##// END OF EJS Templates
Bug 906 calibration signal
paul -
r332:86c97c298d6e R3_plus draft
parent child
Show More
@@ -1,111 +1,115
1 #ifndef TC_HANDLER_H_INCLUDED
1 #ifndef TC_HANDLER_H_INCLUDED
2 #define TC_HANDLER_H_INCLUDED
2 #define TC_HANDLER_H_INCLUDED
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <leon.h>
5 #include <leon.h>
6
6
7 #include "tc_load_dump_parameters.h"
7 #include "tc_load_dump_parameters.h"
8 #include "tc_acceptance.h"
8 #include "tc_acceptance.h"
9 #include "tm_lfr_tc_exe.h"
9 #include "tm_lfr_tc_exe.h"
10 #include "wf_handler.h"
10 #include "wf_handler.h"
11 #include "fsw_processing.h"
11 #include "fsw_processing.h"
12
12
13 #include "lfr_cpu_usage_report.h"
13 #include "lfr_cpu_usage_report.h"
14
14
15 #define MAX_DELTA_COARSE_TIME 3
15 #define MAX_DELTA_COARSE_TIME 3
16 #define NB_SCIENCE_TASKS 10
16 #define NB_SCIENCE_TASKS 10
17 #define NB_ASM_TASKS 6
17 #define NB_ASM_TASKS 6
18 #define STATUS_0 0
18 #define STATUS_0 0
19 #define STATUS_1 1
19 #define STATUS_1 1
20 #define STATUS_2 2
20 #define STATUS_2 2
21 #define STATUS_3 3
21 #define STATUS_3 3
22 #define STATUS_4 4
22 #define STATUS_4 4
23 #define STATUS_5 5
23 #define STATUS_5 5
24 #define STATUS_6 6
24 #define STATUS_6 6
25 #define STATUS_7 7
25 #define STATUS_7 7
26 #define STATUS_8 8
26 #define STATUS_8 8
27 #define STATUS_9 9
27 #define STATUS_9 9
28
28
29 #define CAL_F0 625
29 #define CAL_F0 625.
30 #define CAL_F1 10000
30 #define CAL_F1 10000.
31 #define CAL_W0 (2. * pi * CAL_F0)
32 #define CAL_W1 (2. * pi * CAL_F1)
33 #define CAL_A0 1.
34 #define CAL_A1 2.
31 #define CAL_FS 160256.410
35 #define CAL_FS 160256.410
32 #define CAL_SCALE_FACTOR (0.250 / 0.000654) // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
36 #define CAL_SCALE_FACTOR (0.250 / 0.000654) // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
33 #define CAL_NB_PTS 256
37 #define CAL_NB_PTS 256
34 #define CAL_DATA_MASK 0xfff
38 #define CAL_DATA_MASK 0xfff
35 #define CAL_F_DIVISOR 38 // 25 MHz => 160 256 (39 - 1)
39 #define CAL_F_DIVISOR 38 // 25 MHz => 160 256 (39 - 1)
36 // INTERLEAVED MODE
40 // INTERLEAVED MODE
37 #define CAL_FS_INTER 240384.615
41 #define CAL_FS_INTER 240384.615
38 #define CAL_NB_PTS_INTER 384
42 #define CAL_NB_PTS_INTER 384
39 #define CAL_DATA_MASK_INTER 0x3f
43 #define CAL_DATA_MASK_INTER 0x3f
40 #define CAL_DATA_SHIFT_INTER 12
44 #define CAL_DATA_SHIFT_INTER 12
41 #define BYTES_FOR_2_SAMPLES 3 // one need 3 bytes = 24 bits to store 3 samples of 12 bits in interleaved mode
45 #define BYTES_FOR_2_SAMPLES 3 // one need 3 bytes = 24 bits to store 3 samples of 12 bits in interleaved mode
42 #define STEPS_FOR_STORAGE_INTER 128
46 #define STEPS_FOR_STORAGE_INTER 128
43 #define CAL_F_DIVISOR_INTER 26 // 25 MHz => 240 384
47 #define CAL_F_DIVISOR_INTER 26 // 25 MHz => 240 384
44
48
45 extern unsigned int lastValidEnterModeTime;
49 extern unsigned int lastValidEnterModeTime;
46 extern unsigned char oneTcLfrUpdateTimeReceived;
50 extern unsigned char oneTcLfrUpdateTimeReceived;
47
51
48 //****
52 //****
49 // ISR
53 // ISR
50 rtems_isr commutation_isr1( rtems_vector_number vector );
54 rtems_isr commutation_isr1( rtems_vector_number vector );
51 rtems_isr commutation_isr2( rtems_vector_number vector );
55 rtems_isr commutation_isr2( rtems_vector_number vector );
52
56
53 //***********
57 //***********
54 // RTEMS TASK
58 // RTEMS TASK
55 rtems_task actn_task( rtems_task_argument unused );
59 rtems_task actn_task( rtems_task_argument unused );
56
60
57 //***********
61 //***********
58 // TC ACTIONS
62 // TC ACTIONS
59 int action_reset( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
63 int action_reset( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
60 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
64 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
61 int action_update_info( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
65 int action_update_info( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
62 int action_enable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
66 int action_enable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
63 int action_disable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
67 int action_disable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
64 int action_update_time( ccsdsTelecommandPacket_t *TC);
68 int action_update_time( ccsdsTelecommandPacket_t *TC);
65
69
66 // mode transition
70 // mode transition
67 int check_mode_value( unsigned char requestedMode );
71 int check_mode_value( unsigned char requestedMode );
68 int check_mode_transition( unsigned char requestedMode );
72 int check_mode_transition( unsigned char requestedMode );
69 void update_last_valid_transition_date( unsigned int transitionCoarseTime );
73 void update_last_valid_transition_date( unsigned int transitionCoarseTime );
70 int check_transition_date( unsigned int transitionCoarseTime );
74 int check_transition_date( unsigned int transitionCoarseTime );
71 int stop_spectral_matrices( void );
75 int stop_spectral_matrices( void );
72 int stop_current_mode( void );
76 int stop_current_mode( void );
73 int enter_mode_standby(void );
77 int enter_mode_standby(void );
74 int enter_mode_normal( unsigned int transitionCoarseTime );
78 int enter_mode_normal( unsigned int transitionCoarseTime );
75 int enter_mode_burst( unsigned int transitionCoarseTime );
79 int enter_mode_burst( unsigned int transitionCoarseTime );
76 int enter_mode_sbm1( unsigned int transitionCoarseTime );
80 int enter_mode_sbm1( unsigned int transitionCoarseTime );
77 int enter_mode_sbm2( unsigned int transitionCoarseTime );
81 int enter_mode_sbm2( unsigned int transitionCoarseTime );
78 int restart_science_tasks( unsigned char lfrRequestedMode );
82 int restart_science_tasks( unsigned char lfrRequestedMode );
79 int restart_asm_tasks(unsigned char lfrRequestedMode );
83 int restart_asm_tasks(unsigned char lfrRequestedMode );
80 int suspend_science_tasks(void);
84 int suspend_science_tasks(void);
81 int suspend_asm_tasks( void );
85 int suspend_asm_tasks( void );
82 void launch_waveform_picker( unsigned char mode , unsigned int transitionCoarseTime );
86 void launch_waveform_picker( unsigned char mode , unsigned int transitionCoarseTime );
83 void launch_spectral_matrix( void );
87 void launch_spectral_matrix( void );
84 void set_sm_irq_onNewMatrix( unsigned char value );
88 void set_sm_irq_onNewMatrix( unsigned char value );
85 void set_sm_irq_onError( unsigned char value );
89 void set_sm_irq_onError( unsigned char value );
86
90
87 // other functions
91 // other functions
88 void updateLFRCurrentMode(unsigned char requestedMode);
92 void updateLFRCurrentMode(unsigned char requestedMode);
89 void set_lfr_soft_reset( unsigned char value );
93 void set_lfr_soft_reset( unsigned char value );
90 void reset_lfr( void );
94 void reset_lfr( void );
91 // CALIBRATION
95 // CALIBRATION
92 void setCalibrationPrescaler( unsigned int prescaler );
96 void setCalibrationPrescaler( unsigned int prescaler );
93 void setCalibrationDivisor( unsigned int divisionFactor );
97 void setCalibrationDivisor( unsigned int divisionFactor );
94 void setCalibrationData( void );
98 void setCalibrationData( void );
95 void setCalibrationReload( bool state);
99 void setCalibrationReload( bool state);
96 void setCalibrationEnable( bool state );
100 void setCalibrationEnable( bool state );
97 void setCalibrationInterleaved( bool state );
101 void setCalibrationInterleaved( bool state );
98 void setCalibration( bool state );
102 void setCalibration( bool state );
99 void configureCalibration( bool interleaved );
103 void configureCalibration( bool interleaved );
100 //
104 //
101 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC , unsigned char *time );
105 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC , unsigned char *time );
102 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC , unsigned char *time );
106 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC , unsigned char *time );
103 void close_action( ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
107 void close_action( ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
104
108
105 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
109 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
106 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
110 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
107
111
108 #endif // TC_HANDLER_H_INCLUDED
112 #endif // TC_HANDLER_H_INCLUDED
109
113
110
114
111
115
@@ -1,107 +1,107
1 cmake_minimum_required (VERSION 2.6)
1 cmake_minimum_required (VERSION 2.6)
2 project (fsw)
2 project (fsw)
3
3
4 include(sparc-rtems)
4 include(sparc-rtems)
5 include(cppcheck)
5 include(cppcheck)
6
6
7 include_directories("../header"
7 include_directories("../header"
8 "../header/lfr_common_headers"
8 "../header/lfr_common_headers"
9 "../header/processing"
9 "../header/processing"
10 "../LFR_basic-parameters"
10 "../LFR_basic-parameters"
11 "../src")
11 "../src")
12
12
13 set(SOURCES wf_handler.c
13 set(SOURCES wf_handler.c
14 tc_handler.c
14 tc_handler.c
15 fsw_misc.c
15 fsw_misc.c
16 fsw_init.c
16 fsw_init.c
17 fsw_globals.c
17 fsw_globals.c
18 fsw_spacewire.c
18 fsw_spacewire.c
19 tc_load_dump_parameters.c
19 tc_load_dump_parameters.c
20 tm_lfr_tc_exe.c
20 tm_lfr_tc_exe.c
21 tc_acceptance.c
21 tc_acceptance.c
22 processing/fsw_processing.c
22 processing/fsw_processing.c
23 processing/avf0_prc0.c
23 processing/avf0_prc0.c
24 processing/avf1_prc1.c
24 processing/avf1_prc1.c
25 processing/avf2_prc2.c
25 processing/avf2_prc2.c
26 lfr_cpu_usage_report.c
26 lfr_cpu_usage_report.c
27 ${LFR_BP_SRC}
27 ${LFR_BP_SRC}
28 ../header/wf_handler.h
28 ../header/wf_handler.h
29 ../header/tc_handler.h
29 ../header/tc_handler.h
30 ../header/grlib_regs.h
30 ../header/grlib_regs.h
31 ../header/fsw_misc.h
31 ../header/fsw_misc.h
32 ../header/fsw_init.h
32 ../header/fsw_init.h
33 ../header/fsw_spacewire.h
33 ../header/fsw_spacewire.h
34 ../header/tc_load_dump_parameters.h
34 ../header/tc_load_dump_parameters.h
35 ../header/tm_lfr_tc_exe.h
35 ../header/tm_lfr_tc_exe.h
36 ../header/tc_acceptance.h
36 ../header/tc_acceptance.h
37 ../header/processing/fsw_processing.h
37 ../header/processing/fsw_processing.h
38 ../header/processing/avf0_prc0.h
38 ../header/processing/avf0_prc0.h
39 ../header/processing/avf1_prc1.h
39 ../header/processing/avf1_prc1.h
40 ../header/processing/avf2_prc2.h
40 ../header/processing/avf2_prc2.h
41 ../header/fsw_params_wf_handler.h
41 ../header/fsw_params_wf_handler.h
42 ../header/lfr_cpu_usage_report.h
42 ../header/lfr_cpu_usage_report.h
43 ../header/lfr_common_headers/ccsds_types.h
43 ../header/lfr_common_headers/ccsds_types.h
44 ../header/lfr_common_headers/fsw_params.h
44 ../header/lfr_common_headers/fsw_params.h
45 ../header/lfr_common_headers/fsw_params_nb_bytes.h
45 ../header/lfr_common_headers/fsw_params_nb_bytes.h
46 ../header/lfr_common_headers/fsw_params_processing.h
46 ../header/lfr_common_headers/fsw_params_processing.h
47 ../header/lfr_common_headers/tm_byte_positions.h
47 ../header/lfr_common_headers/tm_byte_positions.h
48 ../LFR_basic-parameters/basic_parameters.h
48 ../LFR_basic-parameters/basic_parameters.h
49 ../LFR_basic-parameters/basic_parameters_params.h
49 ../LFR_basic-parameters/basic_parameters_params.h
50 ../header/GscMemoryLPP.hpp
50 ../header/GscMemoryLPP.hpp
51 )
51 )
52
52
53
53
54 option(FSW_verbose "Enable verbose LFR" OFF)
54 option(FSW_verbose "Enable verbose LFR" OFF)
55 option(FSW_boot_messages "Enable LFR boot messages" OFF)
55 option(FSW_boot_messages "Enable LFR boot messages" OFF)
56 option(FSW_debug_messages "Enable LFR debug messages" OFF)
56 option(FSW_debug_messages "Enable LFR debug messages" OFF)
57 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
57 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
58 option(FSW_stack_report "Enable LFR stack report" OFF)
58 option(FSW_stack_report "Enable LFR stack report" OFF)
59 option(FSW_vhdl_dev "?" OFF)
59 option(FSW_vhdl_dev "?" OFF)
60 option(FSW_lpp_dpu_destid "Set to debug at LPP" ON)
60 option(FSW_lpp_dpu_destid "Set to debug at LPP" ON)
61 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
61 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
62 option(FSW_debug_tch "?" OFF)
62 option(FSW_debug_tch "?" OFF)
63
63
64 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
64 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
65 set(SW_VERSION_N2 "1" CACHE STRING "Choose N2 FSW Version." FORCE)
65 set(SW_VERSION_N2 "1" CACHE STRING "Choose N2 FSW Version." FORCE)
66 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
66 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
67 set(SW_VERSION_N4 "5" CACHE STRING "Choose N4 FSW Version." FORCE)
67 set(SW_VERSION_N4 "6" CACHE STRING "Choose N4 FSW Version." FORCE)
68
68
69 if(FSW_verbose)
69 if(FSW_verbose)
70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
71 endif()
71 endif()
72 if(FSW_boot_messages)
72 if(FSW_boot_messages)
73 add_definitions(-DBOOT_MESSAGES)
73 add_definitions(-DBOOT_MESSAGES)
74 endif()
74 endif()
75 if(FSW_debug_messages)
75 if(FSW_debug_messages)
76 add_definitions(-DDEBUG_MESSAGES)
76 add_definitions(-DDEBUG_MESSAGES)
77 endif()
77 endif()
78 if(FSW_cpu_usage_report)
78 if(FSW_cpu_usage_report)
79 add_definitions(-DPRINT_TASK_STATISTICS)
79 add_definitions(-DPRINT_TASK_STATISTICS)
80 endif()
80 endif()
81 if(FSW_stack_report)
81 if(FSW_stack_report)
82 add_definitions(-DPRINT_STACK_REPORT)
82 add_definitions(-DPRINT_STACK_REPORT)
83 endif()
83 endif()
84 if(FSW_vhdl_dev)
84 if(FSW_vhdl_dev)
85 add_definitions(-DVHDL_DEV)
85 add_definitions(-DVHDL_DEV)
86 endif()
86 endif()
87 if(FSW_lpp_dpu_destid)
87 if(FSW_lpp_dpu_destid)
88 add_definitions(-DLPP_DPU_DESTID)
88 add_definitions(-DLPP_DPU_DESTID)
89 endif()
89 endif()
90 if(FSW_debug_watchdog)
90 if(FSW_debug_watchdog)
91 add_definitions(-DDEBUG_WATCHDOG)
91 add_definitions(-DDEBUG_WATCHDOG)
92 endif()
92 endif()
93 if(FSW_debug_tch)
93 if(FSW_debug_tch)
94 add_definitions(-DDEBUG_TCH)
94 add_definitions(-DDEBUG_TCH)
95 endif()
95 endif()
96
96
97 add_definitions(-DMSB_FIRST_TCH)
97 add_definitions(-DMSB_FIRST_TCH)
98
98
99 add_definitions(-DSWVERSION=-1-0)
99 add_definitions(-DSWVERSION=-1-0)
100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
104
104
105 add_executable(fsw ${SOURCES})
105 add_executable(fsw ${SOURCES})
106 add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE)
106 add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE)
107
107
@@ -1,1669 +1,1668
1 /** Functions and tasks related to TeleCommand handling.
1 /** Functions and tasks related to TeleCommand handling.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TeleCommands:\n
6 * A group of functions to handle TeleCommands:\n
7 * action launching\n
7 * action launching\n
8 * TC parsing\n
8 * TC parsing\n
9 * ...
9 * ...
10 *
10 *
11 */
11 */
12
12
13 #include "tc_handler.h"
13 #include "tc_handler.h"
14 #include "math.h"
14 #include "math.h"
15
15
16 //***********
16 //***********
17 // RTEMS TASK
17 // RTEMS TASK
18
18
19 rtems_task actn_task( rtems_task_argument unused )
19 rtems_task actn_task( rtems_task_argument unused )
20 {
20 {
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 *
22 *
23 * @param unused is the starting argument of the RTEMS task
23 * @param unused is the starting argument of the RTEMS task
24 *
24 *
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 * on the incoming TeleCommand.
26 * on the incoming TeleCommand.
27 *
27 *
28 */
28 */
29
29
30 int result;
30 int result;
31 rtems_status_code status; // RTEMS status code
31 rtems_status_code status; // RTEMS status code
32 ccsdsTelecommandPacket_t __attribute__((aligned(4))) TC; // TC sent to the ACTN task
32 ccsdsTelecommandPacket_t __attribute__((aligned(4))) TC; // TC sent to the ACTN task
33 size_t size; // size of the incoming TC packet
33 size_t size; // size of the incoming TC packet
34 unsigned char subtype; // subtype of the current TC packet
34 unsigned char subtype; // subtype of the current TC packet
35 unsigned char time[BYTES_PER_TIME];
35 unsigned char time[BYTES_PER_TIME];
36 rtems_id queue_rcv_id;
36 rtems_id queue_rcv_id;
37 rtems_id queue_snd_id;
37 rtems_id queue_snd_id;
38
38
39 memset(&TC, 0, sizeof(ccsdsTelecommandPacket_t));
39 memset(&TC, 0, sizeof(ccsdsTelecommandPacket_t));
40 size = 0;
40 size = 0;
41 queue_rcv_id = RTEMS_ID_NONE;
41 queue_rcv_id = RTEMS_ID_NONE;
42 queue_snd_id = RTEMS_ID_NONE;
42 queue_snd_id = RTEMS_ID_NONE;
43
43
44 status = get_message_queue_id_recv( &queue_rcv_id );
44 status = get_message_queue_id_recv( &queue_rcv_id );
45 if (status != RTEMS_SUCCESSFUL)
45 if (status != RTEMS_SUCCESSFUL)
46 {
46 {
47 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
47 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
48 }
48 }
49
49
50 status = get_message_queue_id_send( &queue_snd_id );
50 status = get_message_queue_id_send( &queue_snd_id );
51 if (status != RTEMS_SUCCESSFUL)
51 if (status != RTEMS_SUCCESSFUL)
52 {
52 {
53 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
53 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
54 }
54 }
55
55
56 result = LFR_SUCCESSFUL;
56 result = LFR_SUCCESSFUL;
57 subtype = 0; // subtype of the current TC packet
57 subtype = 0; // subtype of the current TC packet
58
58
59 BOOT_PRINTF("in ACTN *** \n");
59 BOOT_PRINTF("in ACTN *** \n");
60
60
61 while(1)
61 while(1)
62 {
62 {
63 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
63 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
64 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
64 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
65 getTime( time ); // set time to the current time
65 getTime( time ); // set time to the current time
66 if (status!=RTEMS_SUCCESSFUL)
66 if (status!=RTEMS_SUCCESSFUL)
67 {
67 {
68 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
68 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
69 }
69 }
70 else
70 else
71 {
71 {
72 subtype = TC.serviceSubType;
72 subtype = TC.serviceSubType;
73 switch(subtype)
73 switch(subtype)
74 {
74 {
75 case TC_SUBTYPE_RESET:
75 case TC_SUBTYPE_RESET:
76 result = action_reset( &TC, queue_snd_id, time );
76 result = action_reset( &TC, queue_snd_id, time );
77 close_action( &TC, result, queue_snd_id );
77 close_action( &TC, result, queue_snd_id );
78 break;
78 break;
79 case TC_SUBTYPE_LOAD_COMM:
79 case TC_SUBTYPE_LOAD_COMM:
80 result = action_load_common_par( &TC );
80 result = action_load_common_par( &TC );
81 close_action( &TC, result, queue_snd_id );
81 close_action( &TC, result, queue_snd_id );
82 break;
82 break;
83 case TC_SUBTYPE_LOAD_NORM:
83 case TC_SUBTYPE_LOAD_NORM:
84 result = action_load_normal_par( &TC, queue_snd_id, time );
84 result = action_load_normal_par( &TC, queue_snd_id, time );
85 close_action( &TC, result, queue_snd_id );
85 close_action( &TC, result, queue_snd_id );
86 break;
86 break;
87 case TC_SUBTYPE_LOAD_BURST:
87 case TC_SUBTYPE_LOAD_BURST:
88 result = action_load_burst_par( &TC, queue_snd_id, time );
88 result = action_load_burst_par( &TC, queue_snd_id, time );
89 close_action( &TC, result, queue_snd_id );
89 close_action( &TC, result, queue_snd_id );
90 break;
90 break;
91 case TC_SUBTYPE_LOAD_SBM1:
91 case TC_SUBTYPE_LOAD_SBM1:
92 result = action_load_sbm1_par( &TC, queue_snd_id, time );
92 result = action_load_sbm1_par( &TC, queue_snd_id, time );
93 close_action( &TC, result, queue_snd_id );
93 close_action( &TC, result, queue_snd_id );
94 break;
94 break;
95 case TC_SUBTYPE_LOAD_SBM2:
95 case TC_SUBTYPE_LOAD_SBM2:
96 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 result = action_load_sbm2_par( &TC, queue_snd_id, time );
97 close_action( &TC, result, queue_snd_id );
97 close_action( &TC, result, queue_snd_id );
98 break;
98 break;
99 case TC_SUBTYPE_DUMP:
99 case TC_SUBTYPE_DUMP:
100 result = action_dump_par( &TC, queue_snd_id );
100 result = action_dump_par( &TC, queue_snd_id );
101 close_action( &TC, result, queue_snd_id );
101 close_action( &TC, result, queue_snd_id );
102 break;
102 break;
103 case TC_SUBTYPE_ENTER:
103 case TC_SUBTYPE_ENTER:
104 result = action_enter_mode( &TC, queue_snd_id );
104 result = action_enter_mode( &TC, queue_snd_id );
105 close_action( &TC, result, queue_snd_id );
105 close_action( &TC, result, queue_snd_id );
106 break;
106 break;
107 case TC_SUBTYPE_UPDT_INFO:
107 case TC_SUBTYPE_UPDT_INFO:
108 result = action_update_info( &TC, queue_snd_id );
108 result = action_update_info( &TC, queue_snd_id );
109 close_action( &TC, result, queue_snd_id );
109 close_action( &TC, result, queue_snd_id );
110 break;
110 break;
111 case TC_SUBTYPE_EN_CAL:
111 case TC_SUBTYPE_EN_CAL:
112 result = action_enable_calibration( &TC, queue_snd_id, time );
112 result = action_enable_calibration( &TC, queue_snd_id, time );
113 close_action( &TC, result, queue_snd_id );
113 close_action( &TC, result, queue_snd_id );
114 break;
114 break;
115 case TC_SUBTYPE_DIS_CAL:
115 case TC_SUBTYPE_DIS_CAL:
116 result = action_disable_calibration( &TC, queue_snd_id, time );
116 result = action_disable_calibration( &TC, queue_snd_id, time );
117 close_action( &TC, result, queue_snd_id );
117 close_action( &TC, result, queue_snd_id );
118 break;
118 break;
119 case TC_SUBTYPE_LOAD_K:
119 case TC_SUBTYPE_LOAD_K:
120 result = action_load_kcoefficients( &TC, queue_snd_id, time );
120 result = action_load_kcoefficients( &TC, queue_snd_id, time );
121 close_action( &TC, result, queue_snd_id );
121 close_action( &TC, result, queue_snd_id );
122 break;
122 break;
123 case TC_SUBTYPE_DUMP_K:
123 case TC_SUBTYPE_DUMP_K:
124 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
124 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
125 close_action( &TC, result, queue_snd_id );
125 close_action( &TC, result, queue_snd_id );
126 break;
126 break;
127 case TC_SUBTYPE_LOAD_FBINS:
127 case TC_SUBTYPE_LOAD_FBINS:
128 result = action_load_fbins_mask( &TC, queue_snd_id, time );
128 result = action_load_fbins_mask( &TC, queue_snd_id, time );
129 close_action( &TC, result, queue_snd_id );
129 close_action( &TC, result, queue_snd_id );
130 break;
130 break;
131 case TC_SUBTYPE_LOAD_FILTER_PAR:
131 case TC_SUBTYPE_LOAD_FILTER_PAR:
132 result = action_load_filter_par( &TC, queue_snd_id, time );
132 result = action_load_filter_par( &TC, queue_snd_id, time );
133 close_action( &TC, result, queue_snd_id );
133 close_action( &TC, result, queue_snd_id );
134 break;
134 break;
135 case TC_SUBTYPE_UPDT_TIME:
135 case TC_SUBTYPE_UPDT_TIME:
136 result = action_update_time( &TC );
136 result = action_update_time( &TC );
137 close_action( &TC, result, queue_snd_id );
137 close_action( &TC, result, queue_snd_id );
138 break;
138 break;
139 default:
139 default:
140 break;
140 break;
141 }
141 }
142 }
142 }
143 }
143 }
144 }
144 }
145
145
146 //***********
146 //***********
147 // TC ACTIONS
147 // TC ACTIONS
148
148
149 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
149 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
150 {
150 {
151 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
151 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
152 *
152 *
153 * @param TC points to the TeleCommand packet that is being processed
153 * @param TC points to the TeleCommand packet that is being processed
154 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
154 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
155 *
155 *
156 */
156 */
157
157
158 PRINTF("this is the end!!!\n");
158 PRINTF("this is the end!!!\n");
159 exit(0);
159 exit(0);
160
160
161 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
161 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
162
162
163 return LFR_DEFAULT;
163 return LFR_DEFAULT;
164 }
164 }
165
165
166 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
166 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
167 {
167 {
168 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
168 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
169 *
169 *
170 * @param TC points to the TeleCommand packet that is being processed
170 * @param TC points to the TeleCommand packet that is being processed
171 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
171 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
172 *
172 *
173 */
173 */
174
174
175 rtems_status_code status;
175 rtems_status_code status;
176 unsigned char requestedMode;
176 unsigned char requestedMode;
177 unsigned int *transitionCoarseTime_ptr;
178 unsigned int transitionCoarseTime;
177 unsigned int transitionCoarseTime;
179 unsigned char * bytePosPtr;
178 unsigned char * bytePosPtr;
180
179
181 printf("(0)\n");
180 printf("(0)\n");
182 bytePosPtr = (unsigned char *) &TC->packetID;
181 bytePosPtr = (unsigned char *) &TC->packetID;
183 printf("(1)\n");
182 printf("(1)\n");
184 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
183 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
185 printf("(2)\n");
184 printf("(2)\n");
186 copyInt32ByChar( &transitionCoarseTime, &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
185 copyInt32ByChar( (char*) &transitionCoarseTime, &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
187 printf("(3)\n");
186 printf("(3)\n");
188 transitionCoarseTime = transitionCoarseTime & COARSE_TIME_MASK;
187 transitionCoarseTime = transitionCoarseTime & COARSE_TIME_MASK;
189 printf("(4)\n");
188 printf("(4)\n");
190 status = check_mode_value( requestedMode );
189 status = check_mode_value( requestedMode );
191 printf("(5)\n");
190 printf("(5)\n");
192
191
193 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
192 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
194 {
193 {
195 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
194 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
196 }
195 }
197
196
198 else // the mode value is valid, check the transition
197 else // the mode value is valid, check the transition
199 {
198 {
200 status = check_mode_transition(requestedMode);
199 status = check_mode_transition(requestedMode);
201 if (status != LFR_SUCCESSFUL)
200 if (status != LFR_SUCCESSFUL)
202 {
201 {
203 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
202 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
204 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
203 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
205 }
204 }
206 }
205 }
207
206
208 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
207 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
209 {
208 {
210 status = check_transition_date( transitionCoarseTime );
209 status = check_transition_date( transitionCoarseTime );
211 if (status != LFR_SUCCESSFUL)
210 if (status != LFR_SUCCESSFUL)
212 {
211 {
213 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n");
212 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n");
214 send_tm_lfr_tc_exe_not_executable(TC, queue_id );
213 send_tm_lfr_tc_exe_not_executable(TC, queue_id );
215 }
214 }
216 }
215 }
217
216
218 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
217 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
219 {
218 {
220 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
219 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
221
220
222 switch(requestedMode)
221 switch(requestedMode)
223 {
222 {
224 case LFR_MODE_STANDBY:
223 case LFR_MODE_STANDBY:
225 status = enter_mode_standby();
224 status = enter_mode_standby();
226 break;
225 break;
227 case LFR_MODE_NORMAL:
226 case LFR_MODE_NORMAL:
228 status = enter_mode_normal( transitionCoarseTime );
227 status = enter_mode_normal( transitionCoarseTime );
229 break;
228 break;
230 case LFR_MODE_BURST:
229 case LFR_MODE_BURST:
231 status = enter_mode_burst( transitionCoarseTime );
230 status = enter_mode_burst( transitionCoarseTime );
232 break;
231 break;
233 case LFR_MODE_SBM1:
232 case LFR_MODE_SBM1:
234 status = enter_mode_sbm1( transitionCoarseTime );
233 status = enter_mode_sbm1( transitionCoarseTime );
235 break;
234 break;
236 case LFR_MODE_SBM2:
235 case LFR_MODE_SBM2:
237 status = enter_mode_sbm2( transitionCoarseTime );
236 status = enter_mode_sbm2( transitionCoarseTime );
238 break;
237 break;
239 default:
238 default:
240 break;
239 break;
241 }
240 }
242
241
243 if (status != RTEMS_SUCCESSFUL)
242 if (status != RTEMS_SUCCESSFUL)
244 {
243 {
245 status = LFR_EXE_ERROR;
244 status = LFR_EXE_ERROR;
246 }
245 }
247 }
246 }
248
247
249 return status;
248 return status;
250 }
249 }
251
250
252 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
251 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
253 {
252 {
254 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
253 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
255 *
254 *
256 * @param TC points to the TeleCommand packet that is being processed
255 * @param TC points to the TeleCommand packet that is being processed
257 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
256 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
258 *
257 *
259 * @return LFR directive status code:
258 * @return LFR directive status code:
260 * - LFR_DEFAULT
259 * - LFR_DEFAULT
261 * - LFR_SUCCESSFUL
260 * - LFR_SUCCESSFUL
262 *
261 *
263 */
262 */
264
263
265 unsigned int val;
264 unsigned int val;
266 int result;
265 int result;
267 unsigned int status;
266 unsigned int status;
268 unsigned char mode;
267 unsigned char mode;
269 unsigned char * bytePosPtr;
268 unsigned char * bytePosPtr;
270
269
271 bytePosPtr = (unsigned char *) &TC->packetID;
270 bytePosPtr = (unsigned char *) &TC->packetID;
272
271
273 // check LFR mode
272 // check LFR mode
274 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & BITS_LFR_MODE) >> SHIFT_LFR_MODE;
273 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & BITS_LFR_MODE) >> SHIFT_LFR_MODE;
275 status = check_update_info_hk_lfr_mode( mode );
274 status = check_update_info_hk_lfr_mode( mode );
276 if (status == LFR_SUCCESSFUL) // check TDS mode
275 if (status == LFR_SUCCESSFUL) // check TDS mode
277 {
276 {
278 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_TDS_MODE) >> SHIFT_TDS_MODE;
277 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_TDS_MODE) >> SHIFT_TDS_MODE;
279 status = check_update_info_hk_tds_mode( mode );
278 status = check_update_info_hk_tds_mode( mode );
280 }
279 }
281 if (status == LFR_SUCCESSFUL) // check THR mode
280 if (status == LFR_SUCCESSFUL) // check THR mode
282 {
281 {
283 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_THR_MODE);
282 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_THR_MODE);
284 status = check_update_info_hk_thr_mode( mode );
283 status = check_update_info_hk_thr_mode( mode );
285 }
284 }
286 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
285 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
287 {
286 {
288 val = (housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * CONST_256)
287 val = (housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * CONST_256)
289 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
288 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
290 val++;
289 val++;
291 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
290 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
292 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
291 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
293 }
292 }
294
293
295 // pa_bia_status_info
294 // pa_bia_status_info
296 // => pa_bia_mode_mux_set 3 bits
295 // => pa_bia_mode_mux_set 3 bits
297 // => pa_bia_mode_hv_enabled 1 bit
296 // => pa_bia_mode_hv_enabled 1 bit
298 // => pa_bia_mode_bias1_enabled 1 bit
297 // => pa_bia_mode_bias1_enabled 1 bit
299 // => pa_bia_mode_bias2_enabled 1 bit
298 // => pa_bia_mode_bias2_enabled 1 bit
300 // => pa_bia_mode_bias3_enabled 1 bit
299 // => pa_bia_mode_bias3_enabled 1 bit
301 // => pa_bia_on_off (cp_dpu_bias_on_off)
300 // => pa_bia_on_off (cp_dpu_bias_on_off)
302 pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & BITS_BIA; // [1111 1110]
301 pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & BITS_BIA; // [1111 1110]
303 pa_bia_status_info = pa_bia_status_info
302 pa_bia_status_info = pa_bia_status_info
304 | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 1);
303 | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 1);
305
304
306 // REACTION_WHEELS_FREQUENCY, copy the incoming parameters in the local variable (to be copied in HK packets)
305 // REACTION_WHEELS_FREQUENCY, copy the incoming parameters in the local variable (to be copied in HK packets)
307
306
308 cp_rpw_sc_rw_f_flags = bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW_F_FLAGS ];
307 cp_rpw_sc_rw_f_flags = bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW_F_FLAGS ];
309 getReactionWheelsFrequencies( TC );
308 getReactionWheelsFrequencies( TC );
310 build_sy_lfr_rw_masks();
309 build_sy_lfr_rw_masks();
311
310
312 // once the masks are built, they have to be merged with the fbins_mask
311 // once the masks are built, they have to be merged with the fbins_mask
313 merge_fbins_masks();
312 merge_fbins_masks();
314
313
315 result = status;
314 result = status;
316
315
317 return result;
316 return result;
318 }
317 }
319
318
320 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
319 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
321 {
320 {
322 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
321 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
323 *
322 *
324 * @param TC points to the TeleCommand packet that is being processed
323 * @param TC points to the TeleCommand packet that is being processed
325 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
324 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
326 *
325 *
327 */
326 */
328
327
329 int result;
328 int result;
330
329
331 result = LFR_DEFAULT;
330 result = LFR_DEFAULT;
332
331
333 setCalibration( true );
332 setCalibration( true );
334
333
335 result = LFR_SUCCESSFUL;
334 result = LFR_SUCCESSFUL;
336
335
337 return result;
336 return result;
338 }
337 }
339
338
340 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
339 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
341 {
340 {
342 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
341 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
343 *
342 *
344 * @param TC points to the TeleCommand packet that is being processed
343 * @param TC points to the TeleCommand packet that is being processed
345 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
344 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
346 *
345 *
347 */
346 */
348
347
349 int result;
348 int result;
350
349
351 result = LFR_DEFAULT;
350 result = LFR_DEFAULT;
352
351
353 setCalibration( false );
352 setCalibration( false );
354
353
355 result = LFR_SUCCESSFUL;
354 result = LFR_SUCCESSFUL;
356
355
357 return result;
356 return result;
358 }
357 }
359
358
360 int action_update_time(ccsdsTelecommandPacket_t *TC)
359 int action_update_time(ccsdsTelecommandPacket_t *TC)
361 {
360 {
362 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
361 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
363 *
362 *
364 * @param TC points to the TeleCommand packet that is being processed
363 * @param TC points to the TeleCommand packet that is being processed
365 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
364 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
366 *
365 *
367 * @return LFR_SUCCESSFUL
366 * @return LFR_SUCCESSFUL
368 *
367 *
369 */
368 */
370
369
371 unsigned int val;
370 unsigned int val;
372
371
373 time_management_regs->coarse_time_load = (TC->dataAndCRC[BYTE_0] << SHIFT_3_BYTES)
372 time_management_regs->coarse_time_load = (TC->dataAndCRC[BYTE_0] << SHIFT_3_BYTES)
374 + (TC->dataAndCRC[BYTE_1] << SHIFT_2_BYTES)
373 + (TC->dataAndCRC[BYTE_1] << SHIFT_2_BYTES)
375 + (TC->dataAndCRC[BYTE_2] << SHIFT_1_BYTE)
374 + (TC->dataAndCRC[BYTE_2] << SHIFT_1_BYTE)
376 + TC->dataAndCRC[BYTE_3];
375 + TC->dataAndCRC[BYTE_3];
377
376
378 val = (housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * CONST_256)
377 val = (housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * CONST_256)
379 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
378 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
380 val++;
379 val++;
381 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
380 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
382 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
381 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
383
382
384 oneTcLfrUpdateTimeReceived = 1;
383 oneTcLfrUpdateTimeReceived = 1;
385
384
386 return LFR_SUCCESSFUL;
385 return LFR_SUCCESSFUL;
387 }
386 }
388
387
389 //*******************
388 //*******************
390 // ENTERING THE MODES
389 // ENTERING THE MODES
391 int check_mode_value( unsigned char requestedMode )
390 int check_mode_value( unsigned char requestedMode )
392 {
391 {
393 int status;
392 int status;
394
393
395 status = LFR_DEFAULT;
394 status = LFR_DEFAULT;
396
395
397 if ( (requestedMode != LFR_MODE_STANDBY)
396 if ( (requestedMode != LFR_MODE_STANDBY)
398 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
397 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
399 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
398 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
400 {
399 {
401 status = LFR_DEFAULT;
400 status = LFR_DEFAULT;
402 }
401 }
403 else
402 else
404 {
403 {
405 status = LFR_SUCCESSFUL;
404 status = LFR_SUCCESSFUL;
406 }
405 }
407
406
408 return status;
407 return status;
409 }
408 }
410
409
411 int check_mode_transition( unsigned char requestedMode )
410 int check_mode_transition( unsigned char requestedMode )
412 {
411 {
413 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
412 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
414 *
413 *
415 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
414 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
416 *
415 *
417 * @return LFR directive status codes:
416 * @return LFR directive status codes:
418 * - LFR_SUCCESSFUL - the transition is authorized
417 * - LFR_SUCCESSFUL - the transition is authorized
419 * - LFR_DEFAULT - the transition is not authorized
418 * - LFR_DEFAULT - the transition is not authorized
420 *
419 *
421 */
420 */
422
421
423 int status;
422 int status;
424
423
425 switch (requestedMode)
424 switch (requestedMode)
426 {
425 {
427 case LFR_MODE_STANDBY:
426 case LFR_MODE_STANDBY:
428 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
427 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
429 status = LFR_DEFAULT;
428 status = LFR_DEFAULT;
430 }
429 }
431 else
430 else
432 {
431 {
433 status = LFR_SUCCESSFUL;
432 status = LFR_SUCCESSFUL;
434 }
433 }
435 break;
434 break;
436 case LFR_MODE_NORMAL:
435 case LFR_MODE_NORMAL:
437 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
436 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
438 status = LFR_DEFAULT;
437 status = LFR_DEFAULT;
439 }
438 }
440 else {
439 else {
441 status = LFR_SUCCESSFUL;
440 status = LFR_SUCCESSFUL;
442 }
441 }
443 break;
442 break;
444 case LFR_MODE_BURST:
443 case LFR_MODE_BURST:
445 if ( lfrCurrentMode == LFR_MODE_BURST ) {
444 if ( lfrCurrentMode == LFR_MODE_BURST ) {
446 status = LFR_DEFAULT;
445 status = LFR_DEFAULT;
447 }
446 }
448 else {
447 else {
449 status = LFR_SUCCESSFUL;
448 status = LFR_SUCCESSFUL;
450 }
449 }
451 break;
450 break;
452 case LFR_MODE_SBM1:
451 case LFR_MODE_SBM1:
453 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
452 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
454 status = LFR_DEFAULT;
453 status = LFR_DEFAULT;
455 }
454 }
456 else {
455 else {
457 status = LFR_SUCCESSFUL;
456 status = LFR_SUCCESSFUL;
458 }
457 }
459 break;
458 break;
460 case LFR_MODE_SBM2:
459 case LFR_MODE_SBM2:
461 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
460 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
462 status = LFR_DEFAULT;
461 status = LFR_DEFAULT;
463 }
462 }
464 else {
463 else {
465 status = LFR_SUCCESSFUL;
464 status = LFR_SUCCESSFUL;
466 }
465 }
467 break;
466 break;
468 default:
467 default:
469 status = LFR_DEFAULT;
468 status = LFR_DEFAULT;
470 break;
469 break;
471 }
470 }
472
471
473 return status;
472 return status;
474 }
473 }
475
474
476 void update_last_valid_transition_date( unsigned int transitionCoarseTime )
475 void update_last_valid_transition_date( unsigned int transitionCoarseTime )
477 {
476 {
478 if (transitionCoarseTime == 0)
477 if (transitionCoarseTime == 0)
479 {
478 {
480 lastValidEnterModeTime = time_management_regs->coarse_time + 1;
479 lastValidEnterModeTime = time_management_regs->coarse_time + 1;
481 PRINTF1("lastValidEnterModeTime = 0x%x (transitionCoarseTime = 0 => coarse_time+1)\n", lastValidEnterModeTime);
480 PRINTF1("lastValidEnterModeTime = 0x%x (transitionCoarseTime = 0 => coarse_time+1)\n", lastValidEnterModeTime);
482 }
481 }
483 else
482 else
484 {
483 {
485 lastValidEnterModeTime = transitionCoarseTime;
484 lastValidEnterModeTime = transitionCoarseTime;
486 PRINTF1("lastValidEnterModeTime = 0x%x\n", transitionCoarseTime);
485 PRINTF1("lastValidEnterModeTime = 0x%x\n", transitionCoarseTime);
487 }
486 }
488 }
487 }
489
488
490 int check_transition_date( unsigned int transitionCoarseTime )
489 int check_transition_date( unsigned int transitionCoarseTime )
491 {
490 {
492 int status;
491 int status;
493 unsigned int localCoarseTime;
492 unsigned int localCoarseTime;
494 unsigned int deltaCoarseTime;
493 unsigned int deltaCoarseTime;
495
494
496 status = LFR_SUCCESSFUL;
495 status = LFR_SUCCESSFUL;
497
496
498 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
497 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
499 {
498 {
500 status = LFR_SUCCESSFUL;
499 status = LFR_SUCCESSFUL;
501 }
500 }
502 else
501 else
503 {
502 {
504 localCoarseTime = time_management_regs->coarse_time & COARSE_TIME_MASK;
503 localCoarseTime = time_management_regs->coarse_time & COARSE_TIME_MASK;
505
504
506 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime);
505 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime);
507
506
508 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
507 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
509 {
508 {
510 status = LFR_DEFAULT;
509 status = LFR_DEFAULT;
511 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n");
510 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n");
512 }
511 }
513
512
514 if (status == LFR_SUCCESSFUL)
513 if (status == LFR_SUCCESSFUL)
515 {
514 {
516 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
515 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
517 if ( deltaCoarseTime > MAX_DELTA_COARSE_TIME ) // SSS-CP-EQS-323
516 if ( deltaCoarseTime > MAX_DELTA_COARSE_TIME ) // SSS-CP-EQS-323
518 {
517 {
519 status = LFR_DEFAULT;
518 status = LFR_DEFAULT;
520 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
519 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
521 }
520 }
522 }
521 }
523 }
522 }
524
523
525 return status;
524 return status;
526 }
525 }
527
526
528 int restart_asm_activities( unsigned char lfrRequestedMode )
527 int restart_asm_activities( unsigned char lfrRequestedMode )
529 {
528 {
530 rtems_status_code status;
529 rtems_status_code status;
531
530
532 status = stop_spectral_matrices();
531 status = stop_spectral_matrices();
533
532
534 thisIsAnASMRestart = 1;
533 thisIsAnASMRestart = 1;
535
534
536 status = restart_asm_tasks( lfrRequestedMode );
535 status = restart_asm_tasks( lfrRequestedMode );
537
536
538 launch_spectral_matrix();
537 launch_spectral_matrix();
539
538
540 return status;
539 return status;
541 }
540 }
542
541
543 int stop_spectral_matrices( void )
542 int stop_spectral_matrices( void )
544 {
543 {
545 /** This function stops and restarts the current mode average spectral matrices activities.
544 /** This function stops and restarts the current mode average spectral matrices activities.
546 *
545 *
547 * @return RTEMS directive status codes:
546 * @return RTEMS directive status codes:
548 * - RTEMS_SUCCESSFUL - task restarted successfully
547 * - RTEMS_SUCCESSFUL - task restarted successfully
549 * - RTEMS_INVALID_ID - task id invalid
548 * - RTEMS_INVALID_ID - task id invalid
550 * - RTEMS_ALREADY_SUSPENDED - task already suspended
549 * - RTEMS_ALREADY_SUSPENDED - task already suspended
551 *
550 *
552 */
551 */
553
552
554 rtems_status_code status;
553 rtems_status_code status;
555
554
556 status = RTEMS_SUCCESSFUL;
555 status = RTEMS_SUCCESSFUL;
557
556
558 // (1) mask interruptions
557 // (1) mask interruptions
559 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // mask spectral matrix interrupt
558 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // mask spectral matrix interrupt
560
559
561 // (2) reset spectral matrices registers
560 // (2) reset spectral matrices registers
562 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
561 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
563 reset_sm_status();
562 reset_sm_status();
564
563
565 // (3) clear interruptions
564 // (3) clear interruptions
566 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
565 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
567
566
568 // suspend several tasks
567 // suspend several tasks
569 if (lfrCurrentMode != LFR_MODE_STANDBY) {
568 if (lfrCurrentMode != LFR_MODE_STANDBY) {
570 status = suspend_asm_tasks();
569 status = suspend_asm_tasks();
571 }
570 }
572
571
573 if (status != RTEMS_SUCCESSFUL)
572 if (status != RTEMS_SUCCESSFUL)
574 {
573 {
575 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
574 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
576 }
575 }
577
576
578 return status;
577 return status;
579 }
578 }
580
579
581 int stop_current_mode( void )
580 int stop_current_mode( void )
582 {
581 {
583 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
582 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
584 *
583 *
585 * @return RTEMS directive status codes:
584 * @return RTEMS directive status codes:
586 * - RTEMS_SUCCESSFUL - task restarted successfully
585 * - RTEMS_SUCCESSFUL - task restarted successfully
587 * - RTEMS_INVALID_ID - task id invalid
586 * - RTEMS_INVALID_ID - task id invalid
588 * - RTEMS_ALREADY_SUSPENDED - task already suspended
587 * - RTEMS_ALREADY_SUSPENDED - task already suspended
589 *
588 *
590 */
589 */
591
590
592 rtems_status_code status;
591 rtems_status_code status;
593
592
594 status = RTEMS_SUCCESSFUL;
593 status = RTEMS_SUCCESSFUL;
595
594
596 // (1) mask interruptions
595 // (1) mask interruptions
597 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
596 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
598 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
597 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
599
598
600 // (2) reset waveform picker registers
599 // (2) reset waveform picker registers
601 reset_wfp_burst_enable(); // reset burst and enable bits
600 reset_wfp_burst_enable(); // reset burst and enable bits
602 reset_wfp_status(); // reset all the status bits
601 reset_wfp_status(); // reset all the status bits
603
602
604 // (3) reset spectral matrices registers
603 // (3) reset spectral matrices registers
605 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
604 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
606 reset_sm_status();
605 reset_sm_status();
607
606
608 // reset lfr VHDL module
607 // reset lfr VHDL module
609 reset_lfr();
608 reset_lfr();
610
609
611 reset_extractSWF(); // reset the extractSWF flag to false
610 reset_extractSWF(); // reset the extractSWF flag to false
612
611
613 // (4) clear interruptions
612 // (4) clear interruptions
614 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
613 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
615 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
614 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
616
615
617 // suspend several tasks
616 // suspend several tasks
618 if (lfrCurrentMode != LFR_MODE_STANDBY) {
617 if (lfrCurrentMode != LFR_MODE_STANDBY) {
619 status = suspend_science_tasks();
618 status = suspend_science_tasks();
620 }
619 }
621
620
622 if (status != RTEMS_SUCCESSFUL)
621 if (status != RTEMS_SUCCESSFUL)
623 {
622 {
624 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
623 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
625 }
624 }
626
625
627 return status;
626 return status;
628 }
627 }
629
628
630 int enter_mode_standby( void )
629 int enter_mode_standby( void )
631 {
630 {
632 /** This function is used to put LFR in the STANDBY mode.
631 /** This function is used to put LFR in the STANDBY mode.
633 *
632 *
634 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
633 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
635 *
634 *
636 * @return RTEMS directive status codes:
635 * @return RTEMS directive status codes:
637 * - RTEMS_SUCCESSFUL - task restarted successfully
636 * - RTEMS_SUCCESSFUL - task restarted successfully
638 * - RTEMS_INVALID_ID - task id invalid
637 * - RTEMS_INVALID_ID - task id invalid
639 * - RTEMS_INCORRECT_STATE - task never started
638 * - RTEMS_INCORRECT_STATE - task never started
640 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
639 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
641 *
640 *
642 * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
641 * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
643 * is immediate.
642 * is immediate.
644 *
643 *
645 */
644 */
646
645
647 int status;
646 int status;
648
647
649 status = stop_current_mode(); // STOP THE CURRENT MODE
648 status = stop_current_mode(); // STOP THE CURRENT MODE
650
649
651 #ifdef PRINT_TASK_STATISTICS
650 #ifdef PRINT_TASK_STATISTICS
652 rtems_cpu_usage_report();
651 rtems_cpu_usage_report();
653 #endif
652 #endif
654
653
655 #ifdef PRINT_STACK_REPORT
654 #ifdef PRINT_STACK_REPORT
656 PRINTF("stack report selected\n")
655 PRINTF("stack report selected\n")
657 rtems_stack_checker_report_usage();
656 rtems_stack_checker_report_usage();
658 #endif
657 #endif
659
658
660 return status;
659 return status;
661 }
660 }
662
661
663 int enter_mode_normal( unsigned int transitionCoarseTime )
662 int enter_mode_normal( unsigned int transitionCoarseTime )
664 {
663 {
665 /** This function is used to start the NORMAL mode.
664 /** This function is used to start the NORMAL mode.
666 *
665 *
667 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
666 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
668 *
667 *
669 * @return RTEMS directive status codes:
668 * @return RTEMS directive status codes:
670 * - RTEMS_SUCCESSFUL - task restarted successfully
669 * - RTEMS_SUCCESSFUL - task restarted successfully
671 * - RTEMS_INVALID_ID - task id invalid
670 * - RTEMS_INVALID_ID - task id invalid
672 * - RTEMS_INCORRECT_STATE - task never started
671 * - RTEMS_INCORRECT_STATE - task never started
673 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
672 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
674 *
673 *
675 * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
674 * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
676 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
675 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
677 *
676 *
678 */
677 */
679
678
680 int status;
679 int status;
681
680
682 #ifdef PRINT_TASK_STATISTICS
681 #ifdef PRINT_TASK_STATISTICS
683 rtems_cpu_usage_reset();
682 rtems_cpu_usage_reset();
684 #endif
683 #endif
685
684
686 status = RTEMS_UNSATISFIED;
685 status = RTEMS_UNSATISFIED;
687
686
688 printf("hop\n");
687 printf("hop\n");
689
688
690 switch( lfrCurrentMode )
689 switch( lfrCurrentMode )
691 {
690 {
692 case LFR_MODE_STANDBY:
691 case LFR_MODE_STANDBY:
693 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
692 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
694 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
693 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
695 {
694 {
696 launch_spectral_matrix( );
695 launch_spectral_matrix( );
697 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
696 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
698 }
697 }
699 break;
698 break;
700 case LFR_MODE_BURST:
699 case LFR_MODE_BURST:
701 status = stop_current_mode(); // stop the current mode
700 status = stop_current_mode(); // stop the current mode
702 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
701 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
703 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
702 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
704 {
703 {
705 launch_spectral_matrix( );
704 launch_spectral_matrix( );
706 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
705 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
707 }
706 }
708 break;
707 break;
709 case LFR_MODE_SBM1:
708 case LFR_MODE_SBM1:
710 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
709 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
711 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
710 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
712 update_last_valid_transition_date( transitionCoarseTime );
711 update_last_valid_transition_date( transitionCoarseTime );
713 break;
712 break;
714 case LFR_MODE_SBM2:
713 case LFR_MODE_SBM2:
715 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
714 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
716 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
715 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
717 update_last_valid_transition_date( transitionCoarseTime );
716 update_last_valid_transition_date( transitionCoarseTime );
718 break;
717 break;
719 default:
718 default:
720 break;
719 break;
721 }
720 }
722
721
723 if (status != RTEMS_SUCCESSFUL)
722 if (status != RTEMS_SUCCESSFUL)
724 {
723 {
725 PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
724 PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
726 status = RTEMS_UNSATISFIED;
725 status = RTEMS_UNSATISFIED;
727 }
726 }
728
727
729 return status;
728 return status;
730 }
729 }
731
730
732 int enter_mode_burst( unsigned int transitionCoarseTime )
731 int enter_mode_burst( unsigned int transitionCoarseTime )
733 {
732 {
734 /** This function is used to start the BURST mode.
733 /** This function is used to start the BURST mode.
735 *
734 *
736 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
735 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
737 *
736 *
738 * @return RTEMS directive status codes:
737 * @return RTEMS directive status codes:
739 * - RTEMS_SUCCESSFUL - task restarted successfully
738 * - RTEMS_SUCCESSFUL - task restarted successfully
740 * - RTEMS_INVALID_ID - task id invalid
739 * - RTEMS_INVALID_ID - task id invalid
741 * - RTEMS_INCORRECT_STATE - task never started
740 * - RTEMS_INCORRECT_STATE - task never started
742 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
741 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
743 *
742 *
744 * The way the BURST mode is started does not depend on the LFR current mode.
743 * The way the BURST mode is started does not depend on the LFR current mode.
745 *
744 *
746 */
745 */
747
746
748
747
749 int status;
748 int status;
750
749
751 #ifdef PRINT_TASK_STATISTICS
750 #ifdef PRINT_TASK_STATISTICS
752 rtems_cpu_usage_reset();
751 rtems_cpu_usage_reset();
753 #endif
752 #endif
754
753
755 status = stop_current_mode(); // stop the current mode
754 status = stop_current_mode(); // stop the current mode
756 status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
755 status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
757 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
756 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
758 {
757 {
759 launch_spectral_matrix( );
758 launch_spectral_matrix( );
760 launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
759 launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
761 }
760 }
762
761
763 if (status != RTEMS_SUCCESSFUL)
762 if (status != RTEMS_SUCCESSFUL)
764 {
763 {
765 PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
764 PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
766 status = RTEMS_UNSATISFIED;
765 status = RTEMS_UNSATISFIED;
767 }
766 }
768
767
769 return status;
768 return status;
770 }
769 }
771
770
772 int enter_mode_sbm1( unsigned int transitionCoarseTime )
771 int enter_mode_sbm1( unsigned int transitionCoarseTime )
773 {
772 {
774 /** This function is used to start the SBM1 mode.
773 /** This function is used to start the SBM1 mode.
775 *
774 *
776 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
775 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
777 *
776 *
778 * @return RTEMS directive status codes:
777 * @return RTEMS directive status codes:
779 * - RTEMS_SUCCESSFUL - task restarted successfully
778 * - RTEMS_SUCCESSFUL - task restarted successfully
780 * - RTEMS_INVALID_ID - task id invalid
779 * - RTEMS_INVALID_ID - task id invalid
781 * - RTEMS_INCORRECT_STATE - task never started
780 * - RTEMS_INCORRECT_STATE - task never started
782 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
781 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
783 *
782 *
784 * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
783 * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
785 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
784 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
786 * cases, the acquisition is completely restarted.
785 * cases, the acquisition is completely restarted.
787 *
786 *
788 */
787 */
789
788
790 int status;
789 int status;
791
790
792 #ifdef PRINT_TASK_STATISTICS
791 #ifdef PRINT_TASK_STATISTICS
793 rtems_cpu_usage_reset();
792 rtems_cpu_usage_reset();
794 #endif
793 #endif
795
794
796 status = RTEMS_UNSATISFIED;
795 status = RTEMS_UNSATISFIED;
797
796
798 switch( lfrCurrentMode )
797 switch( lfrCurrentMode )
799 {
798 {
800 case LFR_MODE_STANDBY:
799 case LFR_MODE_STANDBY:
801 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
800 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
802 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
801 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
803 {
802 {
804 launch_spectral_matrix( );
803 launch_spectral_matrix( );
805 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
804 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
806 }
805 }
807 break;
806 break;
808 case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
807 case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
809 status = restart_asm_activities( LFR_MODE_SBM1 );
808 status = restart_asm_activities( LFR_MODE_SBM1 );
810 status = LFR_SUCCESSFUL;
809 status = LFR_SUCCESSFUL;
811 update_last_valid_transition_date( transitionCoarseTime );
810 update_last_valid_transition_date( transitionCoarseTime );
812 break;
811 break;
813 case LFR_MODE_BURST:
812 case LFR_MODE_BURST:
814 status = stop_current_mode(); // stop the current mode
813 status = stop_current_mode(); // stop the current mode
815 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
814 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
816 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
815 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
817 {
816 {
818 launch_spectral_matrix( );
817 launch_spectral_matrix( );
819 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
818 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
820 }
819 }
821 break;
820 break;
822 case LFR_MODE_SBM2:
821 case LFR_MODE_SBM2:
823 status = restart_asm_activities( LFR_MODE_SBM1 );
822 status = restart_asm_activities( LFR_MODE_SBM1 );
824 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
823 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
825 update_last_valid_transition_date( transitionCoarseTime );
824 update_last_valid_transition_date( transitionCoarseTime );
826 break;
825 break;
827 default:
826 default:
828 break;
827 break;
829 }
828 }
830
829
831 if (status != RTEMS_SUCCESSFUL)
830 if (status != RTEMS_SUCCESSFUL)
832 {
831 {
833 PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status);
832 PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status);
834 status = RTEMS_UNSATISFIED;
833 status = RTEMS_UNSATISFIED;
835 }
834 }
836
835
837 return status;
836 return status;
838 }
837 }
839
838
840 int enter_mode_sbm2( unsigned int transitionCoarseTime )
839 int enter_mode_sbm2( unsigned int transitionCoarseTime )
841 {
840 {
842 /** This function is used to start the SBM2 mode.
841 /** This function is used to start the SBM2 mode.
843 *
842 *
844 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
843 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
845 *
844 *
846 * @return RTEMS directive status codes:
845 * @return RTEMS directive status codes:
847 * - RTEMS_SUCCESSFUL - task restarted successfully
846 * - RTEMS_SUCCESSFUL - task restarted successfully
848 * - RTEMS_INVALID_ID - task id invalid
847 * - RTEMS_INVALID_ID - task id invalid
849 * - RTEMS_INCORRECT_STATE - task never started
848 * - RTEMS_INCORRECT_STATE - task never started
850 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
849 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
851 *
850 *
852 * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
851 * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
853 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
852 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
854 * cases, the acquisition is completely restarted.
853 * cases, the acquisition is completely restarted.
855 *
854 *
856 */
855 */
857
856
858 int status;
857 int status;
859
858
860 #ifdef PRINT_TASK_STATISTICS
859 #ifdef PRINT_TASK_STATISTICS
861 rtems_cpu_usage_reset();
860 rtems_cpu_usage_reset();
862 #endif
861 #endif
863
862
864 status = RTEMS_UNSATISFIED;
863 status = RTEMS_UNSATISFIED;
865
864
866 switch( lfrCurrentMode )
865 switch( lfrCurrentMode )
867 {
866 {
868 case LFR_MODE_STANDBY:
867 case LFR_MODE_STANDBY:
869 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
868 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
870 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
869 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
871 {
870 {
872 launch_spectral_matrix( );
871 launch_spectral_matrix( );
873 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
872 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
874 }
873 }
875 break;
874 break;
876 case LFR_MODE_NORMAL:
875 case LFR_MODE_NORMAL:
877 status = restart_asm_activities( LFR_MODE_SBM2 );
876 status = restart_asm_activities( LFR_MODE_SBM2 );
878 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
877 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
879 update_last_valid_transition_date( transitionCoarseTime );
878 update_last_valid_transition_date( transitionCoarseTime );
880 break;
879 break;
881 case LFR_MODE_BURST:
880 case LFR_MODE_BURST:
882 status = stop_current_mode(); // stop the current mode
881 status = stop_current_mode(); // stop the current mode
883 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
882 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
884 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
883 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
885 {
884 {
886 launch_spectral_matrix( );
885 launch_spectral_matrix( );
887 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
886 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
888 }
887 }
889 break;
888 break;
890 case LFR_MODE_SBM1:
889 case LFR_MODE_SBM1:
891 status = restart_asm_activities( LFR_MODE_SBM2 );
890 status = restart_asm_activities( LFR_MODE_SBM2 );
892 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
891 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
893 update_last_valid_transition_date( transitionCoarseTime );
892 update_last_valid_transition_date( transitionCoarseTime );
894 break;
893 break;
895 default:
894 default:
896 break;
895 break;
897 }
896 }
898
897
899 if (status != RTEMS_SUCCESSFUL)
898 if (status != RTEMS_SUCCESSFUL)
900 {
899 {
901 PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
900 PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
902 status = RTEMS_UNSATISFIED;
901 status = RTEMS_UNSATISFIED;
903 }
902 }
904
903
905 return status;
904 return status;
906 }
905 }
907
906
908 int restart_science_tasks( unsigned char lfrRequestedMode )
907 int restart_science_tasks( unsigned char lfrRequestedMode )
909 {
908 {
910 /** This function is used to restart all science tasks.
909 /** This function is used to restart all science tasks.
911 *
910 *
912 * @return RTEMS directive status codes:
911 * @return RTEMS directive status codes:
913 * - RTEMS_SUCCESSFUL - task restarted successfully
912 * - RTEMS_SUCCESSFUL - task restarted successfully
914 * - RTEMS_INVALID_ID - task id invalid
913 * - RTEMS_INVALID_ID - task id invalid
915 * - RTEMS_INCORRECT_STATE - task never started
914 * - RTEMS_INCORRECT_STATE - task never started
916 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
915 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
917 *
916 *
918 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
917 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
919 *
918 *
920 */
919 */
921
920
922 rtems_status_code status[NB_SCIENCE_TASKS];
921 rtems_status_code status[NB_SCIENCE_TASKS];
923 rtems_status_code ret;
922 rtems_status_code ret;
924
923
925 ret = RTEMS_SUCCESSFUL;
924 ret = RTEMS_SUCCESSFUL;
926
925
927 status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
926 status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
928 if (status[STATUS_0] != RTEMS_SUCCESSFUL)
927 if (status[STATUS_0] != RTEMS_SUCCESSFUL)
929 {
928 {
930 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
929 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
931 }
930 }
932
931
933 status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
932 status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
934 if (status[STATUS_1] != RTEMS_SUCCESSFUL)
933 if (status[STATUS_1] != RTEMS_SUCCESSFUL)
935 {
934 {
936 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
935 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
937 }
936 }
938
937
939 status[STATUS_2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
938 status[STATUS_2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
940 if (status[STATUS_2] != RTEMS_SUCCESSFUL)
939 if (status[STATUS_2] != RTEMS_SUCCESSFUL)
941 {
940 {
942 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[STATUS_2])
941 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[STATUS_2])
943 }
942 }
944
943
945 status[STATUS_3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
944 status[STATUS_3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
946 if (status[STATUS_3] != RTEMS_SUCCESSFUL)
945 if (status[STATUS_3] != RTEMS_SUCCESSFUL)
947 {
946 {
948 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[STATUS_3])
947 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[STATUS_3])
949 }
948 }
950
949
951 status[STATUS_4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
950 status[STATUS_4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
952 if (status[STATUS_4] != RTEMS_SUCCESSFUL)
951 if (status[STATUS_4] != RTEMS_SUCCESSFUL)
953 {
952 {
954 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[STATUS_4])
953 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[STATUS_4])
955 }
954 }
956
955
957 status[STATUS_5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
956 status[STATUS_5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
958 if (status[STATUS_5] != RTEMS_SUCCESSFUL)
957 if (status[STATUS_5] != RTEMS_SUCCESSFUL)
959 {
958 {
960 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[STATUS_5])
959 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[STATUS_5])
961 }
960 }
962
961
963 status[STATUS_6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
962 status[STATUS_6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
964 if (status[STATUS_6] != RTEMS_SUCCESSFUL)
963 if (status[STATUS_6] != RTEMS_SUCCESSFUL)
965 {
964 {
966 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_6])
965 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_6])
967 }
966 }
968
967
969 status[STATUS_7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
968 status[STATUS_7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
970 if (status[STATUS_7] != RTEMS_SUCCESSFUL)
969 if (status[STATUS_7] != RTEMS_SUCCESSFUL)
971 {
970 {
972 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_7])
971 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_7])
973 }
972 }
974
973
975 status[STATUS_8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
974 status[STATUS_8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
976 if (status[STATUS_8] != RTEMS_SUCCESSFUL)
975 if (status[STATUS_8] != RTEMS_SUCCESSFUL)
977 {
976 {
978 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_8])
977 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_8])
979 }
978 }
980
979
981 status[STATUS_9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
980 status[STATUS_9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
982 if (status[STATUS_9] != RTEMS_SUCCESSFUL)
981 if (status[STATUS_9] != RTEMS_SUCCESSFUL)
983 {
982 {
984 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_9])
983 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_9])
985 }
984 }
986
985
987 if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
986 if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
988 (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
987 (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
989 (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) ||
988 (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) ||
990 (status[STATUS_6] != RTEMS_SUCCESSFUL) || (status[STATUS_7] != RTEMS_SUCCESSFUL) ||
989 (status[STATUS_6] != RTEMS_SUCCESSFUL) || (status[STATUS_7] != RTEMS_SUCCESSFUL) ||
991 (status[STATUS_8] != RTEMS_SUCCESSFUL) || (status[STATUS_9] != RTEMS_SUCCESSFUL) )
990 (status[STATUS_8] != RTEMS_SUCCESSFUL) || (status[STATUS_9] != RTEMS_SUCCESSFUL) )
992 {
991 {
993 ret = RTEMS_UNSATISFIED;
992 ret = RTEMS_UNSATISFIED;
994 }
993 }
995
994
996 return ret;
995 return ret;
997 }
996 }
998
997
999 int restart_asm_tasks( unsigned char lfrRequestedMode )
998 int restart_asm_tasks( unsigned char lfrRequestedMode )
1000 {
999 {
1001 /** This function is used to restart average spectral matrices tasks.
1000 /** This function is used to restart average spectral matrices tasks.
1002 *
1001 *
1003 * @return RTEMS directive status codes:
1002 * @return RTEMS directive status codes:
1004 * - RTEMS_SUCCESSFUL - task restarted successfully
1003 * - RTEMS_SUCCESSFUL - task restarted successfully
1005 * - RTEMS_INVALID_ID - task id invalid
1004 * - RTEMS_INVALID_ID - task id invalid
1006 * - RTEMS_INCORRECT_STATE - task never started
1005 * - RTEMS_INCORRECT_STATE - task never started
1007 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
1006 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
1008 *
1007 *
1009 * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
1008 * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
1010 *
1009 *
1011 */
1010 */
1012
1011
1013 rtems_status_code status[NB_ASM_TASKS];
1012 rtems_status_code status[NB_ASM_TASKS];
1014 rtems_status_code ret;
1013 rtems_status_code ret;
1015
1014
1016 ret = RTEMS_SUCCESSFUL;
1015 ret = RTEMS_SUCCESSFUL;
1017
1016
1018 status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
1017 status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
1019 if (status[STATUS_0] != RTEMS_SUCCESSFUL)
1018 if (status[STATUS_0] != RTEMS_SUCCESSFUL)
1020 {
1019 {
1021 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
1020 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
1022 }
1021 }
1023
1022
1024 status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
1023 status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
1025 if (status[STATUS_1] != RTEMS_SUCCESSFUL)
1024 if (status[STATUS_1] != RTEMS_SUCCESSFUL)
1026 {
1025 {
1027 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
1026 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
1028 }
1027 }
1029
1028
1030 status[STATUS_2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
1029 status[STATUS_2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
1031 if (status[STATUS_2] != RTEMS_SUCCESSFUL)
1030 if (status[STATUS_2] != RTEMS_SUCCESSFUL)
1032 {
1031 {
1033 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_2])
1032 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_2])
1034 }
1033 }
1035
1034
1036 status[STATUS_3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
1035 status[STATUS_3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
1037 if (status[STATUS_3] != RTEMS_SUCCESSFUL)
1036 if (status[STATUS_3] != RTEMS_SUCCESSFUL)
1038 {
1037 {
1039 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_3])
1038 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_3])
1040 }
1039 }
1041
1040
1042 status[STATUS_4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
1041 status[STATUS_4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
1043 if (status[STATUS_4] != RTEMS_SUCCESSFUL)
1042 if (status[STATUS_4] != RTEMS_SUCCESSFUL)
1044 {
1043 {
1045 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_4])
1044 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_4])
1046 }
1045 }
1047
1046
1048 status[STATUS_5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
1047 status[STATUS_5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
1049 if (status[STATUS_5] != RTEMS_SUCCESSFUL)
1048 if (status[STATUS_5] != RTEMS_SUCCESSFUL)
1050 {
1049 {
1051 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_5])
1050 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_5])
1052 }
1051 }
1053
1052
1054 if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
1053 if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
1055 (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
1054 (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
1056 (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) )
1055 (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) )
1057 {
1056 {
1058 ret = RTEMS_UNSATISFIED;
1057 ret = RTEMS_UNSATISFIED;
1059 }
1058 }
1060
1059
1061 return ret;
1060 return ret;
1062 }
1061 }
1063
1062
1064 int suspend_science_tasks( void )
1063 int suspend_science_tasks( void )
1065 {
1064 {
1066 /** This function suspends the science tasks.
1065 /** This function suspends the science tasks.
1067 *
1066 *
1068 * @return RTEMS directive status codes:
1067 * @return RTEMS directive status codes:
1069 * - RTEMS_SUCCESSFUL - task restarted successfully
1068 * - RTEMS_SUCCESSFUL - task restarted successfully
1070 * - RTEMS_INVALID_ID - task id invalid
1069 * - RTEMS_INVALID_ID - task id invalid
1071 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1070 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1072 *
1071 *
1073 */
1072 */
1074
1073
1075 rtems_status_code status;
1074 rtems_status_code status;
1076
1075
1077 PRINTF("in suspend_science_tasks\n")
1076 PRINTF("in suspend_science_tasks\n")
1078
1077
1079 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1078 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1080 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1079 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1081 {
1080 {
1082 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1081 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1083 }
1082 }
1084 else
1083 else
1085 {
1084 {
1086 status = RTEMS_SUCCESSFUL;
1085 status = RTEMS_SUCCESSFUL;
1087 }
1086 }
1088 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1087 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1089 {
1088 {
1090 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1089 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1091 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1090 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1092 {
1091 {
1093 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1092 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1094 }
1093 }
1095 else
1094 else
1096 {
1095 {
1097 status = RTEMS_SUCCESSFUL;
1096 status = RTEMS_SUCCESSFUL;
1098 }
1097 }
1099 }
1098 }
1100 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1099 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1101 {
1100 {
1102 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1101 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1103 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1102 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1104 {
1103 {
1105 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1104 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1106 }
1105 }
1107 else
1106 else
1108 {
1107 {
1109 status = RTEMS_SUCCESSFUL;
1108 status = RTEMS_SUCCESSFUL;
1110 }
1109 }
1111 }
1110 }
1112 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1111 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1113 {
1112 {
1114 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1113 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1115 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1114 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1116 {
1115 {
1117 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1116 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1118 }
1117 }
1119 else
1118 else
1120 {
1119 {
1121 status = RTEMS_SUCCESSFUL;
1120 status = RTEMS_SUCCESSFUL;
1122 }
1121 }
1123 }
1122 }
1124 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1123 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1125 {
1124 {
1126 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1125 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1127 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1126 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1128 {
1127 {
1129 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1128 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1130 }
1129 }
1131 else
1130 else
1132 {
1131 {
1133 status = RTEMS_SUCCESSFUL;
1132 status = RTEMS_SUCCESSFUL;
1134 }
1133 }
1135 }
1134 }
1136 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1135 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1137 {
1136 {
1138 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1137 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1139 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1138 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1140 {
1139 {
1141 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1140 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1142 }
1141 }
1143 else
1142 else
1144 {
1143 {
1145 status = RTEMS_SUCCESSFUL;
1144 status = RTEMS_SUCCESSFUL;
1146 }
1145 }
1147 }
1146 }
1148 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
1147 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
1149 {
1148 {
1150 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
1149 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
1151 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1150 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1152 {
1151 {
1153 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
1152 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
1154 }
1153 }
1155 else
1154 else
1156 {
1155 {
1157 status = RTEMS_SUCCESSFUL;
1156 status = RTEMS_SUCCESSFUL;
1158 }
1157 }
1159 }
1158 }
1160 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
1159 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
1161 {
1160 {
1162 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
1161 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
1163 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1162 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1164 {
1163 {
1165 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
1164 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
1166 }
1165 }
1167 else
1166 else
1168 {
1167 {
1169 status = RTEMS_SUCCESSFUL;
1168 status = RTEMS_SUCCESSFUL;
1170 }
1169 }
1171 }
1170 }
1172 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
1171 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
1173 {
1172 {
1174 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
1173 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
1175 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1174 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1176 {
1175 {
1177 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
1176 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
1178 }
1177 }
1179 else
1178 else
1180 {
1179 {
1181 status = RTEMS_SUCCESSFUL;
1180 status = RTEMS_SUCCESSFUL;
1182 }
1181 }
1183 }
1182 }
1184 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
1183 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
1185 {
1184 {
1186 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
1185 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
1187 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1186 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1188 {
1187 {
1189 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
1188 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
1190 }
1189 }
1191 else
1190 else
1192 {
1191 {
1193 status = RTEMS_SUCCESSFUL;
1192 status = RTEMS_SUCCESSFUL;
1194 }
1193 }
1195 }
1194 }
1196
1195
1197 return status;
1196 return status;
1198 }
1197 }
1199
1198
1200 int suspend_asm_tasks( void )
1199 int suspend_asm_tasks( void )
1201 {
1200 {
1202 /** This function suspends the science tasks.
1201 /** This function suspends the science tasks.
1203 *
1202 *
1204 * @return RTEMS directive status codes:
1203 * @return RTEMS directive status codes:
1205 * - RTEMS_SUCCESSFUL - task restarted successfully
1204 * - RTEMS_SUCCESSFUL - task restarted successfully
1206 * - RTEMS_INVALID_ID - task id invalid
1205 * - RTEMS_INVALID_ID - task id invalid
1207 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1206 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1208 *
1207 *
1209 */
1208 */
1210
1209
1211 rtems_status_code status;
1210 rtems_status_code status;
1212
1211
1213 PRINTF("in suspend_science_tasks\n")
1212 PRINTF("in suspend_science_tasks\n")
1214
1213
1215 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1214 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1216 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1215 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1217 {
1216 {
1218 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1217 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1219 }
1218 }
1220 else
1219 else
1221 {
1220 {
1222 status = RTEMS_SUCCESSFUL;
1221 status = RTEMS_SUCCESSFUL;
1223 }
1222 }
1224
1223
1225 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1224 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1226 {
1225 {
1227 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1226 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1228 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1227 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1229 {
1228 {
1230 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1229 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1231 }
1230 }
1232 else
1231 else
1233 {
1232 {
1234 status = RTEMS_SUCCESSFUL;
1233 status = RTEMS_SUCCESSFUL;
1235 }
1234 }
1236 }
1235 }
1237
1236
1238 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1237 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1239 {
1238 {
1240 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1239 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1241 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1240 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1242 {
1241 {
1243 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1242 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1244 }
1243 }
1245 else
1244 else
1246 {
1245 {
1247 status = RTEMS_SUCCESSFUL;
1246 status = RTEMS_SUCCESSFUL;
1248 }
1247 }
1249 }
1248 }
1250
1249
1251 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1250 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1252 {
1251 {
1253 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1252 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1254 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1253 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1255 {
1254 {
1256 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1255 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1257 }
1256 }
1258 else
1257 else
1259 {
1258 {
1260 status = RTEMS_SUCCESSFUL;
1259 status = RTEMS_SUCCESSFUL;
1261 }
1260 }
1262 }
1261 }
1263
1262
1264 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1263 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1265 {
1264 {
1266 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1265 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1267 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1266 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1268 {
1267 {
1269 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1268 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1270 }
1269 }
1271 else
1270 else
1272 {
1271 {
1273 status = RTEMS_SUCCESSFUL;
1272 status = RTEMS_SUCCESSFUL;
1274 }
1273 }
1275 }
1274 }
1276
1275
1277 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1276 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1278 {
1277 {
1279 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1278 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1280 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1279 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1281 {
1280 {
1282 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1281 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1283 }
1282 }
1284 else
1283 else
1285 {
1284 {
1286 status = RTEMS_SUCCESSFUL;
1285 status = RTEMS_SUCCESSFUL;
1287 }
1286 }
1288 }
1287 }
1289
1288
1290 return status;
1289 return status;
1291 }
1290 }
1292
1291
1293 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
1292 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
1294 {
1293 {
1295
1294
1296 WFP_reset_current_ring_nodes();
1295 WFP_reset_current_ring_nodes();
1297
1296
1298 reset_waveform_picker_regs();
1297 reset_waveform_picker_regs();
1299
1298
1300 set_wfp_burst_enable_register( mode );
1299 set_wfp_burst_enable_register( mode );
1301
1300
1302 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
1301 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
1303 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
1302 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
1304
1303
1305 if (transitionCoarseTime == 0)
1304 if (transitionCoarseTime == 0)
1306 {
1305 {
1307 // instant transition means transition on the next valid date
1306 // instant transition means transition on the next valid date
1308 // this is mandatory to have a good snapshot period and a good correction of the snapshot period
1307 // this is mandatory to have a good snapshot period and a good correction of the snapshot period
1309 waveform_picker_regs->start_date = time_management_regs->coarse_time + 1;
1308 waveform_picker_regs->start_date = time_management_regs->coarse_time + 1;
1310 }
1309 }
1311 else
1310 else
1312 {
1311 {
1313 waveform_picker_regs->start_date = transitionCoarseTime;
1312 waveform_picker_regs->start_date = transitionCoarseTime;
1314 }
1313 }
1315
1314
1316 update_last_valid_transition_date(waveform_picker_regs->start_date);
1315 update_last_valid_transition_date(waveform_picker_regs->start_date);
1317
1316
1318 }
1317 }
1319
1318
1320 void launch_spectral_matrix( void )
1319 void launch_spectral_matrix( void )
1321 {
1320 {
1322 SM_reset_current_ring_nodes();
1321 SM_reset_current_ring_nodes();
1323
1322
1324 reset_spectral_matrix_regs();
1323 reset_spectral_matrix_regs();
1325
1324
1326 reset_nb_sm();
1325 reset_nb_sm();
1327
1326
1328 set_sm_irq_onNewMatrix( 1 );
1327 set_sm_irq_onNewMatrix( 1 );
1329
1328
1330 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
1329 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
1331 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
1330 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
1332
1331
1333 }
1332 }
1334
1333
1335 void set_sm_irq_onNewMatrix( unsigned char value )
1334 void set_sm_irq_onNewMatrix( unsigned char value )
1336 {
1335 {
1337 if (value == 1)
1336 if (value == 1)
1338 {
1337 {
1339 spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_NEW_MATRIX;
1338 spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_NEW_MATRIX;
1340 }
1339 }
1341 else
1340 else
1342 {
1341 {
1343 spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_NEW_MATRIX; // 1110
1342 spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_NEW_MATRIX; // 1110
1344 }
1343 }
1345 }
1344 }
1346
1345
1347 void set_sm_irq_onError( unsigned char value )
1346 void set_sm_irq_onError( unsigned char value )
1348 {
1347 {
1349 if (value == 1)
1348 if (value == 1)
1350 {
1349 {
1351 spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_ERROR;
1350 spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_ERROR;
1352 }
1351 }
1353 else
1352 else
1354 {
1353 {
1355 spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_ERROR; // 1101
1354 spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_ERROR; // 1101
1356 }
1355 }
1357 }
1356 }
1358
1357
1359 //*****************************
1358 //*****************************
1360 // CONFIGURE CALIBRATION SIGNAL
1359 // CONFIGURE CALIBRATION SIGNAL
1361 void setCalibrationPrescaler( unsigned int prescaler )
1360 void setCalibrationPrescaler( unsigned int prescaler )
1362 {
1361 {
1363 // prescaling of the master clock (25 MHz)
1362 // prescaling of the master clock (25 MHz)
1364 // master clock is divided by 2^prescaler
1363 // master clock is divided by 2^prescaler
1365 time_management_regs->calPrescaler = prescaler;
1364 time_management_regs->calPrescaler = prescaler;
1366 }
1365 }
1367
1366
1368 void setCalibrationDivisor( unsigned int divisionFactor )
1367 void setCalibrationDivisor( unsigned int divisionFactor )
1369 {
1368 {
1370 // division of the prescaled clock by the division factor
1369 // division of the prescaled clock by the division factor
1371 time_management_regs->calDivisor = divisionFactor;
1370 time_management_regs->calDivisor = divisionFactor;
1372 }
1371 }
1373
1372
1374 void setCalibrationData( void )
1373 void setCalibrationData( void )
1375 {
1374 {
1376 /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
1375 /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
1377 *
1376 *
1378 * @param void
1377 * @param void
1379 *
1378 *
1380 * @return void
1379 * @return void
1381 *
1380 *
1382 */
1381 */
1383
1382
1384 unsigned int k;
1383 unsigned int k;
1385 unsigned short data;
1384 unsigned short data;
1386 float val;
1385 float val;
1387 float Ts;
1386 float Ts;
1388
1387
1389 time_management_regs->calDataPtr = INIT_CHAR;
1388 time_management_regs->calDataPtr = INIT_CHAR;
1390
1389
1391 Ts = 1 / CAL_FS;
1390 Ts = 1 / CAL_FS;
1392
1391
1393 // build the signal for the SCM calibration
1392 // build the signal for the SCM calibration
1394 for (k = 0; k < CAL_NB_PTS; k++)
1393 for (k = 0; k < CAL_NB_PTS; k++)
1395 {
1394 {
1396 val = sin( 2 * pi * CAL_F0 * k * Ts )
1395 val = CAL_A0 * sin( CAL_W0 * k * Ts )
1397 + sin( 2 * pi * CAL_F1 * k * Ts );
1396 + CAL_A1 * sin( CAL_W1 * k * Ts );
1398 data = (unsigned short) ((val * CAL_SCALE_FACTOR) + CONST_2048);
1397 data = (unsigned short) ((val * CAL_SCALE_FACTOR) + CONST_2048);
1399 time_management_regs->calData = data & CAL_DATA_MASK;
1398 time_management_regs->calData = data & CAL_DATA_MASK;
1400 }
1399 }
1401 }
1400 }
1402
1401
1403 void setCalibrationDataInterleaved( void )
1402 void setCalibrationDataInterleaved( void )
1404 {
1403 {
1405 /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
1404 /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
1406 *
1405 *
1407 * @param void
1406 * @param void
1408 *
1407 *
1409 * @return void
1408 * @return void
1410 *
1409 *
1411 * In interleaved mode, one can store more values than in normal mode.
1410 * In interleaved mode, one can store more values than in normal mode.
1412 * The data are stored in bunch of 18 bits, 12 bits from one sample and 6 bits from another sample.
1411 * The data are stored in bunch of 18 bits, 12 bits from one sample and 6 bits from another sample.
1413 * T store 3 values, one need two write operations.
1412 * T store 3 values, one need two write operations.
1414 * s1 [ b11 b10 b9 b8 b7 b6 ] s0 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
1413 * s1 [ b11 b10 b9 b8 b7 b6 ] s0 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
1415 * s1 [ b5 b4 b3 b2 b1 b0 ] s2 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
1414 * s1 [ b5 b4 b3 b2 b1 b0 ] s2 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
1416 *
1415 *
1417 */
1416 */
1418
1417
1419 unsigned int k;
1418 unsigned int k;
1420 float val;
1419 float val;
1421 float Ts;
1420 float Ts;
1422 unsigned short data[CAL_NB_PTS_INTER];
1421 unsigned short data[CAL_NB_PTS_INTER];
1423 unsigned char *dataPtr;
1422 unsigned char *dataPtr;
1424
1423
1425 Ts = 1 / CAL_FS_INTER;
1424 Ts = 1 / CAL_FS_INTER;
1426
1425
1427 time_management_regs->calDataPtr = INIT_CHAR;
1426 time_management_regs->calDataPtr = INIT_CHAR;
1428
1427
1429 // build the signal for the SCM calibration
1428 // build the signal for the SCM calibration
1430 for (k=0; k<CAL_NB_PTS_INTER; k++)
1429 for (k=0; k<CAL_NB_PTS_INTER; k++)
1431 {
1430 {
1432 val = sin( 2 * pi * CAL_F0 * k * Ts )
1431 val = sin( 2 * pi * CAL_F0 * k * Ts )
1433 + sin( 2 * pi * CAL_F1 * k * Ts );
1432 + sin( 2 * pi * CAL_F1 * k * Ts );
1434 data[k] = (unsigned short) ((val * CONST_512) + CONST_2048);
1433 data[k] = (unsigned short) ((val * CONST_512) + CONST_2048);
1435 }
1434 }
1436
1435
1437 // write the signal in interleaved mode
1436 // write the signal in interleaved mode
1438 for (k=0; k < STEPS_FOR_STORAGE_INTER; k++)
1437 for (k=0; k < STEPS_FOR_STORAGE_INTER; k++)
1439 {
1438 {
1440 dataPtr = (unsigned char*) &data[ (k * BYTES_FOR_2_SAMPLES) + 2 ];
1439 dataPtr = (unsigned char*) &data[ (k * BYTES_FOR_2_SAMPLES) + 2 ];
1441 time_management_regs->calData = ( data[ k * BYTES_FOR_2_SAMPLES ] & CAL_DATA_MASK )
1440 time_management_regs->calData = ( data[ k * BYTES_FOR_2_SAMPLES ] & CAL_DATA_MASK )
1442 + ( (dataPtr[0] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
1441 + ( (dataPtr[0] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
1443 time_management_regs->calData = ( data[(k * BYTES_FOR_2_SAMPLES) + 1] & CAL_DATA_MASK )
1442 time_management_regs->calData = ( data[(k * BYTES_FOR_2_SAMPLES) + 1] & CAL_DATA_MASK )
1444 + ( (dataPtr[1] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
1443 + ( (dataPtr[1] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
1445 }
1444 }
1446 }
1445 }
1447
1446
1448 void setCalibrationReload( bool state)
1447 void setCalibrationReload( bool state)
1449 {
1448 {
1450 if (state == true)
1449 if (state == true)
1451 {
1450 {
1452 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_RELOAD; // [0001 0000]
1451 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_RELOAD; // [0001 0000]
1453 }
1452 }
1454 else
1453 else
1455 {
1454 {
1456 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_RELOAD; // [1110 1111]
1455 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_RELOAD; // [1110 1111]
1457 }
1456 }
1458 }
1457 }
1459
1458
1460 void setCalibrationEnable( bool state )
1459 void setCalibrationEnable( bool state )
1461 {
1460 {
1462 // this bit drives the multiplexer
1461 // this bit drives the multiplexer
1463 if (state == true)
1462 if (state == true)
1464 {
1463 {
1465 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_ENABLE; // [0100 0000]
1464 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_ENABLE; // [0100 0000]
1466 }
1465 }
1467 else
1466 else
1468 {
1467 {
1469 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_ENABLE; // [1011 1111]
1468 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_ENABLE; // [1011 1111]
1470 }
1469 }
1471 }
1470 }
1472
1471
1473 void setCalibrationInterleaved( bool state )
1472 void setCalibrationInterleaved( bool state )
1474 {
1473 {
1475 // this bit drives the multiplexer
1474 // this bit drives the multiplexer
1476 if (state == true)
1475 if (state == true)
1477 {
1476 {
1478 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_SET_INTERLEAVED; // [0010 0000]
1477 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_SET_INTERLEAVED; // [0010 0000]
1479 }
1478 }
1480 else
1479 else
1481 {
1480 {
1482 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_SET_INTERLEAVED; // [1101 1111]
1481 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_SET_INTERLEAVED; // [1101 1111]
1483 }
1482 }
1484 }
1483 }
1485
1484
1486 void setCalibration( bool state )
1485 void setCalibration( bool state )
1487 {
1486 {
1488 if (state == true)
1487 if (state == true)
1489 {
1488 {
1490 setCalibrationEnable( true );
1489 setCalibrationEnable( true );
1491 setCalibrationReload( false );
1490 setCalibrationReload( false );
1492 set_hk_lfr_calib_enable( true );
1491 set_hk_lfr_calib_enable( true );
1493 }
1492 }
1494 else
1493 else
1495 {
1494 {
1496 setCalibrationEnable( false );
1495 setCalibrationEnable( false );
1497 setCalibrationReload( true );
1496 setCalibrationReload( true );
1498 set_hk_lfr_calib_enable( false );
1497 set_hk_lfr_calib_enable( false );
1499 }
1498 }
1500 }
1499 }
1501
1500
1502 void configureCalibration( bool interleaved )
1501 void configureCalibration( bool interleaved )
1503 {
1502 {
1504 setCalibration( false );
1503 setCalibration( false );
1505 if ( interleaved == true )
1504 if ( interleaved == true )
1506 {
1505 {
1507 setCalibrationInterleaved( true );
1506 setCalibrationInterleaved( true );
1508 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1507 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1509 setCalibrationDivisor( CAL_F_DIVISOR_INTER ); // => 240 384
1508 setCalibrationDivisor( CAL_F_DIVISOR_INTER ); // => 240 384
1510 setCalibrationDataInterleaved();
1509 setCalibrationDataInterleaved();
1511 }
1510 }
1512 else
1511 else
1513 {
1512 {
1514 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1513 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1515 setCalibrationDivisor( CAL_F_DIVISOR ); // => 160 256 (39 - 1)
1514 setCalibrationDivisor( CAL_F_DIVISOR ); // => 160 256 (39 - 1)
1516 setCalibrationData();
1515 setCalibrationData();
1517 }
1516 }
1518 }
1517 }
1519
1518
1520 //****************
1519 //****************
1521 // CLOSING ACTIONS
1520 // CLOSING ACTIONS
1522 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1521 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1523 {
1522 {
1524 /** This function is used to update the HK packets statistics after a successful TC execution.
1523 /** This function is used to update the HK packets statistics after a successful TC execution.
1525 *
1524 *
1526 * @param TC points to the TC being processed
1525 * @param TC points to the TC being processed
1527 * @param time is the time used to date the TC execution
1526 * @param time is the time used to date the TC execution
1528 *
1527 *
1529 */
1528 */
1530
1529
1531 unsigned int val;
1530 unsigned int val;
1532
1531
1533 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1532 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1534 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1533 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1535 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = INIT_CHAR;
1534 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = INIT_CHAR;
1536 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1535 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1537 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = INIT_CHAR;
1536 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = INIT_CHAR;
1538 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1537 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1539 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_0] = time[BYTE_0];
1538 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_0] = time[BYTE_0];
1540 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_1] = time[BYTE_1];
1539 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_1] = time[BYTE_1];
1541 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_2] = time[BYTE_2];
1540 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_2] = time[BYTE_2];
1542 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_3] = time[BYTE_3];
1541 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_3] = time[BYTE_3];
1543 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_4] = time[BYTE_4];
1542 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_4] = time[BYTE_4];
1544 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_5] = time[BYTE_5];
1543 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_5] = time[BYTE_5];
1545
1544
1546 val = (housekeeping_packet.hk_lfr_exe_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1545 val = (housekeeping_packet.hk_lfr_exe_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1547 val++;
1546 val++;
1548 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
1547 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
1549 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1548 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1550 }
1549 }
1551
1550
1552 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1551 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1553 {
1552 {
1554 /** This function is used to update the HK packets statistics after a TC rejection.
1553 /** This function is used to update the HK packets statistics after a TC rejection.
1555 *
1554 *
1556 * @param TC points to the TC being processed
1555 * @param TC points to the TC being processed
1557 * @param time is the time used to date the TC rejection
1556 * @param time is the time used to date the TC rejection
1558 *
1557 *
1559 */
1558 */
1560
1559
1561 unsigned int val;
1560 unsigned int val;
1562
1561
1563 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1562 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1564 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1563 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1565 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = INIT_CHAR;
1564 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = INIT_CHAR;
1566 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1565 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1567 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = INIT_CHAR;
1566 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = INIT_CHAR;
1568 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1567 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1569 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_0] = time[BYTE_0];
1568 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_0] = time[BYTE_0];
1570 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_1] = time[BYTE_1];
1569 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_1] = time[BYTE_1];
1571 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_2] = time[BYTE_2];
1570 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_2] = time[BYTE_2];
1572 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_3] = time[BYTE_3];
1571 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_3] = time[BYTE_3];
1573 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_4] = time[BYTE_4];
1572 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_4] = time[BYTE_4];
1574 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_5] = time[BYTE_5];
1573 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_5] = time[BYTE_5];
1575
1574
1576 val = (housekeeping_packet.hk_lfr_rej_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1575 val = (housekeeping_packet.hk_lfr_rej_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1577 val++;
1576 val++;
1578 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
1577 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
1579 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1578 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1580 }
1579 }
1581
1580
1582 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1581 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1583 {
1582 {
1584 /** This function is the last step of the TC execution workflow.
1583 /** This function is the last step of the TC execution workflow.
1585 *
1584 *
1586 * @param TC points to the TC being processed
1585 * @param TC points to the TC being processed
1587 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1586 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1588 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1587 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1589 * @param time is the time used to date the TC execution
1588 * @param time is the time used to date the TC execution
1590 *
1589 *
1591 */
1590 */
1592
1591
1593 unsigned char requestedMode;
1592 unsigned char requestedMode;
1594
1593
1595 if (result == LFR_SUCCESSFUL)
1594 if (result == LFR_SUCCESSFUL)
1596 {
1595 {
1597 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1596 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1598 &
1597 &
1599 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1598 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1600 )
1599 )
1601 {
1600 {
1602 send_tm_lfr_tc_exe_success( TC, queue_id );
1601 send_tm_lfr_tc_exe_success( TC, queue_id );
1603 }
1602 }
1604 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1603 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1605 {
1604 {
1606 //**********************************
1605 //**********************************
1607 // UPDATE THE LFRMODE LOCAL VARIABLE
1606 // UPDATE THE LFRMODE LOCAL VARIABLE
1608 requestedMode = TC->dataAndCRC[1];
1607 requestedMode = TC->dataAndCRC[1];
1609 updateLFRCurrentMode( requestedMode );
1608 updateLFRCurrentMode( requestedMode );
1610 }
1609 }
1611 }
1610 }
1612 else if (result == LFR_EXE_ERROR)
1611 else if (result == LFR_EXE_ERROR)
1613 {
1612 {
1614 send_tm_lfr_tc_exe_error( TC, queue_id );
1613 send_tm_lfr_tc_exe_error( TC, queue_id );
1615 }
1614 }
1616 }
1615 }
1617
1616
1618 //***************************
1617 //***************************
1619 // Interrupt Service Routines
1618 // Interrupt Service Routines
1620 rtems_isr commutation_isr1( rtems_vector_number vector )
1619 rtems_isr commutation_isr1( rtems_vector_number vector )
1621 {
1620 {
1622 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1621 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1623 PRINTF("In commutation_isr1 *** Error sending event to DUMB\n")
1622 PRINTF("In commutation_isr1 *** Error sending event to DUMB\n")
1624 }
1623 }
1625 }
1624 }
1626
1625
1627 rtems_isr commutation_isr2( rtems_vector_number vector )
1626 rtems_isr commutation_isr2( rtems_vector_number vector )
1628 {
1627 {
1629 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1628 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1630 PRINTF("In commutation_isr2 *** Error sending event to DUMB\n")
1629 PRINTF("In commutation_isr2 *** Error sending event to DUMB\n")
1631 }
1630 }
1632 }
1631 }
1633
1632
1634 //****************
1633 //****************
1635 // OTHER FUNCTIONS
1634 // OTHER FUNCTIONS
1636 void updateLFRCurrentMode( unsigned char requestedMode )
1635 void updateLFRCurrentMode( unsigned char requestedMode )
1637 {
1636 {
1638 /** This function updates the value of the global variable lfrCurrentMode.
1637 /** This function updates the value of the global variable lfrCurrentMode.
1639 *
1638 *
1640 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1639 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1641 *
1640 *
1642 */
1641 */
1643
1642
1644 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1643 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1645 housekeeping_packet.lfr_status_word[0] = (housekeeping_packet.lfr_status_word[0] & STATUS_WORD_LFR_MODE_MASK)
1644 housekeeping_packet.lfr_status_word[0] = (housekeeping_packet.lfr_status_word[0] & STATUS_WORD_LFR_MODE_MASK)
1646 + (unsigned char) ( requestedMode << STATUS_WORD_LFR_MODE_SHIFT );
1645 + (unsigned char) ( requestedMode << STATUS_WORD_LFR_MODE_SHIFT );
1647 lfrCurrentMode = requestedMode;
1646 lfrCurrentMode = requestedMode;
1648 }
1647 }
1649
1648
1650 void set_lfr_soft_reset( unsigned char value )
1649 void set_lfr_soft_reset( unsigned char value )
1651 {
1650 {
1652 if (value == 1)
1651 if (value == 1)
1653 {
1652 {
1654 time_management_regs->ctrl = time_management_regs->ctrl | BIT_SOFT_RESET; // [0100]
1653 time_management_regs->ctrl = time_management_regs->ctrl | BIT_SOFT_RESET; // [0100]
1655 }
1654 }
1656 else
1655 else
1657 {
1656 {
1658 time_management_regs->ctrl = time_management_regs->ctrl & MASK_SOFT_RESET; // [1011]
1657 time_management_regs->ctrl = time_management_regs->ctrl & MASK_SOFT_RESET; // [1011]
1659 }
1658 }
1660 }
1659 }
1661
1660
1662 void reset_lfr( void )
1661 void reset_lfr( void )
1663 {
1662 {
1664 set_lfr_soft_reset( 1 );
1663 set_lfr_soft_reset( 1 );
1665
1664
1666 set_lfr_soft_reset( 0 );
1665 set_lfr_soft_reset( 0 );
1667
1666
1668 set_hk_lfr_sc_potential_flag( true );
1667 set_hk_lfr_sc_potential_flag( true );
1669 }
1668 }
General Comments 0
You need to be logged in to leave comments. Login now