasks and queues.
289 *
289 *
290 * @return RTEMS directive status codes:
290 * @return RTEMS directive status codes:
291 * - RTEMS_SUCCESSFUL - successful completion
291 * - RTEMS_SUCCESSFUL - successful completion
292 *
292 *
293 */
293 */
294
294
295 // task names
295 // task names
296 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
296 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
297 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
297 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
298 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
298 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
299 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
299 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
300 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
300 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
301 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
301 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
302 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
302 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
303 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
303 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
304 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
304 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
305 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
305 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
306 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
306 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
307 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
307 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
308 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
308 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
309 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
309 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
310 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
310 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
311 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
311 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
312 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
312 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
313 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
313 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
314 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
314 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
315
315
316 // rate monotonic period names
316 // rate monotonic period names
317 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
317 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
318
318
319 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
319 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
320 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
320 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
321 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
321 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
322 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
322 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
323 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
323 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
324 }
324 }
325
325
326 int create_all_tasks( void ) // create all tasks which run in the software
326 int create_all_tasks( void ) // create all tasks which run in the software
327 {
327 {
328 /** This function creates all RTEMS tasks used in the software.
328 /** This function creates all RTEMS tasks used in the software.
329 *
329 *
330 * @return RTEMS directive status codes:
330 * @return RTEMS directive status codes:
331 * - RTEMS_SUCCESSFUL - task created successfully
331 * - RTEMS_SUCCESSFUL - task created successfully
332 * - RTEMS_INVALID_ADDRESS - id is NULL
332 * - RTEMS_INVALID_ADDRESS - id is NULL
333 * - RTEMS_INVALID_NAME - invalid task name
333 * - RTEMS_INVALID_NAME - invalid task name
334 * - RTEMS_INVALID_PRIORITY - invalid task priority
334 * - RTEMS_INVALID_PRIORITY - invalid task priority
335 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
335 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
336 * - RTEMS_TOO_MANY - too many tasks created
336 * - RTEMS_TOO_MANY - too many tasks created
337 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
337 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
338 * - RTEMS_TOO_MANY - too many global objects
338 * - RTEMS_TOO_MANY - too many global objects
339 *
339 *
340 */
340 */
341
341
342 rtems_status_code status;
342 rtems_status_code status;
343
343
344 //**********
344 //**********
345 // SPACEWIRE
345 // SPACEWIRE
346 // RECV
346 // RECV
347 status = rtems_task_create(
347 status = rtems_task_create(
348 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
348 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
349 RTEMS_DEFAULT_MODES,
349 RTEMS_DEFAULT_MODES,
350 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
350 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
351 );
351 );
352 if (status == RTEMS_SUCCESSFUL) // SEND
352 if (status == RTEMS_SUCCESSFUL) // SEND
353 {
353 {
354 status = rtems_task_create(
354 status = rtems_task_create(
355 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * 2,
355 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * 2,
356 RTEMS_DEFAULT_MODES,
356 RTEMS_DEFAULT_MODES,
357 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
357 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
358 );
358 );
359 }
359 }
360 if (status == RTEMS_SUCCESSFUL) // WTDG
360 if (status == RTEMS_SUCCESSFUL) // WTDG
361 {
361 {
362 status = rtems_task_create(
362 status = rtems_task_create(
363 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
363 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
364 RTEMS_DEFAULT_MODES,
364 RTEMS_DEFAULT_MODES,
365 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
365 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
366 );
366 );
367 }
367 }
368 if (status == RTEMS_SUCCESSFUL) // ACTN
368 if (status == RTEMS_SUCCESSFUL) // ACTN
369 {
369 {
370 status = rtems_task_create(
370 status = rtems_task_create(
371 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
371 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
372 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
372 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
373 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
373 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
374 );
374 );
375 }
375 }
376 if (status == RTEMS_SUCCESSFUL) // SPIQ
376 if (status == RTEMS_SUCCESSFUL) // SPIQ
377 {
377 {
378 status = rtems_task_create(
378 status = rtems_task_create(
379 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
379 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
380 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
380 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
381 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
381 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
382 );
382 );
383 }
383 }
384
384
385 //******************
385 //******************
386 // SPECTRAL MATRICES
386 // SPECTRAL MATRICES
387 if (status == RTEMS_SUCCESSFUL) // AVF0
387 if (status == RTEMS_SUCCESSFUL) // AVF0
388 {
388 {
389 status = rtems_task_create(
389 status = rtems_task_create(
390 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
390 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
391 RTEMS_DEFAULT_MODES,
391 RTEMS_DEFAULT_MODES,
392 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
392 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
393 );
393 );
394 }
394 }
395 if (status == RTEMS_SUCCESSFUL) // PRC0
395 if (status == RTEMS_SUCCESSFUL) // PRC0
396 {
396 {
397 status = rtems_task_create(
397 status = rtems_task_create(
398 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * 2,
398 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * 2,
399 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
399 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
400 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
400 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
401 );
401 );
402 }
402 }
403 if (status == RTEMS_SUCCESSFUL) // AVF1
403 if (status == RTEMS_SUCCESSFUL) // AVF1
404 {
404 {
405 status = rtems_task_create(
405 status = rtems_task_create(
406 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
406 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
407 RTEMS_DEFAULT_MODES,
407 RTEMS_DEFAULT_MODES,
408 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
408 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
409 );
409 );
410 }
410 }
411 if (status == RTEMS_SUCCESSFUL) // PRC1
411 if (status == RTEMS_SUCCESSFUL) // PRC1
412 {
412 {
413 status = rtems_task_create(
413 status = rtems_task_create(
414 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * 2,
414 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * 2,
415 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
415 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
416 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
416 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
417 );
417 );
418 }
418 }
419 if (status == RTEMS_SUCCESSFUL) // AVF2
419 if (status == RTEMS_SUCCESSFUL) // AVF2
420 {
420 {
421 status = rtems_task_create(
421 status = rtems_task_create(
422 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
422 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
423 RTEMS_DEFAULT_MODES,
423 RTEMS_DEFAULT_MODES,
424 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
424 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
425 );
425 );
426 }
426 }
427 if (status == RTEMS_SUCCESSFUL) // PRC2
427 if (status == RTEMS_SUCCESSFUL) // PRC2
428 {
428 {
429 status = rtems_task_create(
429 status = rtems_task_create(
430 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * 2,
430 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * 2,
431 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
431 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
432 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
432 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
433 );
433 );
434 }
434 }
435
435
436 //****************
436 //****************
437 // WAVEFORM PICKER
437 // WAVEFORM PICKER
438 if (status == RTEMS_SUCCESSFUL) // WFRM
438 if (status == RTEMS_SUCCESSFUL) // WFRM
439 {
439 {
440 status = rtems_task_create(
440 status = rtems_task_create(
441 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
441 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
442 RTEMS_DEFAULT_MODES,
442 RTEMS_DEFAULT_MODES,
443 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
443 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
444 );
444 );
445 }
445 }
446 if (status == RTEMS_SUCCESSFUL) // CWF3
446 if (status == RTEMS_SUCCESSFUL) // CWF3
447 {
447 {
448 status = rtems_task_create(
448 status = rtems_task_create(
449 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
449 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
450 RTEMS_DEFAULT_MODES,
450 RTEMS_DEFAULT_MODES,
451 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
451 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
452 );
452 );
453 }
453 }
454 if (status == RTEMS_SUCCESSFUL) // CWF2
454 if (status == RTEMS_SUCCESSFUL) // CWF2
455 {
455 {
456 status = rtems_task_create(
456 status = rtems_task_create(
457 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
457 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
458 RTEMS_DEFAULT_MODES,
458 RTEMS_DEFAULT_MODES,
459 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
459 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
460 );
460 );
461 }
461 }
462 if (status == RTEMS_SUCCESSFUL) // CWF1
462 if (status == RTEMS_SUCCESSFUL) // CWF1
463 {
463 {
464 status = rtems_task_create(
464 status = rtems_task_create(
465 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
465 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
466 RTEMS_DEFAULT_MODES,
466 RTEMS_DEFAULT_MODES,
467 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
467 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
468 );
468 );
469 }
469 }
470 if (status == RTEMS_SUCCESSFUL) // SWBD
470 if (status == RTEMS_SUCCESSFUL) // SWBD
471 {
471 {
472 status = rtems_task_create(
472 status = rtems_task_create(
473 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
473 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
474 RTEMS_DEFAULT_MODES,
474 RTEMS_DEFAULT_MODES,
475 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
475 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
476 );
476 );
477 }
477 }
478
478
479 //*****
479 //*****
480 // MISC
480 // MISC
481 if (status == RTEMS_SUCCESSFUL) // STAT
481 if (status == RTEMS_SUCCESSFUL) // STAT
482 {
482 {
483 status = rtems_task_create(
483 status = rtems_task_create(
484 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
484 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
485 RTEMS_DEFAULT_MODES,
485 RTEMS_DEFAULT_MODES,
486 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
486 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
487 );
487 );
488 }
488 }
489 if (status == RTEMS_SUCCESSFUL) // DUMB
489 if (status == RTEMS_SUCCESSFUL) // DUMB
490 {
490 {
491 status = rtems_task_create(
491 status = rtems_task_create(
492 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
492 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
493 RTEMS_DEFAULT_MODES,
493 RTEMS_DEFAULT_MODES,
494 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
494 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
495 );
495 );
496 }
496 }
497 if (status == RTEMS_SUCCESSFUL) // HOUS
497 if (status == RTEMS_SUCCESSFUL) // HOUS
498 {
498 {
499 status = rtems_task_create(
499 status = rtems_task_create(
500 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
500 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
501 RTEMS_DEFAULT_MODES,
501 RTEMS_DEFAULT_MODES,
502 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
502 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
503 );
503 );
504 }
504 }
505
505
506 return status;
506 return status;
507 }
507 }
508
508
509 int start_recv_send_tasks( void )
509 int start_recv_send_tasks( void )
510 {
510 {
511 rtems_status_code status;
511 rtems_status_code status;
512
512
513 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
513 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
514 if (status!=RTEMS_SUCCESSFUL) {
514 if (status!=RTEMS_SUCCESSFUL) {
515 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
515 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
516 }
516 }
517
517
518 if (status == RTEMS_SUCCESSFUL) // SEND
518 if (status == RTEMS_SUCCESSFUL) // SEND
519 {
519 {
520 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
520 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
521 if (status!=RTEMS_SUCCESSFUL) {
521 if (status!=RTEMS_SUCCESSFUL) {
522 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
522 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
523 }
523 }
524 }
524 }
525
525
526 return status;
526 return status;
527 }
527 }
528
528
529 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
529 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
530 {
530 {
531 /** This function starts all RTEMS tasks used in the software.
531 /** This function starts all RTEMS tasks used in the software.
532 *
532 *
533 * @return RTEMS directive status codes:
533 * @return RTEMS directive status codes:
534 * - RTEMS_SUCCESSFUL - ask started successfully
534 * - RTEMS_SUCCESSFUL - ask started successfully
535 * - RTEMS_INVALID_ADDRESS - invalid task entry point
535 * - RTEMS_INVALID_ADDRESS - invalid task entry point
536 * - RTEMS_INVALID_ID - invalid task id
536 * - RTEMS_INVALID_ID - invalid task id
537 * - RTEMS_INCORRECT_STATE - task not in the dormant state
537 * - RTEMS_INCORRECT_STATE - task not in the dormant state
538 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
538 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
539 *
539 *
540 */
540 */
541 // starts all the tasks fot eh flight software
541 // starts all the tasks fot eh flight software
542
542
543 rtems_status_code status;
543 rtems_status_code status;
544
544
545 //**********
545 //**********
546 // SPACEWIRE
546 // SPACEWIRE
547 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
547 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
548 if (status!=RTEMS_SUCCESSFUL) {
548 if (status!=RTEMS_SUCCESSFUL) {
549 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
549 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
550 }
550 }
551
551
552 if (status == RTEMS_SUCCESSFUL) // WTDG
552 if (status == RTEMS_SUCCESSFUL) // WTDG
553 {
553 {
554 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
554 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
555 if (status!=RTEMS_SUCCESSFUL) {
555 if (status!=RTEMS_SUCCESSFUL) {
556 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
556 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
557 }
557 }
558 }
558 }
559
559
560 if (status == RTEMS_SUCCESSFUL) // ACTN
560 if (status == RTEMS_SUCCESSFUL) // ACTN
561 {
561 {
562 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
562 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
563 if (status!=RTEMS_SUCCESSFUL) {
563 if (status!=RTEMS_SUCCESSFUL) {
564 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
564 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
565 }
565 }
566 }
566 }
567
567
568 //******************
568 //******************
569 // SPECTRAL MATRICES
569 // SPECTRAL MATRICES
570 if (status == RTEMS_SUCCESSFUL) // AVF0
570 if (status == RTEMS_SUCCESSFUL) // AVF0
571 {
571 {
572 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
572 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
573 if (status!=RTEMS_SUCCESSFUL) {
573 if (status!=RTEMS_SUCCESSFUL) {
574 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
574 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
575 }
575 }
576 }
576 }
577 if (status == RTEMS_SUCCESSFUL) // PRC0
577 if (status == RTEMS_SUCCESSFUL) // PRC0
578 {
578 {
579 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
579 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
580 if (status!=RTEMS_SUCCESSFUL) {
580 if (status!=RTEMS_SUCCESSFUL) {
581 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
581 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
582 }
582 }
583 }
583 }
584 if (status == RTEMS_SUCCESSFUL) // AVF1
584 if (status == RTEMS_SUCCESSFUL) // AVF1
585 {
585 {
586 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
586 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
587 if (status!=RTEMS_SUCCESSFUL) {
587 if (status!=RTEMS_SUCCESSFUL) {
588 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
588 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
589 }
589 }
590 }
590 }
591 if (status == RTEMS_SUCCESSFUL) // PRC1
591 if (status == RTEMS_SUCCESSFUL) // PRC1
592 {
592 {
593 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
593 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
594 if (status!=RTEMS_SUCCESSFUL) {
594 if (status!=RTEMS_SUCCESSFUL) {
595 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
595 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
596 }
596 }
597 }
597 }
598 if (status == RTEMS_SUCCESSFUL) // AVF2
598 if (status == RTEMS_SUCCESSFUL) // AVF2
599 {
599 {
600 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
600 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
601 if (status!=RTEMS_SUCCESSFUL) {
601 if (status!=RTEMS_SUCCESSFUL) {
602 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
602 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
603 }
603 }
604 }
604 }
605 if (status == RTEMS_SUCCESSFUL) // PRC2
605 if (status == RTEMS_SUCCESSFUL) // PRC2
606 {
606 {
607 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
607 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
608 if (status!=RTEMS_SUCCESSFUL) {
608 if (status!=RTEMS_SUCCESSFUL) {
609 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
609 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
610 }
610 }
611 }
611 }
612
612
613 //****************
613 //****************
614 // WAVEFORM PICKER
614 // WAVEFORM PICKER
615 if (status == RTEMS_SUCCESSFUL) // WFRM
615 if (status == RTEMS_SUCCESSFUL) // WFRM
616 {
616 {
617 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
617 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
618 if (status!=RTEMS_SUCCESSFUL) {
618 if (status!=RTEMS_SUCCESSFUL) {
619 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
619 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
620 }
620 }
621 }
621 }
622 if (status == RTEMS_SUCCESSFUL) // CWF3
622 if (status == RTEMS_SUCCESSFUL) // CWF3
623 {
623 {
624 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
624 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
625 if (status!=RTEMS_SUCCESSFUL) {
625 if (status!=RTEMS_SUCCESSFUL) {
626 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
626 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
627 }
627 }
628 }
628 }
629 if (status == RTEMS_SUCCESSFUL) // CWF2
629 if (status == RTEMS_SUCCESSFUL) // CWF2
630 {
630 {
631 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
631 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
632 if (status!=RTEMS_SUCCESSFUL) {
632 if (status!=RTEMS_SUCCESSFUL) {
633 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
633 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
634 }
634 }
635 }
635 }
636 if (status == RTEMS_SUCCESSFUL) // CWF1
636 if (status == RTEMS_SUCCESSFUL) // CWF1
637 {
637 {
638 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
638 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
639 if (status!=RTEMS_SUCCESSFUL) {
639 if (status!=RTEMS_SUCCESSFUL) {
640 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
640 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
641 }
641 }
642 }
642 }
643 if (status == RTEMS_SUCCESSFUL) // SWBD
643 if (status == RTEMS_SUCCESSFUL) // SWBD
644 {
644 {
645 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
645 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
646 if (status!=RTEMS_SUCCESSFUL) {
646 if (status!=RTEMS_SUCCESSFUL) {
647 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
647 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
648 }
648 }
649 }
649 }
650
650
651 //*****
651 //*****
652 // MISC
652 // MISC
653 if (status == RTEMS_SUCCESSFUL) // HOUS
653 if (status == RTEMS_SUCCESSFUL) // HOUS
654 {
654 {
655 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
655 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
656 if (status!=RTEMS_SUCCESSFUL) {
656 if (status!=RTEMS_SUCCESSFUL) {
657 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
657 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
658 }
658 }
659 }
659 }
660 if (status == RTEMS_SUCCESSFUL) // DUMB
660 if (status == RTEMS_SUCCESSFUL) // DUMB
661 {
661 {
662 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
662 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
663 if (status!=RTEMS_SUCCESSFUL) {
663 if (status!=RTEMS_SUCCESSFUL) {
664 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
664 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
665 }
665 }
666 }
666 }
667 if (status == RTEMS_SUCCESSFUL) // STAT
667 if (status == RTEMS_SUCCESSFUL) // STAT
668 {
668 {
669 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
669 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
670 if (status!=RTEMS_SUCCESSFUL) {
670 if (status!=RTEMS_SUCCESSFUL) {
671 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
671 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
672 }
672 }
673 }
673 }
674
674
675 return status;
675 return status;
676 }
676 }
677
677
678 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
678 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
679 {
679 {
680 rtems_status_code status_recv;
680 rtems_status_code status_recv;
681 rtems_status_code status_send;
681 rtems_status_code status_send;
682 rtems_status_code status_q_p0;
682 rtems_status_code status_q_p0;
683 rtems_status_code status_q_p1;
683 rtems_status_code status_q_p1;
684 rtems_status_code status_q_p2;
684 rtems_status_code status_q_p2;
685 rtems_status_code ret;
685 rtems_status_code ret;
686 rtems_id queue_id;
686 rtems_id queue_id;
687
687
688 //****************************************
688 //****************************************
689 // create the queue for handling valid TCs
689 // create the queue for handling valid TCs
690 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
690 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
691 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
691 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
692 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
692 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
693 if ( status_recv != RTEMS_SUCCESSFUL ) {
693 if ( status_recv != RTEMS_SUCCESSFUL ) {
694 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
694 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
695 }
695 }
696
696
697 //************************************************
697 //************************************************
698 // create the queue for handling TM packet sending
698 // create the queue for handling TM packet sending
699 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
699 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
700 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
700 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
701 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
701 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
702 if ( status_send != RTEMS_SUCCESSFUL ) {
702 if ( status_send != RTEMS_SUCCESSFUL ) {
703 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
703 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
704 }
704 }
705
705
706 //*****************************************************************************
706 //*****************************************************************************
707 // create the queue for handling averaged spectral matrices for processing @ f0
707 // create the queue for handling averaged spectral matrices for processing @ f0
708 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
708 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
709 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
709 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
710 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
710 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
711 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
711 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
712 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
712 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
713 }
713 }
714
714
715 //*****************************************************************************
715 //*****************************************************************************
716 // create the queue for handling averaged spectral matrices for processing @ f1
716 // create the queue for handling averaged spectral matrices for processing @ f1
717 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
717 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
718 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
718 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
719 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
719 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
720 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
720 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
721 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
721 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
722 }
722 }
723
723
724 //*****************************************************************************
724 //*****************************************************************************
725 // create the queue for handling averaged spectral matrices for processing @ f2
725 // create the queue for handling averaged spectral matrices for processing @ f2
726 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
726 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
727 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
727 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
728 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
728 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
729 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
729 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
730 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
730 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
731 }
731 }
732
732
733 if ( status_recv != RTEMS_SUCCESSFUL )
733 if ( status_recv != RTEMS_SUCCESSFUL )
734 {
734 {
735 ret = status_recv;
735 ret = status_recv;
736 }
736 }
737 else if( status_send != RTEMS_SUCCESSFUL )
737 else if( status_send != RTEMS_SUCCESSFUL )
738 {
738 {
739 ret = status_send;
739 ret = status_send;
740 }
740 }
741 else if( status_q_p0 != RTEMS_SUCCESSFUL )
741 else if( status_q_p0 != RTEMS_SUCCESSFUL )
742 {
742 {
743 ret = status_q_p0;
743 ret = status_q_p0;
744 }
744 }
745 else if( status_q_p1 != RTEMS_SUCCESSFUL )
745 else if( status_q_p1 != RTEMS_SUCCESSFUL )
746 {
746 {
747 ret = status_q_p1;
747 ret = status_q_p1;
748 }
748 }
749 else
749 else
750 {
750 {
751 ret = status_q_p2;
751 ret = status_q_p2;
752 }
752 }
753
753
754 return ret;
754 return ret;
755 }
755 }
756
756
757 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
757 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
758 {
758 {
759 rtems_status_code status;
759 rtems_status_code status;
760 rtems_name queue_name;
760 rtems_name queue_name;
761
761
762 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
762 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
763
763
764 status = rtems_message_queue_ident( queue_name, 0, queue_id );
764 status = rtems_message_queue_ident( queue_name, 0, queue_id );
765
765
766 return status;
766 return status;
767 }
767 }
768
768
769 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
769 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
770 {
770 {
771 rtems_status_code status;
771 rtems_status_code status;
772 rtems_name queue_name;
772 rtems_name queue_name;
773
773
774 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
774 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
775
775
776 status = rtems_message_queue_ident( queue_name, 0, queue_id );
776 status = rtems_message_queue_ident( queue_name, 0, queue_id );
777
777
778 return status;
778 return status;
779 }
779 }
780
780
781 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
781 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
782 {
782 {
783 rtems_status_code status;
783 rtems_status_code status;
784 rtems_name queue_name;
784 rtems_name queue_name;
785
785
786 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
786 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
787
787
788 status = rtems_message_queue_ident( queue_name, 0, queue_id );
788 status = rtems_message_queue_ident( queue_name, 0, queue_id );
789
789
790 return status;
790 return status;
791 }
791 }
792
792
793 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
793 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
794 {
794 {
795 rtems_status_code status;
795 rtems_status_code status;
796 rtems_name queue_name;
796 rtems_name queue_name;
797
797
798 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
798 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
799
799
800 status = rtems_message_queue_ident( queue_name, 0, queue_id );
800 status = rtems_message_queue_ident( queue_name, 0, queue_id );
801
801
802 return status;
802 return status;
803 }
803 }
804
804
805 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
805 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
806 {
806 {
807 rtems_status_code status;
807 rtems_status_code status;
808 rtems_name queue_name;
808 rtems_name queue_name;
809
809
810 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
810 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
811
811
812 status = rtems_message_queue_ident( queue_name, 0, queue_id );
812 status = rtems_message_queue_ident( queue_name, 0, queue_id );
813
813
814 return status;
814 return status;
815 }
815 }
816
816
817 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max )
817 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max )
818 {
818 {
819 u_int32_t count;
819 u_int32_t count;
820 rtems_status_code status;
820 rtems_status_code status;
821
821
822 status = rtems_message_queue_get_number_pending( queue_id, &count );
822 status = rtems_message_queue_get_number_pending( queue_id, &count );
823
823
824 count = count + 1;
824 count = count + 1;
825
825
826 if (status != RTEMS_SUCCESSFUL)
826 if (status != RTEMS_SUCCESSFUL)
827 {
827 {
828 PRINTF1("in update_queue_max_count *** ERR = %d\n", status)
828 PRINTF1("in update_queue_max_count *** ERR = %d\n", status)
829 }
829 }
830 else
830 else
831 {
831 {
832 if (count > *fifo_size_max)
832 if (count > *fifo_size_max)
833 {
833 {
834 *fifo_size_max = count;
834 *fifo_size_max = count;
835 }
835 }
836 }
836 }
837 }
837 }
838
838
839 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
839 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
840 {
840 {
841 unsigned char i;
841 unsigned char i;
842
842
843 //***************
843 //***************
844 // BUFFER ADDRESS
844 // BUFFER ADDRESS
845 for(i=0; i<nbNodes; i++)
845 for(i=0; i<nbNodes; i++)
846 {
846 {
847 ring[i].coarseTime = 0xffffffff;
847 ring[i].coarseTime = 0xffffffff;
848 ring[i].fineTime = 0xffffffff;
848 ring[i].fineTime = 0xffffffff;
849 ring[i].sid = 0x00;
849 ring[i].sid = 0x00;
850 ring[i].status = 0x00;
850 ring[i].status = 0x00;
851 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
851 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
852 }
852 }
853
853
854 //*****
854 //*****
855 // NEXT
855 // NEXT
856 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
856 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
857 for(i=0; i<nbNodes-1; i++)
857 for(i=0; i<nbNodes-1; i++)
858 {
858 {
859 ring[i].next = (ring_node*) &ring[ i + 1 ];
859 ring[i].next = (ring_node*) &ring[ i + 1 ];
860 }
860 }
861
861
862 //*********
862 //*********
863 // PREVIOUS
863 // PREVIOUS
864 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
864 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
865 for(i=1; i<nbNodes; i++)
865 for(i=1; i<nbNodes; i++)
866 {
866 {
867 ring[i].previous = (ring_node*) &ring[ i - 1 ];
867 ring[i].previous = (ring_node*) &ring[ i - 1 ];
868 }
868 }
869 }
869 }
@@ -1,402 +1,404
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf0_prc0.h"
10 #include "avf0_prc0.h"
11 #include "fsw_processing.h"
11 #include "fsw_processing.h"
12
12
13 nb_sm_before_bp_asm_f0 nb_sm_before_f0;
13 nb_sm_before_bp_asm_f0 nb_sm_before_f0;
14
14
15 //***
15 //***
16 // F0
16 // F0
17 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ];
17 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ];
18 ring_node_asm asm_ring_burst_sbm_f0 [ NB_RING_NODES_ASM_BURST_SBM_F0 ];
18 ring_node_asm asm_ring_burst_sbm_f0 [ NB_RING_NODES_ASM_BURST_SBM_F0 ];
19
19
20 ring_node ring_to_send_asm_f0 [ NB_RING_NODES_ASM_F0 ];
20 ring_node ring_to_send_asm_f0 [ NB_RING_NODES_ASM_F0 ];
21 int buffer_asm_f0 [ NB_RING_NODES_ASM_F0 * TOTAL_SIZE_SM ];
21 int buffer_asm_f0 [ NB_RING_NODES_ASM_F0 * TOTAL_SIZE_SM ];
22
22
23 float asm_f0_patched_norm [ TOTAL_SIZE_SM ];
23 float asm_f0_patched_norm [ TOTAL_SIZE_SM ];
24 float asm_f0_patched_burst_sbm [ TOTAL_SIZE_SM ];
24 float asm_f0_patched_burst_sbm [ TOTAL_SIZE_SM ];
25 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
25 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
26
26
27 char asm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
27 char asm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
28 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0];
28 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0];
29 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ];
29 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ];
30
30
31 float k_coeff_intercalib_f0_norm[ NB_BINS_COMPRESSED_SM_F0 * NB_K_COEFF_PER_BIN ]; // 11 * 32 = 352
31 float k_coeff_intercalib_f0_norm[ NB_BINS_COMPRESSED_SM_F0 * NB_K_COEFF_PER_BIN ]; // 11 * 32 = 352
32 float k_coeff_intercalib_f0_sbm[ NB_BINS_COMPRESSED_SM_SBM_F0 * NB_K_COEFF_PER_BIN ]; // 22 * 32 = 704
32 float k_coeff_intercalib_f0_sbm[ NB_BINS_COMPRESSED_SM_SBM_F0 * NB_K_COEFF_PER_BIN ]; // 22 * 32 = 704
33
33
34 //************
34 //************
35 // RTEMS TASKS
35 // RTEMS TASKS
36
36
37 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
37 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
38 {
38 {
39 int i;
39 int i;
40
40
41 rtems_event_set event_out;
41 rtems_event_set event_out;
42 rtems_status_code status;
42 rtems_status_code status;
43 rtems_id queue_id_prc0;
43 rtems_id queue_id_prc0;
44 asm_msg msgForMATR;
44 asm_msg msgForMATR;
45 ring_node *nodeForAveraging;
45 ring_node *nodeForAveraging;
46 ring_node *ring_node_tab[8];
46 ring_node *ring_node_tab[8];
47 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
47 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
48 ring_node_asm *current_ring_node_asm_norm_f0;
48 ring_node_asm *current_ring_node_asm_norm_f0;
49
49
50 unsigned int nb_norm_bp1;
50 unsigned int nb_norm_bp1;
51 unsigned int nb_norm_bp2;
51 unsigned int nb_norm_bp2;
52 unsigned int nb_norm_asm;
52 unsigned int nb_norm_asm;
53 unsigned int nb_sbm_bp1;
53 unsigned int nb_sbm_bp1;
54 unsigned int nb_sbm_bp2;
54 unsigned int nb_sbm_bp2;
55
55
56 nb_norm_bp1 = 0;
56 nb_norm_bp1 = 0;
57 nb_norm_bp2 = 0;
57 nb_norm_bp2 = 0;
58 nb_norm_asm = 0;
58 nb_norm_asm = 0;
59 nb_sbm_bp1 = 0;
59 nb_sbm_bp1 = 0;
60 nb_sbm_bp2 = 0;
60 nb_sbm_bp2 = 0;
61
61
62 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
62 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
63 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
63 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
64 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
64 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
65 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
65 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
66 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
66 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
67
67
68 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
68 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
69
69
70 status = get_message_queue_id_prc0( &queue_id_prc0 );
70 status = get_message_queue_id_prc0( &queue_id_prc0 );
71 if (status != RTEMS_SUCCESSFUL)
71 if (status != RTEMS_SUCCESSFUL)
72 {
72 {
73 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
73 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
74 }
74 }
75
75
76 while(1){
76 while(1){
77 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
77 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
78
78
79 //****************************************
79 //****************************************
80 // initialize the mesage for the MATR task
80 // initialize the mesage for the MATR task
81 msgForMATR.norm = current_ring_node_asm_norm_f0;
81 msgForMATR.norm = current_ring_node_asm_norm_f0;
82 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f0;
82 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f0;
83 msgForMATR.event = 0x00; // this composite event will be sent to the PRC0 task
83 msgForMATR.event = 0x00; // this composite event will be sent to the PRC0 task
84 //
84 //
85 //****************************************
85 //****************************************
86
86
87 nodeForAveraging = getRingNodeForAveraging( 0 );
87 nodeForAveraging = getRingNodeForAveraging( 0 );
88
88
89 ring_node_tab[NB_SM_BEFORE_AVF0-1] = nodeForAveraging;
89 ring_node_tab[NB_SM_BEFORE_AVF0-1] = nodeForAveraging;
90 for ( i = 2; i < (NB_SM_BEFORE_AVF0+1); i++ )
90 for ( i = 2; i < (NB_SM_BEFORE_AVF0+1); i++ )
91 {
91 {
92 nodeForAveraging = nodeForAveraging->previous;
92 nodeForAveraging = nodeForAveraging->previous;
93 ring_node_tab[NB_SM_BEFORE_AVF0-i] = nodeForAveraging;
93 ring_node_tab[NB_SM_BEFORE_AVF0-i] = nodeForAveraging;
94 }
94 }
95
95
96 // compute the average and store it in the averaged_sm_f1 buffer
96 // compute the average and store it in the averaged_sm_f1 buffer
97 SM_average( current_ring_node_asm_norm_f0->matrix,
97 SM_average( current_ring_node_asm_norm_f0->matrix,
98 current_ring_node_asm_burst_sbm_f0->matrix,
98 current_ring_node_asm_burst_sbm_f0->matrix,
99 ring_node_tab,
99 ring_node_tab,
100 nb_norm_bp1, nb_sbm_bp1,
100 nb_norm_bp1, nb_sbm_bp1,
101 &msgForMATR );
101 &msgForMATR );
102
102
103 // update nb_average
103 // update nb_average
104 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0;
104 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0;
105 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0;
105 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0;
106 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0;
106 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0;
107 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0;
107 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0;
108 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0;
108 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0;
109
109
110 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
110 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
111 {
111 {
112 nb_sbm_bp1 = 0;
112 nb_sbm_bp1 = 0;
113 // set another ring for the ASM storage
113 // set another ring for the ASM storage
114 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
114 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
115 if ( lfrCurrentMode == LFR_MODE_BURST )
115 if ( lfrCurrentMode == LFR_MODE_BURST )
116 {
116 {
117 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP1_F0;
117 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP1_F0;
118 }
118 }
119 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
119 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
120 {
120 {
121 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP1_F0;
121 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP1_F0;
122 }
122 }
123 }
123 }
124
124
125 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
125 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
126 {
126 {
127 nb_sbm_bp2 = 0;
127 nb_sbm_bp2 = 0;
128 if ( lfrCurrentMode == LFR_MODE_BURST )
128 if ( lfrCurrentMode == LFR_MODE_BURST )
129 {
129 {
130 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP2_F0;
130 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP2_F0;
131 }
131 }
132 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
132 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
133 {
133 {
134 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP2_F0;
134 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP2_F0;
135 }
135 }
136 }
136 }
137
137
138 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
138 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
139 {
139 {
140 nb_norm_bp1 = 0;
140 nb_norm_bp1 = 0;
141 // set another ring for the ASM storage
141 // set another ring for the ASM storage
142 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
142 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
143 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
143 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
144 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
144 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
145 {
145 {
146 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F0;
146 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F0;
147 }
147 }
148 }
148 }
149
149
150 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
150 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
151 {
151 {
152 nb_norm_bp2 = 0;
152 nb_norm_bp2 = 0;
153 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
153 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
154 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
154 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
155 {
155 {
156 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F0;
156 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F0;
157 }
157 }
158 }
158 }
159
159
160 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
160 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
161 {
161 {
162 nb_norm_asm = 0;
162 nb_norm_asm = 0;
163 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
163 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
164 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
164 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
165 {
165 {
166 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F0;
166 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F0;
167 }
167 }
168 }
168 }
169
169
170 //*************************
170 //*************************
171 // send the message to MATR
171 // send the message to MATR
172 if (msgForMATR.event != 0x00)
172 if (msgForMATR.event != 0x00)
173 {
173 {
174 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
174 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
175 }
175 }
176
176
177 if (status != RTEMS_SUCCESSFUL) {
177 if (status != RTEMS_SUCCESSFUL) {
178 printf("in AVF0 *** Error sending message to MATR, code %d\n", status);
178 printf("in AVF0 *** Error sending message to MATR, code %d\n", status);
179 }
179 }
180 }
180 }
181 }
181 }
182
182
183 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
183 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
184 {
184 {
185 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
185 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
186 size_t size; // size of the incoming TC packet
186 size_t size; // size of the incoming TC packet
187 asm_msg *incomingMsg;
187 asm_msg *incomingMsg;
188 //
188 //
189 unsigned char sid;
189 unsigned char sid;
190 rtems_status_code status;
190 rtems_status_code status;
191 rtems_id queue_id;
191 rtems_id queue_id;
192 rtems_id queue_id_q_p0;
192 rtems_id queue_id_q_p0;
193 bp_packet_with_spare packet_norm_bp1;
193 bp_packet_with_spare packet_norm_bp1;
194 bp_packet packet_norm_bp2;
194 bp_packet packet_norm_bp2;
195 bp_packet packet_sbm_bp1;
195 bp_packet packet_sbm_bp1;
196 bp_packet packet_sbm_bp2;
196 bp_packet packet_sbm_bp2;
197 ring_node *current_ring_node_to_send_asm_f0;
197 ring_node *current_ring_node_to_send_asm_f0;
198
198
199 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
199 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
200 init_ring( ring_to_send_asm_f0, NB_RING_NODES_ASM_F0, (volatile int*) buffer_asm_f0, TOTAL_SIZE_SM );
200 init_ring( ring_to_send_asm_f0, NB_RING_NODES_ASM_F0, (volatile int*) buffer_asm_f0, TOTAL_SIZE_SM );
201 current_ring_node_to_send_asm_f0 = ring_to_send_asm_f0;
201 current_ring_node_to_send_asm_f0 = ring_to_send_asm_f0;
202
202
203 //*************
203 //*************
204 // NORM headers
204 // NORM headers
205 BP_init_header_with_spare( &packet_norm_bp1,
205 BP_init_header_with_spare( &packet_norm_bp1,
206 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
206 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
207 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
207 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
208 BP_init_header( &packet_norm_bp2,
208 BP_init_header( &packet_norm_bp2,
209 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
209 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
210 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
210 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
211
211
212 //****************************
212 //****************************
213 // BURST SBM1 and SBM2 headers
213 // BURST SBM1 and SBM2 headers
214 if ( lfrRequestedMode == LFR_MODE_BURST )
214 if ( lfrRequestedMode == LFR_MODE_BURST )
215 {
215 {
216 BP_init_header( &packet_sbm_bp1,
216 BP_init_header( &packet_sbm_bp1,
217 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
217 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
218 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
218 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
219 BP_init_header( &packet_sbm_bp2,
219 BP_init_header( &packet_sbm_bp2,
220 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
220 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
221 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
221 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
222 }
222 }
223 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
223 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
224 {
224 {
225 BP_init_header( &packet_sbm_bp1,
225 BP_init_header( &packet_sbm_bp1,
226 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
226 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
227 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
227 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
228 BP_init_header( &packet_sbm_bp2,
228 BP_init_header( &packet_sbm_bp2,
229 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
229 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
230 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
230 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
231 }
231 }
232 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
232 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
233 {
233 {
234 BP_init_header( &packet_sbm_bp1,
234 BP_init_header( &packet_sbm_bp1,
235 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
235 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
236 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
236 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
237 BP_init_header( &packet_sbm_bp2,
237 BP_init_header( &packet_sbm_bp2,
238 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
238 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
239 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
239 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
240 }
240 }
241 else
241 else
242 {
242 {
243 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
243 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
244 }
244 }
245
245
246 status = get_message_queue_id_send( &queue_id );
246 status = get_message_queue_id_send( &queue_id );
247 if (status != RTEMS_SUCCESSFUL)
247 if (status != RTEMS_SUCCESSFUL)
248 {
248 {
249 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
249 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
250 }
250 }
251 status = get_message_queue_id_prc0( &queue_id_q_p0);
251 status = get_message_queue_id_prc0( &queue_id_q_p0);
252 if (status != RTEMS_SUCCESSFUL)
252 if (status != RTEMS_SUCCESSFUL)
253 {
253 {
254 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
254 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
255 }
255 }
256
256
257 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
257 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
258
258
259 while(1){
259 while(1){
260 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
260 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
261 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
261 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
262
262
263 incomingMsg = (asm_msg*) incomingData;
263 incomingMsg = (asm_msg*) incomingData;
264
264
265 ASM_patch( incomingMsg->norm->matrix, asm_f0_patched_norm );
265 ASM_patch( incomingMsg->norm->matrix, asm_f0_patched_norm );
266 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f0_patched_burst_sbm );
266 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f0_patched_burst_sbm );
267
267
268 //****************
268 //****************
269 //****************
269 //****************
270 // BURST SBM1 SBM2
270 // BURST SBM1 SBM2
271 //****************
271 //****************
272 //****************
272 //****************
273 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F0 ) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F0 ) )
273 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F0 ) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F0 ) )
274 {
274 {
275 sid = getSID( incomingMsg->event );
275 sid = getSID( incomingMsg->event );
276 // 1) compress the matrix for Basic Parameters calculation
276 // 1) compress the matrix for Basic Parameters calculation
277 ASM_compress_reorganize_and_divide( asm_f0_patched_burst_sbm, compressed_sm_sbm_f0,
277 ASM_compress_reorganize_and_divide( asm_f0_patched_burst_sbm, compressed_sm_sbm_f0,
278 nb_sm_before_f0.burst_sbm_bp1,
278 nb_sm_before_f0.burst_sbm_bp1,
279 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
279 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
280 ASM_F0_INDICE_START);
280 ASM_F0_INDICE_START);
281 // 2) compute the BP1 set
281 // 2) compute the BP1 set
282 BP1_set( compressed_sm_sbm_f0, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp1.data );
282 BP1_set( compressed_sm_sbm_f0, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp1.data );
283 // 3) send the BP1 set
283 // 3) send the BP1 set
284 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
284 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
285 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
285 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
286 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
286 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
287 BP_send( (char *) &packet_sbm_bp1, queue_id,
287 BP_send( (char *) &packet_sbm_bp1, queue_id,
288 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
288 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
289 sid);
289 sid);
290 // 4) compute the BP2 set if needed
290 // 4) compute the BP2 set if needed
291 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F0) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F0) )
291 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F0) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F0) )
292 {
292 {
293 // 1) compute the BP2 set
293 // 1) compute the BP2 set
294 BP2_set( compressed_sm_sbm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp2.data );
294 BP2_set( compressed_sm_sbm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp2.data );
295 // 2) send the BP2 set
295 // 2) send the BP2 set
296 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
296 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
297 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
297 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
298 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
298 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
299 BP_send( (char *) &packet_sbm_bp2, queue_id,
299 BP_send( (char *) &packet_sbm_bp2, queue_id,
300 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
300 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
301 sid);
301 sid);
302 }
302 }
303 }
303 }
304
304
305 //*****
305 //*****
306 //*****
306 //*****
307 // NORM
307 // NORM
308 //*****
308 //*****
309 //*****
309 //*****
310 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
310 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
311 {
311 {
312 // 1) compress the matrix for Basic Parameters calculation
312 // 1) compress the matrix for Basic Parameters calculation
313 ASM_compress_reorganize_and_divide( asm_f0_patched_norm, compressed_sm_norm_f0,
313 ASM_compress_reorganize_and_divide( asm_f0_patched_norm, compressed_sm_norm_f0,
314 nb_sm_before_f0.norm_bp1,
314 nb_sm_before_f0.norm_bp1,
315 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
315 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
316 ASM_F0_INDICE_START );
316 ASM_F0_INDICE_START );
317 // 2) compute the BP1 set
317 // 2) compute the BP1 set
318 BP1_set( compressed_sm_norm_f0, k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp1.data );
318 BP1_set( compressed_sm_norm_f0, k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp1.data );
319 // 3) send the BP1 set
319 // 3) send the BP1 set
320 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
320 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
321 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
321 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
322 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
322 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
323 BP_send( (char *) &packet_norm_bp1, queue_id,
323 BP_send( (char *) &packet_norm_bp1, queue_id,
324 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
324 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
325 SID_NORM_BP1_F0 );
325 SID_NORM_BP1_F0 );
326 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
326 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
327 {
327 {
328 // 1) compute the BP2 set using the same ASM as the one used for BP1
328 // 1) compute the BP2 set using the same ASM as the one used for BP1
329 BP2_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp2.data );
329 BP2_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp2.data );
330 // 2) send the BP2 set
330 // 2) send the BP2 set
331 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
331 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
332 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
332 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
333 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
333 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
334 BP_send( (char *) &packet_norm_bp2, queue_id,
334 BP_send( (char *) &packet_norm_bp2, queue_id,
335 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
335 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
336 SID_NORM_BP2_F0);
336 SID_NORM_BP2_F0);
337 }
337 }
338 }
338 }
339
339
340 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
340 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
341 {
341 {
342 // 1) reorganize the ASM and divide
342 // 1) reorganize the ASM and divide
343 ASM_reorganize_and_divide( asm_f0_patched_norm,
343 ASM_reorganize_and_divide( asm_f0_patched_norm,
344 (float*) current_ring_node_to_send_asm_f0->buffer_address,
344 (float*) current_ring_node_to_send_asm_f0->buffer_address,
345 nb_sm_before_f0.norm_bp1 );
345 nb_sm_before_f0.norm_bp1 );
346 current_ring_node_to_send_asm_f0->coarseTime = incomingMsg->coarseTimeNORM;
346 current_ring_node_to_send_asm_f0->coarseTime = incomingMsg->coarseTimeNORM;
347 current_ring_node_to_send_asm_f0->fineTime = incomingMsg->fineTimeNORM;
347 current_ring_node_to_send_asm_f0->fineTime = incomingMsg->fineTimeNORM;
348 current_ring_node_to_send_asm_f0->sid = SID_NORM_ASM_F0;
348 current_ring_node_to_send_asm_f0->sid = SID_NORM_ASM_F0;
349
349
350 // 3) send the spectral matrix packets
350 // 3) send the spectral matrix packets
351 status = rtems_message_queue_send( queue_id, &current_ring_node_to_send_asm_f0, sizeof( ring_node* ) );
351 status = rtems_message_queue_send( queue_id, &current_ring_node_to_send_asm_f0, sizeof( ring_node* ) );
352 // change asm ring node
352 // change asm ring node
353 current_ring_node_to_send_asm_f0 = current_ring_node_to_send_asm_f0->next;
353 current_ring_node_to_send_asm_f0 = current_ring_node_to_send_asm_f0->next;
354 }
354 }
355
355
356 update_queue_max_count( queue_id_q_p0, &hk_lfr_q_p0_fifo_size_max );
356 update_queue_max_count( queue_id_q_p0, &hk_lfr_q_p0_fifo_size_max );
357
357
358 }
358 }
359 }
359 }
360
360
361 //**********
361 //**********
362 // FUNCTIONS
362 // FUNCTIONS
363
363
364 void reset_nb_sm_f0( unsigned char lfrMode )
364 void reset_nb_sm_f0( unsigned char lfrMode )
365 {
365 {
366 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 96;
366 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 96;
367 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 96;
367 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 96;
368 nb_sm_before_f0.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 96;
368 nb_sm_before_f0.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 96;
369 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * 24; // 0.25 s per digit
369 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * 24; // 0.25 s per digit
370 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * 96;
370 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * 96;
371 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 96;
371 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 96;
372 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 96;
372 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 96;
373 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 96;
373 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 96;
374 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 96;
374 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 96;
375
375
376 if (lfrMode == LFR_MODE_SBM1)
376 if (lfrMode == LFR_MODE_SBM1)
377 {
377 {
378 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
378 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
379 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
379 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
380 }
380 }
381 else if (lfrMode == LFR_MODE_SBM2)
381 else if (lfrMode == LFR_MODE_SBM2)
382 {
382 {
383 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
383 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
384 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
384 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
385 }
385 }
386 else if (lfrMode == LFR_MODE_BURST)
386 else if (lfrMode == LFR_MODE_BURST)
387 {
387 {
388 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
388 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
389 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
389 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
390 }
390 }
391 else
391 else
392 {
392 {
393 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
393 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
394 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
394 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
395 }
395 }
396 }
396 }
397
397
398 void init_k_coefficients_f0( void )
398 void init_k_coefficients_prc0( void )
399 {
399 {
400 init_k_coefficients( k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0 );
400 init_k_coefficients( k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0 );
401 init_k_coefficients( k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_SBM_F0);
401
402 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f0_norm, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_F0);
402 }
403 }
404
@@ -1,389 +1,390
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf1_prc1.h"
10 #include "avf1_prc1.h"
11
11
12 nb_sm_before_bp_asm_f1 nb_sm_before_f1;
12 nb_sm_before_bp_asm_f1 nb_sm_before_f1;
13
13
14 extern ring_node sm_ring_f1[ ];
14 extern ring_node sm_ring_f1[ ];
15
15
16 //***
16 //***
17 // F1
17 // F1
18 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ];
18 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ];
19 ring_node_asm asm_ring_burst_sbm_f1 [ NB_RING_NODES_ASM_BURST_SBM_F1 ];
19 ring_node_asm asm_ring_burst_sbm_f1 [ NB_RING_NODES_ASM_BURST_SBM_F1 ];
20
20
21 ring_node ring_to_send_asm_f1 [ NB_RING_NODES_ASM_F1 ];
21 ring_node ring_to_send_asm_f1 [ NB_RING_NODES_ASM_F1 ];
22 int buffer_asm_f1 [ NB_RING_NODES_ASM_F1 * TOTAL_SIZE_SM ];
22 int buffer_asm_f1 [ NB_RING_NODES_ASM_F1 * TOTAL_SIZE_SM ];
23
23
24 float asm_f1_patched_norm [ TOTAL_SIZE_SM ];
24 float asm_f1_patched_norm [ TOTAL_SIZE_SM ];
25 float asm_f1_patched_burst_sbm [ TOTAL_SIZE_SM ];
25 float asm_f1_patched_burst_sbm [ TOTAL_SIZE_SM ];
26 float asm_f1_reorganized [ TOTAL_SIZE_SM ];
26 float asm_f1_reorganized [ TOTAL_SIZE_SM ];
27
27
28 char asm_f1_char [ TOTAL_SIZE_SM * 2 ];
28 char asm_f1_char [ TOTAL_SIZE_SM * 2 ];
29 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1];
29 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1];
30 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ];
30 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ];
31
31
32 float k_coeff_intercalib_f1_norm[ NB_BINS_COMPRESSED_SM_F1 * NB_K_COEFF_PER_BIN ]; // 13 * 32 = 416
32 float k_coeff_intercalib_f1_norm[ NB_BINS_COMPRESSED_SM_F1 * NB_K_COEFF_PER_BIN ]; // 13 * 32 = 416
33 float k_coeff_intercalib_f1_sbm[ NB_BINS_COMPRESSED_SM_SBM_F1 * NB_K_COEFF_PER_BIN ]; // 26 * 32 = 832
33 float k_coeff_intercalib_f1_sbm[ NB_BINS_COMPRESSED_SM_SBM_F1 * NB_K_COEFF_PER_BIN ]; // 26 * 32 = 832
34
34
35 //************
35 //************
36 // RTEMS TASKS
36 // RTEMS TASKS
37
37
38 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
38 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
39 {
39 {
40 int i;
40 int i;
41
41
42 rtems_event_set event_out;
42 rtems_event_set event_out;
43 rtems_status_code status;
43 rtems_status_code status;
44 rtems_id queue_id_prc1;
44 rtems_id queue_id_prc1;
45 asm_msg msgForMATR;
45 asm_msg msgForMATR;
46 ring_node *nodeForAveraging;
46 ring_node *nodeForAveraging;
47 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0];
47 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0];
48 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
48 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
49 ring_node_asm *current_ring_node_asm_norm_f1;
49 ring_node_asm *current_ring_node_asm_norm_f1;
50
50
51 unsigned int nb_norm_bp1;
51 unsigned int nb_norm_bp1;
52 unsigned int nb_norm_bp2;
52 unsigned int nb_norm_bp2;
53 unsigned int nb_norm_asm;
53 unsigned int nb_norm_asm;
54 unsigned int nb_sbm_bp1;
54 unsigned int nb_sbm_bp1;
55 unsigned int nb_sbm_bp2;
55 unsigned int nb_sbm_bp2;
56
56
57 nb_norm_bp1 = 0;
57 nb_norm_bp1 = 0;
58 nb_norm_bp2 = 0;
58 nb_norm_bp2 = 0;
59 nb_norm_asm = 0;
59 nb_norm_asm = 0;
60 nb_sbm_bp1 = 0;
60 nb_sbm_bp1 = 0;
61 nb_sbm_bp2 = 0;
61 nb_sbm_bp2 = 0;
62
62
63 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
63 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
64 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
64 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
65 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
65 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
66 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
66 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
67 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
67 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
68
68
69 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
69 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
70
70
71 status = get_message_queue_id_prc1( &queue_id_prc1 );
71 status = get_message_queue_id_prc1( &queue_id_prc1 );
72 if (status != RTEMS_SUCCESSFUL)
72 if (status != RTEMS_SUCCESSFUL)
73 {
73 {
74 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
74 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
75 }
75 }
76
76
77 while(1){
77 while(1){
78 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
78 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
79
79
80 //****************************************
80 //****************************************
81 // initialize the mesage for the MATR task
81 // initialize the mesage for the MATR task
82 msgForMATR.norm = current_ring_node_asm_norm_f1;
82 msgForMATR.norm = current_ring_node_asm_norm_f1;
83 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f1;
83 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f1;
84 msgForMATR.event = 0x00; // this composite event will be sent to the PRC1 task
84 msgForMATR.event = 0x00; // this composite event will be sent to the PRC1 task
85 //
85 //
86 //****************************************
86 //****************************************
87
87
88 nodeForAveraging = getRingNodeForAveraging( 1 );
88 nodeForAveraging = getRingNodeForAveraging( 1 );
89
89
90 ring_node_tab[NB_SM_BEFORE_AVF1-1] = nodeForAveraging;
90 ring_node_tab[NB_SM_BEFORE_AVF1-1] = nodeForAveraging;
91 for ( i = 2; i < (NB_SM_BEFORE_AVF1+1); i++ )
91 for ( i = 2; i < (NB_SM_BEFORE_AVF1+1); i++ )
92 {
92 {
93 nodeForAveraging = nodeForAveraging->previous;
93 nodeForAveraging = nodeForAveraging->previous;
94 ring_node_tab[NB_SM_BEFORE_AVF1-i] = nodeForAveraging;
94 ring_node_tab[NB_SM_BEFORE_AVF1-i] = nodeForAveraging;
95 }
95 }
96
96
97 // compute the average and store it in the averaged_sm_f1 buffer
97 // compute the average and store it in the averaged_sm_f1 buffer
98 SM_average( current_ring_node_asm_norm_f1->matrix,
98 SM_average( current_ring_node_asm_norm_f1->matrix,
99 current_ring_node_asm_burst_sbm_f1->matrix,
99 current_ring_node_asm_burst_sbm_f1->matrix,
100 ring_node_tab,
100 ring_node_tab,
101 nb_norm_bp1, nb_sbm_bp1,
101 nb_norm_bp1, nb_sbm_bp1,
102 &msgForMATR );
102 &msgForMATR );
103
103
104 // update nb_average
104 // update nb_average
105 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF1;
105 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF1;
106 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF1;
106 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF1;
107 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF1;
107 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF1;
108 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF1;
108 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF1;
109 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF1;
109 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF1;
110
110
111 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
111 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
112 {
112 {
113 nb_sbm_bp1 = 0;
113 nb_sbm_bp1 = 0;
114 // set another ring for the ASM storage
114 // set another ring for the ASM storage
115 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
115 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
116 if ( lfrCurrentMode == LFR_MODE_BURST )
116 if ( lfrCurrentMode == LFR_MODE_BURST )
117 {
117 {
118 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP1_F1;
118 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP1_F1;
119 }
119 }
120 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
120 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
121 {
121 {
122 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP1_F1;
122 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP1_F1;
123 }
123 }
124 }
124 }
125
125
126 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
126 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
127 {
127 {
128 nb_sbm_bp2 = 0;
128 nb_sbm_bp2 = 0;
129 if ( lfrCurrentMode == LFR_MODE_BURST )
129 if ( lfrCurrentMode == LFR_MODE_BURST )
130 {
130 {
131 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP2_F1;
131 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP2_F1;
132 }
132 }
133 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
133 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
134 {
134 {
135 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP2_F1;
135 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP2_F1;
136 }
136 }
137 }
137 }
138
138
139 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
139 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
140 {
140 {
141 nb_norm_bp1 = 0;
141 nb_norm_bp1 = 0;
142 // set another ring for the ASM storage
142 // set another ring for the ASM storage
143 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
143 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
144 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
144 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
145 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
145 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
146 {
146 {
147 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F1;
147 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F1;
148 }
148 }
149 }
149 }
150
150
151 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
151 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
152 {
152 {
153 nb_norm_bp2 = 0;
153 nb_norm_bp2 = 0;
154 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
154 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
155 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
155 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
156 {
156 {
157 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F1;
157 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F1;
158 }
158 }
159 }
159 }
160
160
161 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
161 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
162 {
162 {
163 nb_norm_asm = 0;
163 nb_norm_asm = 0;
164 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
164 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
165 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
165 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
166 {
166 {
167 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F1;
167 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F1;
168 }
168 }
169 }
169 }
170
170
171 //*************************
171 //*************************
172 // send the message to MATR
172 // send the message to MATR
173 if (msgForMATR.event != 0x00)
173 if (msgForMATR.event != 0x00)
174 {
174 {
175 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC1);
175 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC1);
176 }
176 }
177
177
178 if (status != RTEMS_SUCCESSFUL) {
178 if (status != RTEMS_SUCCESSFUL) {
179 printf("in AVF1 *** Error sending message to PRC1, code %d\n", status);
179 printf("in AVF1 *** Error sending message to PRC1, code %d\n", status);
180 }
180 }
181 }
181 }
182 }
182 }
183
183
184 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
184 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
185 {
185 {
186 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
186 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
187 size_t size; // size of the incoming TC packet
187 size_t size; // size of the incoming TC packet
188 asm_msg *incomingMsg;
188 asm_msg *incomingMsg;
189 //
189 //
190 unsigned char sid;
190 unsigned char sid;
191 rtems_status_code status;
191 rtems_status_code status;
192 rtems_id queue_id_send;
192 rtems_id queue_id_send;
193 rtems_id queue_id_q_p1;
193 rtems_id queue_id_q_p1;
194 bp_packet_with_spare packet_norm_bp1;
194 bp_packet_with_spare packet_norm_bp1;
195 bp_packet packet_norm_bp2;
195 bp_packet packet_norm_bp2;
196 bp_packet packet_sbm_bp1;
196 bp_packet packet_sbm_bp1;
197 bp_packet packet_sbm_bp2;
197 bp_packet packet_sbm_bp2;
198 ring_node *current_ring_node_to_send_asm_f1;
198 ring_node *current_ring_node_to_send_asm_f1;
199
199
200 unsigned long long int localTime;
200 unsigned long long int localTime;
201
201
202 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
202 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
203 init_ring( ring_to_send_asm_f1, NB_RING_NODES_ASM_F1, (volatile int*) buffer_asm_f1, TOTAL_SIZE_SM );
203 init_ring( ring_to_send_asm_f1, NB_RING_NODES_ASM_F1, (volatile int*) buffer_asm_f1, TOTAL_SIZE_SM );
204 current_ring_node_to_send_asm_f1 = ring_to_send_asm_f1;
204 current_ring_node_to_send_asm_f1 = ring_to_send_asm_f1;
205
205
206 //*************
206 //*************
207 // NORM headers
207 // NORM headers
208 BP_init_header_with_spare( &packet_norm_bp1,
208 BP_init_header_with_spare( &packet_norm_bp1,
209 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
209 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
210 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
210 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
211 BP_init_header( &packet_norm_bp2,
211 BP_init_header( &packet_norm_bp2,
212 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
212 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
213 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
213 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
214
214
215 //***********************
215 //***********************
216 // BURST and SBM2 headers
216 // BURST and SBM2 headers
217 if ( lfrRequestedMode == LFR_MODE_BURST )
217 if ( lfrRequestedMode == LFR_MODE_BURST )
218 {
218 {
219 BP_init_header( &packet_sbm_bp1,
219 BP_init_header( &packet_sbm_bp1,
220 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
220 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
221 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
221 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
222 BP_init_header( &packet_sbm_bp2,
222 BP_init_header( &packet_sbm_bp2,
223 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
223 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
224 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
224 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
225 }
225 }
226 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
226 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
227 {
227 {
228 BP_init_header( &packet_sbm_bp1,
228 BP_init_header( &packet_sbm_bp1,
229 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
229 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
230 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
230 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
231 BP_init_header( &packet_sbm_bp2,
231 BP_init_header( &packet_sbm_bp2,
232 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
232 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
233 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
233 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
234 }
234 }
235 else
235 else
236 {
236 {
237 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
237 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
238 }
238 }
239
239
240 status = get_message_queue_id_send( &queue_id_send );
240 status = get_message_queue_id_send( &queue_id_send );
241 if (status != RTEMS_SUCCESSFUL)
241 if (status != RTEMS_SUCCESSFUL)
242 {
242 {
243 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
243 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
244 }
244 }
245 status = get_message_queue_id_prc1( &queue_id_q_p1);
245 status = get_message_queue_id_prc1( &queue_id_q_p1);
246 if (status != RTEMS_SUCCESSFUL)
246 if (status != RTEMS_SUCCESSFUL)
247 {
247 {
248 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
248 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
249 }
249 }
250
250
251 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
251 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
252
252
253 while(1){
253 while(1){
254 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
254 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
255 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
255 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
256
256
257 incomingMsg = (asm_msg*) incomingData;
257 incomingMsg = (asm_msg*) incomingData;
258
258
259 ASM_patch( incomingMsg->norm->matrix, asm_f1_patched_norm );
259 ASM_patch( incomingMsg->norm->matrix, asm_f1_patched_norm );
260 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f1_patched_burst_sbm );
260 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f1_patched_burst_sbm );
261
261
262 localTime = getTimeAsUnsignedLongLongInt( );
262 localTime = getTimeAsUnsignedLongLongInt( );
263 //***********
263 //***********
264 //***********
264 //***********
265 // BURST SBM2
265 // BURST SBM2
266 //***********
266 //***********
267 //***********
267 //***********
268 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F1) )
268 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F1) )
269 {
269 {
270 sid = getSID( incomingMsg->event );
270 sid = getSID( incomingMsg->event );
271 // 1) compress the matrix for Basic Parameters calculation
271 // 1) compress the matrix for Basic Parameters calculation
272 ASM_compress_reorganize_and_divide( asm_f1_patched_burst_sbm, compressed_sm_sbm_f1,
272 ASM_compress_reorganize_and_divide( asm_f1_patched_burst_sbm, compressed_sm_sbm_f1,
273 nb_sm_before_f1.burst_sbm_bp1,
273 nb_sm_before_f1.burst_sbm_bp1,
274 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
274 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
275 ASM_F1_INDICE_START);
275 ASM_F1_INDICE_START);
276 // 2) compute the BP1 set
276 // 2) compute the BP1 set
277 BP1_set( compressed_sm_sbm_f1, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp1.data );
277 BP1_set( compressed_sm_sbm_f1, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp1.data );
278 // 3) send the BP1 set
278 // 3) send the BP1 set
279 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
279 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
280 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
280 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
281 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
281 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
282 BP_send( (char *) &packet_sbm_bp1, queue_id_send,
282 BP_send( (char *) &packet_sbm_bp1, queue_id_send,
283 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA,
283 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA,
284 sid );
284 sid );
285 // 4) compute the BP2 set if needed
285 // 4) compute the BP2 set if needed
286 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F1) )
286 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F1) )
287 {
287 {
288 // 1) compute the BP2 set
288 // 1) compute the BP2 set
289 BP2_set( compressed_sm_sbm_f1, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp2.data );
289 BP2_set( compressed_sm_sbm_f1, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp2.data );
290 // 2) send the BP2 set
290 // 2) send the BP2 set
291 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
291 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
292 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
292 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
293 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
293 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
294 BP_send( (char *) &packet_sbm_bp2, queue_id_send,
294 BP_send( (char *) &packet_sbm_bp2, queue_id_send,
295 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA,
295 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA,
296 sid );
296 sid );
297 }
297 }
298 }
298 }
299
299
300 //*****
300 //*****
301 //*****
301 //*****
302 // NORM
302 // NORM
303 //*****
303 //*****
304 //*****
304 //*****
305 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
305 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
306 {
306 {
307 // 1) compress the matrix for Basic Parameters calculation
307 // 1) compress the matrix for Basic Parameters calculation
308 ASM_compress_reorganize_and_divide( asm_f1_patched_norm, compressed_sm_norm_f1,
308 ASM_compress_reorganize_and_divide( asm_f1_patched_norm, compressed_sm_norm_f1,
309 nb_sm_before_f1.norm_bp1,
309 nb_sm_before_f1.norm_bp1,
310 NB_BINS_COMPRESSED_SM_F1, NB_BINS_TO_AVERAGE_ASM_F1,
310 NB_BINS_COMPRESSED_SM_F1, NB_BINS_TO_AVERAGE_ASM_F1,
311 ASM_F1_INDICE_START );
311 ASM_F1_INDICE_START );
312 // 2) compute the BP1 set
312 // 2) compute the BP1 set
313 BP1_set( compressed_sm_norm_f1, k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp1.data );
313 BP1_set( compressed_sm_norm_f1, k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp1.data );
314 // 3) send the BP1 set
314 // 3) send the BP1 set
315 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
315 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
316 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
316 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
317 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
317 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
318 BP_send( (char *) &packet_norm_bp1, queue_id_send,
318 BP_send( (char *) &packet_norm_bp1, queue_id_send,
319 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA,
319 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA,
320 SID_NORM_BP1_F1 );
320 SID_NORM_BP1_F1 );
321 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
321 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
322 {
322 {
323 // 1) compute the BP2 set
323 // 1) compute the BP2 set
324 BP2_set( compressed_sm_norm_f1, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp2.data );
324 BP2_set( compressed_sm_norm_f1, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp2.data );
325 // 2) send the BP2 set
325 // 2) send the BP2 set
326 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
326 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
327 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
327 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
328 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
328 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
329 BP_send( (char *) &packet_norm_bp2, queue_id_send,
329 BP_send( (char *) &packet_norm_bp2, queue_id_send,
330 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA,
330 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA,
331 SID_NORM_BP2_F1 );
331 SID_NORM_BP2_F1 );
332 }
332 }
333 }
333 }
334
334
335 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
335 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
336 {
336 {
337 // 1) reorganize the ASM and divide
337 // 1) reorganize the ASM and divide
338 ASM_reorganize_and_divide( asm_f1_patched_norm,
338 ASM_reorganize_and_divide( asm_f1_patched_norm,
339 (float*) current_ring_node_to_send_asm_f1->buffer_address,
339 (float*) current_ring_node_to_send_asm_f1->buffer_address,
340 nb_sm_before_f1.norm_bp1 );
340 nb_sm_before_f1.norm_bp1 );
341 current_ring_node_to_send_asm_f1->coarseTime = incomingMsg->coarseTimeNORM;
341 current_ring_node_to_send_asm_f1->coarseTime = incomingMsg->coarseTimeNORM;
342 current_ring_node_to_send_asm_f1->fineTime = incomingMsg->fineTimeNORM;
342 current_ring_node_to_send_asm_f1->fineTime = incomingMsg->fineTimeNORM;
343 current_ring_node_to_send_asm_f1->sid = SID_NORM_ASM_F1;
343 current_ring_node_to_send_asm_f1->sid = SID_NORM_ASM_F1;
344 // 3) send the spectral matrix packets
344 // 3) send the spectral matrix packets
345 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f1, sizeof( ring_node* ) );
345 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f1, sizeof( ring_node* ) );
346 // change asm ring node
346 // change asm ring node
347 current_ring_node_to_send_asm_f1 = current_ring_node_to_send_asm_f1->next;
347 current_ring_node_to_send_asm_f1 = current_ring_node_to_send_asm_f1->next;
348 }
348 }
349
349
350 update_queue_max_count( queue_id_q_p1, &hk_lfr_q_p1_fifo_size_max );
350 update_queue_max_count( queue_id_q_p1, &hk_lfr_q_p1_fifo_size_max );
351
351
352 }
352 }
353 }
353 }
354
354
355 //**********
355 //**********
356 // FUNCTIONS
356 // FUNCTIONS
357
357
358 void reset_nb_sm_f1( unsigned char lfrMode )
358 void reset_nb_sm_f1( unsigned char lfrMode )
359 {
359 {
360 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 16;
360 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 16;
361 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 16;
361 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 16;
362 nb_sm_before_f1.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 16;
362 nb_sm_before_f1.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 16;
363 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 16;
363 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 16;
364 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 16;
364 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 16;
365 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 16;
365 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 16;
366 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 16;
366 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 16;
367
367
368 if (lfrMode == LFR_MODE_SBM2)
368 if (lfrMode == LFR_MODE_SBM2)
369 {
369 {
370 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
370 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
371 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
371 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
372 }
372 }
373 else if (lfrMode == LFR_MODE_BURST)
373 else if (lfrMode == LFR_MODE_BURST)
374 {
374 {
375 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
375 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
376 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
376 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
377 }
377 }
378 else
378 else
379 {
379 {
380 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
380 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
381 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
381 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
382 }
382 }
383 }
383 }
384
384
385 void init_k_coefficients_f1( void )
385 void init_k_coefficients_prc1( void )
386 {
386 {
387 init_k_coefficients( k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1 );
387 init_k_coefficients( k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1 );
388 init_k_coefficients( k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_SBM_F1);
388
389 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f1_norm, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_F1);
389 }
390 }
@@ -1,291 +1,291
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf2_prc2.h"
10 #include "avf2_prc2.h"
11
11
12 nb_sm_before_bp_asm_f2 nb_sm_before_f2;
12 nb_sm_before_bp_asm_f2 nb_sm_before_f2;
13
13
14 extern ring_node sm_ring_f2[ ];
14 extern ring_node sm_ring_f2[ ];
15
15
16 //***
16 //***
17 // F2
17 // F2
18 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ];
18 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ];
19
19
20 ring_node ring_to_send_asm_f2 [ NB_RING_NODES_ASM_F2 ];
20 ring_node ring_to_send_asm_f2 [ NB_RING_NODES_ASM_F2 ];
21 int buffer_asm_f2 [ NB_RING_NODES_ASM_F2 * TOTAL_SIZE_SM ];
21 int buffer_asm_f2 [ NB_RING_NODES_ASM_F2 * TOTAL_SIZE_SM ];
22
22
23 float asm_f2_patched_norm [ TOTAL_SIZE_SM ];
23 float asm_f2_patched_norm [ TOTAL_SIZE_SM ];
24 float asm_f2_reorganized [ TOTAL_SIZE_SM ];
24 float asm_f2_reorganized [ TOTAL_SIZE_SM ];
25
25
26 char asm_f2_char [ TOTAL_SIZE_SM * 2 ];
26 char asm_f2_char [ TOTAL_SIZE_SM * 2 ];
27 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2];
27 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2];
28
28
29 float k_coeff_intercalib_f2[ NB_BINS_COMPRESSED_SM_F2 * NB_K_COEFF_PER_BIN ]; // 12 * 32 = 384
29 float k_coeff_intercalib_f2[ NB_BINS_COMPRESSED_SM_F2 * NB_K_COEFF_PER_BIN ]; // 12 * 32 = 384
30
30
31 //************
31 //************
32 // RTEMS TASKS
32 // RTEMS TASKS
33
33
34 //***
34 //***
35 // F2
35 // F2
36 rtems_task avf2_task( rtems_task_argument argument )
36 rtems_task avf2_task( rtems_task_argument argument )
37 {
37 {
38 rtems_event_set event_out;
38 rtems_event_set event_out;
39 rtems_status_code status;
39 rtems_status_code status;
40 rtems_id queue_id_prc2;
40 rtems_id queue_id_prc2;
41 asm_msg msgForMATR;
41 asm_msg msgForMATR;
42 ring_node *nodeForAveraging;
42 ring_node *nodeForAveraging;
43 ring_node_asm *current_ring_node_asm_norm_f2;
43 ring_node_asm *current_ring_node_asm_norm_f2;
44
44
45 unsigned int nb_norm_bp1;
45 unsigned int nb_norm_bp1;
46 unsigned int nb_norm_bp2;
46 unsigned int nb_norm_bp2;
47 unsigned int nb_norm_asm;
47 unsigned int nb_norm_asm;
48
48
49 nb_norm_bp1 = 0;
49 nb_norm_bp1 = 0;
50 nb_norm_bp2 = 0;
50 nb_norm_bp2 = 0;
51 nb_norm_asm = 0;
51 nb_norm_asm = 0;
52
52
53 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
53 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
54 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
54 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
55 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
55 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
56
56
57 BOOT_PRINTF("in AVF2 ***\n")
57 BOOT_PRINTF("in AVF2 ***\n")
58
58
59 status = get_message_queue_id_prc2( &queue_id_prc2 );
59 status = get_message_queue_id_prc2( &queue_id_prc2 );
60 if (status != RTEMS_SUCCESSFUL)
60 if (status != RTEMS_SUCCESSFUL)
61 {
61 {
62 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
62 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
63 }
63 }
64
64
65 while(1){
65 while(1){
66 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
66 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
67
67
68 //****************************************
68 //****************************************
69 // initialize the mesage for the MATR task
69 // initialize the mesage for the MATR task
70 msgForMATR.norm = current_ring_node_asm_norm_f2;
70 msgForMATR.norm = current_ring_node_asm_norm_f2;
71 msgForMATR.burst_sbm = NULL;
71 msgForMATR.burst_sbm = NULL;
72 msgForMATR.event = 0x00; // this composite event will be sent to the PRC2 task
72 msgForMATR.event = 0x00; // this composite event will be sent to the PRC2 task
73 //
73 //
74 //****************************************
74 //****************************************
75
75
76 nodeForAveraging = getRingNodeForAveraging( 2 );
76 nodeForAveraging = getRingNodeForAveraging( 2 );
77
77
78 // printf(" **0** %x . %x", sm_ring_f2[0].coarseTime, sm_ring_f2[0].fineTime);
78 // printf(" **0** %x . %x", sm_ring_f2[0].coarseTime, sm_ring_f2[0].fineTime);
79 // printf(" **1** %x . %x", sm_ring_f2[1].coarseTime, sm_ring_f2[1].fineTime);
79 // printf(" **1** %x . %x", sm_ring_f2[1].coarseTime, sm_ring_f2[1].fineTime);
80 // printf(" **2** %x . %x", sm_ring_f2[2].coarseTime, sm_ring_f2[2].fineTime);
80 // printf(" **2** %x . %x", sm_ring_f2[2].coarseTime, sm_ring_f2[2].fineTime);
81 // printf(" **3** %x . %x", sm_ring_f2[3].coarseTime, sm_ring_f2[3].fineTime);
81 // printf(" **3** %x . %x", sm_ring_f2[3].coarseTime, sm_ring_f2[3].fineTime);
82 // printf(" **4** %x . %x", sm_ring_f2[4].coarseTime, sm_ring_f2[4].fineTime);
82 // printf(" **4** %x . %x", sm_ring_f2[4].coarseTime, sm_ring_f2[4].fineTime);
83 // printf(" **5** %x . %x", sm_ring_f2[5].coarseTime, sm_ring_f2[5].fineTime);
83 // printf(" **5** %x . %x", sm_ring_f2[5].coarseTime, sm_ring_f2[5].fineTime);
84 // printf(" **6** %x . %x", sm_ring_f2[6].coarseTime, sm_ring_f2[6].fineTime);
84 // printf(" **6** %x . %x", sm_ring_f2[6].coarseTime, sm_ring_f2[6].fineTime);
85 // printf(" **7** %x . %x", sm_ring_f2[7].coarseTime, sm_ring_f2[7].fineTime);
85 // printf(" **7** %x . %x", sm_ring_f2[7].coarseTime, sm_ring_f2[7].fineTime);
86 // printf(" **8** %x . %x", sm_ring_f2[8].coarseTime, sm_ring_f2[8].fineTime);
86 // printf(" **8** %x . %x", sm_ring_f2[8].coarseTime, sm_ring_f2[8].fineTime);
87 // printf(" **9** %x . %x", sm_ring_f2[9].coarseTime, sm_ring_f2[9].fineTime);
87 // printf(" **9** %x . %x", sm_ring_f2[9].coarseTime, sm_ring_f2[9].fineTime);
88 // printf(" **10** %x . %x\n", sm_ring_f2[10].coarseTime, sm_ring_f2[10].fineTime);
88 // printf(" **10** %x . %x\n", sm_ring_f2[10].coarseTime, sm_ring_f2[10].fineTime);
89
89
90 // compute the average and store it in the averaged_sm_f2 buffer
90 // compute the average and store it in the averaged_sm_f2 buffer
91 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
91 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
92 nodeForAveraging,
92 nodeForAveraging,
93 nb_norm_bp1,
93 nb_norm_bp1,
94 &msgForMATR );
94 &msgForMATR );
95
95
96 // update nb_average
96 // update nb_average
97 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
97 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
98 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
98 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
99 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
99 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
100
100
101 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
101 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
102 {
102 {
103 nb_norm_bp1 = 0;
103 nb_norm_bp1 = 0;
104 // set another ring for the ASM storage
104 // set another ring for the ASM storage
105 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
105 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
106 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
106 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
107 || (lfrCurrentMode == LFR_MODE_SBM2) )
107 || (lfrCurrentMode == LFR_MODE_SBM2) )
108 {
108 {
109 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F2;
109 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F2;
110 }
110 }
111 }
111 }
112
112
113 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
113 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
114 {
114 {
115 nb_norm_bp2 = 0;
115 nb_norm_bp2 = 0;
116 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
116 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
117 || (lfrCurrentMode == LFR_MODE_SBM2) )
117 || (lfrCurrentMode == LFR_MODE_SBM2) )
118 {
118 {
119 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F2;
119 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F2;
120 }
120 }
121 }
121 }
122
122
123 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
123 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
124 {
124 {
125 nb_norm_asm = 0;
125 nb_norm_asm = 0;
126 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
126 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
127 || (lfrCurrentMode == LFR_MODE_SBM2) )
127 || (lfrCurrentMode == LFR_MODE_SBM2) )
128 {
128 {
129 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F2;
129 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F2;
130 }
130 }
131 }
131 }
132
132
133 //*************************
133 //*************************
134 // send the message to MATR
134 // send the message to MATR
135 if (msgForMATR.event != 0x00)
135 if (msgForMATR.event != 0x00)
136 {
136 {
137 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC2);
137 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC2);
138 }
138 }
139
139
140 if (status != RTEMS_SUCCESSFUL) {
140 if (status != RTEMS_SUCCESSFUL) {
141 printf("in AVF2 *** Error sending message to MATR, code %d\n", status);
141 printf("in AVF2 *** Error sending message to MATR, code %d\n", status);
142 }
142 }
143 }
143 }
144 }
144 }
145
145
146 rtems_task prc2_task( rtems_task_argument argument )
146 rtems_task prc2_task( rtems_task_argument argument )
147 {
147 {
148 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
148 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
149 size_t size; // size of the incoming TC packet
149 size_t size; // size of the incoming TC packet
150 asm_msg *incomingMsg;
150 asm_msg *incomingMsg;
151 //
151 //
152 rtems_status_code status;
152 rtems_status_code status;
153 rtems_id queue_id_send;
153 rtems_id queue_id_send;
154 rtems_id queue_id_q_p2;
154 rtems_id queue_id_q_p2;
155 bp_packet packet_norm_bp1;
155 bp_packet packet_norm_bp1;
156 bp_packet packet_norm_bp2;
156 bp_packet packet_norm_bp2;
157 ring_node *current_ring_node_to_send_asm_f2;
157 ring_node *current_ring_node_to_send_asm_f2;
158
158
159 unsigned long long int localTime;
159 unsigned long long int localTime;
160
160
161 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
161 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
162 init_ring( ring_to_send_asm_f2, NB_RING_NODES_ASM_F2, (volatile int*) buffer_asm_f2, TOTAL_SIZE_SM );
162 init_ring( ring_to_send_asm_f2, NB_RING_NODES_ASM_F2, (volatile int*) buffer_asm_f2, TOTAL_SIZE_SM );
163 current_ring_node_to_send_asm_f2 = ring_to_send_asm_f2;
163 current_ring_node_to_send_asm_f2 = ring_to_send_asm_f2;
164
164
165 //*************
165 //*************
166 // NORM headers
166 // NORM headers
167 BP_init_header( &packet_norm_bp1,
167 BP_init_header( &packet_norm_bp1,
168 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
168 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
169 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
169 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
170 BP_init_header( &packet_norm_bp2,
170 BP_init_header( &packet_norm_bp2,
171 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
171 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
172 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
172 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
173
173
174 status = get_message_queue_id_send( &queue_id_send );
174 status = get_message_queue_id_send( &queue_id_send );
175 if (status != RTEMS_SUCCESSFUL)
175 if (status != RTEMS_SUCCESSFUL)
176 {
176 {
177 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
177 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
178 }
178 }
179 status = get_message_queue_id_prc2( &queue_id_q_p2);
179 status = get_message_queue_id_prc2( &queue_id_q_p2);
180 if (status != RTEMS_SUCCESSFUL)
180 if (status != RTEMS_SUCCESSFUL)
181 {
181 {
182 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
182 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
183 }
183 }
184
184
185 BOOT_PRINTF("in PRC2 ***\n")
185 BOOT_PRINTF("in PRC2 ***\n")
186
186
187 while(1){
187 while(1){
188 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
188 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
189 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF2
189 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF2
190
190
191 incomingMsg = (asm_msg*) incomingData;
191 incomingMsg = (asm_msg*) incomingData;
192
192
193 ASM_patch( incomingMsg->norm->matrix, asm_f2_patched_norm );
193 ASM_patch( incomingMsg->norm->matrix, asm_f2_patched_norm );
194
194
195 localTime = getTimeAsUnsignedLongLongInt( );
195 localTime = getTimeAsUnsignedLongLongInt( );
196
196
197 //*****
197 //*****
198 //*****
198 //*****
199 // NORM
199 // NORM
200 //*****
200 //*****
201 //*****
201 //*****
202 // 1) compress the matrix for Basic Parameters calculation
202 // 1) compress the matrix for Basic Parameters calculation
203 ASM_compress_reorganize_and_divide( asm_f2_patched_norm, compressed_sm_norm_f2,
203 ASM_compress_reorganize_and_divide( asm_f2_patched_norm, compressed_sm_norm_f2,
204 nb_sm_before_f2.norm_bp1,
204 nb_sm_before_f2.norm_bp1,
205 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
205 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
206 ASM_F2_INDICE_START );
206 ASM_F2_INDICE_START );
207 // BP1_F2
207 // BP1_F2
208 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
208 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
209 {
209 {
210 // 1) compute the BP1 set
210 // 1) compute the BP1 set
211 BP1_set( compressed_sm_norm_f2, k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp1.data );
211 BP1_set( compressed_sm_norm_f2, k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp1.data );
212 // 2) send the BP1 set
212 // 2) send the BP1 set
213 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
213 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
214 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
214 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
215 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
215 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
216 BP_send( (char *) &packet_norm_bp1, queue_id_send,
216 BP_send( (char *) &packet_norm_bp1, queue_id_send,
217 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
217 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
218 SID_NORM_BP1_F2 );
218 SID_NORM_BP1_F2 );
219 }
219 }
220 // BP2_F2
220 // BP2_F2
221 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
221 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
222 {
222 {
223 // 1) compute the BP2 set
223 // 1) compute the BP2 set
224 BP2_set( compressed_sm_norm_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp2.data );
224 BP2_set( compressed_sm_norm_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp2.data );
225 // 2) send the BP2 set
225 // 2) send the BP2 set
226 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
226 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
227 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
227 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
228 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
228 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
229 BP_send( (char *) &packet_norm_bp2, queue_id_send,
229 BP_send( (char *) &packet_norm_bp2, queue_id_send,
230 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
230 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
231 SID_NORM_BP2_F2 );
231 SID_NORM_BP2_F2 );
232 }
232 }
233
233
234 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
234 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
235 {
235 {
236 // 1) reorganize the ASM and divide
236 // 1) reorganize the ASM and divide
237 ASM_reorganize_and_divide( asm_f2_patched_norm,
237 ASM_reorganize_and_divide( asm_f2_patched_norm,
238 (float*) current_ring_node_to_send_asm_f2->buffer_address,
238 (float*) current_ring_node_to_send_asm_f2->buffer_address,
239 nb_sm_before_f2.norm_bp1 );
239 nb_sm_before_f2.norm_bp1 );
240 current_ring_node_to_send_asm_f2->coarseTime = incomingMsg->coarseTimeNORM;
240 current_ring_node_to_send_asm_f2->coarseTime = incomingMsg->coarseTimeNORM;
241 current_ring_node_to_send_asm_f2->fineTime = incomingMsg->fineTimeNORM;
241 current_ring_node_to_send_asm_f2->fineTime = incomingMsg->fineTimeNORM;
242 current_ring_node_to_send_asm_f2->sid = SID_NORM_ASM_F2;
242 current_ring_node_to_send_asm_f2->sid = SID_NORM_ASM_F2;
243 // 3) send the spectral matrix packets
243 // 3) send the spectral matrix packets
244 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f2, sizeof( ring_node* ) );
244 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f2, sizeof( ring_node* ) );
245 // change asm ring node
245 // change asm ring node
246 current_ring_node_to_send_asm_f2 = current_ring_node_to_send_asm_f2->next;
246 current_ring_node_to_send_asm_f2 = current_ring_node_to_send_asm_f2->next;
247 }
247 }
248
248
249 update_queue_max_count( queue_id_q_p2, &hk_lfr_q_p2_fifo_size_max );
249 update_queue_max_count( queue_id_q_p2, &hk_lfr_q_p2_fifo_size_max );
250
250
251 }
251 }
252 }
252 }
253
253
254 //**********
254 //**********
255 // FUNCTIONS
255 // FUNCTIONS
256
256
257 void reset_nb_sm_f2( void )
257 void reset_nb_sm_f2( void )
258 {
258 {
259 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
259 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
260 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
260 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
261 nb_sm_before_f2.norm_asm = parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1];
261 nb_sm_before_f2.norm_asm = parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1];
262 }
262 }
263
263
264 void SM_average_f2( float *averaged_spec_mat_f2,
264 void SM_average_f2( float *averaged_spec_mat_f2,
265 ring_node *ring_node,
265 ring_node *ring_node,
266 unsigned int nbAverageNormF2,
266 unsigned int nbAverageNormF2,
267 asm_msg *msgForMATR )
267 asm_msg *msgForMATR )
268 {
268 {
269 float sum;
269 float sum;
270 unsigned int i;
270 unsigned int i;
271
271
272 for(i=0; i<TOTAL_SIZE_SM; i++)
272 for(i=0; i<TOTAL_SIZE_SM; i++)
273 {
273 {
274 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
274 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
275 if ( (nbAverageNormF2 == 0) )
275 if ( (nbAverageNormF2 == 0) )
276 {
276 {
277 averaged_spec_mat_f2[ i ] = sum;
277 averaged_spec_mat_f2[ i ] = sum;
278 msgForMATR->coarseTimeNORM = ring_node->coarseTime;
278 msgForMATR->coarseTimeNORM = ring_node->coarseTime;
279 msgForMATR->fineTimeNORM = ring_node->fineTime;
279 msgForMATR->fineTimeNORM = ring_node->fineTime;
280 }
280 }
281 else
281 else
282 {
282 {
283 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
283 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
284 }
284 }
285 }
285 }
286 }
286 }
287
287
288 void init_k_coefficients_f2( void )
288 void init_k_coefficients_prc2( void )
289 {
289 {
290 init_k_coefficients( k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2);
290 init_k_coefficients( k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2);
291 }
291 }
@@ -1,656 +1,671
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "fsw_processing.h"
10 #include "fsw_processing.h"
11 #include "fsw_processing_globals.c"
11 #include "fsw_processing_globals.c"
12 #include "fsw_init.h"
12 #include "fsw_init.h"
13
13
14 unsigned int nb_sm_f0;
14 unsigned int nb_sm_f0;
15 unsigned int nb_sm_f0_aux_f1;
15 unsigned int nb_sm_f0_aux_f1;
16 unsigned int nb_sm_f1;
16 unsigned int nb_sm_f1;
17 unsigned int nb_sm_f0_aux_f2;
17 unsigned int nb_sm_f0_aux_f2;
18
18
19 //************************
19 //************************
20 // spectral matrices rings
20 // spectral matrices rings
21 ring_node sm_ring_f0[ NB_RING_NODES_SM_F0 ];
21 ring_node sm_ring_f0[ NB_RING_NODES_SM_F0 ];
22 ring_node sm_ring_f1[ NB_RING_NODES_SM_F1 ];
22 ring_node sm_ring_f1[ NB_RING_NODES_SM_F1 ];
23 ring_node sm_ring_f2[ NB_RING_NODES_SM_F2 ];
23 ring_node sm_ring_f2[ NB_RING_NODES_SM_F2 ];
24 ring_node *current_ring_node_sm_f0;
24 ring_node *current_ring_node_sm_f0;
25 ring_node *current_ring_node_sm_f1;
25 ring_node *current_ring_node_sm_f1;
26 ring_node *current_ring_node_sm_f2;
26 ring_node *current_ring_node_sm_f2;
27 ring_node *ring_node_for_averaging_sm_f0;
27 ring_node *ring_node_for_averaging_sm_f0;
28 ring_node *ring_node_for_averaging_sm_f1;
28 ring_node *ring_node_for_averaging_sm_f1;
29 ring_node *ring_node_for_averaging_sm_f2;
29 ring_node *ring_node_for_averaging_sm_f2;
30
30
31 //
31 //
32 ring_node * getRingNodeForAveraging( unsigned char frequencyChannel)
32 ring_node * getRingNodeForAveraging( unsigned char frequencyChannel)
33 {
33 {
34 ring_node *node;
34 ring_node *node;
35
35
36 node = NULL;
36 node = NULL;
37 switch ( frequencyChannel ) {
37 switch ( frequencyChannel ) {
38 case 0:
38 case 0:
39 node = ring_node_for_averaging_sm_f0;
39 node = ring_node_for_averaging_sm_f0;
40 break;
40 break;
41 case 1:
41 case 1:
42 node = ring_node_for_averaging_sm_f1;
42 node = ring_node_for_averaging_sm_f1;
43 break;
43 break;
44 case 2:
44 case 2:
45 node = ring_node_for_averaging_sm_f2;
45 node = ring_node_for_averaging_sm_f2;
46 break;
46 break;
47 default:
47 default:
48 break;
48 break;
49 }
49 }
50
50
51 return node;
51 return node;
52 }
52 }
53
53
54 //***********************************************************
54 //***********************************************************
55 // Interrupt Service Routine for spectral matrices processing
55 // Interrupt Service Routine for spectral matrices processing
56
56
57 void spectral_matrices_isr_f0( unsigned char statusReg )
57 void spectral_matrices_isr_f0( unsigned char statusReg )
58 {
58 {
59 unsigned char status;
59 unsigned char status;
60 rtems_status_code status_code;
60 rtems_status_code status_code;
61 ring_node *full_ring_node;
61 ring_node *full_ring_node;
62
62
63 status = statusReg & 0x03; // [0011] get the status_ready_matrix_f0_x bits
63 status = statusReg & 0x03; // [0011] get the status_ready_matrix_f0_x bits
64
64
65 switch(status)
65 switch(status)
66 {
66 {
67 case 0:
67 case 0:
68 break;
68 break;
69 case 3:
69 case 3:
70 // UNEXPECTED VALUE
70 // UNEXPECTED VALUE
71 spectral_matrix_regs->status = 0x03; // [0011]
71 spectral_matrix_regs->status = 0x03; // [0011]
72 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
72 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
73 break;
73 break;
74 case 1:
74 case 1:
75 full_ring_node = current_ring_node_sm_f0->previous;
75 full_ring_node = current_ring_node_sm_f0->previous;
76 full_ring_node->coarseTime = spectral_matrix_regs->f0_0_coarse_time;
76 full_ring_node->coarseTime = spectral_matrix_regs->f0_0_coarse_time;
77 full_ring_node->fineTime = spectral_matrix_regs->f0_0_fine_time;
77 full_ring_node->fineTime = spectral_matrix_regs->f0_0_fine_time;
78 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
78 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
79 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
79 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
80 // if there are enough ring nodes ready, wake up an AVFx task
80 // if there are enough ring nodes ready, wake up an AVFx task
81 nb_sm_f0 = nb_sm_f0 + 1;
81 nb_sm_f0 = nb_sm_f0 + 1;
82 if (nb_sm_f0 == NB_SM_BEFORE_AVF0)
82 if (nb_sm_f0 == NB_SM_BEFORE_AVF0)
83 {
83 {
84 ring_node_for_averaging_sm_f0 = full_ring_node;
84 ring_node_for_averaging_sm_f0 = full_ring_node;
85 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
85 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
86 {
86 {
87 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
87 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
88 }
88 }
89 nb_sm_f0 = 0;
89 nb_sm_f0 = 0;
90 }
90 }
91 spectral_matrix_regs->status = 0x01; // [0000 0001]
91 spectral_matrix_regs->status = 0x01; // [0000 0001]
92 break;
92 break;
93 case 2:
93 case 2:
94 full_ring_node = current_ring_node_sm_f0->previous;
94 full_ring_node = current_ring_node_sm_f0->previous;
95 full_ring_node->coarseTime = spectral_matrix_regs->f0_1_coarse_time;
95 full_ring_node->coarseTime = spectral_matrix_regs->f0_1_coarse_time;
96 full_ring_node->fineTime = spectral_matrix_regs->f0_1_fine_time;
96 full_ring_node->fineTime = spectral_matrix_regs->f0_1_fine_time;
97 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
97 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
98 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
98 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
99 // if there are enough ring nodes ready, wake up an AVFx task
99 // if there are enough ring nodes ready, wake up an AVFx task
100 nb_sm_f0 = nb_sm_f0 + 1;
100 nb_sm_f0 = nb_sm_f0 + 1;
101 if (nb_sm_f0 == NB_SM_BEFORE_AVF0)
101 if (nb_sm_f0 == NB_SM_BEFORE_AVF0)
102 {
102 {
103 ring_node_for_averaging_sm_f0 = full_ring_node;
103 ring_node_for_averaging_sm_f0 = full_ring_node;
104 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
104 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
105 {
105 {
106 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
106 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
107 }
107 }
108 nb_sm_f0 = 0;
108 nb_sm_f0 = 0;
109 }
109 }
110 spectral_matrix_regs->status = 0x02; // [0000 0010]
110 spectral_matrix_regs->status = 0x02; // [0000 0010]
111 break;
111 break;
112 }
112 }
113 }
113 }
114
114
115 void spectral_matrices_isr_f1( unsigned char statusReg )
115 void spectral_matrices_isr_f1( unsigned char statusReg )
116 {
116 {
117 rtems_status_code status_code;
117 rtems_status_code status_code;
118 unsigned char status;
118 unsigned char status;
119 ring_node *full_ring_node;
119 ring_node *full_ring_node;
120
120
121 status = (statusReg & 0x0c) >> 2; // [1100] get the status_ready_matrix_f0_x bits
121 status = (statusReg & 0x0c) >> 2; // [1100] get the status_ready_matrix_f0_x bits
122
122
123 switch(status)
123 switch(status)
124 {
124 {
125 case 0:
125 case 0:
126 break;
126 break;
127 case 3:
127 case 3:
128 // UNEXPECTED VALUE
128 // UNEXPECTED VALUE
129 spectral_matrix_regs->status = 0xc0; // [1100]
129 spectral_matrix_regs->status = 0xc0; // [1100]
130 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
130 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
131 break;
131 break;
132 case 1:
132 case 1:
133 full_ring_node = current_ring_node_sm_f1->previous;
133 full_ring_node = current_ring_node_sm_f1->previous;
134 full_ring_node->coarseTime = spectral_matrix_regs->f1_0_coarse_time;
134 full_ring_node->coarseTime = spectral_matrix_regs->f1_0_coarse_time;
135 full_ring_node->fineTime = spectral_matrix_regs->f1_0_fine_time;
135 full_ring_node->fineTime = spectral_matrix_regs->f1_0_fine_time;
136 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
136 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
137 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
137 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
138 // if there are enough ring nodes ready, wake up an AVFx task
138 // if there are enough ring nodes ready, wake up an AVFx task
139 nb_sm_f1 = nb_sm_f1 + 1;
139 nb_sm_f1 = nb_sm_f1 + 1;
140 if (nb_sm_f1 == NB_SM_BEFORE_AVF1)
140 if (nb_sm_f1 == NB_SM_BEFORE_AVF1)
141 {
141 {
142 ring_node_for_averaging_sm_f1 = full_ring_node;
142 ring_node_for_averaging_sm_f1 = full_ring_node;
143 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
143 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
144 {
144 {
145 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
145 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
146 }
146 }
147 nb_sm_f1 = 0;
147 nb_sm_f1 = 0;
148 }
148 }
149 spectral_matrix_regs->status = 0x04; // [0000 0100]
149 spectral_matrix_regs->status = 0x04; // [0000 0100]
150 break;
150 break;
151 case 2:
151 case 2:
152 full_ring_node = current_ring_node_sm_f1->previous;
152 full_ring_node = current_ring_node_sm_f1->previous;
153 full_ring_node->coarseTime = spectral_matrix_regs->f1_1_coarse_time;
153 full_ring_node->coarseTime = spectral_matrix_regs->f1_1_coarse_time;
154 full_ring_node->fineTime = spectral_matrix_regs->f1_1_fine_time;
154 full_ring_node->fineTime = spectral_matrix_regs->f1_1_fine_time;
155 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
155 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
156 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
156 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
157 // if there are enough ring nodes ready, wake up an AVFx task
157 // if there are enough ring nodes ready, wake up an AVFx task
158 nb_sm_f1 = nb_sm_f1 + 1;
158 nb_sm_f1 = nb_sm_f1 + 1;
159 if (nb_sm_f1 == NB_SM_BEFORE_AVF1)
159 if (nb_sm_f1 == NB_SM_BEFORE_AVF1)
160 {
160 {
161 ring_node_for_averaging_sm_f1 = full_ring_node;
161 ring_node_for_averaging_sm_f1 = full_ring_node;
162 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
162 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
163 {
163 {
164 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
164 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
165 }
165 }
166 nb_sm_f1 = 0;
166 nb_sm_f1 = 0;
167 }
167 }
168 spectral_matrix_regs->status = 0x08; // [1000 0000]
168 spectral_matrix_regs->status = 0x08; // [1000 0000]
169 break;
169 break;
170 }
170 }
171 }
171 }
172
172
173 void spectral_matrices_isr_f2( unsigned char statusReg )
173 void spectral_matrices_isr_f2( unsigned char statusReg )
174 {
174 {
175 unsigned char status;
175 unsigned char status;
176 rtems_status_code status_code;
176 rtems_status_code status_code;
177
177
178 status = (statusReg & 0x30) >> 4; // [0011 0000] get the status_ready_matrix_f0_x bits
178 status = (statusReg & 0x30) >> 4; // [0011 0000] get the status_ready_matrix_f0_x bits
179
179
180 switch(status)
180 switch(status)
181 {
181 {
182 case 0:
182 case 0:
183 break;
183 break;
184 case 3:
184 case 3:
185 // UNEXPECTED VALUE
185 // UNEXPECTED VALUE
186 spectral_matrix_regs->status = 0x30; // [0011 0000]
186 spectral_matrix_regs->status = 0x30; // [0011 0000]
187 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
187 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
188 break;
188 break;
189 case 1:
189 case 1:
190 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
190 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
191 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
191 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
192 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_0_coarse_time;
192 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_0_coarse_time;
193 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_0_fine_time;
193 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_0_fine_time;
194 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
194 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
195 spectral_matrix_regs->status = 0x10; // [0001 0000]
195 spectral_matrix_regs->status = 0x10; // [0001 0000]
196 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
196 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
197 {
197 {
198 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
198 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
199 }
199 }
200 break;
200 break;
201 case 2:
201 case 2:
202 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
202 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
203 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
203 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
204 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_1_coarse_time;
204 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_1_coarse_time;
205 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_1_fine_time;
205 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_1_fine_time;
206 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
206 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
207 spectral_matrix_regs->status = 0x20; // [0010 0000]
207 spectral_matrix_regs->status = 0x20; // [0010 0000]
208 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
208 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
209 {
209 {
210 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
210 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
211 }
211 }
212 break;
212 break;
213 }
213 }
214 }
214 }
215
215
216 void spectral_matrix_isr_error_handler( unsigned char statusReg )
216 void spectral_matrix_isr_error_handler( unsigned char statusReg )
217 {
217 {
218 rtems_status_code status_code;
218 rtems_status_code status_code;
219
219
220 if (statusReg & 0x7c0) // [0111 1100 0000]
220 if (statusReg & 0x7c0) // [0111 1100 0000]
221 {
221 {
222 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
222 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
223 }
223 }
224
224
225 spectral_matrix_regs->status = spectral_matrix_regs->status & 0x7c0;
225 spectral_matrix_regs->status = spectral_matrix_regs->status & 0x7c0;
226 }
226 }
227
227
228 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
228 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
229 {
229 {
230 // STATUS REGISTER
230 // STATUS REGISTER
231 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
231 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
232 // 10 9 8
232 // 10 9 8
233 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
233 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
234 // 7 6 5 4 3 2 1 0
234 // 7 6 5 4 3 2 1 0
235
235
236 unsigned char statusReg;
236 unsigned char statusReg;
237
237
238 statusReg = spectral_matrix_regs->status;
238 statusReg = spectral_matrix_regs->status;
239
239
240 spectral_matrices_isr_f0( statusReg );
240 spectral_matrices_isr_f0( statusReg );
241
241
242 spectral_matrices_isr_f1( statusReg );
242 spectral_matrices_isr_f1( statusReg );
243
243
244 spectral_matrices_isr_f2( statusReg );
244 spectral_matrices_isr_f2( statusReg );
245
245
246 spectral_matrix_isr_error_handler( statusReg );
246 spectral_matrix_isr_error_handler( statusReg );
247 }
247 }
248
248
249 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
249 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
250 {
250 {
251 rtems_status_code status_code;
251 rtems_status_code status_code;
252
252
253 //***
253 //***
254 // F0
254 // F0
255 nb_sm_f0 = nb_sm_f0 + 1;
255 nb_sm_f0 = nb_sm_f0 + 1;
256 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
256 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
257 {
257 {
258 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
258 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
259 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
259 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
260 {
260 {
261 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
261 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
262 }
262 }
263 nb_sm_f0 = 0;
263 nb_sm_f0 = 0;
264 }
264 }
265
265
266 //***
266 //***
267 // F1
267 // F1
268 nb_sm_f0_aux_f1 = nb_sm_f0_aux_f1 + 1;
268 nb_sm_f0_aux_f1 = nb_sm_f0_aux_f1 + 1;
269 if (nb_sm_f0_aux_f1 == 6)
269 if (nb_sm_f0_aux_f1 == 6)
270 {
270 {
271 nb_sm_f0_aux_f1 = 0;
271 nb_sm_f0_aux_f1 = 0;
272 nb_sm_f1 = nb_sm_f1 + 1;
272 nb_sm_f1 = nb_sm_f1 + 1;
273 }
273 }
274 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
274 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
275 {
275 {
276 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
276 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
277 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
277 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
278 {
278 {
279 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
279 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
280 }
280 }
281 nb_sm_f1 = 0;
281 nb_sm_f1 = 0;
282 }
282 }
283
283
284 //***
284 //***
285 // F2
285 // F2
286 nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
286 nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
287 if (nb_sm_f0_aux_f2 == 96)
287 if (nb_sm_f0_aux_f2 == 96)
288 {
288 {
289 nb_sm_f0_aux_f2 = 0;
289 nb_sm_f0_aux_f2 = 0;
290 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
290 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
291 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
291 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
292 {
292 {
293 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
293 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
294 }
294 }
295 }
295 }
296 }
296 }
297
297
298 //******************
298 //******************
299 // Spectral Matrices
299 // Spectral Matrices
300
300
301 void reset_nb_sm( void )
301 void reset_nb_sm( void )
302 {
302 {
303 nb_sm_f0 = 0;
303 nb_sm_f0 = 0;
304 nb_sm_f0_aux_f1 = 0;
304 nb_sm_f0_aux_f1 = 0;
305 nb_sm_f0_aux_f2 = 0;
305 nb_sm_f0_aux_f2 = 0;
306
306
307 nb_sm_f1 = 0;
307 nb_sm_f1 = 0;
308 }
308 }
309
309
310 void SM_init_rings( void )
310 void SM_init_rings( void )
311 {
311 {
312 init_ring( sm_ring_f0, NB_RING_NODES_SM_F0, sm_f0, TOTAL_SIZE_SM );
312 init_ring( sm_ring_f0, NB_RING_NODES_SM_F0, sm_f0, TOTAL_SIZE_SM );
313 init_ring( sm_ring_f1, NB_RING_NODES_SM_F1, sm_f1, TOTAL_SIZE_SM );
313 init_ring( sm_ring_f1, NB_RING_NODES_SM_F1, sm_f1, TOTAL_SIZE_SM );
314 init_ring( sm_ring_f2, NB_RING_NODES_SM_F2, sm_f2, TOTAL_SIZE_SM );
314 init_ring( sm_ring_f2, NB_RING_NODES_SM_F2, sm_f2, TOTAL_SIZE_SM );
315
315
316 DEBUG_PRINTF1("sm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
316 DEBUG_PRINTF1("sm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
317 DEBUG_PRINTF1("sm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
317 DEBUG_PRINTF1("sm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
318 DEBUG_PRINTF1("sm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
318 DEBUG_PRINTF1("sm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
319 DEBUG_PRINTF1("sm_f0 @%x\n", (unsigned int) sm_f0)
319 DEBUG_PRINTF1("sm_f0 @%x\n", (unsigned int) sm_f0)
320 DEBUG_PRINTF1("sm_f1 @%x\n", (unsigned int) sm_f1)
320 DEBUG_PRINTF1("sm_f1 @%x\n", (unsigned int) sm_f1)
321 DEBUG_PRINTF1("sm_f2 @%x\n", (unsigned int) sm_f2)
321 DEBUG_PRINTF1("sm_f2 @%x\n", (unsigned int) sm_f2)
322 }
322 }
323
323
324 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
324 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
325 {
325 {
326 unsigned char i;
326 unsigned char i;
327
327
328 ring[ nbNodes - 1 ].next
328 ring[ nbNodes - 1 ].next
329 = (ring_node_asm*) &ring[ 0 ];
329 = (ring_node_asm*) &ring[ 0 ];
330
330
331 for(i=0; i<nbNodes-1; i++)
331 for(i=0; i<nbNodes-1; i++)
332 {
332 {
333 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
333 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
334 }
334 }
335 }
335 }
336
336
337 void SM_reset_current_ring_nodes( void )
337 void SM_reset_current_ring_nodes( void )
338 {
338 {
339 current_ring_node_sm_f0 = sm_ring_f0[0].next;
339 current_ring_node_sm_f0 = sm_ring_f0[0].next;
340 current_ring_node_sm_f1 = sm_ring_f1[0].next;
340 current_ring_node_sm_f1 = sm_ring_f1[0].next;
341 current_ring_node_sm_f2 = sm_ring_f2[0].next;
341 current_ring_node_sm_f2 = sm_ring_f2[0].next;
342
342
343 ring_node_for_averaging_sm_f0 = NULL;
343 ring_node_for_averaging_sm_f0 = NULL;
344 ring_node_for_averaging_sm_f1 = NULL;
344 ring_node_for_averaging_sm_f1 = NULL;
345 ring_node_for_averaging_sm_f2 = NULL;
345 ring_node_for_averaging_sm_f2 = NULL;
346 }
346 }
347
347
348 //*****************
348 //*****************
349 // Basic Parameters
349 // Basic Parameters
350
350
351 void BP_init_header( bp_packet *packet,
351 void BP_init_header( bp_packet *packet,
352 unsigned int apid, unsigned char sid,
352 unsigned int apid, unsigned char sid,
353 unsigned int packetLength, unsigned char blkNr )
353 unsigned int packetLength, unsigned char blkNr )
354 {
354 {
355 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
355 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
356 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
356 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
357 packet->reserved = 0x00;
357 packet->reserved = 0x00;
358 packet->userApplication = CCSDS_USER_APP;
358 packet->userApplication = CCSDS_USER_APP;
359 packet->packetID[0] = (unsigned char) (apid >> 8);
359 packet->packetID[0] = (unsigned char) (apid >> 8);
360 packet->packetID[1] = (unsigned char) (apid);
360 packet->packetID[1] = (unsigned char) (apid);
361 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
361 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
362 packet->packetSequenceControl[1] = 0x00;
362 packet->packetSequenceControl[1] = 0x00;
363 packet->packetLength[0] = (unsigned char) (packetLength >> 8);
363 packet->packetLength[0] = (unsigned char) (packetLength >> 8);
364 packet->packetLength[1] = (unsigned char) (packetLength);
364 packet->packetLength[1] = (unsigned char) (packetLength);
365 // DATA FIELD HEADER
365 // DATA FIELD HEADER
366 packet->spare1_pusVersion_spare2 = 0x10;
366 packet->spare1_pusVersion_spare2 = 0x10;
367 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
367 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
368 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
368 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
369 packet->destinationID = TM_DESTINATION_ID_GROUND;
369 packet->destinationID = TM_DESTINATION_ID_GROUND;
370 packet->time[0] = 0x00;
370 packet->time[0] = 0x00;
371 packet->time[1] = 0x00;
371 packet->time[1] = 0x00;
372 packet->time[2] = 0x00;
372 packet->time[2] = 0x00;
373 packet->time[3] = 0x00;
373 packet->time[3] = 0x00;
374 packet->time[4] = 0x00;
374 packet->time[4] = 0x00;
375 packet->time[5] = 0x00;
375 packet->time[5] = 0x00;
376 // AUXILIARY DATA HEADER
376 // AUXILIARY DATA HEADER
377 packet->sid = sid;
377 packet->sid = sid;
378 packet->biaStatusInfo = 0x00;
378 packet->biaStatusInfo = 0x00;
379 packet->sy_lfr_common_parameters_spare = 0x00;
379 packet->sy_lfr_common_parameters_spare = 0x00;
380 packet->sy_lfr_common_parameters = 0x00;
380 packet->sy_lfr_common_parameters = 0x00;
381 packet->acquisitionTime[0] = 0x00;
381 packet->acquisitionTime[0] = 0x00;
382 packet->acquisitionTime[1] = 0x00;
382 packet->acquisitionTime[1] = 0x00;
383 packet->acquisitionTime[2] = 0x00;
383 packet->acquisitionTime[2] = 0x00;
384 packet->acquisitionTime[3] = 0x00;
384 packet->acquisitionTime[3] = 0x00;
385 packet->acquisitionTime[4] = 0x00;
385 packet->acquisitionTime[4] = 0x00;
386 packet->acquisitionTime[5] = 0x00;
386 packet->acquisitionTime[5] = 0x00;
387 packet->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
387 packet->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
388 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
388 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
389 }
389 }
390
390
391 void BP_init_header_with_spare( bp_packet_with_spare *packet,
391 void BP_init_header_with_spare( bp_packet_with_spare *packet,
392 unsigned int apid, unsigned char sid,
392 unsigned int apid, unsigned char sid,
393 unsigned int packetLength , unsigned char blkNr)
393 unsigned int packetLength , unsigned char blkNr)
394 {
394 {
395 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
395 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
396 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
396 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
397 packet->reserved = 0x00;
397 packet->reserved = 0x00;
398 packet->userApplication = CCSDS_USER_APP;
398 packet->userApplication = CCSDS_USER_APP;
399 packet->packetID[0] = (unsigned char) (apid >> 8);
399 packet->packetID[0] = (unsigned char) (apid >> 8);
400 packet->packetID[1] = (unsigned char) (apid);
400 packet->packetID[1] = (unsigned char) (apid);
401 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
401 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
402 packet->packetSequenceControl[1] = 0x00;
402 packet->packetSequenceControl[1] = 0x00;
403 packet->packetLength[0] = (unsigned char) (packetLength >> 8);
403 packet->packetLength[0] = (unsigned char) (packetLength >> 8);
404 packet->packetLength[1] = (unsigned char) (packetLength);
404 packet->packetLength[1] = (unsigned char) (packetLength);
405 // DATA FIELD HEADER
405 // DATA FIELD HEADER
406 packet->spare1_pusVersion_spare2 = 0x10;
406 packet->spare1_pusVersion_spare2 = 0x10;
407 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
407 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
408 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
408 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
409 packet->destinationID = TM_DESTINATION_ID_GROUND;
409 packet->destinationID = TM_DESTINATION_ID_GROUND;
410 // AUXILIARY DATA HEADER
410 // AUXILIARY DATA HEADER
411 packet->sid = sid;
411 packet->sid = sid;
412 packet->biaStatusInfo = 0x00;
412 packet->biaStatusInfo = 0x00;
413 packet->sy_lfr_common_parameters_spare = 0x00;
413 packet->sy_lfr_common_parameters_spare = 0x00;
414 packet->sy_lfr_common_parameters = 0x00;
414 packet->sy_lfr_common_parameters = 0x00;
415 packet->time[0] = 0x00;
415 packet->time[0] = 0x00;
416 packet->time[0] = 0x00;
416 packet->time[0] = 0x00;
417 packet->time[0] = 0x00;
417 packet->time[0] = 0x00;
418 packet->time[0] = 0x00;
418 packet->time[0] = 0x00;
419 packet->time[0] = 0x00;
419 packet->time[0] = 0x00;
420 packet->time[0] = 0x00;
420 packet->time[0] = 0x00;
421 packet->source_data_spare = 0x00;
421 packet->source_data_spare = 0x00;
422 packet->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
422 packet->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
423 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
423 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
424 }
424 }
425
425
426 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
426 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
427 {
427 {
428 rtems_status_code status;
428 rtems_status_code status;
429
429
430 // SET THE SEQUENCE_CNT PARAMETER
430 // SET THE SEQUENCE_CNT PARAMETER
431 increment_seq_counter_source_id( (unsigned char*) &data[ PACKET_POS_SEQUENCE_CNT ], sid );
431 increment_seq_counter_source_id( (unsigned char*) &data[ PACKET_POS_SEQUENCE_CNT ], sid );
432 // SEND PACKET
432 // SEND PACKET
433 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
433 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
434 if (status != RTEMS_SUCCESSFUL)
434 if (status != RTEMS_SUCCESSFUL)
435 {
435 {
436 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
436 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
437 }
437 }
438 }
438 }
439
439
440 //******************
440 //******************
441 // general functions
441 // general functions
442
442
443 void reset_sm_status( void )
443 void reset_sm_status( void )
444 {
444 {
445 // error
445 // error
446 // 10 --------------- 9 ---------------- 8 ---------------- 7 ---------
446 // 10 --------------- 9 ---------------- 8 ---------------- 7 ---------
447 // input_fif0_write_2 input_fifo_write_1 input_fifo_write_0 buffer_full
447 // input_fif0_write_2 input_fifo_write_1 input_fifo_write_0 buffer_full
448 // ---------- 5 -- 4 -- 3 -- 2 -- 1 -- 0 --
448 // ---------- 5 -- 4 -- 3 -- 2 -- 1 -- 0 --
449 // ready bits f2_1 f2_0 f1_1 f1_1 f0_1 f0_0
449 // ready bits f2_1 f2_0 f1_1 f1_1 f0_1 f0_0
450
450
451 spectral_matrix_regs->status = 0x7ff; // [0111 1111 1111]
451 spectral_matrix_regs->status = 0x7ff; // [0111 1111 1111]
452 }
452 }
453
453
454 void reset_spectral_matrix_regs( void )
454 void reset_spectral_matrix_regs( void )
455 {
455 {
456 /** This function resets the spectral matrices module registers.
456 /** This function resets the spectral matrices module registers.
457 *
457 *
458 * The registers affected by this function are located at the following offset addresses:
458 * The registers affected by this function are located at the following offset addresses:
459 *
459 *
460 * - 0x00 config
460 * - 0x00 config
461 * - 0x04 status
461 * - 0x04 status
462 * - 0x08 matrixF0_Address0
462 * - 0x08 matrixF0_Address0
463 * - 0x10 matrixFO_Address1
463 * - 0x10 matrixFO_Address1
464 * - 0x14 matrixF1_Address
464 * - 0x14 matrixF1_Address
465 * - 0x18 matrixF2_Address
465 * - 0x18 matrixF2_Address
466 *
466 *
467 */
467 */
468
468
469 set_sm_irq_onError( 0 );
469 set_sm_irq_onError( 0 );
470
470
471 set_sm_irq_onNewMatrix( 0 );
471 set_sm_irq_onNewMatrix( 0 );
472
472
473 reset_sm_status();
473 reset_sm_status();
474
474
475 // F1
475 // F1
476 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
476 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
477 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
477 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
478 // F2
478 // F2
479 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
479 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
480 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
480 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
481 // F3
481 // F3
482 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
482 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
483 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
483 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
484
484
485 spectral_matrix_regs->matrix_length = 0xc8; // 25 * 128 / 16 = 200 = 0xc8
485 spectral_matrix_regs->matrix_length = 0xc8; // 25 * 128 / 16 = 200 = 0xc8
486 }
486 }
487
487
488 void set_time( unsigned char *time, unsigned char * timeInBuffer )
488 void set_time( unsigned char *time, unsigned char * timeInBuffer )
489 {
489 {
490 time[0] = timeInBuffer[0];
490 time[0] = timeInBuffer[0];
491 time[1] = timeInBuffer[1];
491 time[1] = timeInBuffer[1];
492 time[2] = timeInBuffer[2];
492 time[2] = timeInBuffer[2];
493 time[3] = timeInBuffer[3];
493 time[3] = timeInBuffer[3];
494 time[4] = timeInBuffer[6];
494 time[4] = timeInBuffer[6];
495 time[5] = timeInBuffer[7];
495 time[5] = timeInBuffer[7];
496 }
496 }
497
497
498 unsigned long long int get_acquisition_time( unsigned char *timePtr )
498 unsigned long long int get_acquisition_time( unsigned char *timePtr )
499 {
499 {
500 unsigned long long int acquisitionTimeAslong;
500 unsigned long long int acquisitionTimeAslong;
501 acquisitionTimeAslong = 0x00;
501 acquisitionTimeAslong = 0x00;
502 acquisitionTimeAslong = ( (unsigned long long int) (timePtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
502 acquisitionTimeAslong = ( (unsigned long long int) (timePtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
503 + ( (unsigned long long int) timePtr[1] << 32 )
503 + ( (unsigned long long int) timePtr[1] << 32 )
504 + ( (unsigned long long int) timePtr[2] << 24 )
504 + ( (unsigned long long int) timePtr[2] << 24 )
505 + ( (unsigned long long int) timePtr[3] << 16 )
505 + ( (unsigned long long int) timePtr[3] << 16 )
506 + ( (unsigned long long int) timePtr[6] << 8 )
506 + ( (unsigned long long int) timePtr[6] << 8 )
507 + ( (unsigned long long int) timePtr[7] );
507 + ( (unsigned long long int) timePtr[7] );
508 return acquisitionTimeAslong;
508 return acquisitionTimeAslong;
509 }
509 }
510
510
511 unsigned char getSID( rtems_event_set event )
511 unsigned char getSID( rtems_event_set event )
512 {
512 {
513 unsigned char sid;
513 unsigned char sid;
514
514
515 rtems_event_set eventSetBURST;
515 rtems_event_set eventSetBURST;
516 rtems_event_set eventSetSBM;
516 rtems_event_set eventSetSBM;
517
517
518 //******
518 //******
519 // BURST
519 // BURST
520 eventSetBURST = RTEMS_EVENT_BURST_BP1_F0
520 eventSetBURST = RTEMS_EVENT_BURST_BP1_F0
521 | RTEMS_EVENT_BURST_BP1_F1
521 | RTEMS_EVENT_BURST_BP1_F1
522 | RTEMS_EVENT_BURST_BP2_F0
522 | RTEMS_EVENT_BURST_BP2_F0
523 | RTEMS_EVENT_BURST_BP2_F1;
523 | RTEMS_EVENT_BURST_BP2_F1;
524
524
525 //****
525 //****
526 // SBM
526 // SBM
527 eventSetSBM = RTEMS_EVENT_SBM_BP1_F0
527 eventSetSBM = RTEMS_EVENT_SBM_BP1_F0
528 | RTEMS_EVENT_SBM_BP1_F1
528 | RTEMS_EVENT_SBM_BP1_F1
529 | RTEMS_EVENT_SBM_BP2_F0
529 | RTEMS_EVENT_SBM_BP2_F0
530 | RTEMS_EVENT_SBM_BP2_F1;
530 | RTEMS_EVENT_SBM_BP2_F1;
531
531
532 if (event & eventSetBURST)
532 if (event & eventSetBURST)
533 {
533 {
534 sid = SID_BURST_BP1_F0;
534 sid = SID_BURST_BP1_F0;
535 }
535 }
536 else if (event & eventSetSBM)
536 else if (event & eventSetSBM)
537 {
537 {
538 sid = SID_SBM1_BP1_F0;
538 sid = SID_SBM1_BP1_F0;
539 }
539 }
540 else
540 else
541 {
541 {
542 sid = 0;
542 sid = 0;
543 }
543 }
544
544
545 return sid;
545 return sid;
546 }
546 }
547
547
548 void extractReImVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
548 void extractReImVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
549 {
549 {
550 unsigned int i;
550 unsigned int i;
551 float re;
551 float re;
552 float im;
552 float im;
553
553
554 for (i=0; i<NB_BINS_PER_SM; i++){
554 for (i=0; i<NB_BINS_PER_SM; i++){
555 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + i * 2 ];
555 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + i * 2 ];
556 im = inputASM[ (asmComponent*NB_BINS_PER_SM) + i * 2 + 1];
556 im = inputASM[ (asmComponent*NB_BINS_PER_SM) + i * 2 + 1];
557 outputASM[ (asmComponent *NB_BINS_PER_SM) + i] = re;
557 outputASM[ (asmComponent *NB_BINS_PER_SM) + i] = re;
558 outputASM[ (asmComponent+1)*NB_BINS_PER_SM + i] = im;
558 outputASM[ (asmComponent+1)*NB_BINS_PER_SM + i] = im;
559 }
559 }
560 }
560 }
561
561
562 void copyReVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
562 void copyReVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
563 {
563 {
564 unsigned int i;
564 unsigned int i;
565 float re;
565 float re;
566
566
567 for (i=0; i<NB_BINS_PER_SM; i++){
567 for (i=0; i<NB_BINS_PER_SM; i++){
568 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + i];
568 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + i];
569 outputASM[ (asmComponent*NB_BINS_PER_SM) + i] = re;
569 outputASM[ (asmComponent*NB_BINS_PER_SM) + i] = re;
570 }
570 }
571 }
571 }
572
572
573 void ASM_patch( float *inputASM, float *outputASM )
573 void ASM_patch( float *inputASM, float *outputASM )
574 {
574 {
575 extractReImVectors( inputASM, outputASM, 1); // b1b2
575 extractReImVectors( inputASM, outputASM, 1); // b1b2
576 extractReImVectors( inputASM, outputASM, 3 ); // b1b3
576 extractReImVectors( inputASM, outputASM, 3 ); // b1b3
577 extractReImVectors( inputASM, outputASM, 5 ); // b1e1
577 extractReImVectors( inputASM, outputASM, 5 ); // b1e1
578 extractReImVectors( inputASM, outputASM, 7 ); // b1e2
578 extractReImVectors( inputASM, outputASM, 7 ); // b1e2
579 extractReImVectors( inputASM, outputASM, 10 ); // b2b3
579 extractReImVectors( inputASM, outputASM, 10 ); // b2b3
580 extractReImVectors( inputASM, outputASM, 12 ); // b2e1
580 extractReImVectors( inputASM, outputASM, 12 ); // b2e1
581 extractReImVectors( inputASM, outputASM, 14 ); // b2e2
581 extractReImVectors( inputASM, outputASM, 14 ); // b2e2
582 extractReImVectors( inputASM, outputASM, 17 ); // b3e1
582 extractReImVectors( inputASM, outputASM, 17 ); // b3e1
583 extractReImVectors( inputASM, outputASM, 19 ); // b3e2
583 extractReImVectors( inputASM, outputASM, 19 ); // b3e2
584 extractReImVectors( inputASM, outputASM, 22 ); // e1e2
584 extractReImVectors( inputASM, outputASM, 22 ); // e1e2
585
585
586 copyReVectors(inputASM, outputASM, 0 ); // b1b1
586 copyReVectors(inputASM, outputASM, 0 ); // b1b1
587 copyReVectors(inputASM, outputASM, 9 ); // b2b2
587 copyReVectors(inputASM, outputASM, 9 ); // b2b2
588 copyReVectors(inputASM, outputASM, 16); // b3b3
588 copyReVectors(inputASM, outputASM, 16); // b3b3
589 copyReVectors(inputASM, outputASM, 21); // e1e1
589 copyReVectors(inputASM, outputASM, 21); // e1e1
590 copyReVectors(inputASM, outputASM, 24); // e2e2
590 copyReVectors(inputASM, outputASM, 24); // e2e2
591 }
591 }
592
592
593 void ASM_compress_reorganize_and_divide_mask(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
593 void ASM_compress_reorganize_and_divide_mask(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
594 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
594 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
595 {
595 {
596 //*************
596 //*************
597 // input format
597 // input format
598 // component0[0 .. 127] component1[0 .. 127] .. component24[0 .. 127]
598 // component0[0 .. 127] component1[0 .. 127] .. component24[0 .. 127]
599 //**************
599 //**************
600 // output format
600 // output format
601 // matr0[0 .. 24] matr1[0 .. 24] .. matr127[0 .. 24]
601 // matr0[0 .. 24] matr1[0 .. 24] .. matr127[0 .. 24]
602 //************
602 //************
603 // compression
603 // compression
604 // matr0[0 .. 24] matr1[0 .. 24] .. matr11[0 .. 24] => f0 NORM
604 // matr0[0 .. 24] matr1[0 .. 24] .. matr11[0 .. 24] => f0 NORM
605 // matr0[0 .. 24] matr1[0 .. 24] .. matr22[0 .. 24] => f0 BURST, SBM
605 // matr0[0 .. 24] matr1[0 .. 24] .. matr22[0 .. 24] => f0 BURST, SBM
606
606
607 int frequencyBin;
607 int frequencyBin;
608 int asmComponent;
608 int asmComponent;
609 int offsetASM;
609 int offsetASM;
610 int offsetCompressed;
610 int offsetCompressed;
611 int offsetFBin;
611 int offsetFBin;
612 int fBinMask;
612 int fBinMask;
613 int k;
613 int k;
614
614
615 // BUILD DATA
615 // BUILD DATA
616 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
616 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
617 {
617 {
618 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
618 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
619 {
619 {
620 offsetCompressed = // NO TIME OFFSET
620 offsetCompressed = // NO TIME OFFSET
621 frequencyBin * NB_VALUES_PER_SM
621 frequencyBin * NB_VALUES_PER_SM
622 + asmComponent;
622 + asmComponent;
623 offsetASM = // NO TIME OFFSET
623 offsetASM = // NO TIME OFFSET
624 asmComponent * NB_BINS_PER_SM
624 asmComponent * NB_BINS_PER_SM
625 + ASMIndexStart
625 + ASMIndexStart
626 + frequencyBin * nbBinsToAverage;
626 + frequencyBin * nbBinsToAverage;
627 offsetFBin = ASMIndexStart
627 offsetFBin = ASMIndexStart
628 + frequencyBin * nbBinsToAverage;
628 + frequencyBin * nbBinsToAverage;
629 compressed_spec_mat[ offsetCompressed ] = 0;
629 compressed_spec_mat[ offsetCompressed ] = 0;
630 for ( k = 0; k < nbBinsToAverage; k++ )
630 for ( k = 0; k < nbBinsToAverage; k++ )
631 {
631 {
632 fBinMask = getFBinMask( offsetFBin + k );
632 fBinMask = getFBinMask( offsetFBin + k );
633 compressed_spec_mat[offsetCompressed ] =
633 compressed_spec_mat[offsetCompressed ] =
634 ( compressed_spec_mat[ offsetCompressed ]
634 ( compressed_spec_mat[ offsetCompressed ]
635 + averaged_spec_mat[ offsetASM + k ] * fBinMask );
635 + averaged_spec_mat[ offsetASM + k ] * fBinMask );
636 }
636 }
637 compressed_spec_mat[ offsetCompressed ] =
637 compressed_spec_mat[ offsetCompressed ] =
638 compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
638 compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
639 }
639 }
640 }
640 }
641
641
642 }
642 }
643
643
644 int getFBinMask( int index )
644 int getFBinMask( int index )
645 {
645 {
646 unsigned int indexInChar;
646 unsigned int indexInChar;
647 unsigned int indexInTheChar;
647 unsigned int indexInTheChar;
648 int fbin;
648 int fbin;
649
649
650 indexInChar = index >> 3;
650 indexInChar = index >> 3;
651 indexInTheChar = index - indexInChar * 8;
651 indexInTheChar = index - indexInChar * 8;
652
652
653 fbin = (int) ((parameter_dump_packet.sy_lfr_fbins_f0_word1[ NB_BYTES_PER_FREQ_MASK - 1 - indexInChar] >> indexInTheChar) & 0x1);
653 fbin = (int) ((parameter_dump_packet.sy_lfr_fbins_f0_word1[ NB_BYTES_PER_FREQ_MASK - 1 - indexInChar] >> indexInTheChar) & 0x1);
654
654
655 return fbin;
655 return fbin;
656 }
656 }
657
658 void init_kcoeff_sbm_from_kcoeff_norm(float *input_kcoeff, float *output_kcoeff, unsigned char nb_bins_norm)
659 {
660 unsigned char bin;
661 unsigned char kcoeff;
662
663 for (bin=0; bin<nb_bins_norm; bin++)
664 {
665 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
666 {
667 output_kcoeff[ (bin*NB_K_COEFF_PER_BIN + kcoeff)*2 ] = input_kcoeff[ bin*NB_K_COEFF_PER_BIN + kcoeff ];
668 output_kcoeff[ (bin*NB_K_COEFF_PER_BIN + kcoeff)*2 + 1 ] = input_kcoeff[ bin*NB_K_COEFF_PER_BIN + kcoeff ];
669 }
670 }
671 }
@@ -1,1142 +1,1172
1 /** Functions to load and dump parameters in the LFR registers.
1 /** Functions to load and dump parameters in the LFR registers.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TC related to parameter loading and dumping.\n
6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 * TC_LFR_LOAD_COMMON_PAR\n
7 * TC_LFR_LOAD_COMMON_PAR\n
8 * TC_LFR_LOAD_NORMAL_PAR\n
8 * TC_LFR_LOAD_NORMAL_PAR\n
9 * TC_LFR_LOAD_BURST_PAR\n
9 * TC_LFR_LOAD_BURST_PAR\n
10 * TC_LFR_LOAD_SBM1_PAR\n
10 * TC_LFR_LOAD_SBM1_PAR\n
11 * TC_LFR_LOAD_SBM2_PAR\n
11 * TC_LFR_LOAD_SBM2_PAR\n
12 *
12 *
13 */
13 */
14
14
15 #include "tc_load_dump_parameters.h"
15 #include "tc_load_dump_parameters.h"
16
16
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
19 ring_node kcoefficient_node_1;
19 ring_node kcoefficient_node_1;
20 ring_node kcoefficient_node_2;
20 ring_node kcoefficient_node_2;
21
21
22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 {
23 {
24 /** This function updates the LFR registers with the incoming common parameters.
24 /** This function updates the LFR registers with the incoming common parameters.
25 *
25 *
26 * @param TC points to the TeleCommand packet that is being processed
26 * @param TC points to the TeleCommand packet that is being processed
27 *
27 *
28 *
28 *
29 */
29 */
30
30
31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 set_wfp_data_shaping( );
33 set_wfp_data_shaping( );
34 return LFR_SUCCESSFUL;
34 return LFR_SUCCESSFUL;
35 }
35 }
36
36
37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 {
38 {
39 /** This function updates the LFR registers with the incoming normal parameters.
39 /** This function updates the LFR registers with the incoming normal parameters.
40 *
40 *
41 * @param TC points to the TeleCommand packet that is being processed
41 * @param TC points to the TeleCommand packet that is being processed
42 * @param queue_id is the id of the queue which handles TM related to this execution step
42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 *
43 *
44 */
44 */
45
45
46 int result;
46 int result;
47 int flag;
47 int flag;
48 rtems_status_code status;
48 rtems_status_code status;
49
49
50 flag = LFR_SUCCESSFUL;
50 flag = LFR_SUCCESSFUL;
51
51
52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 flag = LFR_DEFAULT;
55 flag = LFR_DEFAULT;
56 }
56 }
57
57
58 // CHECK THE PARAMETERS SET CONSISTENCY
58 // CHECK THE PARAMETERS SET CONSISTENCY
59 if (flag == LFR_SUCCESSFUL)
59 if (flag == LFR_SUCCESSFUL)
60 {
60 {
61 flag = check_common_par_consistency( TC, queue_id );
61 flag = check_common_par_consistency( TC, queue_id );
62 }
62 }
63
63
64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 if (flag == LFR_SUCCESSFUL)
65 if (flag == LFR_SUCCESSFUL)
66 {
66 {
67 result = set_sy_lfr_n_swf_l( TC );
67 result = set_sy_lfr_n_swf_l( TC );
68 result = set_sy_lfr_n_swf_p( TC );
68 result = set_sy_lfr_n_swf_p( TC );
69 result = set_sy_lfr_n_bp_p0( TC );
69 result = set_sy_lfr_n_bp_p0( TC );
70 result = set_sy_lfr_n_bp_p1( TC );
70 result = set_sy_lfr_n_bp_p1( TC );
71 result = set_sy_lfr_n_asm_p( TC );
71 result = set_sy_lfr_n_asm_p( TC );
72 result = set_sy_lfr_n_cwf_long_f3( TC );
72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 }
73 }
74
74
75 return flag;
75 return flag;
76 }
76 }
77
77
78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 {
79 {
80 /** This function updates the LFR registers with the incoming burst parameters.
80 /** This function updates the LFR registers with the incoming burst parameters.
81 *
81 *
82 * @param TC points to the TeleCommand packet that is being processed
82 * @param TC points to the TeleCommand packet that is being processed
83 * @param queue_id is the id of the queue which handles TM related to this execution step
83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 *
84 *
85 */
85 */
86
86
87 int flag;
87 int flag;
88 rtems_status_code status;
88 rtems_status_code status;
89 unsigned char sy_lfr_b_bp_p0;
89 unsigned char sy_lfr_b_bp_p0;
90 unsigned char sy_lfr_b_bp_p1;
90 unsigned char sy_lfr_b_bp_p1;
91 float aux;
91 float aux;
92
92
93 flag = LFR_SUCCESSFUL;
93 flag = LFR_SUCCESSFUL;
94
94
95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 flag = LFR_DEFAULT;
97 flag = LFR_DEFAULT;
98 }
98 }
99
99
100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102
102
103 // sy_lfr_b_bp_p0
103 // sy_lfr_b_bp_p0
104 if (flag == LFR_SUCCESSFUL)
104 if (flag == LFR_SUCCESSFUL)
105 {
105 {
106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 {
107 {
108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
109 flag = WRONG_APP_DATA;
109 flag = WRONG_APP_DATA;
110 }
110 }
111 }
111 }
112 // sy_lfr_b_bp_p1
112 // sy_lfr_b_bp_p1
113 if (flag == LFR_SUCCESSFUL)
113 if (flag == LFR_SUCCESSFUL)
114 {
114 {
115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 {
116 {
117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1+10, sy_lfr_b_bp_p1 );
117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1+10, sy_lfr_b_bp_p1 );
118 flag = WRONG_APP_DATA;
118 flag = WRONG_APP_DATA;
119 }
119 }
120 }
120 }
121 //****************************************************************
121 //****************************************************************
122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 if (flag == LFR_SUCCESSFUL)
123 if (flag == LFR_SUCCESSFUL)
124 {
124 {
125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 if (aux > FLOAT_EQUAL_ZERO)
128 if (aux > FLOAT_EQUAL_ZERO)
129 {
129 {
130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
131 flag = LFR_DEFAULT;
131 flag = LFR_DEFAULT;
132 }
132 }
133 }
133 }
134
134
135 // SET HTE PARAMETERS
135 // SET HTE PARAMETERS
136 if (flag == LFR_SUCCESSFUL)
136 if (flag == LFR_SUCCESSFUL)
137 {
137 {
138 flag = set_sy_lfr_b_bp_p0( TC );
138 flag = set_sy_lfr_b_bp_p0( TC );
139 flag = set_sy_lfr_b_bp_p1( TC );
139 flag = set_sy_lfr_b_bp_p1( TC );
140 }
140 }
141
141
142 return flag;
142 return flag;
143 }
143 }
144
144
145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 {
146 {
147 /** This function updates the LFR registers with the incoming sbm1 parameters.
147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 *
148 *
149 * @param TC points to the TeleCommand packet that is being processed
149 * @param TC points to the TeleCommand packet that is being processed
150 * @param queue_id is the id of the queue which handles TM related to this execution step
150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 *
151 *
152 */
152 */
153
153
154 int flag;
154 int flag;
155 rtems_status_code status;
155 rtems_status_code status;
156 unsigned char sy_lfr_s1_bp_p0;
156 unsigned char sy_lfr_s1_bp_p0;
157 unsigned char sy_lfr_s1_bp_p1;
157 unsigned char sy_lfr_s1_bp_p1;
158 float aux;
158 float aux;
159
159
160 flag = LFR_SUCCESSFUL;
160 flag = LFR_SUCCESSFUL;
161
161
162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 flag = LFR_DEFAULT;
164 flag = LFR_DEFAULT;
165 }
165 }
166
166
167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169
169
170 // sy_lfr_s1_bp_p0
170 // sy_lfr_s1_bp_p0
171 if (flag == LFR_SUCCESSFUL)
171 if (flag == LFR_SUCCESSFUL)
172 {
172 {
173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 {
174 {
175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
176 flag = WRONG_APP_DATA;
176 flag = WRONG_APP_DATA;
177 }
177 }
178 }
178 }
179 // sy_lfr_s1_bp_p1
179 // sy_lfr_s1_bp_p1
180 if (flag == LFR_SUCCESSFUL)
180 if (flag == LFR_SUCCESSFUL)
181 {
181 {
182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 {
183 {
184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1+10, sy_lfr_s1_bp_p1 );
184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1+10, sy_lfr_s1_bp_p1 );
185 flag = WRONG_APP_DATA;
185 flag = WRONG_APP_DATA;
186 }
186 }
187 }
187 }
188 //******************************************************************
188 //******************************************************************
189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 if (flag == LFR_SUCCESSFUL)
190 if (flag == LFR_SUCCESSFUL)
191 {
191 {
192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
193 if (aux > FLOAT_EQUAL_ZERO)
193 if (aux > FLOAT_EQUAL_ZERO)
194 {
194 {
195 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
195 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
196 flag = LFR_DEFAULT;
196 flag = LFR_DEFAULT;
197 }
197 }
198 }
198 }
199
199
200 // SET THE PARAMETERS
200 // SET THE PARAMETERS
201 if (flag == LFR_SUCCESSFUL)
201 if (flag == LFR_SUCCESSFUL)
202 {
202 {
203 flag = set_sy_lfr_s1_bp_p0( TC );
203 flag = set_sy_lfr_s1_bp_p0( TC );
204 flag = set_sy_lfr_s1_bp_p1( TC );
204 flag = set_sy_lfr_s1_bp_p1( TC );
205 }
205 }
206
206
207 return flag;
207 return flag;
208 }
208 }
209
209
210 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
210 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
211 {
211 {
212 /** This function updates the LFR registers with the incoming sbm2 parameters.
212 /** This function updates the LFR registers with the incoming sbm2 parameters.
213 *
213 *
214 * @param TC points to the TeleCommand packet that is being processed
214 * @param TC points to the TeleCommand packet that is being processed
215 * @param queue_id is the id of the queue which handles TM related to this execution step
215 * @param queue_id is the id of the queue which handles TM related to this execution step
216 *
216 *
217 */
217 */
218
218
219 int flag;
219 int flag;
220 rtems_status_code status;
220 rtems_status_code status;
221 unsigned char sy_lfr_s2_bp_p0;
221 unsigned char sy_lfr_s2_bp_p0;
222 unsigned char sy_lfr_s2_bp_p1;
222 unsigned char sy_lfr_s2_bp_p1;
223 float aux;
223 float aux;
224
224
225 flag = LFR_SUCCESSFUL;
225 flag = LFR_SUCCESSFUL;
226
226
227 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
227 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
228 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
228 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
229 flag = LFR_DEFAULT;
229 flag = LFR_DEFAULT;
230 }
230 }
231
231
232 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
232 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
233 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
233 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
234
234
235 // sy_lfr_s2_bp_p0
235 // sy_lfr_s2_bp_p0
236 if (flag == LFR_SUCCESSFUL)
236 if (flag == LFR_SUCCESSFUL)
237 {
237 {
238 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
238 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
239 {
239 {
240 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
240 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
241 flag = WRONG_APP_DATA;
241 flag = WRONG_APP_DATA;
242 }
242 }
243 }
243 }
244 // sy_lfr_s2_bp_p1
244 // sy_lfr_s2_bp_p1
245 if (flag == LFR_SUCCESSFUL)
245 if (flag == LFR_SUCCESSFUL)
246 {
246 {
247 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
247 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
248 {
248 {
249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1+10, sy_lfr_s2_bp_p1 );
249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1+10, sy_lfr_s2_bp_p1 );
250 flag = WRONG_APP_DATA;
250 flag = WRONG_APP_DATA;
251 }
251 }
252 }
252 }
253 //******************************************************************
253 //******************************************************************
254 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
254 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
255 if (flag == LFR_SUCCESSFUL)
255 if (flag == LFR_SUCCESSFUL)
256 {
256 {
257 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
257 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
258 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
258 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
259 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
259 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
260 if (aux > FLOAT_EQUAL_ZERO)
260 if (aux > FLOAT_EQUAL_ZERO)
261 {
261 {
262 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
262 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
263 flag = LFR_DEFAULT;
263 flag = LFR_DEFAULT;
264 }
264 }
265 }
265 }
266
266
267 // SET THE PARAMETERS
267 // SET THE PARAMETERS
268 if (flag == LFR_SUCCESSFUL)
268 if (flag == LFR_SUCCESSFUL)
269 {
269 {
270 flag = set_sy_lfr_s2_bp_p0( TC );
270 flag = set_sy_lfr_s2_bp_p0( TC );
271 flag = set_sy_lfr_s2_bp_p1( TC );
271 flag = set_sy_lfr_s2_bp_p1( TC );
272 }
272 }
273
273
274 return flag;
274 return flag;
275 }
275 }
276
276
277 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
277 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
278 {
278 {
279 /** This function updates the LFR registers with the incoming sbm2 parameters.
279 /** This function updates the LFR registers with the incoming sbm2 parameters.
280 *
280 *
281 * @param TC points to the TeleCommand packet that is being processed
281 * @param TC points to the TeleCommand packet that is being processed
282 * @param queue_id is the id of the queue which handles TM related to this execution step
282 * @param queue_id is the id of the queue which handles TM related to this execution step
283 *
283 *
284 */
284 */
285
285
286 int flag;
286 int flag;
287
287
288 flag = LFR_DEFAULT;
288 flag = LFR_DEFAULT;
289
289
290 flag = set_sy_lfr_kcoeff( TC, queue_id );
290 flag = set_sy_lfr_kcoeff( TC, queue_id );
291
291
292 return flag;
292 return flag;
293 }
293 }
294
294
295 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
295 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
296 {
296 {
297 /** This function updates the LFR registers with the incoming sbm2 parameters.
297 /** This function updates the LFR registers with the incoming sbm2 parameters.
298 *
298 *
299 * @param TC points to the TeleCommand packet that is being processed
299 * @param TC points to the TeleCommand packet that is being processed
300 * @param queue_id is the id of the queue which handles TM related to this execution step
300 * @param queue_id is the id of the queue which handles TM related to this execution step
301 *
301 *
302 */
302 */
303
303
304 int flag;
304 int flag;
305
305
306 flag = LFR_DEFAULT;
306 flag = LFR_DEFAULT;
307
307
308 flag = set_sy_lfr_fbins( TC );
308 flag = set_sy_lfr_fbins( TC );
309
309
310 return flag;
310 return flag;
311 }
311 }
312
312
313 void printKCoefficients(unsigned int freq, unsigned int bin, float *k_coeff)
313 void printKCoefficients(unsigned int freq, unsigned int bin, float *k_coeff)
314 {
314 {
315 printf("freq = %d *** bin = %d *** (0) %f *** (1) %f *** (2) %f *** (3) %f *** (4) %f\n",
315 printf("freq = %d *** bin = %d *** (0) %f *** (1) %f *** (2) %f *** (3) %f *** (4) %f\n",
316 freq,
316 freq,
317 bin,
317 bin,
318 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 0 ],
318 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 0 ],
319 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 1 ],
319 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 1 ],
320 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 2 ],
320 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 2 ],
321 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 3 ],
321 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 3 ],
322 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 4 ]);
322 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 4 ]);
323 }
323 }
324
324
325 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
325 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
326 {
326 {
327 /** This function updates the LFR registers with the incoming sbm2 parameters.
327 /** This function updates the LFR registers with the incoming sbm2 parameters.
328 *
328 *
329 * @param TC points to the TeleCommand packet that is being processed
329 * @param TC points to the TeleCommand packet that is being processed
330 * @param queue_id is the id of the queue which handles TM related to this execution step
330 * @param queue_id is the id of the queue which handles TM related to this execution step
331 *
331 *
332 */
332 */
333
333
334 unsigned int address;
334 unsigned int address;
335 rtems_status_code status;
335 rtems_status_code status;
336 unsigned int freq;
336 unsigned int freq;
337 unsigned int bin;
337 unsigned int bin;
338 unsigned int coeff;
338 unsigned int coeff;
339 unsigned char *kCoeffPtr;
339 unsigned char *kCoeffPtr;
340 unsigned char *kCoeffDumpPtr;
340 unsigned char *kCoeffDumpPtr;
341
341
342 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
342 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
343 // F0 => 11 bins
343 // F0 => 11 bins
344 // F1 => 13 bins
344 // F1 => 13 bins
345 // F2 => 12 bins
345 // F2 => 12 bins
346 // 36 bins to dump in two packets (30 bins max per packet)
346 // 36 bins to dump in two packets (30 bins max per packet)
347
347
348 //*********
348 //*********
349 // PACKET 1
349 // PACKET 1
350 // 11 F0 bins, 13 F1 bins and 6 F2 bins
350 // 11 F0 bins, 13 F1 bins and 6 F2 bins
351 kcoefficients_dump_1.packetSequenceControl[0] = (unsigned char) (sequenceCounterParameterDump >> 8);
351 kcoefficients_dump_1.packetSequenceControl[0] = (unsigned char) (sequenceCounterParameterDump >> 8);
352 kcoefficients_dump_1.packetSequenceControl[1] = (unsigned char) (sequenceCounterParameterDump );
352 kcoefficients_dump_1.packetSequenceControl[1] = (unsigned char) (sequenceCounterParameterDump );
353 increment_seq_counter( &sequenceCounterParameterDump );
353 increment_seq_counter( &sequenceCounterParameterDump );
354 for( freq=0;
354 for( freq=0;
355 freq<NB_BINS_COMPRESSED_SM_F0;
355 freq<NB_BINS_COMPRESSED_SM_F0;
356 freq++ )
356 freq++ )
357 {
357 {
358 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1] = freq;
358 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1] = freq;
359 bin = freq;
359 bin = freq;
360 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
360 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
361 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
361 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
362 {
362 {
363 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
363 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
364 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
364 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
365 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
365 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
366 }
366 }
367 }
367 }
368 for( freq=NB_BINS_COMPRESSED_SM_F0;
368 for( freq=NB_BINS_COMPRESSED_SM_F0;
369 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
369 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
370 freq++ )
370 freq++ )
371 {
371 {
372 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
372 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
373 bin = freq - NB_BINS_COMPRESSED_SM_F0;
373 bin = freq - NB_BINS_COMPRESSED_SM_F0;
374 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
374 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
375 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
375 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
376 {
376 {
377 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
377 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
378 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
378 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
379 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
379 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
380 }
380 }
381 }
381 }
382 for( freq=(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
382 for( freq=(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
383 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1+6);
383 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1+6);
384 freq++ )
384 freq++ )
385 {
385 {
386 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
386 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
387 bin = freq - (NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
387 bin = freq - (NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
388 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
388 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
389 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
389 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
390 {
390 {
391 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
391 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
392 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
392 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
393 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
393 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
394 }
394 }
395 }
395 }
396 kcoefficients_dump_1.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
396 kcoefficients_dump_1.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
397 kcoefficients_dump_1.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
397 kcoefficients_dump_1.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
398 kcoefficients_dump_1.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
398 kcoefficients_dump_1.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
399 kcoefficients_dump_1.time[3] = (unsigned char) (time_management_regs->coarse_time);
399 kcoefficients_dump_1.time[3] = (unsigned char) (time_management_regs->coarse_time);
400 kcoefficients_dump_1.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
400 kcoefficients_dump_1.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
401 kcoefficients_dump_1.time[5] = (unsigned char) (time_management_regs->fine_time);
401 kcoefficients_dump_1.time[5] = (unsigned char) (time_management_regs->fine_time);
402 // SEND DATA
402 // SEND DATA
403 kcoefficient_node_1.status = 1;
403 kcoefficient_node_1.status = 1;
404 address = (unsigned int) &kcoefficient_node_1;
404 address = (unsigned int) &kcoefficient_node_1;
405 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
405 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
406 if (status != RTEMS_SUCCESSFUL) {
406 if (status != RTEMS_SUCCESSFUL) {
407 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
407 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
408 }
408 }
409
409
410 //********
410 //********
411 // PACKET 2
411 // PACKET 2
412 // 6 F2 bins
412 // 6 F2 bins
413 kcoefficients_dump_2.packetSequenceControl[0] = (unsigned char) (sequenceCounterParameterDump >> 8);
413 kcoefficients_dump_2.packetSequenceControl[0] = (unsigned char) (sequenceCounterParameterDump >> 8);
414 kcoefficients_dump_2.packetSequenceControl[1] = (unsigned char) (sequenceCounterParameterDump );
414 kcoefficients_dump_2.packetSequenceControl[1] = (unsigned char) (sequenceCounterParameterDump );
415 increment_seq_counter( &sequenceCounterParameterDump );
415 increment_seq_counter( &sequenceCounterParameterDump );
416 for( freq=0; freq<6; freq++ )
416 for( freq=0; freq<6; freq++ )
417 {
417 {
418 kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + 6 + freq;
418 kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + 6 + freq;
419 bin = freq + 6;
419 bin = freq + 6;
420 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
420 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
421 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
421 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
422 {
422 {
423 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
423 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
424 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
424 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
425 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
425 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
426 }
426 }
427 }
427 }
428 kcoefficients_dump_2.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
428 kcoefficients_dump_2.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
429 kcoefficients_dump_2.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
429 kcoefficients_dump_2.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
430 kcoefficients_dump_2.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
430 kcoefficients_dump_2.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
431 kcoefficients_dump_2.time[3] = (unsigned char) (time_management_regs->coarse_time);
431 kcoefficients_dump_2.time[3] = (unsigned char) (time_management_regs->coarse_time);
432 kcoefficients_dump_2.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
432 kcoefficients_dump_2.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
433 kcoefficients_dump_2.time[5] = (unsigned char) (time_management_regs->fine_time);
433 kcoefficients_dump_2.time[5] = (unsigned char) (time_management_regs->fine_time);
434 // SEND DATA
434 // SEND DATA
435 kcoefficient_node_2.status = 1;
435 kcoefficient_node_2.status = 1;
436 address = (unsigned int) &kcoefficient_node_2;
436 address = (unsigned int) &kcoefficient_node_2;
437 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
437 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
438 if (status != RTEMS_SUCCESSFUL) {
438 if (status != RTEMS_SUCCESSFUL) {
439 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
439 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
440 }
440 }
441
441
442 return status;
442 return status;
443 }
443 }
444
444
445 int action_dump_par( rtems_id queue_id )
445 int action_dump_par( rtems_id queue_id )
446 {
446 {
447 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
447 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
448 *
448 *
449 * @param queue_id is the id of the queue which handles TM related to this execution step.
449 * @param queue_id is the id of the queue which handles TM related to this execution step.
450 *
450 *
451 * @return RTEMS directive status codes:
451 * @return RTEMS directive status codes:
452 * - RTEMS_SUCCESSFUL - message sent successfully
452 * - RTEMS_SUCCESSFUL - message sent successfully
453 * - RTEMS_INVALID_ID - invalid queue id
453 * - RTEMS_INVALID_ID - invalid queue id
454 * - RTEMS_INVALID_SIZE - invalid message size
454 * - RTEMS_INVALID_SIZE - invalid message size
455 * - RTEMS_INVALID_ADDRESS - buffer is NULL
455 * - RTEMS_INVALID_ADDRESS - buffer is NULL
456 * - RTEMS_UNSATISFIED - out of message buffers
456 * - RTEMS_UNSATISFIED - out of message buffers
457 * - RTEMS_TOO_MANY - queue s limit has been reached
457 * - RTEMS_TOO_MANY - queue s limit has been reached
458 *
458 *
459 */
459 */
460
460
461 int status;
461 int status;
462
462
463 // UPDATE TIME
463 // UPDATE TIME
464 parameter_dump_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterParameterDump >> 8);
464 parameter_dump_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterParameterDump >> 8);
465 parameter_dump_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterParameterDump );
465 parameter_dump_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterParameterDump );
466 increment_seq_counter( &sequenceCounterParameterDump );
466 increment_seq_counter( &sequenceCounterParameterDump );
467
467
468 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
468 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
469 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
469 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
470 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
470 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
471 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
471 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
472 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
472 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
473 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
473 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
474 // SEND DATA
474 // SEND DATA
475 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
475 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
476 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
476 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
477 if (status != RTEMS_SUCCESSFUL) {
477 if (status != RTEMS_SUCCESSFUL) {
478 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
478 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
479 }
479 }
480
480
481 return status;
481 return status;
482 }
482 }
483
483
484 //***********************
484 //***********************
485 // NORMAL MODE PARAMETERS
485 // NORMAL MODE PARAMETERS
486
486
487 int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
487 int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
488 {
488 {
489 unsigned char msb;
489 unsigned char msb;
490 unsigned char lsb;
490 unsigned char lsb;
491 int flag;
491 int flag;
492 float aux;
492 float aux;
493 rtems_status_code status;
493 rtems_status_code status;
494
494
495 unsigned int sy_lfr_n_swf_l;
495 unsigned int sy_lfr_n_swf_l;
496 unsigned int sy_lfr_n_swf_p;
496 unsigned int sy_lfr_n_swf_p;
497 unsigned int sy_lfr_n_asm_p;
497 unsigned int sy_lfr_n_asm_p;
498 unsigned char sy_lfr_n_bp_p0;
498 unsigned char sy_lfr_n_bp_p0;
499 unsigned char sy_lfr_n_bp_p1;
499 unsigned char sy_lfr_n_bp_p1;
500 unsigned char sy_lfr_n_cwf_long_f3;
500 unsigned char sy_lfr_n_cwf_long_f3;
501
501
502 flag = LFR_SUCCESSFUL;
502 flag = LFR_SUCCESSFUL;
503
503
504 //***************
504 //***************
505 // get parameters
505 // get parameters
506 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
506 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
507 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
507 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
508 sy_lfr_n_swf_l = msb * 256 + lsb;
508 sy_lfr_n_swf_l = msb * 256 + lsb;
509
509
510 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
510 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
511 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
511 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
512 sy_lfr_n_swf_p = msb * 256 + lsb;
512 sy_lfr_n_swf_p = msb * 256 + lsb;
513
513
514 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
514 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
515 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
515 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
516 sy_lfr_n_asm_p = msb * 256 + lsb;
516 sy_lfr_n_asm_p = msb * 256 + lsb;
517
517
518 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
518 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
519
519
520 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
520 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
521
521
522 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
522 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
523
523
524 //******************
524 //******************
525 // check consistency
525 // check consistency
526 // sy_lfr_n_swf_l
526 // sy_lfr_n_swf_l
527 if (sy_lfr_n_swf_l != 2048)
527 if (sy_lfr_n_swf_l != 2048)
528 {
528 {
529 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, sy_lfr_n_swf_l );
529 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, sy_lfr_n_swf_l );
530 flag = WRONG_APP_DATA;
530 flag = WRONG_APP_DATA;
531 }
531 }
532 // sy_lfr_n_swf_p
532 // sy_lfr_n_swf_p
533 if (flag == LFR_SUCCESSFUL)
533 if (flag == LFR_SUCCESSFUL)
534 {
534 {
535 if ( sy_lfr_n_swf_p < 16 )
535 if ( sy_lfr_n_swf_p < 16 )
536 {
536 {
537 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, sy_lfr_n_swf_p );
537 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, sy_lfr_n_swf_p );
538 flag = WRONG_APP_DATA;
538 flag = WRONG_APP_DATA;
539 }
539 }
540 }
540 }
541 // sy_lfr_n_bp_p0
541 // sy_lfr_n_bp_p0
542 if (flag == LFR_SUCCESSFUL)
542 if (flag == LFR_SUCCESSFUL)
543 {
543 {
544 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
544 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
545 {
545 {
546 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
546 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
547 flag = WRONG_APP_DATA;
547 flag = WRONG_APP_DATA;
548 }
548 }
549 }
549 }
550 // sy_lfr_n_asm_p
550 // sy_lfr_n_asm_p
551 if (flag == LFR_SUCCESSFUL)
551 if (flag == LFR_SUCCESSFUL)
552 {
552 {
553 if (sy_lfr_n_asm_p == 0)
553 if (sy_lfr_n_asm_p == 0)
554 {
554 {
555 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
555 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
556 flag = WRONG_APP_DATA;
556 flag = WRONG_APP_DATA;
557 }
557 }
558 }
558 }
559 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
559 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
560 if (flag == LFR_SUCCESSFUL)
560 if (flag == LFR_SUCCESSFUL)
561 {
561 {
562 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
562 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
563 if (aux > FLOAT_EQUAL_ZERO)
563 if (aux > FLOAT_EQUAL_ZERO)
564 {
564 {
565 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
565 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
566 flag = WRONG_APP_DATA;
566 flag = WRONG_APP_DATA;
567 }
567 }
568 }
568 }
569 // sy_lfr_n_bp_p1
569 // sy_lfr_n_bp_p1
570 if (flag == LFR_SUCCESSFUL)
570 if (flag == LFR_SUCCESSFUL)
571 {
571 {
572 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
572 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
573 {
573 {
574 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
574 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
575 flag = WRONG_APP_DATA;
575 flag = WRONG_APP_DATA;
576 }
576 }
577 }
577 }
578 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
578 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
579 if (flag == LFR_SUCCESSFUL)
579 if (flag == LFR_SUCCESSFUL)
580 {
580 {
581 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
581 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
582 if (aux > FLOAT_EQUAL_ZERO)
582 if (aux > FLOAT_EQUAL_ZERO)
583 {
583 {
584 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
584 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
585 flag = LFR_DEFAULT;
585 flag = LFR_DEFAULT;
586 }
586 }
587 }
587 }
588 // sy_lfr_n_cwf_long_f3
588 // sy_lfr_n_cwf_long_f3
589
589
590 return flag;
590 return flag;
591 }
591 }
592
592
593 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
593 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
594 {
594 {
595 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
595 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
596 *
596 *
597 * @param TC points to the TeleCommand packet that is being processed
597 * @param TC points to the TeleCommand packet that is being processed
598 * @param queue_id is the id of the queue which handles TM related to this execution step
598 * @param queue_id is the id of the queue which handles TM related to this execution step
599 *
599 *
600 */
600 */
601
601
602 int result;
602 int result;
603
603
604 result = LFR_SUCCESSFUL;
604 result = LFR_SUCCESSFUL;
605
605
606 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
606 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
607 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
607 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
608
608
609 return result;
609 return result;
610 }
610 }
611
611
612 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
612 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
613 {
613 {
614 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
614 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
615 *
615 *
616 * @param TC points to the TeleCommand packet that is being processed
616 * @param TC points to the TeleCommand packet that is being processed
617 * @param queue_id is the id of the queue which handles TM related to this execution step
617 * @param queue_id is the id of the queue which handles TM related to this execution step
618 *
618 *
619 */
619 */
620
620
621 int result;
621 int result;
622
622
623 result = LFR_SUCCESSFUL;
623 result = LFR_SUCCESSFUL;
624
624
625 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
625 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
626 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
626 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
627
627
628 return result;
628 return result;
629 }
629 }
630
630
631 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
631 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
632 {
632 {
633 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
633 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
634 *
634 *
635 * @param TC points to the TeleCommand packet that is being processed
635 * @param TC points to the TeleCommand packet that is being processed
636 * @param queue_id is the id of the queue which handles TM related to this execution step
636 * @param queue_id is the id of the queue which handles TM related to this execution step
637 *
637 *
638 */
638 */
639
639
640 int result;
640 int result;
641
641
642 result = LFR_SUCCESSFUL;
642 result = LFR_SUCCESSFUL;
643
643
644 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
644 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
645 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
645 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
646
646
647 return result;
647 return result;
648 }
648 }
649
649
650 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
650 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
651 {
651 {
652 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
652 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
653 *
653 *
654 * @param TC points to the TeleCommand packet that is being processed
654 * @param TC points to the TeleCommand packet that is being processed
655 * @param queue_id is the id of the queue which handles TM related to this execution step
655 * @param queue_id is the id of the queue which handles TM related to this execution step
656 *
656 *
657 */
657 */
658
658
659 int status;
659 int status;
660
660
661 status = LFR_SUCCESSFUL;
661 status = LFR_SUCCESSFUL;
662
662
663 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
663 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
664
664
665 return status;
665 return status;
666 }
666 }
667
667
668 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
668 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
669 {
669 {
670 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
670 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
671 *
671 *
672 * @param TC points to the TeleCommand packet that is being processed
672 * @param TC points to the TeleCommand packet that is being processed
673 * @param queue_id is the id of the queue which handles TM related to this execution step
673 * @param queue_id is the id of the queue which handles TM related to this execution step
674 *
674 *
675 */
675 */
676
676
677 int status;
677 int status;
678
678
679 status = LFR_SUCCESSFUL;
679 status = LFR_SUCCESSFUL;
680
680
681 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
681 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
682
682
683 return status;
683 return status;
684 }
684 }
685
685
686 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
686 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
687 {
687 {
688 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
688 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
689 *
689 *
690 * @param TC points to the TeleCommand packet that is being processed
690 * @param TC points to the TeleCommand packet that is being processed
691 * @param queue_id is the id of the queue which handles TM related to this execution step
691 * @param queue_id is the id of the queue which handles TM related to this execution step
692 *
692 *
693 */
693 */
694
694
695 int status;
695 int status;
696
696
697 status = LFR_SUCCESSFUL;
697 status = LFR_SUCCESSFUL;
698
698
699 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
699 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
700
700
701 return status;
701 return status;
702 }
702 }
703
703
704 //**********************
704 //**********************
705 // BURST MODE PARAMETERS
705 // BURST MODE PARAMETERS
706 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
706 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
707 {
707 {
708 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
708 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
709 *
709 *
710 * @param TC points to the TeleCommand packet that is being processed
710 * @param TC points to the TeleCommand packet that is being processed
711 * @param queue_id is the id of the queue which handles TM related to this execution step
711 * @param queue_id is the id of the queue which handles TM related to this execution step
712 *
712 *
713 */
713 */
714
714
715 int status;
715 int status;
716
716
717 status = LFR_SUCCESSFUL;
717 status = LFR_SUCCESSFUL;
718
718
719 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
719 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
720
720
721 return status;
721 return status;
722 }
722 }
723
723
724 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
724 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
725 {
725 {
726 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
726 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
727 *
727 *
728 * @param TC points to the TeleCommand packet that is being processed
728 * @param TC points to the TeleCommand packet that is being processed
729 * @param queue_id is the id of the queue which handles TM related to this execution step
729 * @param queue_id is the id of the queue which handles TM related to this execution step
730 *
730 *
731 */
731 */
732
732
733 int status;
733 int status;
734
734
735 status = LFR_SUCCESSFUL;
735 status = LFR_SUCCESSFUL;
736
736
737 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
737 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
738
738
739 return status;
739 return status;
740 }
740 }
741
741
742 //*********************
742 //*********************
743 // SBM1 MODE PARAMETERS
743 // SBM1 MODE PARAMETERS
744 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
744 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
745 {
745 {
746 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
746 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
747 *
747 *
748 * @param TC points to the TeleCommand packet that is being processed
748 * @param TC points to the TeleCommand packet that is being processed
749 * @param queue_id is the id of the queue which handles TM related to this execution step
749 * @param queue_id is the id of the queue which handles TM related to this execution step
750 *
750 *
751 */
751 */
752
752
753 int status;
753 int status;
754
754
755 status = LFR_SUCCESSFUL;
755 status = LFR_SUCCESSFUL;
756
756
757 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
757 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
758
758
759 return status;
759 return status;
760 }
760 }
761
761
762 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
762 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
763 {
763 {
764 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
764 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
765 *
765 *
766 * @param TC points to the TeleCommand packet that is being processed
766 * @param TC points to the TeleCommand packet that is being processed
767 * @param queue_id is the id of the queue which handles TM related to this execution step
767 * @param queue_id is the id of the queue which handles TM related to this execution step
768 *
768 *
769 */
769 */
770
770
771 int status;
771 int status;
772
772
773 status = LFR_SUCCESSFUL;
773 status = LFR_SUCCESSFUL;
774
774
775 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
775 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
776
776
777 return status;
777 return status;
778 }
778 }
779
779
780 //*********************
780 //*********************
781 // SBM2 MODE PARAMETERS
781 // SBM2 MODE PARAMETERS
782 int set_sy_lfr_s2_bp_p0(ccsdsTelecommandPacket_t *TC)
782 int set_sy_lfr_s2_bp_p0(ccsdsTelecommandPacket_t *TC)
783 {
783 {
784 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
784 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
785 *
785 *
786 * @param TC points to the TeleCommand packet that is being processed
786 * @param TC points to the TeleCommand packet that is being processed
787 * @param queue_id is the id of the queue which handles TM related to this execution step
787 * @param queue_id is the id of the queue which handles TM related to this execution step
788 *
788 *
789 */
789 */
790
790
791 int status;
791 int status;
792
792
793 status = LFR_SUCCESSFUL;
793 status = LFR_SUCCESSFUL;
794
794
795 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
795 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
796
796
797 return status;
797 return status;
798 }
798 }
799
799
800 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
800 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
801 {
801 {
802 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
802 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
803 *
803 *
804 * @param TC points to the TeleCommand packet that is being processed
804 * @param TC points to the TeleCommand packet that is being processed
805 * @param queue_id is the id of the queue which handles TM related to this execution step
805 * @param queue_id is the id of the queue which handles TM related to this execution step
806 *
806 *
807 */
807 */
808
808
809 int status;
809 int status;
810
810
811 status = LFR_SUCCESSFUL;
811 status = LFR_SUCCESSFUL;
812
812
813 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
813 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
814
814
815 return status;
815 return status;
816 }
816 }
817
817
818 //*******************
818 //*******************
819 // TC_LFR_UPDATE_INFO
819 // TC_LFR_UPDATE_INFO
820 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
820 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
821 {
821 {
822 unsigned int status;
822 unsigned int status;
823
823
824 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
824 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
825 || (mode == LFR_MODE_BURST)
825 || (mode == LFR_MODE_BURST)
826 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
826 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
827 {
827 {
828 status = LFR_SUCCESSFUL;
828 status = LFR_SUCCESSFUL;
829 }
829 }
830 else
830 else
831 {
831 {
832 status = LFR_DEFAULT;
832 status = LFR_DEFAULT;
833 }
833 }
834
834
835 return status;
835 return status;
836 }
836 }
837
837
838 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
838 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
839 {
839 {
840 unsigned int status;
840 unsigned int status;
841
841
842 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
842 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
843 || (mode == TDS_MODE_BURST)
843 || (mode == TDS_MODE_BURST)
844 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
844 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
845 || (mode == TDS_MODE_LFM))
845 || (mode == TDS_MODE_LFM))
846 {
846 {
847 status = LFR_SUCCESSFUL;
847 status = LFR_SUCCESSFUL;
848 }
848 }
849 else
849 else
850 {
850 {
851 status = LFR_DEFAULT;
851 status = LFR_DEFAULT;
852 }
852 }
853
853
854 return status;
854 return status;
855 }
855 }
856
856
857 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
857 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
858 {
858 {
859 unsigned int status;
859 unsigned int status;
860
860
861 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
861 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
862 || (mode == THR_MODE_BURST))
862 || (mode == THR_MODE_BURST))
863 {
863 {
864 status = LFR_SUCCESSFUL;
864 status = LFR_SUCCESSFUL;
865 }
865 }
866 else
866 else
867 {
867 {
868 status = LFR_DEFAULT;
868 status = LFR_DEFAULT;
869 }
869 }
870
870
871 return status;
871 return status;
872 }
872 }
873
873
874 //***********
874 //***********
875 // FBINS MASK
875 // FBINS MASK
876
876
877 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
877 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
878 {
878 {
879 int status;
879 int status;
880 unsigned int k;
880 unsigned int k;
881 unsigned char *fbins_mask_dump;
881 unsigned char *fbins_mask_dump;
882 unsigned char *fbins_mask_TC;
882 unsigned char *fbins_mask_TC;
883
883
884 status = LFR_SUCCESSFUL;
884 status = LFR_SUCCESSFUL;
885
885
886 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
886 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
887 fbins_mask_TC = TC->dataAndCRC;
887 fbins_mask_TC = TC->dataAndCRC;
888
888
889 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
889 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
890 {
890 {
891 fbins_mask_dump[k] = fbins_mask_TC[k];
891 fbins_mask_dump[k] = fbins_mask_TC[k];
892 }
892 }
893 for (k=0; k < NB_FBINS_MASKS; k++)
893 for (k=0; k < NB_FBINS_MASKS; k++)
894 {
894 {
895 unsigned char *auxPtr;
895 unsigned char *auxPtr;
896 auxPtr = &parameter_dump_packet.sy_lfr_fbins_f0_word1[k*NB_BYTES_PER_FBINS_MASK];
896 auxPtr = &parameter_dump_packet.sy_lfr_fbins_f0_word1[k*NB_BYTES_PER_FBINS_MASK];
897 printf("%x %x %x %x\n", auxPtr[0], auxPtr[1], auxPtr[2], auxPtr[3]);
897 printf("%x %x %x %x\n", auxPtr[0], auxPtr[1], auxPtr[2], auxPtr[3]);
898 }
898 }
899
899
900
900
901 return status;
901 return status;
902 }
902 }
903
903
904 //**************
904 //**************
905 // KCOEFFICIENTS
905 // KCOEFFICIENTS
906 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
906 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
907 {
907 {
908 unsigned int i;
908 unsigned int kcoeff;
909 unsigned short sy_lfr_kcoeff_frequency;
909 unsigned short sy_lfr_kcoeff_frequency;
910 unsigned short bin;
910 unsigned short bin;
911 unsigned short *freqPtr;
911 unsigned short *freqPtr;
912 float *kcoeffPtr_norm;
912 float *kcoeffPtr_norm;
913 float *kcoeffPtr_sbm;
913 float *kcoeffPtr_sbm;
914 int status;
914 int status;
915 unsigned char *kcoeffLoadPtr;
915 unsigned char *kcoeffLoadPtr;
916 unsigned char *kcoeffNormPtr;
916 unsigned char *kcoeffNormPtr;
917 unsigned char *kcoeffSbmPtr_a;
917 unsigned char *kcoeffSbmPtr_a;
918 unsigned char *kcoeffSbmPtr_b;
918 unsigned char *kcoeffSbmPtr_b;
919
919
920 status = LFR_SUCCESSFUL;
920 status = LFR_SUCCESSFUL;
921
921
922 kcoeffPtr_norm = NULL;
922 kcoeffPtr_norm = NULL;
923 kcoeffPtr_sbm = NULL;
923 kcoeffPtr_sbm = NULL;
924 bin = 0;
924 bin = 0;
925
925
926 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
926 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
927 sy_lfr_kcoeff_frequency = *freqPtr;
927 sy_lfr_kcoeff_frequency = *freqPtr;
928
928
929 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
929 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
930 {
930 {
931 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
931 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
932 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 10,
932 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 10,
933 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY] );
933 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY] );
934 status = LFR_DEFAULT;
934 status = LFR_DEFAULT;
935 }
935 }
936 else
936 else
937 {
937 {
938 if ( ( sy_lfr_kcoeff_frequency >= 0 )
938 if ( ( sy_lfr_kcoeff_frequency >= 0 )
939 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
939 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
940 {
940 {
941 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
941 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
942 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
942 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
943 bin = sy_lfr_kcoeff_frequency;
943 bin = sy_lfr_kcoeff_frequency;
944 }
944 }
945 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
945 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
946 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
946 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
947 {
947 {
948 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
948 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
949 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
949 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
950 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
950 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
951 }
951 }
952 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
952 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
953 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
953 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
954 {
954 {
955 kcoeffPtr_norm = k_coeff_intercalib_f2;
955 kcoeffPtr_norm = k_coeff_intercalib_f2;
956 kcoeffPtr_sbm = NULL;
956 kcoeffPtr_sbm = NULL;
957 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
957 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
958 }
958 }
959 }
959 }
960
960
961 printf("in set_sy_lfr_kcoeff *** freq = %d, bin = %d\n", sy_lfr_kcoeff_frequency, bin);
961 printf("in set_sy_lfr_kcoeff *** freq = %d, bin = %d\n", sy_lfr_kcoeff_frequency, bin);
962
962
963 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
963 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
964 {
964 {
965 for (i=0; i<NB_K_COEFF_PER_BIN; i++)
965 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
966 {
966 {
967 // destination
967 // destination
968 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + i ];
968 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
969 // source
969 // source
970 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * i];
970 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
971 // copy source to destination
971 // copy source to destination
972 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
972 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
973 }
973 }
974 }
974 }
975
975
976 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
976 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
977 {
977 {
978 for (i=0; i<NB_K_COEFF_PER_BIN; i++)
978 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
979 {
979 {
980 // destination
980 // destination
981 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + i) * 2 ];
981 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 ];
982 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + i) * 2 + 1 ];
982 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 + 1 ];
983 // source
983 // source
984 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * i];
984 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
985 // copy source to destination
985 // copy source to destination
986 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
986 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
987 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
987 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
988 }
988 }
989 }
989 }
990
990
991 // print_k_coeff();
992
991 return status;
993 return status;
992 }
994 }
993
995
994 void copyFloatByChar( unsigned char *destination, unsigned char *source )
996 void copyFloatByChar( unsigned char *destination, unsigned char *source )
995 {
997 {
996 destination[0] = source[0];
998 destination[0] = source[0];
997 destination[1] = source[1];
999 destination[1] = source[1];
998 destination[2] = source[2];
1000 destination[2] = source[2];
999 destination[3] = source[3];
1001 destination[3] = source[3];
1000 }
1002 }
1001
1003
1002 //**********
1004 //**********
1003 // init dump
1005 // init dump
1004
1006
1005 void init_parameter_dump( void )
1007 void init_parameter_dump( void )
1006 {
1008 {
1007 /** This function initialize the parameter_dump_packet global variable with default values.
1009 /** This function initialize the parameter_dump_packet global variable with default values.
1008 *
1010 *
1009 */
1011 */
1010
1012
1011 unsigned int k;
1013 unsigned int k;
1012
1014
1013 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1015 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1014 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1016 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1015 parameter_dump_packet.reserved = CCSDS_RESERVED;
1017 parameter_dump_packet.reserved = CCSDS_RESERVED;
1016 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1018 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1017 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
1019 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
1018 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1020 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1019 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1021 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1020 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1022 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1021 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
1023 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
1022 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1024 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1023 // DATA FIELD HEADER
1025 // DATA FIELD HEADER
1024 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1026 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1025 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1027 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1026 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1028 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1027 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1029 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1028 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
1030 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
1029 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
1031 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
1030 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
1032 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
1031 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
1033 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
1032 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
1034 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
1033 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
1035 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
1034 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1036 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1035
1037
1036 //******************
1038 //******************
1037 // COMMON PARAMETERS
1039 // COMMON PARAMETERS
1038 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1040 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1039 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1041 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1040
1042
1041 //******************
1043 //******************
1042 // NORMAL PARAMETERS
1044 // NORMAL PARAMETERS
1043 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> 8);
1045 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> 8);
1044 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1046 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1045 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> 8);
1047 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> 8);
1046 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1048 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1047 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> 8);
1049 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> 8);
1048 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1050 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1049 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1051 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1050 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1052 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1051 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1053 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1052
1054
1053 //*****************
1055 //*****************
1054 // BURST PARAMETERS
1056 // BURST PARAMETERS
1055 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1057 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1056 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1058 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1057
1059
1058 //****************
1060 //****************
1059 // SBM1 PARAMETERS
1061 // SBM1 PARAMETERS
1060 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1062 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1061 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1063 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1062
1064
1063 //****************
1065 //****************
1064 // SBM2 PARAMETERS
1066 // SBM2 PARAMETERS
1065 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1067 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1066 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1068 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1067
1069
1068 //************
1070 //************
1069 // FBINS MASKS
1071 // FBINS MASKS
1070 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1072 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1071 {
1073 {
1072 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = 0xff;
1074 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = 0xff;
1073 }
1075 }
1074 }
1076 }
1075
1077
1076 void init_kcoefficients_dump( void )
1078 void init_kcoefficients_dump( void )
1077 {
1079 {
1078 init_kcoefficients_dump_packet( &kcoefficients_dump_1, 1, 30 );
1080 init_kcoefficients_dump_packet( &kcoefficients_dump_1, 1, 30 );
1079 init_kcoefficients_dump_packet( &kcoefficients_dump_2, 2, 6 );
1081 init_kcoefficients_dump_packet( &kcoefficients_dump_2, 2, 6 );
1080
1082
1081 kcoefficient_node_1.previous = NULL;
1083 kcoefficient_node_1.previous = NULL;
1082 kcoefficient_node_1.next = NULL;
1084 kcoefficient_node_1.next = NULL;
1083 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1085 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1084 kcoefficient_node_1.coarseTime = 0x00;
1086 kcoefficient_node_1.coarseTime = 0x00;
1085 kcoefficient_node_1.fineTime = 0x00;
1087 kcoefficient_node_1.fineTime = 0x00;
1086 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1088 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1087 kcoefficient_node_1.status = 0x00;
1089 kcoefficient_node_1.status = 0x00;
1088
1090
1089 kcoefficient_node_2.previous = NULL;
1091 kcoefficient_node_2.previous = NULL;
1090 kcoefficient_node_2.next = NULL;
1092 kcoefficient_node_2.next = NULL;
1091 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1093 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1092 kcoefficient_node_2.coarseTime = 0x00;
1094 kcoefficient_node_2.coarseTime = 0x00;
1093 kcoefficient_node_2.fineTime = 0x00;
1095 kcoefficient_node_2.fineTime = 0x00;
1094 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1096 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1095 kcoefficient_node_2.status = 0x00;
1097 kcoefficient_node_2.status = 0x00;
1096 }
1098 }
1097
1099
1098 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1100 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1099 {
1101 {
1100 unsigned int k;
1102 unsigned int k;
1101 unsigned int packetLength;
1103 unsigned int packetLength;
1102
1104
1103 packetLength = blk_nr * 130 + 20 - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1105 packetLength = blk_nr * 130 + 20 - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1104
1106
1105 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1107 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1106 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1108 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1107 kcoefficients_dump->reserved = CCSDS_RESERVED;
1109 kcoefficients_dump->reserved = CCSDS_RESERVED;
1108 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1110 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1109 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);;
1111 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);;
1110 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;;
1112 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;;
1111 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1113 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1112 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1114 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1113 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> 8);
1115 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> 8);
1114 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1116 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1115 // DATA FIELD HEADER
1117 // DATA FIELD HEADER
1116 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1118 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1117 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1119 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1118 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1120 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1119 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1121 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1120 kcoefficients_dump->time[0] = 0x00;
1122 kcoefficients_dump->time[0] = 0x00;
1121 kcoefficients_dump->time[1] = 0x00;
1123 kcoefficients_dump->time[1] = 0x00;
1122 kcoefficients_dump->time[2] = 0x00;
1124 kcoefficients_dump->time[2] = 0x00;
1123 kcoefficients_dump->time[3] = 0x00;
1125 kcoefficients_dump->time[3] = 0x00;
1124 kcoefficients_dump->time[4] = 0x00;
1126 kcoefficients_dump->time[4] = 0x00;
1125 kcoefficients_dump->time[5] = 0x00;
1127 kcoefficients_dump->time[5] = 0x00;
1126 kcoefficients_dump->sid = SID_K_DUMP;
1128 kcoefficients_dump->sid = SID_K_DUMP;
1127
1129
1128 kcoefficients_dump->pkt_cnt = 2;
1130 kcoefficients_dump->pkt_cnt = 2;
1129 kcoefficients_dump->pkt_nr = pkt_nr;
1131 kcoefficients_dump->pkt_nr = pkt_nr;
1130 kcoefficients_dump->blk_nr = blk_nr;
1132 kcoefficients_dump->blk_nr = blk_nr;
1131
1133
1132 //******************
1134 //******************
1133 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1135 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1134 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1136 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1135 for (k=0; k<3900; k++)
1137 for (k=0; k<3900; k++)
1136 {
1138 {
1137 kcoefficients_dump->kcoeff_blks[k] = 0x00;
1139 kcoefficients_dump->kcoeff_blks[k] = 0x00;
1138 }
1140 }
1139 }
1141 }
1140
1142
1143 void print_k_coeff()
1144 {
1145 unsigned int kcoeff;
1146 unsigned int bin;
1141
1147
1148 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1149 {
1150 printf("kcoeff = %d *** ", kcoeff);
1151 for (bin=0; bin<NB_BINS_COMPRESSED_SM_F0; bin++)
1152 {
1153 printf( "%f ", k_coeff_intercalib_f0_norm[bin*NB_K_COEFF_PER_BIN+kcoeff] );
1154 }
1155 printf("\n");
1156 }
1142
1157
1158 printf("\n");
1159
1160 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1161 {
1162 printf("kcoeff = %d *** ", kcoeff);
1163 for (bin=0; bin<NB_BINS_COMPRESSED_SM_F0; bin++)
1164 {
1165 printf( "[%f, %f] ",
1166 k_coeff_intercalib_f0_sbm[(bin*NB_K_COEFF_PER_BIN )*2 + kcoeff],
1167 k_coeff_intercalib_f0_sbm[(bin*NB_K_COEFF_PER_BIN+1)*2 + kcoeff]);
1168 }
1169 printf("\n");
1170 }
1171 }
1172
General Comments 0
You need to be logged in to leave comments. Login now