##// END OF EJS Templates
setFBinMask corrected...
paul -
r313:972ae9f0eb8f R3_plus draft
parent child
Show More
@@ -1,2 +1,2
1 1 3081d1f9bb20b2b64a192585337a292a9804e0c5 LFR_basic-parameters
2 94f0f2fccbcb8030d9437ffbb69ee0eefaaea188 header/lfr_common_headers
2 57edc38eadba4601cf0b1e2fa1eeab85082e9f41 header/lfr_common_headers
@@ -1,106 +1,108
1 1 cmake_minimum_required (VERSION 2.6)
2 2 project (fsw)
3 3
4 4 include(sparc-rtems)
5 5 include(cppcheck)
6 6
7 7 include_directories("../header"
8 8 "../header/lfr_common_headers"
9 9 "../header/processing"
10 10 "../LFR_basic-parameters"
11 11 "../src")
12 12
13 13 set(SOURCES wf_handler.c
14 14 tc_handler.c
15 15 fsw_misc.c
16 16 fsw_init.c
17 17 fsw_globals.c
18 18 fsw_spacewire.c
19 19 tc_load_dump_parameters.c
20 20 tm_lfr_tc_exe.c
21 21 tc_acceptance.c
22 22 processing/fsw_processing.c
23 23 processing/avf0_prc0.c
24 24 processing/avf1_prc1.c
25 25 processing/avf2_prc2.c
26 26 lfr_cpu_usage_report.c
27 27 ${LFR_BP_SRC}
28 28 ../header/wf_handler.h
29 29 ../header/tc_handler.h
30 30 ../header/grlib_regs.h
31 31 ../header/fsw_misc.h
32 32 ../header/fsw_init.h
33 33 ../header/fsw_spacewire.h
34 34 ../header/tc_load_dump_parameters.h
35 35 ../header/tm_lfr_tc_exe.h
36 36 ../header/tc_acceptance.h
37 37 ../header/processing/fsw_processing.h
38 38 ../header/processing/avf0_prc0.h
39 39 ../header/processing/avf1_prc1.h
40 40 ../header/processing/avf2_prc2.h
41 41 ../header/fsw_params_wf_handler.h
42 42 ../header/lfr_cpu_usage_report.h
43 43 ../header/lfr_common_headers/ccsds_types.h
44 44 ../header/lfr_common_headers/fsw_params.h
45 45 ../header/lfr_common_headers/fsw_params_nb_bytes.h
46 46 ../header/lfr_common_headers/fsw_params_processing.h
47 47 ../header/lfr_common_headers/tm_byte_positions.h
48 48 ../LFR_basic-parameters/basic_parameters.h
49 49 ../LFR_basic-parameters/basic_parameters_params.h
50 50 ../header/GscMemoryLPP.hpp
51 51 )
52 52
53 53
54 54 option(FSW_verbose "Enable verbose LFR" ON)
55 55 option(FSW_boot_messages "Enable LFR boot messages" ON)
56 56 option(FSW_debug_messages "Enable LFR debug messages" ON)
57 57 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
58 58 option(FSW_stack_report "Enable LFR stack report" OFF)
59 59 option(FSW_vhdl_dev "?" OFF)
60 60 option(FSW_lpp_dpu_destid "Set to debug at LPP" ON)
61 61 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
62 62 option(FSW_debug_tch "?" OFF)
63 63
64 64 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
65 65 set(SW_VERSION_N2 "1" CACHE STRING "Choose N2 FSW Version." FORCE)
66 66 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
67 67 set(SW_VERSION_N4 "4" CACHE STRING "Choose N4 FSW Version." FORCE)
68 68
69 69
70 70 if(FSW_verbose)
71 71 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
72 72 endif()
73 73 if(FSW_boot_messages)
74 74 add_definitions(-DBOOT_MESSAGES)
75 75 endif()
76 76 if(FSW_debug_messages)
77 77 add_definitions(-DDEBUG_MESSAGES)
78 78 endif()
79 79 if(FSW_cpu_usage_report)
80 80 add_definitions(-DPRINT_TASK_STATISTICS)
81 81 endif()
82 82 if(FSW_stack_report)
83 83 add_definitions(-DPRINT_STACK_REPORT)
84 84 endif()
85 85 if(FSW_vhdl_dev)
86 86 add_definitions(-DVHDL_DEV)
87 87 endif()
88 88 if(FSW_lpp_dpu_destid)
89 89 add_definitions(-DLPP_DPU_DESTID)
90 90 endif()
91 91 if(FSW_debug_watchdog)
92 92 add_definitions(-DDEBUG_WATCHDOG)
93 93 endif()
94 94 if(FSW_debug_tch)
95 95 add_definitions(-DDEBUG_TCH)
96 96 endif()
97 97
98 98 add_definitions(-DMSB_FIRST_TCH)
99 99
100 100 add_definitions(-DSWVERSION=-1-0)
101 101 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
102 102 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
103 103 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
104 104 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
105 105
106 106 add_executable(FSW ${SOURCES})
107 add_test_cppcheck(FSW STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE)
108
@@ -1,786 +1,786
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "fsw_processing.h"
11 11 #include "fsw_processing_globals.c"
12 12 #include "fsw_init.h"
13 13
14 14 unsigned int nb_sm_f0;
15 15 unsigned int nb_sm_f0_aux_f1;
16 16 unsigned int nb_sm_f1;
17 17 unsigned int nb_sm_f0_aux_f2;
18 18
19 19 typedef enum restartState_t
20 20 {
21 21 WAIT_FOR_F2,
22 22 WAIT_FOR_F1,
23 23 WAIT_FOR_F0
24 24 } restartState;
25 25
26 26 //************************
27 27 // spectral matrices rings
28 28 ring_node sm_ring_f0[ NB_RING_NODES_SM_F0 ];
29 29 ring_node sm_ring_f1[ NB_RING_NODES_SM_F1 ];
30 30 ring_node sm_ring_f2[ NB_RING_NODES_SM_F2 ];
31 31 ring_node *current_ring_node_sm_f0;
32 32 ring_node *current_ring_node_sm_f1;
33 33 ring_node *current_ring_node_sm_f2;
34 34 ring_node *ring_node_for_averaging_sm_f0;
35 35 ring_node *ring_node_for_averaging_sm_f1;
36 36 ring_node *ring_node_for_averaging_sm_f2;
37 37
38 38 //
39 39 ring_node * getRingNodeForAveraging( unsigned char frequencyChannel)
40 40 {
41 41 ring_node *node;
42 42
43 43 node = NULL;
44 44 switch ( frequencyChannel ) {
45 45 case 0:
46 46 node = ring_node_for_averaging_sm_f0;
47 47 break;
48 48 case 1:
49 49 node = ring_node_for_averaging_sm_f1;
50 50 break;
51 51 case 2:
52 52 node = ring_node_for_averaging_sm_f2;
53 53 break;
54 54 default:
55 55 break;
56 56 }
57 57
58 58 return node;
59 59 }
60 60
61 61 //***********************************************************
62 62 // Interrupt Service Routine for spectral matrices processing
63 63
64 64 void spectral_matrices_isr_f0( int statusReg )
65 65 {
66 66 unsigned char status;
67 67 rtems_status_code status_code;
68 68 ring_node *full_ring_node;
69 69
70 70 status = (unsigned char) (statusReg & 0x03); // [0011] get the status_ready_matrix_f0_x bits
71 71
72 72 switch(status)
73 73 {
74 74 case 0:
75 75 break;
76 76 case 3:
77 77 // UNEXPECTED VALUE
78 78 spectral_matrix_regs->status = 0x03; // [0011]
79 79 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
80 80 break;
81 81 case 1:
82 82 full_ring_node = current_ring_node_sm_f0->previous;
83 83 full_ring_node->coarseTime = spectral_matrix_regs->f0_0_coarse_time;
84 84 full_ring_node->fineTime = spectral_matrix_regs->f0_0_fine_time;
85 85 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
86 86 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
87 87 // if there are enough ring nodes ready, wake up an AVFx task
88 88 nb_sm_f0 = nb_sm_f0 + 1;
89 89 if (nb_sm_f0 == NB_SM_BEFORE_AVF0)
90 90 {
91 91 ring_node_for_averaging_sm_f0 = full_ring_node;
92 92 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
93 93 {
94 94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
95 95 }
96 96 nb_sm_f0 = 0;
97 97 }
98 98 spectral_matrix_regs->status = 0x01; // [0000 0001]
99 99 break;
100 100 case 2:
101 101 full_ring_node = current_ring_node_sm_f0->previous;
102 102 full_ring_node->coarseTime = spectral_matrix_regs->f0_1_coarse_time;
103 103 full_ring_node->fineTime = spectral_matrix_regs->f0_1_fine_time;
104 104 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
105 105 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
106 106 // if there are enough ring nodes ready, wake up an AVFx task
107 107 nb_sm_f0 = nb_sm_f0 + 1;
108 108 if (nb_sm_f0 == NB_SM_BEFORE_AVF0)
109 109 {
110 110 ring_node_for_averaging_sm_f0 = full_ring_node;
111 111 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
112 112 {
113 113 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
114 114 }
115 115 nb_sm_f0 = 0;
116 116 }
117 117 spectral_matrix_regs->status = 0x02; // [0000 0010]
118 118 break;
119 119 }
120 120 }
121 121
122 122 void spectral_matrices_isr_f1( int statusReg )
123 123 {
124 124 rtems_status_code status_code;
125 125 unsigned char status;
126 126 ring_node *full_ring_node;
127 127
128 128 status = (unsigned char) ((statusReg & 0x0c) >> 2); // [1100] get the status_ready_matrix_f1_x bits
129 129
130 130 switch(status)
131 131 {
132 132 case 0:
133 133 break;
134 134 case 3:
135 135 // UNEXPECTED VALUE
136 136 spectral_matrix_regs->status = 0xc0; // [1100]
137 137 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
138 138 break;
139 139 case 1:
140 140 full_ring_node = current_ring_node_sm_f1->previous;
141 141 full_ring_node->coarseTime = spectral_matrix_regs->f1_0_coarse_time;
142 142 full_ring_node->fineTime = spectral_matrix_regs->f1_0_fine_time;
143 143 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
144 144 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
145 145 // if there are enough ring nodes ready, wake up an AVFx task
146 146 nb_sm_f1 = nb_sm_f1 + 1;
147 147 if (nb_sm_f1 == NB_SM_BEFORE_AVF1)
148 148 {
149 149 ring_node_for_averaging_sm_f1 = full_ring_node;
150 150 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
151 151 {
152 152 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
153 153 }
154 154 nb_sm_f1 = 0;
155 155 }
156 156 spectral_matrix_regs->status = 0x04; // [0000 0100]
157 157 break;
158 158 case 2:
159 159 full_ring_node = current_ring_node_sm_f1->previous;
160 160 full_ring_node->coarseTime = spectral_matrix_regs->f1_1_coarse_time;
161 161 full_ring_node->fineTime = spectral_matrix_regs->f1_1_fine_time;
162 162 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
163 163 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
164 164 // if there are enough ring nodes ready, wake up an AVFx task
165 165 nb_sm_f1 = nb_sm_f1 + 1;
166 166 if (nb_sm_f1 == NB_SM_BEFORE_AVF1)
167 167 {
168 168 ring_node_for_averaging_sm_f1 = full_ring_node;
169 169 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
170 170 {
171 171 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
172 172 }
173 173 nb_sm_f1 = 0;
174 174 }
175 175 spectral_matrix_regs->status = 0x08; // [1000 0000]
176 176 break;
177 177 }
178 178 }
179 179
180 180 void spectral_matrices_isr_f2( int statusReg )
181 181 {
182 182 unsigned char status;
183 183 rtems_status_code status_code;
184 184
185 185 status = (unsigned char) ((statusReg & 0x30) >> 4); // [0011 0000] get the status_ready_matrix_f2_x bits
186 186
187 187 switch(status)
188 188 {
189 189 case 0:
190 190 break;
191 191 case 3:
192 192 // UNEXPECTED VALUE
193 193 spectral_matrix_regs->status = 0x30; // [0011 0000]
194 194 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
195 195 break;
196 196 case 1:
197 197 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
198 198 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
199 199 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_0_coarse_time;
200 200 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_0_fine_time;
201 201 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
202 202 spectral_matrix_regs->status = 0x10; // [0001 0000]
203 203 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
204 204 {
205 205 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
206 206 }
207 207 break;
208 208 case 2:
209 209 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
210 210 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
211 211 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_1_coarse_time;
212 212 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_1_fine_time;
213 213 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
214 214 spectral_matrix_regs->status = 0x20; // [0010 0000]
215 215 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
216 216 {
217 217 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
218 218 }
219 219 break;
220 220 }
221 221 }
222 222
223 223 void spectral_matrix_isr_error_handler( int statusReg )
224 224 {
225 225 // STATUS REGISTER
226 226 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
227 227 // 10 9 8
228 228 // buffer_full ** [bad_component_err] ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
229 229 // 7 6 5 4 3 2 1 0
230 230 // [bad_component_err] not defined in the last version of the VHDL code
231 231
232 232 rtems_status_code status_code;
233 233
234 234 //***************************************************
235 235 // the ASM status register is copied in the HK packet
236 236 housekeeping_packet.hk_lfr_vhdl_aa_sm = (unsigned char) (statusReg & 0x780 >> 7); // [0111 1000 0000]
237 237
238 238 if (statusReg & 0x7c0) // [0111 1100 0000]
239 239 {
240 240 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
241 241 }
242 242
243 243 spectral_matrix_regs->status = spectral_matrix_regs->status & 0x7c0;
244 244
245 245 }
246 246
247 247 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
248 248 {
249 249 // STATUS REGISTER
250 250 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
251 251 // 10 9 8
252 252 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
253 253 // 7 6 5 4 3 2 1 0
254 254
255 255 int statusReg;
256 256
257 257 static restartState state = WAIT_FOR_F2;
258 258
259 259 statusReg = spectral_matrix_regs->status;
260 260
261 261 if (thisIsAnASMRestart == 0)
262 262 { // this is not a restart sequence, process incoming matrices normally
263 263 spectral_matrices_isr_f0( statusReg );
264 264
265 265 spectral_matrices_isr_f1( statusReg );
266 266
267 267 spectral_matrices_isr_f2( statusReg );
268 268 }
269 269 else
270 270 { // a restart sequence has to be launched
271 271 switch (state) {
272 272 case WAIT_FOR_F2:
273 273 if ((statusReg & 0x30) != 0x00) // [0011 0000] check the status_ready_matrix_f2_x bits
274 274 {
275 275 state = WAIT_FOR_F1;
276 276 }
277 277 break;
278 278 case WAIT_FOR_F1:
279 279 if ((statusReg & 0x0c) != 0x00) // [0000 1100] check the status_ready_matrix_f1_x bits
280 280 {
281 281 state = WAIT_FOR_F0;
282 282 }
283 283 break;
284 284 case WAIT_FOR_F0:
285 285 if ((statusReg & 0x03) != 0x00) // [0000 0011] check the status_ready_matrix_f0_x bits
286 286 {
287 287 state = WAIT_FOR_F2;
288 288 thisIsAnASMRestart = 0;
289 289 }
290 290 break;
291 291 default:
292 292 break;
293 293 }
294 294 reset_sm_status();
295 295 }
296 296
297 297 spectral_matrix_isr_error_handler( statusReg );
298 298
299 299 }
300 300
301 301 //******************
302 302 // Spectral Matrices
303 303
304 304 void reset_nb_sm( void )
305 305 {
306 306 nb_sm_f0 = 0;
307 307 nb_sm_f0_aux_f1 = 0;
308 308 nb_sm_f0_aux_f2 = 0;
309 309
310 310 nb_sm_f1 = 0;
311 311 }
312 312
313 313 void SM_init_rings( void )
314 314 {
315 315 init_ring( sm_ring_f0, NB_RING_NODES_SM_F0, sm_f0, TOTAL_SIZE_SM );
316 316 init_ring( sm_ring_f1, NB_RING_NODES_SM_F1, sm_f1, TOTAL_SIZE_SM );
317 317 init_ring( sm_ring_f2, NB_RING_NODES_SM_F2, sm_f2, TOTAL_SIZE_SM );
318 318
319 319 DEBUG_PRINTF1("sm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
320 320 DEBUG_PRINTF1("sm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
321 321 DEBUG_PRINTF1("sm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
322 322 DEBUG_PRINTF1("sm_f0 @%x\n", (unsigned int) sm_f0)
323 323 DEBUG_PRINTF1("sm_f1 @%x\n", (unsigned int) sm_f1)
324 324 DEBUG_PRINTF1("sm_f2 @%x\n", (unsigned int) sm_f2)
325 325 }
326 326
327 327 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
328 328 {
329 329 unsigned char i;
330 330
331 331 ring[ nbNodes - 1 ].next
332 332 = (ring_node_asm*) &ring[ 0 ];
333 333
334 334 for(i=0; i<nbNodes-1; i++)
335 335 {
336 336 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
337 337 }
338 338 }
339 339
340 340 void SM_reset_current_ring_nodes( void )
341 341 {
342 342 current_ring_node_sm_f0 = sm_ring_f0[0].next;
343 343 current_ring_node_sm_f1 = sm_ring_f1[0].next;
344 344 current_ring_node_sm_f2 = sm_ring_f2[0].next;
345 345
346 346 ring_node_for_averaging_sm_f0 = NULL;
347 347 ring_node_for_averaging_sm_f1 = NULL;
348 348 ring_node_for_averaging_sm_f2 = NULL;
349 349 }
350 350
351 351 //*****************
352 352 // Basic Parameters
353 353
354 354 void BP_init_header( bp_packet *packet,
355 355 unsigned int apid, unsigned char sid,
356 356 unsigned int packetLength, unsigned char blkNr )
357 357 {
358 358 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
359 359 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
360 360 packet->reserved = 0x00;
361 361 packet->userApplication = CCSDS_USER_APP;
362 362 packet->packetID[0] = (unsigned char) (apid >> 8);
363 363 packet->packetID[1] = (unsigned char) (apid);
364 364 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
365 365 packet->packetSequenceControl[1] = 0x00;
366 366 packet->packetLength[0] = (unsigned char) (packetLength >> 8);
367 367 packet->packetLength[1] = (unsigned char) (packetLength);
368 368 // DATA FIELD HEADER
369 369 packet->spare1_pusVersion_spare2 = 0x10;
370 370 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
371 371 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
372 372 packet->destinationID = TM_DESTINATION_ID_GROUND;
373 373 packet->time[0] = 0x00;
374 374 packet->time[1] = 0x00;
375 375 packet->time[2] = 0x00;
376 376 packet->time[3] = 0x00;
377 377 packet->time[4] = 0x00;
378 378 packet->time[5] = 0x00;
379 379 // AUXILIARY DATA HEADER
380 380 packet->sid = sid;
381 381 packet->pa_bia_status_info = 0x00;
382 382 packet->sy_lfr_common_parameters_spare = 0x00;
383 383 packet->sy_lfr_common_parameters = 0x00;
384 384 packet->acquisitionTime[0] = 0x00;
385 385 packet->acquisitionTime[1] = 0x00;
386 386 packet->acquisitionTime[2] = 0x00;
387 387 packet->acquisitionTime[3] = 0x00;
388 388 packet->acquisitionTime[4] = 0x00;
389 389 packet->acquisitionTime[5] = 0x00;
390 390 packet->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
391 391 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
392 392 }
393 393
394 394 void BP_init_header_with_spare( bp_packet_with_spare *packet,
395 395 unsigned int apid, unsigned char sid,
396 396 unsigned int packetLength , unsigned char blkNr)
397 397 {
398 398 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
399 399 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
400 400 packet->reserved = 0x00;
401 401 packet->userApplication = CCSDS_USER_APP;
402 402 packet->packetID[0] = (unsigned char) (apid >> 8);
403 403 packet->packetID[1] = (unsigned char) (apid);
404 404 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
405 405 packet->packetSequenceControl[1] = 0x00;
406 406 packet->packetLength[0] = (unsigned char) (packetLength >> 8);
407 407 packet->packetLength[1] = (unsigned char) (packetLength);
408 408 // DATA FIELD HEADER
409 409 packet->spare1_pusVersion_spare2 = 0x10;
410 410 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
411 411 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
412 412 packet->destinationID = TM_DESTINATION_ID_GROUND;
413 413 // AUXILIARY DATA HEADER
414 414 packet->sid = sid;
415 415 packet->pa_bia_status_info = 0x00;
416 416 packet->sy_lfr_common_parameters_spare = 0x00;
417 417 packet->sy_lfr_common_parameters = 0x00;
418 418 packet->time[0] = 0x00;
419 419 packet->time[0] = 0x00;
420 420 packet->time[0] = 0x00;
421 421 packet->time[0] = 0x00;
422 422 packet->time[0] = 0x00;
423 423 packet->time[0] = 0x00;
424 424 packet->source_data_spare = 0x00;
425 425 packet->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
426 426 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
427 427 }
428 428
429 429 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
430 430 {
431 431 rtems_status_code status;
432 432
433 433 // SEND PACKET
434 434 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
435 435 if (status != RTEMS_SUCCESSFUL)
436 436 {
437 437 PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
438 438 }
439 439 }
440 440
441 441 void BP_send_s1_s2(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
442 442 {
443 443 /** This function is used to send the BP paquets when needed.
444 444 *
445 445 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
446 446 *
447 447 * @return void
448 448 *
449 449 * SBM1 and SBM2 paquets are sent depending on the type of the LFR mode transition.
450 450 * BURST paquets are sent everytime.
451 451 *
452 452 */
453 453
454 454 rtems_status_code status;
455 455
456 456 // SEND PACKET
457 457 // before lastValidTransitionDate, the data are drops even if they are ready
458 458 // this guarantees that no SBM packets will be received before the requested enter mode time
459 459 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
460 460 {
461 461 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
462 462 if (status != RTEMS_SUCCESSFUL)
463 463 {
464 464 PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
465 465 }
466 466 }
467 467 }
468 468
469 469 //******************
470 470 // general functions
471 471
472 472 void reset_sm_status( void )
473 473 {
474 474 // error
475 475 // 10 --------------- 9 ---------------- 8 ---------------- 7 ---------
476 476 // input_fif0_write_2 input_fifo_write_1 input_fifo_write_0 buffer_full
477 477 // ---------- 5 -- 4 -- 3 -- 2 -- 1 -- 0 --
478 478 // ready bits f2_1 f2_0 f1_1 f1_1 f0_1 f0_0
479 479
480 480 spectral_matrix_regs->status = 0x7ff; // [0111 1111 1111]
481 481 }
482 482
483 483 void reset_spectral_matrix_regs( void )
484 484 {
485 485 /** This function resets the spectral matrices module registers.
486 486 *
487 487 * The registers affected by this function are located at the following offset addresses:
488 488 *
489 489 * - 0x00 config
490 490 * - 0x04 status
491 491 * - 0x08 matrixF0_Address0
492 492 * - 0x10 matrixFO_Address1
493 493 * - 0x14 matrixF1_Address
494 494 * - 0x18 matrixF2_Address
495 495 *
496 496 */
497 497
498 498 set_sm_irq_onError( 0 );
499 499
500 500 set_sm_irq_onNewMatrix( 0 );
501 501
502 502 reset_sm_status();
503 503
504 504 // F1
505 505 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
506 506 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
507 507 // F2
508 508 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
509 509 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
510 510 // F3
511 511 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
512 512 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
513 513
514 514 spectral_matrix_regs->matrix_length = 0xc8; // 25 * 128 / 16 = 200 = 0xc8
515 515 }
516 516
517 517 void set_time( unsigned char *time, unsigned char * timeInBuffer )
518 518 {
519 519 time[0] = timeInBuffer[0];
520 520 time[1] = timeInBuffer[1];
521 521 time[2] = timeInBuffer[2];
522 522 time[3] = timeInBuffer[3];
523 523 time[4] = timeInBuffer[6];
524 524 time[5] = timeInBuffer[7];
525 525 }
526 526
527 527 unsigned long long int get_acquisition_time( unsigned char *timePtr )
528 528 {
529 529 unsigned long long int acquisitionTimeAslong;
530 530 acquisitionTimeAslong = 0x00;
531 531 acquisitionTimeAslong = ( (unsigned long long int) (timePtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
532 532 + ( (unsigned long long int) timePtr[1] << 32 )
533 533 + ( (unsigned long long int) timePtr[2] << 24 )
534 534 + ( (unsigned long long int) timePtr[3] << 16 )
535 535 + ( (unsigned long long int) timePtr[6] << 8 )
536 536 + ( (unsigned long long int) timePtr[7] );
537 537 return acquisitionTimeAslong;
538 538 }
539 539
540 540 unsigned char getSID( rtems_event_set event )
541 541 {
542 542 unsigned char sid;
543 543
544 544 rtems_event_set eventSetBURST;
545 545 rtems_event_set eventSetSBM;
546 546
547 547 //******
548 548 // BURST
549 549 eventSetBURST = RTEMS_EVENT_BURST_BP1_F0
550 550 | RTEMS_EVENT_BURST_BP1_F1
551 551 | RTEMS_EVENT_BURST_BP2_F0
552 552 | RTEMS_EVENT_BURST_BP2_F1;
553 553
554 554 //****
555 555 // SBM
556 556 eventSetSBM = RTEMS_EVENT_SBM_BP1_F0
557 557 | RTEMS_EVENT_SBM_BP1_F1
558 558 | RTEMS_EVENT_SBM_BP2_F0
559 559 | RTEMS_EVENT_SBM_BP2_F1;
560 560
561 561 if (event & eventSetBURST)
562 562 {
563 563 sid = SID_BURST_BP1_F0;
564 564 }
565 565 else if (event & eventSetSBM)
566 566 {
567 567 sid = SID_SBM1_BP1_F0;
568 568 }
569 569 else
570 570 {
571 571 sid = 0;
572 572 }
573 573
574 574 return sid;
575 575 }
576 576
577 577 void extractReImVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
578 578 {
579 579 unsigned int i;
580 580 float re;
581 581 float im;
582 582
583 583 for (i=0; i<NB_BINS_PER_SM; i++){
584 584 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + i * 2 ];
585 585 im = inputASM[ (asmComponent*NB_BINS_PER_SM) + i * 2 + 1];
586 586 outputASM[ (asmComponent *NB_BINS_PER_SM) + i] = re;
587 587 outputASM[ (asmComponent+1)*NB_BINS_PER_SM + i] = im;
588 588 }
589 589 }
590 590
591 591 void copyReVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
592 592 {
593 593 unsigned int i;
594 594 float re;
595 595
596 596 for (i=0; i<NB_BINS_PER_SM; i++){
597 597 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + i];
598 598 outputASM[ (asmComponent*NB_BINS_PER_SM) + i] = re;
599 599 }
600 600 }
601 601
602 602 void ASM_patch( float *inputASM, float *outputASM )
603 603 {
604 604 extractReImVectors( inputASM, outputASM, 1); // b1b2
605 605 extractReImVectors( inputASM, outputASM, 3 ); // b1b3
606 606 extractReImVectors( inputASM, outputASM, 5 ); // b1e1
607 607 extractReImVectors( inputASM, outputASM, 7 ); // b1e2
608 608 extractReImVectors( inputASM, outputASM, 10 ); // b2b3
609 609 extractReImVectors( inputASM, outputASM, 12 ); // b2e1
610 610 extractReImVectors( inputASM, outputASM, 14 ); // b2e2
611 611 extractReImVectors( inputASM, outputASM, 17 ); // b3e1
612 612 extractReImVectors( inputASM, outputASM, 19 ); // b3e2
613 613 extractReImVectors( inputASM, outputASM, 22 ); // e1e2
614 614
615 615 copyReVectors(inputASM, outputASM, 0 ); // b1b1
616 616 copyReVectors(inputASM, outputASM, 9 ); // b2b2
617 617 copyReVectors(inputASM, outputASM, 16); // b3b3
618 618 copyReVectors(inputASM, outputASM, 21); // e1e1
619 619 copyReVectors(inputASM, outputASM, 24); // e2e2
620 620 }
621 621
622 622 void ASM_compress_reorganize_and_divide_mask(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
623 623 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage,
624 624 unsigned char ASMIndexStart,
625 625 unsigned char channel )
626 626 {
627 627 //*************
628 628 // input format
629 629 // component0[0 .. 127] component1[0 .. 127] .. component24[0 .. 127]
630 630 //**************
631 631 // output format
632 632 // matr0[0 .. 24] matr1[0 .. 24] .. matr127[0 .. 24]
633 633 //************
634 634 // compression
635 635 // matr0[0 .. 24] matr1[0 .. 24] .. matr11[0 .. 24] => f0 NORM
636 636 // matr0[0 .. 24] matr1[0 .. 24] .. matr22[0 .. 24] => f0 BURST, SBM
637 637
638 638 int frequencyBin;
639 639 int asmComponent;
640 640 int offsetASM;
641 641 int offsetCompressed;
642 642 int offsetFBin;
643 643 int fBinMask;
644 644 int k;
645 645
646 646 // BUILD DATA
647 647 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
648 648 {
649 649 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
650 650 {
651 651 offsetCompressed = // NO TIME OFFSET
652 652 frequencyBin * NB_VALUES_PER_SM
653 653 + asmComponent;
654 654 offsetASM = // NO TIME OFFSET
655 655 asmComponent * NB_BINS_PER_SM
656 656 + ASMIndexStart
657 657 + frequencyBin * nbBinsToAverage;
658 658 offsetFBin = ASMIndexStart
659 659 + frequencyBin * nbBinsToAverage;
660 660 compressed_spec_mat[ offsetCompressed ] = 0;
661 661 for ( k = 0; k < nbBinsToAverage; k++ )
662 662 {
663 663 fBinMask = getFBinMask( offsetFBin + k, channel );
664 664 compressed_spec_mat[offsetCompressed ] =
665 665 ( compressed_spec_mat[ offsetCompressed ]
666 666 + averaged_spec_mat[ offsetASM + k ] * fBinMask );
667 667 }
668 668 compressed_spec_mat[ offsetCompressed ] =
669 669 (divider != 0.) ? compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage) : 0.0;
670 670 }
671 671 }
672 672
673 673 }
674 674
675 675 int getFBinMask( int index, unsigned char channel )
676 676 {
677 677 unsigned int indexInChar;
678 678 unsigned int indexInTheChar;
679 679 int fbin;
680 680 unsigned char *sy_lfr_fbins_fx_word1;
681 681
682 sy_lfr_fbins_fx_word1 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
682 sy_lfr_fbins_fx_word1 = parameter_dump_packet.sy_lfr_fbins.fx.f0_word1;
683 683
684 684 switch(channel)
685 685 {
686 686 case 0:
687 687 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f0;
688 688 break;
689 689 case 1:
690 690 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f1;
691 691 break;
692 692 case 2:
693 693 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f2;
694 694 break;
695 695 default:
696 696 PRINTF("ERR *** in getFBinMask, wrong frequency channel")
697 697 }
698 698
699 699 indexInChar = index >> 3;
700 700 indexInTheChar = index - indexInChar * 8;
701 701
702 702 fbin = (int) ((sy_lfr_fbins_fx_word1[ NB_BYTES_PER_FREQ_MASK - 1 - indexInChar] >> indexInTheChar) & 0x1);
703 703
704 704 return fbin;
705 705 }
706 706
707 707 unsigned char acquisitionTimeIsValid( unsigned int coarseTime, unsigned int fineTime, unsigned char channel)
708 708 {
709 709 u_int64_t acquisitionTime;
710 710 u_int64_t timecodeReference;
711 711 u_int64_t offsetInFineTime;
712 712 u_int64_t shiftInFineTime;
713 713 u_int64_t tBadInFineTime;
714 714 u_int64_t acquisitionTimeRangeMin;
715 715 u_int64_t acquisitionTimeRangeMax;
716 716 unsigned char pasFilteringIsEnabled;
717 717 unsigned char ret;
718 718
719 719 pasFilteringIsEnabled = (filterPar.spare_sy_lfr_pas_filter_enabled & 0x01); // [0000 0001]
720 720 ret = 1;
721 721
722 722 // compute acquisition time from caoarseTime and fineTime
723 723 acquisitionTime = ( ((u_int64_t)coarseTime) << 16 )
724 724 + (u_int64_t) fineTime;
725 725
726 726 // compute the timecode reference
727 727 timecodeReference = (u_int64_t) (floor( ((double) coarseTime) / ((double) filterPar.sy_lfr_pas_filter_modulus) )
728 728 * ((double) filterPar.sy_lfr_pas_filter_modulus)) * 65536;
729 729
730 730 // compute the acquitionTime range
731 731 offsetInFineTime = ((double) filterPar.sy_lfr_pas_filter_offset) * 65536;
732 732 shiftInFineTime = ((double) filterPar.sy_lfr_pas_filter_shift) * 65536;
733 733 tBadInFineTime = ((double) filterPar.sy_lfr_pas_filter_tbad) * 65536;
734 734
735 735 acquisitionTimeRangeMin =
736 736 timecodeReference
737 737 + offsetInFineTime
738 738 + shiftInFineTime
739 739 - acquisitionDurations[channel];
740 740 acquisitionTimeRangeMax =
741 741 timecodeReference
742 742 + offsetInFineTime
743 743 + shiftInFineTime
744 744 + tBadInFineTime;
745 745
746 746 if ( (acquisitionTime >= acquisitionTimeRangeMin)
747 747 && (acquisitionTime <= acquisitionTimeRangeMax)
748 748 && (pasFilteringIsEnabled == 1) )
749 749 {
750 750 ret = 0; // the acquisition time is INSIDE the range, the matrix shall be ignored
751 751 }
752 752 else
753 753 {
754 754 ret = 1; // the acquisition time is OUTSIDE the range, the matrix can be used for the averaging
755 755 }
756 756
757 757 // printf("coarseTime = %x, fineTime = %x\n",
758 758 // coarseTime,
759 759 // fineTime);
760 760
761 761 // printf("[ret = %d] *** acquisitionTime = %f, Reference = %f",
762 762 // ret,
763 763 // acquisitionTime / 65536.,
764 764 // timecodeReference / 65536.);
765 765
766 766 // printf(", Min = %f, Max = %f\n",
767 767 // acquisitionTimeRangeMin / 65536.,
768 768 // acquisitionTimeRangeMax / 65536.);
769 769
770 770 return ret;
771 771 }
772 772
773 773 void init_kcoeff_sbm_from_kcoeff_norm(float *input_kcoeff, float *output_kcoeff, unsigned char nb_bins_norm)
774 774 {
775 775 unsigned char bin;
776 776 unsigned char kcoeff;
777 777
778 778 for (bin=0; bin<nb_bins_norm; bin++)
779 779 {
780 780 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
781 781 {
782 782 output_kcoeff[ (bin*NB_K_COEFF_PER_BIN + kcoeff)*2 ] = input_kcoeff[ bin*NB_K_COEFF_PER_BIN + kcoeff ];
783 783 output_kcoeff[ (bin*NB_K_COEFF_PER_BIN + kcoeff)*2 + 1 ] = input_kcoeff[ bin*NB_K_COEFF_PER_BIN + kcoeff ];
784 784 }
785 785 }
786 786 }
@@ -1,1628 +1,1619
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
18 18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
19 19 ring_node kcoefficient_node_1;
20 20 ring_node kcoefficient_node_2;
21 21
22 22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 23 {
24 24 /** This function updates the LFR registers with the incoming common parameters.
25 25 *
26 26 * @param TC points to the TeleCommand packet that is being processed
27 27 *
28 28 *
29 29 */
30 30
31 31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 33 set_wfp_data_shaping( );
34 34 return LFR_SUCCESSFUL;
35 35 }
36 36
37 37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 38 {
39 39 /** This function updates the LFR registers with the incoming normal parameters.
40 40 *
41 41 * @param TC points to the TeleCommand packet that is being processed
42 42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 43 *
44 44 */
45 45
46 46 int result;
47 47 int flag;
48 48 rtems_status_code status;
49 49
50 50 flag = LFR_SUCCESSFUL;
51 51
52 52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 55 flag = LFR_DEFAULT;
56 56 }
57 57
58 58 // CHECK THE PARAMETERS SET CONSISTENCY
59 59 if (flag == LFR_SUCCESSFUL)
60 60 {
61 61 flag = check_normal_par_consistency( TC, queue_id );
62 62 }
63 63
64 64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_l( TC );
68 68 result = set_sy_lfr_n_swf_p( TC );
69 69 result = set_sy_lfr_n_bp_p0( TC );
70 70 result = set_sy_lfr_n_bp_p1( TC );
71 71 result = set_sy_lfr_n_asm_p( TC );
72 72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 73 }
74 74
75 75 return flag;
76 76 }
77 77
78 78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 79 {
80 80 /** This function updates the LFR registers with the incoming burst parameters.
81 81 *
82 82 * @param TC points to the TeleCommand packet that is being processed
83 83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 84 *
85 85 */
86 86
87 87 int flag;
88 88 rtems_status_code status;
89 89 unsigned char sy_lfr_b_bp_p0;
90 90 unsigned char sy_lfr_b_bp_p1;
91 91 float aux;
92 92
93 93 flag = LFR_SUCCESSFUL;
94 94
95 95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 97 flag = LFR_DEFAULT;
98 98 }
99 99
100 100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102 102
103 103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 104 if (flag == LFR_SUCCESSFUL)
105 105 {
106 106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 107 {
108 108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
109 109 flag = WRONG_APP_DATA;
110 110 }
111 111 }
112 112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 113 if (flag == LFR_SUCCESSFUL)
114 114 {
115 115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 116 {
117 117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1+10, sy_lfr_b_bp_p1 );
118 118 flag = WRONG_APP_DATA;
119 119 }
120 120 }
121 121 //****************************************************************
122 122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 123 if (flag == LFR_SUCCESSFUL)
124 124 {
125 125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 128 if (aux > FLOAT_EQUAL_ZERO)
129 129 {
130 130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
131 131 flag = LFR_DEFAULT;
132 132 }
133 133 }
134 134
135 135 // SET THE PARAMETERS
136 136 if (flag == LFR_SUCCESSFUL)
137 137 {
138 138 flag = set_sy_lfr_b_bp_p0( TC );
139 139 flag = set_sy_lfr_b_bp_p1( TC );
140 140 }
141 141
142 142 return flag;
143 143 }
144 144
145 145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 146 {
147 147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 148 *
149 149 * @param TC points to the TeleCommand packet that is being processed
150 150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 151 *
152 152 */
153 153
154 154 int flag;
155 155 rtems_status_code status;
156 156 unsigned char sy_lfr_s1_bp_p0;
157 157 unsigned char sy_lfr_s1_bp_p1;
158 158 float aux;
159 159
160 160 flag = LFR_SUCCESSFUL;
161 161
162 162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 164 flag = LFR_DEFAULT;
165 165 }
166 166
167 167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169 169
170 170 // sy_lfr_s1_bp_p0
171 171 if (flag == LFR_SUCCESSFUL)
172 172 {
173 173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 174 {
175 175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
176 176 flag = WRONG_APP_DATA;
177 177 }
178 178 }
179 179 // sy_lfr_s1_bp_p1
180 180 if (flag == LFR_SUCCESSFUL)
181 181 {
182 182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 183 {
184 184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1+10, sy_lfr_s1_bp_p1 );
185 185 flag = WRONG_APP_DATA;
186 186 }
187 187 }
188 188 //******************************************************************
189 189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 190 if (flag == LFR_SUCCESSFUL)
191 191 {
192 192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
193 193 if (aux > FLOAT_EQUAL_ZERO)
194 194 {
195 195 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
196 196 flag = LFR_DEFAULT;
197 197 }
198 198 }
199 199
200 200 // SET THE PARAMETERS
201 201 if (flag == LFR_SUCCESSFUL)
202 202 {
203 203 flag = set_sy_lfr_s1_bp_p0( TC );
204 204 flag = set_sy_lfr_s1_bp_p1( TC );
205 205 }
206 206
207 207 return flag;
208 208 }
209 209
210 210 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
211 211 {
212 212 /** This function updates the LFR registers with the incoming sbm2 parameters.
213 213 *
214 214 * @param TC points to the TeleCommand packet that is being processed
215 215 * @param queue_id is the id of the queue which handles TM related to this execution step
216 216 *
217 217 */
218 218
219 219 int flag;
220 220 rtems_status_code status;
221 221 unsigned char sy_lfr_s2_bp_p0;
222 222 unsigned char sy_lfr_s2_bp_p1;
223 223 float aux;
224 224
225 225 flag = LFR_SUCCESSFUL;
226 226
227 227 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
228 228 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
229 229 flag = LFR_DEFAULT;
230 230 }
231 231
232 232 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
233 233 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
234 234
235 235 // sy_lfr_s2_bp_p0
236 236 if (flag == LFR_SUCCESSFUL)
237 237 {
238 238 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
239 239 {
240 240 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
241 241 flag = WRONG_APP_DATA;
242 242 }
243 243 }
244 244 // sy_lfr_s2_bp_p1
245 245 if (flag == LFR_SUCCESSFUL)
246 246 {
247 247 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
248 248 {
249 249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1+10, sy_lfr_s2_bp_p1 );
250 250 flag = WRONG_APP_DATA;
251 251 }
252 252 }
253 253 //******************************************************************
254 254 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
255 255 if (flag == LFR_SUCCESSFUL)
256 256 {
257 257 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
258 258 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
259 259 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
260 260 if (aux > FLOAT_EQUAL_ZERO)
261 261 {
262 262 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
263 263 flag = LFR_DEFAULT;
264 264 }
265 265 }
266 266
267 267 // SET THE PARAMETERS
268 268 if (flag == LFR_SUCCESSFUL)
269 269 {
270 270 flag = set_sy_lfr_s2_bp_p0( TC );
271 271 flag = set_sy_lfr_s2_bp_p1( TC );
272 272 }
273 273
274 274 return flag;
275 275 }
276 276
277 277 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
278 278 {
279 279 /** This function updates the LFR registers with the incoming sbm2 parameters.
280 280 *
281 281 * @param TC points to the TeleCommand packet that is being processed
282 282 * @param queue_id is the id of the queue which handles TM related to this execution step
283 283 *
284 284 */
285 285
286 286 int flag;
287 287
288 288 flag = LFR_DEFAULT;
289 289
290 290 flag = set_sy_lfr_kcoeff( TC, queue_id );
291 291
292 292 return flag;
293 293 }
294 294
295 295 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
296 296 {
297 297 /** This function updates the LFR registers with the incoming sbm2 parameters.
298 298 *
299 299 * @param TC points to the TeleCommand packet that is being processed
300 300 * @param queue_id is the id of the queue which handles TM related to this execution step
301 301 *
302 302 */
303 303
304 304 int flag;
305 305
306 306 flag = LFR_DEFAULT;
307 307
308 308 flag = set_sy_lfr_fbins( TC );
309 309
310 310 return flag;
311 311 }
312 312
313 313 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
314 314 {
315 315 /** This function updates the LFR registers with the incoming sbm2 parameters.
316 316 *
317 317 * @param TC points to the TeleCommand packet that is being processed
318 318 * @param queue_id is the id of the queue which handles TM related to this execution step
319 319 *
320 320 */
321 321
322 322 int flag;
323 323
324 324 flag = LFR_DEFAULT;
325 325
326 326 flag = check_sy_lfr_filter_parameters( TC, queue_id );
327 327
328 328 if (flag == LFR_SUCCESSFUL)
329 329 {
330 330 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
331 331 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
332 332 parameter_dump_packet.sy_lfr_pas_filter_tbad[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 0 ];
333 333 parameter_dump_packet.sy_lfr_pas_filter_tbad[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 1 ];
334 334 parameter_dump_packet.sy_lfr_pas_filter_tbad[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 2 ];
335 335 parameter_dump_packet.sy_lfr_pas_filter_tbad[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + 3 ];
336 336 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
337 337 parameter_dump_packet.sy_lfr_pas_filter_shift[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 0 ];
338 338 parameter_dump_packet.sy_lfr_pas_filter_shift[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 1 ];
339 339 parameter_dump_packet.sy_lfr_pas_filter_shift[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 2 ];
340 340 parameter_dump_packet.sy_lfr_pas_filter_shift[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + 3 ];
341 341 parameter_dump_packet.sy_lfr_sc_rw_delta_f[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 0 ];
342 342 parameter_dump_packet.sy_lfr_sc_rw_delta_f[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 1 ];
343 343 parameter_dump_packet.sy_lfr_sc_rw_delta_f[2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 2 ];
344 344 parameter_dump_packet.sy_lfr_sc_rw_delta_f[3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + 3 ];
345 345
346 346 //****************************
347 347 // store PAS filter parameters
348 348 // sy_lfr_pas_filter_enabled
349 349 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
350 350 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & 0x01 );
351 351 // sy_lfr_pas_filter_modulus
352 352 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
353 353 // sy_lfr_pas_filter_tbad
354 354 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
355 355 parameter_dump_packet.sy_lfr_pas_filter_tbad );
356 356 // sy_lfr_pas_filter_offset
357 357 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
358 358 // sy_lfr_pas_filter_shift
359 359 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
360 360 parameter_dump_packet.sy_lfr_pas_filter_shift );
361 361
362 362 //****************************************************
363 363 // store the parameter sy_lfr_sc_rw_delta_f as a float
364 364 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
365 365 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
366 366 }
367 367
368 368 return flag;
369 369 }
370 370
371 371 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
372 372 {
373 373 /** This function updates the LFR registers with the incoming sbm2 parameters.
374 374 *
375 375 * @param TC points to the TeleCommand packet that is being processed
376 376 * @param queue_id is the id of the queue which handles TM related to this execution step
377 377 *
378 378 */
379 379
380 380 unsigned int address;
381 381 rtems_status_code status;
382 382 unsigned int freq;
383 383 unsigned int bin;
384 384 unsigned int coeff;
385 385 unsigned char *kCoeffPtr;
386 386 unsigned char *kCoeffDumpPtr;
387 387
388 388 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
389 389 // F0 => 11 bins
390 390 // F1 => 13 bins
391 391 // F2 => 12 bins
392 392 // 36 bins to dump in two packets (30 bins max per packet)
393 393
394 394 //*********
395 395 // PACKET 1
396 396 // 11 F0 bins, 13 F1 bins and 6 F2 bins
397 397 kcoefficients_dump_1.destinationID = TC->sourceID;
398 398 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
399 399 for( freq=0;
400 400 freq<NB_BINS_COMPRESSED_SM_F0;
401 401 freq++ )
402 402 {
403 403 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1] = freq;
404 404 bin = freq;
405 405 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
406 406 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
407 407 {
408 408 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
409 409 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
410 410 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
411 411 }
412 412 }
413 413 for( freq=NB_BINS_COMPRESSED_SM_F0;
414 414 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
415 415 freq++ )
416 416 {
417 417 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
418 418 bin = freq - NB_BINS_COMPRESSED_SM_F0;
419 419 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
420 420 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
421 421 {
422 422 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
423 423 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
424 424 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
425 425 }
426 426 }
427 427 for( freq=(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
428 428 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1+6);
429 429 freq++ )
430 430 {
431 431 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
432 432 bin = freq - (NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
433 433 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
434 434 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
435 435 {
436 436 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
437 437 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
438 438 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
439 439 }
440 440 }
441 441 kcoefficients_dump_1.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
442 442 kcoefficients_dump_1.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
443 443 kcoefficients_dump_1.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
444 444 kcoefficients_dump_1.time[3] = (unsigned char) (time_management_regs->coarse_time);
445 445 kcoefficients_dump_1.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
446 446 kcoefficients_dump_1.time[5] = (unsigned char) (time_management_regs->fine_time);
447 447 // SEND DATA
448 448 kcoefficient_node_1.status = 1;
449 449 address = (unsigned int) &kcoefficient_node_1;
450 450 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
451 451 if (status != RTEMS_SUCCESSFUL) {
452 452 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
453 453 }
454 454
455 455 //********
456 456 // PACKET 2
457 457 // 6 F2 bins
458 458 kcoefficients_dump_2.destinationID = TC->sourceID;
459 459 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
460 460 for( freq=0; freq<6; freq++ )
461 461 {
462 462 kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + 6 + freq;
463 463 bin = freq + 6;
464 464 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
465 465 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
466 466 {
467 467 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
468 468 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
469 469 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
470 470 }
471 471 }
472 472 kcoefficients_dump_2.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
473 473 kcoefficients_dump_2.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
474 474 kcoefficients_dump_2.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
475 475 kcoefficients_dump_2.time[3] = (unsigned char) (time_management_regs->coarse_time);
476 476 kcoefficients_dump_2.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
477 477 kcoefficients_dump_2.time[5] = (unsigned char) (time_management_regs->fine_time);
478 478 // SEND DATA
479 479 kcoefficient_node_2.status = 1;
480 480 address = (unsigned int) &kcoefficient_node_2;
481 481 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
482 482 if (status != RTEMS_SUCCESSFUL) {
483 483 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
484 484 }
485 485
486 486 return status;
487 487 }
488 488
489 489 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
490 490 {
491 491 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
492 492 *
493 493 * @param queue_id is the id of the queue which handles TM related to this execution step.
494 494 *
495 495 * @return RTEMS directive status codes:
496 496 * - RTEMS_SUCCESSFUL - message sent successfully
497 497 * - RTEMS_INVALID_ID - invalid queue id
498 498 * - RTEMS_INVALID_SIZE - invalid message size
499 499 * - RTEMS_INVALID_ADDRESS - buffer is NULL
500 500 * - RTEMS_UNSATISFIED - out of message buffers
501 501 * - RTEMS_TOO_MANY - queue s limit has been reached
502 502 *
503 503 */
504 504
505 505 int status;
506 506
507 507 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
508 508 parameter_dump_packet.destinationID = TC->sourceID;
509 509
510 510 // UPDATE TIME
511 511 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
512 512 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
513 513 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
514 514 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
515 515 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
516 516 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
517 517 // SEND DATA
518 518 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
519 519 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
520 520 if (status != RTEMS_SUCCESSFUL) {
521 521 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
522 522 }
523 523
524 524 return status;
525 525 }
526 526
527 527 //***********************
528 528 // NORMAL MODE PARAMETERS
529 529
530 530 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
531 531 {
532 532 unsigned char msb;
533 533 unsigned char lsb;
534 534 int flag;
535 535 float aux;
536 536 rtems_status_code status;
537 537
538 538 unsigned int sy_lfr_n_swf_l;
539 539 unsigned int sy_lfr_n_swf_p;
540 540 unsigned int sy_lfr_n_asm_p;
541 541 unsigned char sy_lfr_n_bp_p0;
542 542 unsigned char sy_lfr_n_bp_p1;
543 543 unsigned char sy_lfr_n_cwf_long_f3;
544 544
545 545 flag = LFR_SUCCESSFUL;
546 546
547 547 //***************
548 548 // get parameters
549 549 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
550 550 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
551 551 sy_lfr_n_swf_l = msb * 256 + lsb;
552 552
553 553 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
554 554 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
555 555 sy_lfr_n_swf_p = msb * 256 + lsb;
556 556
557 557 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
558 558 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
559 559 sy_lfr_n_asm_p = msb * 256 + lsb;
560 560
561 561 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
562 562
563 563 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
564 564
565 565 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
566 566
567 567 //******************
568 568 // check consistency
569 569 // sy_lfr_n_swf_l
570 570 if (sy_lfr_n_swf_l != 2048)
571 571 {
572 572 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, sy_lfr_n_swf_l );
573 573 flag = WRONG_APP_DATA;
574 574 }
575 575 // sy_lfr_n_swf_p
576 576 if (flag == LFR_SUCCESSFUL)
577 577 {
578 578 if ( sy_lfr_n_swf_p < 22 )
579 579 {
580 580 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, sy_lfr_n_swf_p );
581 581 flag = WRONG_APP_DATA;
582 582 }
583 583 }
584 584 // sy_lfr_n_bp_p0
585 585 if (flag == LFR_SUCCESSFUL)
586 586 {
587 587 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
588 588 {
589 589 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
590 590 flag = WRONG_APP_DATA;
591 591 }
592 592 }
593 593 // sy_lfr_n_asm_p
594 594 if (flag == LFR_SUCCESSFUL)
595 595 {
596 596 if (sy_lfr_n_asm_p == 0)
597 597 {
598 598 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
599 599 flag = WRONG_APP_DATA;
600 600 }
601 601 }
602 602 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
603 603 if (flag == LFR_SUCCESSFUL)
604 604 {
605 605 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
606 606 if (aux > FLOAT_EQUAL_ZERO)
607 607 {
608 608 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
609 609 flag = WRONG_APP_DATA;
610 610 }
611 611 }
612 612 // sy_lfr_n_bp_p1
613 613 if (flag == LFR_SUCCESSFUL)
614 614 {
615 615 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
616 616 {
617 617 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
618 618 flag = WRONG_APP_DATA;
619 619 }
620 620 }
621 621 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
622 622 if (flag == LFR_SUCCESSFUL)
623 623 {
624 624 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
625 625 if (aux > FLOAT_EQUAL_ZERO)
626 626 {
627 627 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
628 628 flag = LFR_DEFAULT;
629 629 }
630 630 }
631 631 // sy_lfr_n_cwf_long_f3
632 632
633 633 return flag;
634 634 }
635 635
636 636 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
637 637 {
638 638 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
639 639 *
640 640 * @param TC points to the TeleCommand packet that is being processed
641 641 * @param queue_id is the id of the queue which handles TM related to this execution step
642 642 *
643 643 */
644 644
645 645 int result;
646 646
647 647 result = LFR_SUCCESSFUL;
648 648
649 649 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
650 650 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
651 651
652 652 return result;
653 653 }
654 654
655 655 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
656 656 {
657 657 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
658 658 *
659 659 * @param TC points to the TeleCommand packet that is being processed
660 660 * @param queue_id is the id of the queue which handles TM related to this execution step
661 661 *
662 662 */
663 663
664 664 int result;
665 665
666 666 result = LFR_SUCCESSFUL;
667 667
668 668 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
669 669 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
670 670
671 671 return result;
672 672 }
673 673
674 674 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
675 675 {
676 676 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
677 677 *
678 678 * @param TC points to the TeleCommand packet that is being processed
679 679 * @param queue_id is the id of the queue which handles TM related to this execution step
680 680 *
681 681 */
682 682
683 683 int result;
684 684
685 685 result = LFR_SUCCESSFUL;
686 686
687 687 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
688 688 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
689 689
690 690 return result;
691 691 }
692 692
693 693 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
694 694 {
695 695 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
696 696 *
697 697 * @param TC points to the TeleCommand packet that is being processed
698 698 * @param queue_id is the id of the queue which handles TM related to this execution step
699 699 *
700 700 */
701 701
702 702 int status;
703 703
704 704 status = LFR_SUCCESSFUL;
705 705
706 706 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
707 707
708 708 return status;
709 709 }
710 710
711 711 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
712 712 {
713 713 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
714 714 *
715 715 * @param TC points to the TeleCommand packet that is being processed
716 716 * @param queue_id is the id of the queue which handles TM related to this execution step
717 717 *
718 718 */
719 719
720 720 int status;
721 721
722 722 status = LFR_SUCCESSFUL;
723 723
724 724 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
725 725
726 726 return status;
727 727 }
728 728
729 729 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
730 730 {
731 731 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
732 732 *
733 733 * @param TC points to the TeleCommand packet that is being processed
734 734 * @param queue_id is the id of the queue which handles TM related to this execution step
735 735 *
736 736 */
737 737
738 738 int status;
739 739
740 740 status = LFR_SUCCESSFUL;
741 741
742 742 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
743 743
744 744 return status;
745 745 }
746 746
747 747 //**********************
748 748 // BURST MODE PARAMETERS
749 749 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
750 750 {
751 751 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
752 752 *
753 753 * @param TC points to the TeleCommand packet that is being processed
754 754 * @param queue_id is the id of the queue which handles TM related to this execution step
755 755 *
756 756 */
757 757
758 758 int status;
759 759
760 760 status = LFR_SUCCESSFUL;
761 761
762 762 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
763 763
764 764 return status;
765 765 }
766 766
767 767 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
768 768 {
769 769 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
770 770 *
771 771 * @param TC points to the TeleCommand packet that is being processed
772 772 * @param queue_id is the id of the queue which handles TM related to this execution step
773 773 *
774 774 */
775 775
776 776 int status;
777 777
778 778 status = LFR_SUCCESSFUL;
779 779
780 780 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
781 781
782 782 return status;
783 783 }
784 784
785 785 //*********************
786 786 // SBM1 MODE PARAMETERS
787 787 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
788 788 {
789 789 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
790 790 *
791 791 * @param TC points to the TeleCommand packet that is being processed
792 792 * @param queue_id is the id of the queue which handles TM related to this execution step
793 793 *
794 794 */
795 795
796 796 int status;
797 797
798 798 status = LFR_SUCCESSFUL;
799 799
800 800 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
801 801
802 802 return status;
803 803 }
804 804
805 805 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
806 806 {
807 807 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
808 808 *
809 809 * @param TC points to the TeleCommand packet that is being processed
810 810 * @param queue_id is the id of the queue which handles TM related to this execution step
811 811 *
812 812 */
813 813
814 814 int status;
815 815
816 816 status = LFR_SUCCESSFUL;
817 817
818 818 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
819 819
820 820 return status;
821 821 }
822 822
823 823 //*********************
824 824 // SBM2 MODE PARAMETERS
825 825 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
826 826 {
827 827 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
828 828 *
829 829 * @param TC points to the TeleCommand packet that is being processed
830 830 * @param queue_id is the id of the queue which handles TM related to this execution step
831 831 *
832 832 */
833 833
834 834 int status;
835 835
836 836 status = LFR_SUCCESSFUL;
837 837
838 838 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
839 839
840 840 return status;
841 841 }
842 842
843 843 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
844 844 {
845 845 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
846 846 *
847 847 * @param TC points to the TeleCommand packet that is being processed
848 848 * @param queue_id is the id of the queue which handles TM related to this execution step
849 849 *
850 850 */
851 851
852 852 int status;
853 853
854 854 status = LFR_SUCCESSFUL;
855 855
856 856 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
857 857
858 858 return status;
859 859 }
860 860
861 861 //*******************
862 862 // TC_LFR_UPDATE_INFO
863 863 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
864 864 {
865 865 unsigned int status;
866 866
867 867 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
868 868 || (mode == LFR_MODE_BURST)
869 869 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
870 870 {
871 871 status = LFR_SUCCESSFUL;
872 872 }
873 873 else
874 874 {
875 875 status = LFR_DEFAULT;
876 876 }
877 877
878 878 return status;
879 879 }
880 880
881 881 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
882 882 {
883 883 unsigned int status;
884 884
885 885 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
886 886 || (mode == TDS_MODE_BURST)
887 887 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
888 888 || (mode == TDS_MODE_LFM))
889 889 {
890 890 status = LFR_SUCCESSFUL;
891 891 }
892 892 else
893 893 {
894 894 status = LFR_DEFAULT;
895 895 }
896 896
897 897 return status;
898 898 }
899 899
900 900 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
901 901 {
902 902 unsigned int status;
903 903
904 904 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
905 905 || (mode == THR_MODE_BURST))
906 906 {
907 907 status = LFR_SUCCESSFUL;
908 908 }
909 909 else
910 910 {
911 911 status = LFR_DEFAULT;
912 912 }
913 913
914 914 return status;
915 915 }
916 916
917 917 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
918 918 {
919 919 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
920 920 *
921 921 * @param TC points to the TeleCommand packet that is being processed
922 922 *
923 923 */
924 924
925 925 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
926 926
927 927 bytePosPtr = (unsigned char *) &TC->packetID;
928 928
929 929 // cp_rpw_sc_rw1_f1
930 930 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f1,
931 931 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
932 932
933 933 // cp_rpw_sc_rw1_f2
934 934 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f2,
935 935 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
936 936
937 937 // cp_rpw_sc_rw2_f1
938 938 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f1,
939 939 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
940 940
941 941 // cp_rpw_sc_rw2_f2
942 942 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f2,
943 943 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
944 944
945 945 // cp_rpw_sc_rw3_f1
946 946 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f1,
947 947 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
948 948
949 949 // cp_rpw_sc_rw3_f2
950 950 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f2,
951 951 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
952 952
953 953 // cp_rpw_sc_rw4_f1
954 954 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f1,
955 955 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
956 956
957 957 // cp_rpw_sc_rw4_f2
958 958 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f2,
959 959 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
960 960 }
961 961
962 962 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag )
963 963 {
964 964 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
965 965 *
966 966 * @param fbins_mask
967 967 * @param rw_f is the reaction wheel frequency to filter
968 968 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
969 969 * @param flag [true] filtering enabled [false] filtering disabled
970 970 *
971 971 * @return void
972 972 *
973 973 */
974 974
975 975 float f_RW_min;
976 976 float f_RW_MAX;
977 977 float fi_min;
978 978 float fi_MAX;
979 979 float fi;
980 980 float deltaBelow;
981 981 float deltaAbove;
982 982 int binBelow;
983 983 int binAbove;
984 984 int closestBin;
985 985 unsigned int whichByte;
986 986 int selectedByte;
987 987 int bin;
988 988 int binToRemove[3];
989 989 int k;
990 990
991 991 whichByte = 0;
992 992 bin = 0;
993 993
994 994 binToRemove[0] = -1;
995 995 binToRemove[1] = -1;
996 996 binToRemove[2] = -1;
997 997
998 998 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
999 999 f_RW_min = rw_f - filterPar.sy_lfr_sc_rw_delta_f / 2.;
1000 1000 f_RW_MAX = rw_f + filterPar.sy_lfr_sc_rw_delta_f / 2.;
1001 1001
1002 1002 // compute the index of the frequency bin immediately below rw_f
1003 1003 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1004 1004 deltaBelow = rw_f - binBelow * deltaFreq;
1005 1005
1006 1006 // compute the index of the frequency bin immediately above rw_f
1007 1007 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1008 1008 deltaAbove = binAbove * deltaFreq - rw_f;
1009 1009
1010 1010 // search the closest bin
1011 1011 if (deltaAbove > deltaBelow)
1012 1012 {
1013 1013 closestBin = binBelow;
1014 1014 }
1015 1015 else
1016 1016 {
1017 1017 closestBin = binAbove;
1018 1018 }
1019 1019
1020 // compute the fi interval [fi - Delta_f * 0.285, fi + Delta_f * 0.285]
1020 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1021 1021 fi = closestBin * deltaFreq;
1022
1023 1022 fi_min = fi - (deltaFreq * 0.285);
1024 if ( fi_min < 0 )
1025 {
1026 fi_min = 0;
1027 }
1028 else if ( fi_min > (deltaFreq * 127) )
1029 {
1030 fi_min = -1;
1031 }
1023 fi_MAX = fi + (deltaFreq * 0.285);
1032 1024
1033 fi_MAX = fi + (deltaFreq * 0.285);
1034 if ( fi_MAX > (deltaFreq*127) )
1035 {
1036 fi_MAX = -1;
1037 }
1025 //**************************************************************************************
1026 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1027 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1028 //**************************************************************************************
1038 1029
1039 1030 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1040 1031 // => remove f_(i), f_(i-1) and f_(i+1)
1041 1032 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1042 1033 {
1043 binToRemove[0] = closestBin - 1;
1044 binToRemove[1] = closestBin;
1045 binToRemove[2] = closestBin + 1;
1034 binToRemove[0] = (closestBin - 1) - 1;
1035 binToRemove[1] = (closestBin) - 1;
1036 binToRemove[2] = (closestBin + 1) - 1;
1046 1037 }
1047 1038 // 2. ELSE
1048 1039 // => remove the two f_(i) which are around f_RW
1049 1040 else
1050 1041 {
1051 binToRemove[0] = binBelow;
1052 binToRemove[1] = binAbove;
1053 binToRemove[2] = -1;
1042 binToRemove[0] = (binBelow) - 1;
1043 binToRemove[1] = (binAbove) - 1;
1044 binToRemove[2] = (-1);
1054 1045 }
1055 1046
1056 1047 for (k = 0; k < 3; k++)
1057 1048 {
1058 1049 bin = binToRemove[k];
1059 1050 if ( (bin >= 0) && (bin <= 127) )
1060 1051 {
1061 1052 if (flag == 1)
1062 1053 {
1063 1054 whichByte = (bin >> 3); // division by 8
1064 1055 selectedByte = ( 1 << (bin - (whichByte * 8)) );
1065 1056 fbins_mask[15 - whichByte] = fbins_mask[15 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1066 1057 }
1067 1058 }
1068 1059 }
1069 1060 }
1070 1061
1071 1062 void build_sy_lfr_rw_mask( unsigned int channel )
1072 1063 {
1073 1064 unsigned char local_rw_fbins_mask[16];
1074 1065 unsigned char *maskPtr;
1075 1066 double deltaF;
1076 1067 unsigned k;
1077 1068
1078 1069 k = 0;
1079 1070
1080 1071 maskPtr = NULL;
1081 1072 deltaF = 1.;
1082 1073
1083 1074 switch (channel)
1084 1075 {
1085 1076 case 0:
1086 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1077 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f0_word1;
1087 1078 deltaF = 96.;
1088 1079 break;
1089 1080 case 1:
1090 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1081 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f1_word1;
1091 1082 deltaF = 16.;
1092 1083 break;
1093 1084 case 2:
1094 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1085 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f2_word1;
1095 1086 deltaF = 1.;
1096 1087 break;
1097 1088 default:
1098 1089 break;
1099 1090 }
1100 1091
1101 1092 for (k = 0; k < 16; k++)
1102 1093 {
1103 1094 local_rw_fbins_mask[k] = 0xff;
1104 1095 }
1105 1096
1106 1097 // RW1 F1
1107 1098 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x80) >> 7 ); // [1000 0000]
1108 1099
1109 1100 // RW1 F2
1110 1101 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x40) >> 6 ); // [0100 0000]
1111 1102
1112 1103 // RW2 F1
1113 1104 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x20) >> 5 ); // [0010 0000]
1114 1105
1115 1106 // RW2 F2
1116 1107 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x10) >> 4 ); // [0001 0000]
1117 1108
1118 1109 // RW3 F1
1119 1110 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x08) >> 3 ); // [0000 1000]
1120 1111
1121 1112 // RW3 F2
1122 1113 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x04) >> 2 ); // [0000 0100]
1123 1114
1124 1115 // RW4 F1
1125 1116 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw_f_flags & 0x02) >> 1 ); // [0000 0010]
1126 1117
1127 1118 // RW4 F2
1128 1119 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw_f_flags & 0x01) ); // [0000 0001]
1129 1120
1130 1121 // update the value of the fbins related to reaction wheels frequency filtering
1131 1122 if (maskPtr != NULL)
1132 1123 {
1133 1124 for (k = 0; k < 16; k++)
1134 1125 {
1135 1126 maskPtr[k] = local_rw_fbins_mask[k];
1136 1127 }
1137 1128 }
1138 1129 }
1139 1130
1140 1131 void build_sy_lfr_rw_masks( void )
1141 1132 {
1142 1133 build_sy_lfr_rw_mask( 0 );
1143 1134 build_sy_lfr_rw_mask( 1 );
1144 1135 build_sy_lfr_rw_mask( 2 );
1145 1136
1146 1137 merge_fbins_masks();
1147 1138 }
1148 1139
1149 1140 void merge_fbins_masks( void )
1150 1141 {
1151 1142 unsigned char k;
1152 1143
1153 1144 unsigned char *fbins_f0;
1154 1145 unsigned char *fbins_f1;
1155 1146 unsigned char *fbins_f2;
1156 1147 unsigned char *rw_mask_f0;
1157 1148 unsigned char *rw_mask_f1;
1158 1149 unsigned char *rw_mask_f2;
1159 1150
1160 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1161 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1162 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1163 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1164 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1165 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1151 fbins_f0 = parameter_dump_packet.sy_lfr_fbins.fx.f0_word1;
1152 fbins_f1 = parameter_dump_packet.sy_lfr_fbins.fx.f1_word1;
1153 fbins_f2 = parameter_dump_packet.sy_lfr_fbins.fx.f2_word1;
1154 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask.fx.f0_word1;
1155 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask.fx.f1_word1;
1156 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask.fx.f2_word1;
1166 1157
1167 1158 for( k=0; k < 16; k++ )
1168 1159 {
1169 1160 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1170 1161 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1171 1162 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1172 1163 }
1173 1164 }
1174 1165
1175 1166 //***********
1176 1167 // FBINS MASK
1177 1168
1178 1169 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1179 1170 {
1180 1171 int status;
1181 1172 unsigned int k;
1182 1173 unsigned char *fbins_mask_dump;
1183 1174 unsigned char *fbins_mask_TC;
1184 1175
1185 1176 status = LFR_SUCCESSFUL;
1186 1177
1187 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1178 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins.raw;
1188 1179 fbins_mask_TC = TC->dataAndCRC;
1189 1180
1190 1181 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1191 1182 {
1192 1183 fbins_mask_dump[k] = fbins_mask_TC[k];
1193 1184 }
1194 1185
1195 1186 return status;
1196 1187 }
1197 1188
1198 1189 //***************************
1199 1190 // TC_LFR_LOAD_PAS_FILTER_PAR
1200 1191
1201 1192 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1202 1193 {
1203 1194 int flag;
1204 1195 rtems_status_code status;
1205 1196
1206 1197 unsigned char sy_lfr_pas_filter_enabled;
1207 1198 unsigned char sy_lfr_pas_filter_modulus;
1208 1199 float sy_lfr_pas_filter_tbad;
1209 1200 unsigned char sy_lfr_pas_filter_offset;
1210 1201 float sy_lfr_pas_filter_shift;
1211 1202 float sy_lfr_sc_rw_delta_f;
1212 1203 char *parPtr;
1213 1204
1214 1205 flag = LFR_SUCCESSFUL;
1215 1206 sy_lfr_pas_filter_tbad = 0.0;
1216 1207 sy_lfr_pas_filter_shift = 0.0;
1217 1208 sy_lfr_sc_rw_delta_f = 0.0;
1218 1209 parPtr = NULL;
1219 1210
1220 1211 //***************
1221 1212 // get parameters
1222 1213 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & 0x01; // [0000 0001]
1223 1214 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1224 1215 copyFloatByChar(
1225 1216 (unsigned char*) &sy_lfr_pas_filter_tbad,
1226 1217 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1227 1218 );
1228 1219 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1229 1220 copyFloatByChar(
1230 1221 (unsigned char*) &sy_lfr_pas_filter_shift,
1231 1222 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1232 1223 );
1233 1224 copyFloatByChar(
1234 1225 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1235 1226 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1236 1227 );
1237 1228
1238 1229 //******************
1239 1230 // CHECK CONSISTENCY
1240 1231
1241 1232 //**************************
1242 1233 // sy_lfr_pas_filter_enabled
1243 1234 // nothing to check, value is 0 or 1
1244 1235
1245 1236 //**************************
1246 1237 // sy_lfr_pas_filter_modulus
1247 1238 if ( (sy_lfr_pas_filter_modulus < 4) || (sy_lfr_pas_filter_modulus > 8) )
1248 1239 {
1249 1240 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS+10, sy_lfr_pas_filter_modulus );
1250 1241 flag = WRONG_APP_DATA;
1251 1242 }
1252 1243
1253 1244 //***********************
1254 1245 // sy_lfr_pas_filter_tbad
1255 1246 if ( (sy_lfr_pas_filter_tbad < 0.0) || (sy_lfr_pas_filter_tbad > 4.0) )
1256 1247 {
1257 1248 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1258 1249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD+10, parPtr[3] );
1259 1250 flag = WRONG_APP_DATA;
1260 1251 }
1261 1252
1262 1253 //*************************
1263 1254 // sy_lfr_pas_filter_offset
1264 1255 if (flag == LFR_SUCCESSFUL)
1265 1256 {
1266 1257 if ( (sy_lfr_pas_filter_offset < 0) || (sy_lfr_pas_filter_offset > 7) )
1267 1258 {
1268 1259 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET+10, sy_lfr_pas_filter_offset );
1269 1260 flag = WRONG_APP_DATA;
1270 1261 }
1271 1262 }
1272 1263
1273 1264 //************************
1274 1265 // sy_lfr_pas_filter_shift
1275 1266 if ( (sy_lfr_pas_filter_shift < 0.0) || (sy_lfr_pas_filter_shift > 1.0) )
1276 1267 {
1277 1268 parPtr = (char*) &sy_lfr_pas_filter_shift;
1278 1269 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT+10, parPtr[3] );
1279 1270 flag = WRONG_APP_DATA;
1280 1271 }
1281 1272
1282 1273 //*********************
1283 1274 // sy_lfr_sc_rw_delta_f
1284 1275 // nothing to check, no default value in the ICD
1285 1276
1286 1277 return flag;
1287 1278 }
1288 1279
1289 1280 //**************
1290 1281 // KCOEFFICIENTS
1291 1282 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1292 1283 {
1293 1284 unsigned int kcoeff;
1294 1285 unsigned short sy_lfr_kcoeff_frequency;
1295 1286 unsigned short bin;
1296 1287 unsigned short *freqPtr;
1297 1288 float *kcoeffPtr_norm;
1298 1289 float *kcoeffPtr_sbm;
1299 1290 int status;
1300 1291 unsigned char *kcoeffLoadPtr;
1301 1292 unsigned char *kcoeffNormPtr;
1302 1293 unsigned char *kcoeffSbmPtr_a;
1303 1294 unsigned char *kcoeffSbmPtr_b;
1304 1295
1305 1296 status = LFR_SUCCESSFUL;
1306 1297
1307 1298 kcoeffPtr_norm = NULL;
1308 1299 kcoeffPtr_sbm = NULL;
1309 1300 bin = 0;
1310 1301
1311 1302 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
1312 1303 sy_lfr_kcoeff_frequency = *freqPtr;
1313 1304
1314 1305 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1315 1306 {
1316 1307 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1317 1308 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 10 + 1,
1318 1309 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1319 1310 status = LFR_DEFAULT;
1320 1311 }
1321 1312 else
1322 1313 {
1323 1314 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1324 1315 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1325 1316 {
1326 1317 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1327 1318 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1328 1319 bin = sy_lfr_kcoeff_frequency;
1329 1320 }
1330 1321 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1331 1322 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1332 1323 {
1333 1324 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1334 1325 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1335 1326 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1336 1327 }
1337 1328 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1338 1329 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1339 1330 {
1340 1331 kcoeffPtr_norm = k_coeff_intercalib_f2;
1341 1332 kcoeffPtr_sbm = NULL;
1342 1333 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1343 1334 }
1344 1335 }
1345 1336
1346 1337 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1347 1338 {
1348 1339 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1349 1340 {
1350 1341 // destination
1351 1342 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1352 1343 // source
1353 1344 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
1354 1345 // copy source to destination
1355 1346 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1356 1347 }
1357 1348 }
1358 1349
1359 1350 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1360 1351 {
1361 1352 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1362 1353 {
1363 1354 // destination
1364 1355 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 ];
1365 1356 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 + 1 ];
1366 1357 // source
1367 1358 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
1368 1359 // copy source to destination
1369 1360 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1370 1361 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1371 1362 }
1372 1363 }
1373 1364
1374 1365 // print_k_coeff();
1375 1366
1376 1367 return status;
1377 1368 }
1378 1369
1379 1370 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1380 1371 {
1381 1372 destination[0] = source[0];
1382 1373 destination[1] = source[1];
1383 1374 destination[2] = source[2];
1384 1375 destination[3] = source[3];
1385 1376 }
1386 1377
1387 1378 void floatToChar( float value, unsigned char* ptr)
1388 1379 {
1389 1380 unsigned char* valuePtr;
1390 1381
1391 1382 valuePtr = (unsigned char*) &value;
1392 1383 ptr[0] = valuePtr[0];
1393 1384 ptr[1] = valuePtr[1];
1394 1385 ptr[2] = valuePtr[2];
1395 1386 ptr[3] = valuePtr[3];
1396 1387 }
1397 1388
1398 1389 //**********
1399 1390 // init dump
1400 1391
1401 1392 void init_parameter_dump( void )
1402 1393 {
1403 1394 /** This function initialize the parameter_dump_packet global variable with default values.
1404 1395 *
1405 1396 */
1406 1397
1407 1398 unsigned int k;
1408 1399
1409 1400 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1410 1401 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1411 1402 parameter_dump_packet.reserved = CCSDS_RESERVED;
1412 1403 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1413 1404 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
1414 1405 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1415 1406 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1416 1407 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1417 1408 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
1418 1409 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1419 1410 // DATA FIELD HEADER
1420 1411 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1421 1412 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1422 1413 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1423 1414 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1424 1415 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
1425 1416 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
1426 1417 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
1427 1418 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
1428 1419 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
1429 1420 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
1430 1421 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1431 1422
1432 1423 //******************
1433 1424 // COMMON PARAMETERS
1434 1425 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1435 1426 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1436 1427
1437 1428 //******************
1438 1429 // NORMAL PARAMETERS
1439 1430 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> 8);
1440 1431 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1441 1432 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> 8);
1442 1433 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1443 1434 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> 8);
1444 1435 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1445 1436 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1446 1437 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1447 1438 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1448 1439
1449 1440 //*****************
1450 1441 // BURST PARAMETERS
1451 1442 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1452 1443 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1453 1444
1454 1445 //****************
1455 1446 // SBM1 PARAMETERS
1456 1447 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1457 1448 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1458 1449
1459 1450 //****************
1460 1451 // SBM2 PARAMETERS
1461 1452 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1462 1453 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1463 1454
1464 1455 //************
1465 1456 // FBINS MASKS
1466 1457 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1467 1458 {
1468 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = 0xff;
1459 parameter_dump_packet.sy_lfr_fbins.raw[k] = 0xff;
1469 1460 }
1470 1461
1471 1462 // PAS FILTER PARAMETERS
1472 1463 parameter_dump_packet.pa_rpw_spare8_2 = 0x00;
1473 1464 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = 0x00;
1474 1465 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1475 1466 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1476 1467 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1477 1468 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1478 1469 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1479 1470
1480 1471 // LFR_RW_MASK
1481 1472 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1482 1473 {
1483 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = 0xff;
1474 parameter_dump_packet.sy_lfr_rw_mask.raw[k] = 0xff;
1484 1475 }
1485 1476 }
1486 1477
1487 1478 void init_kcoefficients_dump( void )
1488 1479 {
1489 1480 init_kcoefficients_dump_packet( &kcoefficients_dump_1, 1, 30 );
1490 1481 init_kcoefficients_dump_packet( &kcoefficients_dump_2, 2, 6 );
1491 1482
1492 1483 kcoefficient_node_1.previous = NULL;
1493 1484 kcoefficient_node_1.next = NULL;
1494 1485 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1495 1486 kcoefficient_node_1.coarseTime = 0x00;
1496 1487 kcoefficient_node_1.fineTime = 0x00;
1497 1488 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1498 1489 kcoefficient_node_1.status = 0x00;
1499 1490
1500 1491 kcoefficient_node_2.previous = NULL;
1501 1492 kcoefficient_node_2.next = NULL;
1502 1493 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1503 1494 kcoefficient_node_2.coarseTime = 0x00;
1504 1495 kcoefficient_node_2.fineTime = 0x00;
1505 1496 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1506 1497 kcoefficient_node_2.status = 0x00;
1507 1498 }
1508 1499
1509 1500 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1510 1501 {
1511 1502 unsigned int k;
1512 1503 unsigned int packetLength;
1513 1504
1514 1505 packetLength = blk_nr * 130 + 20 - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1515 1506
1516 1507 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1517 1508 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1518 1509 kcoefficients_dump->reserved = CCSDS_RESERVED;
1519 1510 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1520 1511 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);;
1521 1512 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;;
1522 1513 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1523 1514 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1524 1515 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> 8);
1525 1516 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1526 1517 // DATA FIELD HEADER
1527 1518 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1528 1519 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1529 1520 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1530 1521 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1531 1522 kcoefficients_dump->time[0] = 0x00;
1532 1523 kcoefficients_dump->time[1] = 0x00;
1533 1524 kcoefficients_dump->time[2] = 0x00;
1534 1525 kcoefficients_dump->time[3] = 0x00;
1535 1526 kcoefficients_dump->time[4] = 0x00;
1536 1527 kcoefficients_dump->time[5] = 0x00;
1537 1528 kcoefficients_dump->sid = SID_K_DUMP;
1538 1529
1539 1530 kcoefficients_dump->pkt_cnt = 2;
1540 1531 kcoefficients_dump->pkt_nr = pkt_nr;
1541 1532 kcoefficients_dump->blk_nr = blk_nr;
1542 1533
1543 1534 //******************
1544 1535 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1545 1536 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1546 1537 for (k=0; k<3900; k++)
1547 1538 {
1548 1539 kcoefficients_dump->kcoeff_blks[k] = 0x00;
1549 1540 }
1550 1541 }
1551 1542
1552 1543 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1553 1544 {
1554 1545 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1555 1546 *
1556 1547 * @param packet_sequence_control points to the packet sequence control which will be incremented
1557 1548 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1558 1549 *
1559 1550 * If the destination ID is not known, a dedicated counter is incremented.
1560 1551 *
1561 1552 */
1562 1553
1563 1554 unsigned short sequence_cnt;
1564 1555 unsigned short segmentation_grouping_flag;
1565 1556 unsigned short new_packet_sequence_control;
1566 1557 unsigned char i;
1567 1558
1568 1559 switch (destination_id)
1569 1560 {
1570 1561 case SID_TC_GROUND:
1571 1562 i = GROUND;
1572 1563 break;
1573 1564 case SID_TC_MISSION_TIMELINE:
1574 1565 i = MISSION_TIMELINE;
1575 1566 break;
1576 1567 case SID_TC_TC_SEQUENCES:
1577 1568 i = TC_SEQUENCES;
1578 1569 break;
1579 1570 case SID_TC_RECOVERY_ACTION_CMD:
1580 1571 i = RECOVERY_ACTION_CMD;
1581 1572 break;
1582 1573 case SID_TC_BACKUP_MISSION_TIMELINE:
1583 1574 i = BACKUP_MISSION_TIMELINE;
1584 1575 break;
1585 1576 case SID_TC_DIRECT_CMD:
1586 1577 i = DIRECT_CMD;
1587 1578 break;
1588 1579 case SID_TC_SPARE_GRD_SRC1:
1589 1580 i = SPARE_GRD_SRC1;
1590 1581 break;
1591 1582 case SID_TC_SPARE_GRD_SRC2:
1592 1583 i = SPARE_GRD_SRC2;
1593 1584 break;
1594 1585 case SID_TC_OBCP:
1595 1586 i = OBCP;
1596 1587 break;
1597 1588 case SID_TC_SYSTEM_CONTROL:
1598 1589 i = SYSTEM_CONTROL;
1599 1590 break;
1600 1591 case SID_TC_AOCS:
1601 1592 i = AOCS;
1602 1593 break;
1603 1594 case SID_TC_RPW_INTERNAL:
1604 1595 i = RPW_INTERNAL;
1605 1596 break;
1606 1597 default:
1607 1598 i = GROUND;
1608 1599 break;
1609 1600 }
1610 1601
1611 1602 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1612 1603 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & 0x3fff;
1613 1604
1614 1605 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1615 1606
1616 1607 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1617 1608 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1618 1609
1619 1610 // increment the sequence counter
1620 1611 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1621 1612 {
1622 1613 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1623 1614 }
1624 1615 else
1625 1616 {
1626 1617 sequenceCounters_TM_DUMP[ i ] = 0;
1627 1618 }
1628 1619 }
General Comments 0
You need to be logged in to leave comments. Login now