##// END OF EJS Templates
Last commit before leaving!
paul -
r219:96757b6fa557 R3
parent child
Show More
@@ -1,113 +1,113
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
4 4 # lpp_dpu_destid
5 5 CONFIG += console verbose lpp_dpu_destid
6 6 CONFIG -= qt
7 7
8 8 include(./sparc.pri)
9 9
10 10 # flight software version
11 11 SWVERSION=-1-0
12 12 DEFINES += SW_VERSION_N1=3 # major
13 13 DEFINES += SW_VERSION_N2=0 # minor
14 14 DEFINES += SW_VERSION_N3=0 # patch
15 15 DEFINES += SW_VERSION_N4=8 # internal
16 16
17 17 # <GCOV>
18 QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
18 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
19 19 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
20 LIBS += -lgcov /opt/GCOV/HOWTO_gcov_for_lfr_test/01A/lib/overload.o -lc
20 #LIBS += -lgcov /opt/GCOV/HOWTO_gcov_for_lfr_test/01A/lib/overload.o -lc
21 21 # </GCOV>
22 22
23 23 # <CHANGE BEFORE FLIGHT>
24 24 contains( CONFIG, lpp_dpu_destid ) {
25 25 DEFINES += LPP_DPU_DESTID
26 26 }
27 27 # </CHANGE BEFORE FLIGHT>
28 28
29 29 contains( CONFIG, debug_tch ) {
30 30 DEFINES += DEBUG_TCH
31 31 }
32 32 DEFINES += MSB_FIRST_TCH
33 33
34 34 contains( CONFIG, vhdl_dev ) {
35 35 DEFINES += VHDL_DEV
36 36 }
37 37
38 38 contains( CONFIG, verbose ) {
39 39 DEFINES += PRINT_MESSAGES_ON_CONSOLE
40 40 }
41 41
42 42 contains( CONFIG, debug_messages ) {
43 43 DEFINES += DEBUG_MESSAGES
44 44 }
45 45
46 46 contains( CONFIG, cpu_usage_report ) {
47 47 DEFINES += PRINT_TASK_STATISTICS
48 48 }
49 49
50 50 contains( CONFIG, stack_report ) {
51 51 DEFINES += PRINT_STACK_REPORT
52 52 }
53 53
54 54 contains( CONFIG, boot_messages ) {
55 55 DEFINES += BOOT_MESSAGES
56 56 }
57 57
58 58 #doxygen.target = doxygen
59 59 #doxygen.commands = doxygen ../doc/Doxyfile
60 60 #QMAKE_EXTRA_TARGETS += doxygen
61 61
62 62 TARGET = fsw
63 63
64 64 INCLUDEPATH += \
65 65 $${PWD}/../src \
66 66 $${PWD}/../header \
67 67 $${PWD}/../header/lfr_common_headers \
68 68 $${PWD}/../header/processing \
69 69 $${PWD}/../LFR_basic-parameters
70 70
71 71 SOURCES += \
72 72 ../src/wf_handler.c \
73 73 ../src/tc_handler.c \
74 74 ../src/fsw_misc.c \
75 75 ../src/fsw_init.c \
76 76 ../src/fsw_globals.c \
77 77 ../src/fsw_spacewire.c \
78 78 ../src/tc_load_dump_parameters.c \
79 79 ../src/tm_lfr_tc_exe.c \
80 80 ../src/tc_acceptance.c \
81 81 ../src/processing/fsw_processing.c \
82 82 ../src/processing/avf0_prc0.c \
83 83 ../src/processing/avf1_prc1.c \
84 84 ../src/processing/avf2_prc2.c \
85 85 ../src/lfr_cpu_usage_report.c \
86 86 ../LFR_basic-parameters/basic_parameters.c
87 87
88 88 HEADERS += \
89 89 ../header/wf_handler.h \
90 90 ../header/tc_handler.h \
91 91 ../header/grlib_regs.h \
92 92 ../header/fsw_misc.h \
93 93 ../header/fsw_init.h \
94 94 ../header/fsw_spacewire.h \
95 95 ../header/tc_load_dump_parameters.h \
96 96 ../header/tm_lfr_tc_exe.h \
97 97 ../header/tc_acceptance.h \
98 98 ../header/processing/fsw_processing.h \
99 99 ../header/processing/avf0_prc0.h \
100 100 ../header/processing/avf1_prc1.h \
101 101 ../header/processing/avf2_prc2.h \
102 102 ../header/fsw_params_wf_handler.h \
103 103 ../header/lfr_cpu_usage_report.h \
104 104 ../header/lfr_common_headers/ccsds_types.h \
105 105 ../header/lfr_common_headers/fsw_params.h \
106 106 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
107 107 ../header/lfr_common_headers/fsw_params_processing.h \
108 108 ../header/lfr_common_headers/TC_types.h \
109 109 ../header/lfr_common_headers/tm_byte_positions.h \
110 110 ../LFR_basic-parameters/basic_parameters.h \
111 111 ../LFR_basic-parameters/basic_parameters_params.h \
112 112 ../header/GscMemoryLPP.hpp
113 113
@@ -1,1164 +1,1169
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14 #include "math.h"
15 15
16 16 //***********
17 17 // RTEMS TASK
18 18
19 19 rtems_task actn_task( rtems_task_argument unused )
20 20 {
21 21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 22 *
23 23 * @param unused is the starting argument of the RTEMS task
24 24 *
25 25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 26 * on the incoming TeleCommand.
27 27 *
28 28 */
29 29
30 30 int result;
31 31 rtems_status_code status; // RTEMS status code
32 32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
33 33 size_t size; // size of the incoming TC packet
34 34 unsigned char subtype; // subtype of the current TC packet
35 35 unsigned char time[6];
36 36 rtems_id queue_rcv_id;
37 37 rtems_id queue_snd_id;
38 38
39 39 status = get_message_queue_id_recv( &queue_rcv_id );
40 40 if (status != RTEMS_SUCCESSFUL)
41 41 {
42 42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
43 43 }
44 44
45 45 status = get_message_queue_id_send( &queue_snd_id );
46 46 if (status != RTEMS_SUCCESSFUL)
47 47 {
48 48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
49 49 }
50 50
51 51 result = LFR_SUCCESSFUL;
52 52 subtype = 0; // subtype of the current TC packet
53 53
54 54 BOOT_PRINTF("in ACTN *** \n")
55 55
56 56 while(1)
57 57 {
58 58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
59 59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
60 60 getTime( time ); // set time to the current time
61 61 if (status!=RTEMS_SUCCESSFUL)
62 62 {
63 63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
64 64 }
65 65 else
66 66 {
67 67 subtype = TC.serviceSubType;
68 68 switch(subtype)
69 69 {
70 70 case TC_SUBTYPE_RESET:
71 71 result = action_reset( &TC, queue_snd_id, time );
72 72 close_action( &TC, result, queue_snd_id );
73 73 break;
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 case TC_SUBTYPE_LOAD_NORM:
79 79 result = action_load_normal_par( &TC, queue_snd_id, time );
80 80 close_action( &TC, result, queue_snd_id );
81 81 break;
82 82 case TC_SUBTYPE_LOAD_BURST:
83 83 result = action_load_burst_par( &TC, queue_snd_id, time );
84 84 close_action( &TC, result, queue_snd_id );
85 85 break;
86 86 case TC_SUBTYPE_LOAD_SBM1:
87 87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
88 88 close_action( &TC, result, queue_snd_id );
89 89 break;
90 90 case TC_SUBTYPE_LOAD_SBM2:
91 91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
92 92 close_action( &TC, result, queue_snd_id );
93 93 break;
94 94 case TC_SUBTYPE_DUMP:
95 95 result = action_dump_par( queue_snd_id );
96 96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 case TC_SUBTYPE_ENTER:
99 99 result = action_enter_mode( &TC, queue_snd_id );
100 100 close_action( &TC, result, queue_snd_id );
101 101 break;
102 102 case TC_SUBTYPE_UPDT_INFO:
103 103 result = action_update_info( &TC, queue_snd_id );
104 104 close_action( &TC, result, queue_snd_id );
105 105 break;
106 106 case TC_SUBTYPE_EN_CAL:
107 107 result = action_enable_calibration( &TC, queue_snd_id, time );
108 108 close_action( &TC, result, queue_snd_id );
109 109 break;
110 110 case TC_SUBTYPE_DIS_CAL:
111 111 result = action_disable_calibration( &TC, queue_snd_id, time );
112 112 close_action( &TC, result, queue_snd_id );
113 113 break;
114 114 case TC_SUBTYPE_LOAD_K:
115 115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 case TC_SUBTYPE_DUMP_K:
119 119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
120 120 close_action( &TC, result, queue_snd_id );
121 121 break;
122 122 case TC_SUBTYPE_LOAD_FBINS:
123 123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
124 124 close_action( &TC, result, queue_snd_id );
125 125 break;
126 126 case TC_SUBTYPE_UPDT_TIME:
127 127 result = action_update_time( &TC );
128 128 close_action( &TC, result, queue_snd_id );
129 129 break;
130 130 default:
131 131 break;
132 132 }
133 133 }
134 134 }
135 135 }
136 136
137 137 //***********
138 138 // TC ACTIONS
139 139
140 140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
141 141 {
142 142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
143 143 *
144 144 * @param TC points to the TeleCommand packet that is being processed
145 145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
146 146 *
147 147 */
148 148
149 149 printf("this is the end!!!\n");
150 150 exit(0);
151 151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
152 152 return LFR_DEFAULT;
153 153 }
154 154
155 155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
156 156 {
157 157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
158 158 *
159 159 * @param TC points to the TeleCommand packet that is being processed
160 160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
161 161 *
162 162 */
163 163
164 164 rtems_status_code status;
165 165 unsigned char requestedMode;
166 166 unsigned int *transitionCoarseTime_ptr;
167 167 unsigned int transitionCoarseTime;
168 168 unsigned char * bytePosPtr;
169 169
170 170 bytePosPtr = (unsigned char *) &TC->packetID;
171 171
172 172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
173 173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
174 174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
175 175
176 176 status = check_mode_value( requestedMode );
177 177
178 178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
179 179 {
180 180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
181 181 }
182 else // the mode value is consistent, check the transition
182 else // the mode value is valid, check the transition
183 183 {
184 184 status = check_mode_transition(requestedMode);
185 185 if (status != LFR_SUCCESSFUL)
186 186 {
187 187 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
188 188 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
189 189 }
190 190 }
191 191
192 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
192 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
193 193 {
194 194 status = check_transition_date( transitionCoarseTime );
195 195 if (status != LFR_SUCCESSFUL)
196 196 {
197 197 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
198 198 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
199 199 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
200 200 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
201 201 }
202 202 }
203 203
204 204 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
205 205 {
206 206 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
207 207 status = enter_mode( requestedMode, transitionCoarseTime );
208 208 }
209 209
210 210 return status;
211 211 }
212 212
213 213 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
214 214 {
215 215 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
216 216 *
217 217 * @param TC points to the TeleCommand packet that is being processed
218 218 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
219 219 *
220 220 * @return LFR directive status code:
221 221 * - LFR_DEFAULT
222 222 * - LFR_SUCCESSFUL
223 223 *
224 224 */
225 225
226 226 unsigned int val;
227 227 int result;
228 228 unsigned int status;
229 229 unsigned char mode;
230 230 unsigned char * bytePosPtr;
231 231
232 232 bytePosPtr = (unsigned char *) &TC->packetID;
233 233
234 234 // check LFR mode
235 235 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
236 236 status = check_update_info_hk_lfr_mode( mode );
237 237 if (status == LFR_SUCCESSFUL) // check TDS mode
238 238 {
239 239 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
240 240 status = check_update_info_hk_tds_mode( mode );
241 241 }
242 242 if (status == LFR_SUCCESSFUL) // check THR mode
243 243 {
244 244 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
245 245 status = check_update_info_hk_thr_mode( mode );
246 246 }
247 247 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
248 248 {
249 249 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
250 250 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
251 251 val++;
252 252 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
253 253 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
254 254 }
255 255
256 256 result = status;
257 257
258 258 return result;
259 259 }
260 260
261 261 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
262 262 {
263 263 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
264 264 *
265 265 * @param TC points to the TeleCommand packet that is being processed
266 266 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
267 267 *
268 268 */
269 269
270 270 int result;
271 271
272 272 result = LFR_DEFAULT;
273 273
274 274 setCalibration( true );
275 275
276 276 result = LFR_SUCCESSFUL;
277 277
278 278 return result;
279 279 }
280 280
281 281 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
282 282 {
283 283 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
284 284 *
285 285 * @param TC points to the TeleCommand packet that is being processed
286 286 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
287 287 *
288 288 */
289 289
290 290 int result;
291 291
292 292 result = LFR_DEFAULT;
293 293
294 294 setCalibration( false );
295 295
296 296 result = LFR_SUCCESSFUL;
297 297
298 298 return result;
299 299 }
300 300
301 301 int action_update_time(ccsdsTelecommandPacket_t *TC)
302 302 {
303 303 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
304 304 *
305 305 * @param TC points to the TeleCommand packet that is being processed
306 306 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
307 307 *
308 308 * @return LFR_SUCCESSFUL
309 309 *
310 310 */
311 311
312 312 unsigned int val;
313 313
314 314 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
315 315 + (TC->dataAndCRC[1] << 16)
316 316 + (TC->dataAndCRC[2] << 8)
317 317 + TC->dataAndCRC[3];
318 318
319 319 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
320 320 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
321 321 val++;
322 322 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
323 323 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
324 324
325 325 return LFR_SUCCESSFUL;
326 326 }
327 327
328 328 //*******************
329 329 // ENTERING THE MODES
330 330 int check_mode_value( unsigned char requestedMode )
331 331 {
332 332 int status;
333 333
334 334 if ( (requestedMode != LFR_MODE_STANDBY)
335 335 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
336 336 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
337 337 {
338 338 status = LFR_DEFAULT;
339 339 }
340 340 else
341 341 {
342 342 status = LFR_SUCCESSFUL;
343 343 }
344 344
345 345 return status;
346 346 }
347 347
348 348 int check_mode_transition( unsigned char requestedMode )
349 349 {
350 350 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
351 351 *
352 352 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
353 353 *
354 354 * @return LFR directive status codes:
355 355 * - LFR_SUCCESSFUL - the transition is authorized
356 356 * - LFR_DEFAULT - the transition is not authorized
357 357 *
358 358 */
359 359
360 360 int status;
361 361
362 362 switch (requestedMode)
363 363 {
364 364 case LFR_MODE_STANDBY:
365 365 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
366 366 status = LFR_DEFAULT;
367 367 }
368 368 else
369 369 {
370 370 status = LFR_SUCCESSFUL;
371 371 }
372 372 break;
373 373 case LFR_MODE_NORMAL:
374 374 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
375 375 status = LFR_DEFAULT;
376 376 }
377 377 else {
378 378 status = LFR_SUCCESSFUL;
379 379 }
380 380 break;
381 381 case LFR_MODE_BURST:
382 382 if ( lfrCurrentMode == LFR_MODE_BURST ) {
383 383 status = LFR_DEFAULT;
384 384 }
385 385 else {
386 386 status = LFR_SUCCESSFUL;
387 387 }
388 388 break;
389 389 case LFR_MODE_SBM1:
390 390 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
391 391 status = LFR_DEFAULT;
392 392 }
393 393 else {
394 394 status = LFR_SUCCESSFUL;
395 395 }
396 396 break;
397 397 case LFR_MODE_SBM2:
398 398 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
399 399 status = LFR_DEFAULT;
400 400 }
401 401 else {
402 402 status = LFR_SUCCESSFUL;
403 403 }
404 404 break;
405 405 default:
406 406 status = LFR_DEFAULT;
407 407 break;
408 408 }
409 409
410 410 return status;
411 411 }
412 412
413 413 int check_transition_date( unsigned int transitionCoarseTime )
414 414 {
415 415 int status;
416 416 unsigned int localCoarseTime;
417 417 unsigned int deltaCoarseTime;
418 418
419 419 status = LFR_SUCCESSFUL;
420 420
421 421 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
422 422 {
423 423 status = LFR_SUCCESSFUL;
424 424 }
425 425 else
426 426 {
427 427 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
428 428
429 429 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime)
430 430
431 431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
432 432 {
433 433 status = LFR_DEFAULT;
434 434 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n")
435 435 }
436 436
437 437 if (status == LFR_SUCCESSFUL)
438 438 {
439 439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
440 440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
441 441 {
442 442 status = LFR_DEFAULT;
443 443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
444 444 }
445 445 }
446 446 }
447 447
448 448 return status;
449 449 }
450 450
451 451 int stop_current_mode( void )
452 452 {
453 453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
454 454 *
455 455 * @return RTEMS directive status codes:
456 456 * - RTEMS_SUCCESSFUL - task restarted successfully
457 457 * - RTEMS_INVALID_ID - task id invalid
458 458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
459 459 *
460 460 */
461 461
462 462 rtems_status_code status;
463 463
464 464 status = RTEMS_SUCCESSFUL;
465 465
466 466 // (1) mask interruptions
467 467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
468 468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
469 469
470 470 // (2) reset waveform picker registers
471 471 reset_wfp_burst_enable(); // reset burst and enable bits
472 472 reset_wfp_status(); // reset all the status bits
473 473
474 474 // (3) reset spectral matrices registers
475 475 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
476 476 reset_sm_status();
477 477
478 478 // reset lfr VHDL module
479 479 reset_lfr();
480 480
481 481 reset_extractSWF(); // reset the extractSWF flag to false
482 482
483 483 // (4) clear interruptions
484 484 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
485 485 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
486 486
487 487 // <Spectral Matrices simulator>
488 488 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
489 489 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
490 490 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
491 491 // </Spectral Matrices simulator>
492 492
493 493 // suspend several tasks
494 494 if (lfrCurrentMode != LFR_MODE_STANDBY) {
495 495 status = suspend_science_tasks();
496 496 }
497 497
498 498 if (status != RTEMS_SUCCESSFUL)
499 499 {
500 500 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
501 501 }
502 502
503 503 return status;
504 504 }
505 505
506 506 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
507 507 {
508 508 /** This function is launched after a mode transition validation.
509 509 *
510 510 * @param mode is the mode in which LFR will be put.
511 511 *
512 512 * @return RTEMS directive status codes:
513 513 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
514 514 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
515 515 *
516 516 */
517 517
518 518 rtems_status_code status;
519 519
520 520 //**********************
521 521 // STOP THE CURRENT MODE
522 522 status = stop_current_mode();
523 523 if (status != RTEMS_SUCCESSFUL)
524 524 {
525 525 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
526 526 }
527 527
528 528 //*************************
529 529 // ENTER THE REQUESTED MODE
530 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
531 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
530 if (status == RTEMS_SUCCESSFUL) // if the current mode has been successfully stopped
532 531 {
532 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
533 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
534 {
533 535 #ifdef PRINT_TASK_STATISTICS
534 rtems_cpu_usage_reset();
536 rtems_cpu_usage_reset();
535 537 #endif
536 status = restart_science_tasks( mode );
537 launch_spectral_matrix( );
538 launch_waveform_picker( mode, transitionCoarseTime );
539 // launch_spectral_matrix_simu( );
540 }
541 else if ( mode == LFR_MODE_STANDBY )
542 {
538 status = restart_science_tasks( mode );
539 if (status == RTEMS_SUCCESSFUL)
540 {
541 launch_spectral_matrix( );
542 launch_waveform_picker( mode, transitionCoarseTime );
543 }
544 }
545 else if ( mode == LFR_MODE_STANDBY )
546 {
543 547 #ifdef PRINT_TASK_STATISTICS
544 rtems_cpu_usage_report();
548 rtems_cpu_usage_report();
545 549 #endif
546 550
547 551 #ifdef PRINT_STACK_REPORT
548 PRINTF("stack report selected\n")
549 rtems_stack_checker_report_usage();
552 PRINTF("stack report selected\n")
553 rtems_stack_checker_report_usage();
550 554 #endif
551 }
552 else
553 {
554 status = RTEMS_UNSATISFIED;
555 }
556 else
557 {
558 status = RTEMS_UNSATISFIED;
559 }
555 560 }
556 561
557 562 if (status != RTEMS_SUCCESSFUL)
558 563 {
559 564 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
560 565 status = RTEMS_UNSATISFIED;
561 566 }
562 567
563 568 return status;
564 569 }
565 570
566 571 int restart_science_tasks(unsigned char lfrRequestedMode )
567 572 {
568 573 /** This function is used to restart all science tasks.
569 574 *
570 575 * @return RTEMS directive status codes:
571 576 * - RTEMS_SUCCESSFUL - task restarted successfully
572 577 * - RTEMS_INVALID_ID - task id invalid
573 578 * - RTEMS_INCORRECT_STATE - task never started
574 579 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
575 580 *
576 581 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
577 582 *
578 583 */
579 584
580 585 rtems_status_code status[10];
581 586 rtems_status_code ret;
582 587
583 588 ret = RTEMS_SUCCESSFUL;
584 589
585 590 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
586 591 if (status[0] != RTEMS_SUCCESSFUL)
587 592 {
588 593 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
589 594 }
590 595
591 596 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
592 597 if (status[1] != RTEMS_SUCCESSFUL)
593 598 {
594 599 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
595 600 }
596 601
597 602 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
598 603 if (status[2] != RTEMS_SUCCESSFUL)
599 604 {
600 605 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
601 606 }
602 607
603 608 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
604 609 if (status[3] != RTEMS_SUCCESSFUL)
605 610 {
606 611 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
607 612 }
608 613
609 614 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
610 615 if (status[4] != RTEMS_SUCCESSFUL)
611 616 {
612 617 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
613 618 }
614 619
615 620 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
616 621 if (status[5] != RTEMS_SUCCESSFUL)
617 622 {
618 623 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
619 624 }
620 625
621 626 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
622 627 if (status[6] != RTEMS_SUCCESSFUL)
623 628 {
624 629 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
625 630 }
626 631
627 632 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
628 633 if (status[7] != RTEMS_SUCCESSFUL)
629 634 {
630 635 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
631 636 }
632 637
633 638 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
634 639 if (status[8] != RTEMS_SUCCESSFUL)
635 640 {
636 641 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
637 642 }
638 643
639 644 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
640 645 if (status[9] != RTEMS_SUCCESSFUL)
641 646 {
642 647 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
643 648 }
644 649
645 650 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
646 651 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
647 652 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
648 653 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
649 654 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
650 655 {
651 656 ret = RTEMS_UNSATISFIED;
652 657 }
653 658
654 659 return ret;
655 660 }
656 661
657 662 int suspend_science_tasks()
658 663 {
659 664 /** This function suspends the science tasks.
660 665 *
661 666 * @return RTEMS directive status codes:
662 667 * - RTEMS_SUCCESSFUL - task restarted successfully
663 668 * - RTEMS_INVALID_ID - task id invalid
664 669 * - RTEMS_ALREADY_SUSPENDED - task already suspended
665 670 *
666 671 */
667 672
668 673 rtems_status_code status;
669 674
670 675 printf("in suspend_science_tasks\n");
671 676
672 677 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
673 678 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
674 679 {
675 680 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
676 681 }
677 682 else
678 683 {
679 684 status = RTEMS_SUCCESSFUL;
680 685 }
681 686 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
682 687 {
683 688 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
684 689 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
685 690 {
686 691 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
687 692 }
688 693 else
689 694 {
690 695 status = RTEMS_SUCCESSFUL;
691 696 }
692 697 }
693 698 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
694 699 {
695 700 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
696 701 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
697 702 {
698 703 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
699 704 }
700 705 else
701 706 {
702 707 status = RTEMS_SUCCESSFUL;
703 708 }
704 709 }
705 710 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
706 711 {
707 712 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
708 713 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
709 714 {
710 715 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
711 716 }
712 717 else
713 718 {
714 719 status = RTEMS_SUCCESSFUL;
715 720 }
716 721 }
717 722 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
718 723 {
719 724 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
720 725 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
721 726 {
722 727 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
723 728 }
724 729 else
725 730 {
726 731 status = RTEMS_SUCCESSFUL;
727 732 }
728 733 }
729 734 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
730 735 {
731 736 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
732 737 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
733 738 {
734 739 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
735 740 }
736 741 else
737 742 {
738 743 status = RTEMS_SUCCESSFUL;
739 744 }
740 745 }
741 746 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
742 747 {
743 748 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
744 749 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
745 750 {
746 751 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
747 752 }
748 753 else
749 754 {
750 755 status = RTEMS_SUCCESSFUL;
751 756 }
752 757 }
753 758 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
754 759 {
755 760 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
756 761 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
757 762 {
758 763 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
759 764 }
760 765 else
761 766 {
762 767 status = RTEMS_SUCCESSFUL;
763 768 }
764 769 }
765 770 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
766 771 {
767 772 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
768 773 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
769 774 {
770 775 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
771 776 }
772 777 else
773 778 {
774 779 status = RTEMS_SUCCESSFUL;
775 780 }
776 781 }
777 782 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
778 783 {
779 784 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
780 785 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
781 786 {
782 787 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
783 788 }
784 789 else
785 790 {
786 791 status = RTEMS_SUCCESSFUL;
787 792 }
788 793 }
789 794
790 795 return status;
791 796 }
792 797
793 798 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
794 799 {
795 800 WFP_reset_current_ring_nodes();
796 801
797 802 reset_waveform_picker_regs();
798 803
799 804 set_wfp_burst_enable_register( mode );
800 805
801 806 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
802 807 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
803 808
804 809 if (transitionCoarseTime == 0)
805 810 {
806 811 waveform_picker_regs->start_date = time_management_regs->coarse_time;
807 812 }
808 813 else
809 814 {
810 815 waveform_picker_regs->start_date = transitionCoarseTime;
811 816 }
812 817
813 818 }
814 819
815 820 void launch_spectral_matrix( void )
816 821 {
817 822 SM_reset_current_ring_nodes();
818 823
819 824 reset_spectral_matrix_regs();
820 825
821 826 reset_nb_sm();
822 827
823 828 set_sm_irq_onNewMatrix( 1 );
824 829
825 830 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
826 831 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
827 832
828 833 }
829 834
830 835 void launch_spectral_matrix_simu( void )
831 836 {
832 837 SM_reset_current_ring_nodes();
833 838 reset_spectral_matrix_regs();
834 839 reset_nb_sm();
835 840
836 841 // Spectral Matrices simulator
837 842 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
838 843 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
839 844 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
840 845 }
841 846
842 847 void set_sm_irq_onNewMatrix( unsigned char value )
843 848 {
844 849 if (value == 1)
845 850 {
846 851 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
847 852 }
848 853 else
849 854 {
850 855 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
851 856 }
852 857 }
853 858
854 859 void set_sm_irq_onError( unsigned char value )
855 860 {
856 861 if (value == 1)
857 862 {
858 863 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
859 864 }
860 865 else
861 866 {
862 867 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
863 868 }
864 869 }
865 870
866 871 //*****************************
867 872 // CONFIGURE CALIBRATION SIGNAL
868 873 void setCalibrationPrescaler( unsigned int prescaler )
869 874 {
870 875 // prescaling of the master clock (25 MHz)
871 876 // master clock is divided by 2^prescaler
872 877 time_management_regs->calPrescaler = prescaler;
873 878 }
874 879
875 880 void setCalibrationDivisor( unsigned int divisionFactor )
876 881 {
877 882 // division of the prescaled clock by the division factor
878 883 time_management_regs->calDivisor = divisionFactor;
879 884 }
880 885
881 886 void setCalibrationData( void ){
882 887 unsigned int k;
883 888 unsigned short data;
884 889 float val;
885 890 float f0;
886 891 float f1;
887 892 float fs;
888 893 float Ts;
889 894 float scaleFactor;
890 895
891 896 f0 = 625;
892 897 f1 = 10000;
893 898 fs = 160256.410;
894 899 Ts = 1. / fs;
895 900 scaleFactor = 0.125 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 250 mVpp each, amplitude = 125 mV
896 901
897 902 time_management_regs->calDataPtr = 0x00;
898 903
899 904 // build the signal for the SCM calibration
900 905 for (k=0; k<256; k++)
901 906 {
902 907 val = sin( 2 * pi * f0 * k * Ts )
903 908 + sin( 2 * pi * f1 * k * Ts );
904 909 data = (unsigned short) ((val * scaleFactor) + 2048);
905 910 time_management_regs->calData = data & 0xfff;
906 911 }
907 912 }
908 913
909 914 void setCalibrationDataInterleaved( void ){
910 915 unsigned int k;
911 916 float val;
912 917 float f0;
913 918 float f1;
914 919 float fs;
915 920 float Ts;
916 921 unsigned short data[384];
917 922 unsigned char *dataPtr;
918 923
919 924 f0 = 625;
920 925 f1 = 10000;
921 926 fs = 240384.615;
922 927 Ts = 1. / fs;
923 928
924 929 time_management_regs->calDataPtr = 0x00;
925 930
926 931 // build the signal for the SCM calibration
927 932 for (k=0; k<384; k++)
928 933 {
929 934 val = sin( 2 * pi * f0 * k * Ts )
930 935 + sin( 2 * pi * f1 * k * Ts );
931 936 data[k] = (unsigned short) (val * 512 + 2048);
932 937 }
933 938
934 939 // write the signal in interleaved mode
935 940 for (k=0; k<128; k++)
936 941 {
937 942 dataPtr = (unsigned char*) &data[k*3 + 2];
938 943 time_management_regs->calData = (data[k*3] & 0xfff)
939 944 + ( (dataPtr[0] & 0x3f) << 12);
940 945 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
941 946 + ( (dataPtr[1] & 0x3f) << 12);
942 947 }
943 948 }
944 949
945 950 void setCalibrationReload( bool state)
946 951 {
947 952 if (state == true)
948 953 {
949 954 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
950 955 }
951 956 else
952 957 {
953 958 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
954 959 }
955 960 }
956 961
957 962 void setCalibrationEnable( bool state )
958 963 {
959 964 // this bit drives the multiplexer
960 965 if (state == true)
961 966 {
962 967 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
963 968 }
964 969 else
965 970 {
966 971 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
967 972 }
968 973 }
969 974
970 975 void setCalibrationInterleaved( bool state )
971 976 {
972 977 // this bit drives the multiplexer
973 978 if (state == true)
974 979 {
975 980 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
976 981 }
977 982 else
978 983 {
979 984 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
980 985 }
981 986 }
982 987
983 988 void setCalibration( bool state )
984 989 {
985 990 if (state == true)
986 991 {
987 992 setCalibrationEnable( true );
988 993 setCalibrationReload( false );
989 994 set_hk_lfr_calib_enable( true );
990 995 }
991 996 else
992 997 {
993 998 setCalibrationEnable( false );
994 999 setCalibrationReload( true );
995 1000 set_hk_lfr_calib_enable( false );
996 1001 }
997 1002 }
998 1003
999 1004 void configureCalibration( bool interleaved )
1000 1005 {
1001 1006 setCalibration( false );
1002 1007 if ( interleaved == true )
1003 1008 {
1004 1009 setCalibrationInterleaved( true );
1005 1010 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1006 1011 setCalibrationDivisor( 26 ); // => 240 384
1007 1012 setCalibrationDataInterleaved();
1008 1013 }
1009 1014 else
1010 1015 {
1011 1016 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1012 1017 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1013 1018 setCalibrationData();
1014 1019 }
1015 1020 }
1016 1021
1017 1022 //****************
1018 1023 // CLOSING ACTIONS
1019 1024 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1020 1025 {
1021 1026 /** This function is used to update the HK packets statistics after a successful TC execution.
1022 1027 *
1023 1028 * @param TC points to the TC being processed
1024 1029 * @param time is the time used to date the TC execution
1025 1030 *
1026 1031 */
1027 1032
1028 1033 unsigned int val;
1029 1034
1030 1035 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1031 1036 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1032 1037 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1033 1038 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1034 1039 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1035 1040 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1036 1041 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1037 1042 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1038 1043 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1039 1044 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1040 1045 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1041 1046 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1042 1047
1043 1048 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1044 1049 val++;
1045 1050 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1046 1051 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1047 1052 }
1048 1053
1049 1054 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1050 1055 {
1051 1056 /** This function is used to update the HK packets statistics after a TC rejection.
1052 1057 *
1053 1058 * @param TC points to the TC being processed
1054 1059 * @param time is the time used to date the TC rejection
1055 1060 *
1056 1061 */
1057 1062
1058 1063 unsigned int val;
1059 1064
1060 1065 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1061 1066 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1062 1067 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1063 1068 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1064 1069 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1065 1070 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1066 1071 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1067 1072 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1068 1073 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1069 1074 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1070 1075 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1071 1076 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1072 1077
1073 1078 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1074 1079 val++;
1075 1080 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1076 1081 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1077 1082 }
1078 1083
1079 1084 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1080 1085 {
1081 1086 /** This function is the last step of the TC execution workflow.
1082 1087 *
1083 1088 * @param TC points to the TC being processed
1084 1089 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1085 1090 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1086 1091 * @param time is the time used to date the TC execution
1087 1092 *
1088 1093 */
1089 1094
1090 1095 unsigned char requestedMode;
1091 1096
1092 1097 if (result == LFR_SUCCESSFUL)
1093 1098 {
1094 1099 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1095 1100 &
1096 1101 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1097 1102 )
1098 1103 {
1099 1104 send_tm_lfr_tc_exe_success( TC, queue_id );
1100 1105 }
1101 1106 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1102 1107 {
1103 1108 //**********************************
1104 1109 // UPDATE THE LFRMODE LOCAL VARIABLE
1105 1110 requestedMode = TC->dataAndCRC[1];
1106 1111 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1107 1112 updateLFRCurrentMode();
1108 1113 }
1109 1114 }
1110 1115 else if (result == LFR_EXE_ERROR)
1111 1116 {
1112 1117 send_tm_lfr_tc_exe_error( TC, queue_id );
1113 1118 }
1114 1119 }
1115 1120
1116 1121 //***************************
1117 1122 // Interrupt Service Routines
1118 1123 rtems_isr commutation_isr1( rtems_vector_number vector )
1119 1124 {
1120 1125 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1121 1126 printf("In commutation_isr1 *** Error sending event to DUMB\n");
1122 1127 }
1123 1128 }
1124 1129
1125 1130 rtems_isr commutation_isr2( rtems_vector_number vector )
1126 1131 {
1127 1132 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1128 1133 printf("In commutation_isr2 *** Error sending event to DUMB\n");
1129 1134 }
1130 1135 }
1131 1136
1132 1137 //****************
1133 1138 // OTHER FUNCTIONS
1134 1139 void updateLFRCurrentMode()
1135 1140 {
1136 1141 /** This function updates the value of the global variable lfrCurrentMode.
1137 1142 *
1138 1143 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1139 1144 *
1140 1145 */
1141 1146 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1142 1147 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
1143 1148 }
1144 1149
1145 1150 void set_lfr_soft_reset( unsigned char value )
1146 1151 {
1147 1152 if (value == 1)
1148 1153 {
1149 1154 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1150 1155 }
1151 1156 else
1152 1157 {
1153 1158 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1154 1159 }
1155 1160 }
1156 1161
1157 1162 void reset_lfr( void )
1158 1163 {
1159 1164 set_lfr_soft_reset( 1 );
1160 1165
1161 1166 set_lfr_soft_reset( 0 );
1162 1167
1163 1168 set_hk_lfr_sc_potential_flag( true );
1164 1169 }
General Comments 0
You need to be logged in to leave comments. Login now