##// END OF EJS Templates
There is a message queue between AVFO and MATR...
paul -
r118:7b69e91ff96b VHDLib206
parent child
Show More
@@ -1,253 +1,253
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Thu Apr 3 13:43:01 2014
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Tue Apr 15 07:45:50 2014
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=6 -DPRINT_MESSAGES_ON_CONSOLE -DPRINT_TASK_STATISTICS
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../../LFR_basic-parameters
16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../src/basic_parameters
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_processing.c \
49 49 ../src/fsw_misc.c \
50 50 ../src/fsw_init.c \
51 51 ../src/fsw_globals.c \
52 52 ../src/fsw_spacewire.c \
53 53 ../src/tc_load_dump_parameters.c \
54 54 ../src/tm_lfr_tc_exe.c \
55 55 ../src/tc_acceptance.c \
56 ../../LFR_basic-parameters/basic_parameters.c
56 ../src/basic_parameters/basic_parameters.c
57 57 OBJECTS = obj/wf_handler.o \
58 58 obj/tc_handler.o \
59 59 obj/fsw_processing.o \
60 60 obj/fsw_misc.o \
61 61 obj/fsw_init.o \
62 62 obj/fsw_globals.o \
63 63 obj/fsw_spacewire.o \
64 64 obj/tc_load_dump_parameters.o \
65 65 obj/tm_lfr_tc_exe.o \
66 66 obj/tc_acceptance.o \
67 67 obj/basic_parameters.o
68 68 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
69 69 /usr/lib64/qt4/mkspecs/common/linux.conf \
70 70 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
71 71 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
72 72 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
73 73 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
74 74 /usr/lib64/qt4/mkspecs/qconfig.pri \
75 75 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
76 76 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
77 77 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
78 78 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
79 79 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
80 80 sparc.pri \
81 81 /usr/lib64/qt4/mkspecs/features/release.prf \
82 82 /usr/lib64/qt4/mkspecs/features/default_post.prf \
83 83 /usr/lib64/qt4/mkspecs/features/shared.prf \
84 84 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
85 85 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
86 86 /usr/lib64/qt4/mkspecs/features/resources.prf \
87 87 /usr/lib64/qt4/mkspecs/features/uic.prf \
88 88 /usr/lib64/qt4/mkspecs/features/yacc.prf \
89 89 /usr/lib64/qt4/mkspecs/features/lex.prf \
90 90 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
91 91 fsw-qt.pro
92 92 QMAKE_TARGET = fsw
93 93 DESTDIR = bin/
94 94 TARGET = bin/fsw
95 95
96 96 first: all
97 97 ####### Implicit rules
98 98
99 99 .SUFFIXES: .o .c .cpp .cc .cxx .C
100 100
101 101 .cpp.o:
102 102 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
103 103
104 104 .cc.o:
105 105 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
106 106
107 107 .cxx.o:
108 108 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
109 109
110 110 .C.o:
111 111 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
112 112
113 113 .c.o:
114 114 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
115 115
116 116 ####### Build rules
117 117
118 118 all: Makefile $(TARGET)
119 119
120 120 $(TARGET): $(OBJECTS)
121 121 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
122 122 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
123 123
124 124 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
125 125 /usr/lib64/qt4/mkspecs/common/linux.conf \
126 126 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
127 127 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
128 128 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
129 129 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
130 130 /usr/lib64/qt4/mkspecs/qconfig.pri \
131 131 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
132 132 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
133 133 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
134 134 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
135 135 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
136 136 sparc.pri \
137 137 /usr/lib64/qt4/mkspecs/features/release.prf \
138 138 /usr/lib64/qt4/mkspecs/features/default_post.prf \
139 139 /usr/lib64/qt4/mkspecs/features/shared.prf \
140 140 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
141 141 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
142 142 /usr/lib64/qt4/mkspecs/features/resources.prf \
143 143 /usr/lib64/qt4/mkspecs/features/uic.prf \
144 144 /usr/lib64/qt4/mkspecs/features/yacc.prf \
145 145 /usr/lib64/qt4/mkspecs/features/lex.prf \
146 146 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
147 147 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
148 148 /usr/lib64/qt4/mkspecs/common/unix.conf:
149 149 /usr/lib64/qt4/mkspecs/common/linux.conf:
150 150 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
151 151 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
152 152 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
153 153 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
154 154 /usr/lib64/qt4/mkspecs/qconfig.pri:
155 155 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
156 156 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
157 157 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
158 158 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
159 159 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
160 160 sparc.pri:
161 161 /usr/lib64/qt4/mkspecs/features/release.prf:
162 162 /usr/lib64/qt4/mkspecs/features/default_post.prf:
163 163 /usr/lib64/qt4/mkspecs/features/shared.prf:
164 164 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
165 165 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
166 166 /usr/lib64/qt4/mkspecs/features/resources.prf:
167 167 /usr/lib64/qt4/mkspecs/features/uic.prf:
168 168 /usr/lib64/qt4/mkspecs/features/yacc.prf:
169 169 /usr/lib64/qt4/mkspecs/features/lex.prf:
170 170 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
171 171 qmake: FORCE
172 172 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
173 173
174 174 dist:
175 175 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
176 176 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
177 177
178 178
179 179 clean:compiler_clean
180 180 -$(DEL_FILE) $(OBJECTS)
181 181 -$(DEL_FILE) *~ core *.core
182 182
183 183
184 184 ####### Sub-libraries
185 185
186 186 distclean: clean
187 187 -$(DEL_FILE) $(TARGET)
188 188 -$(DEL_FILE) Makefile
189 189
190 190
191 191 grmon:
192 192 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
193 193
194 194 check: first
195 195
196 196 compiler_rcc_make_all:
197 197 compiler_rcc_clean:
198 198 compiler_uic_make_all:
199 199 compiler_uic_clean:
200 200 compiler_image_collection_make_all: qmake_image_collection.cpp
201 201 compiler_image_collection_clean:
202 202 -$(DEL_FILE) qmake_image_collection.cpp
203 203 compiler_yacc_decl_make_all:
204 204 compiler_yacc_decl_clean:
205 205 compiler_yacc_impl_make_all:
206 206 compiler_yacc_impl_clean:
207 207 compiler_lex_make_all:
208 208 compiler_lex_clean:
209 209 compiler_clean:
210 210
211 211 ####### Compile
212 212
213 213 obj/wf_handler.o: ../src/wf_handler.c
214 214 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
215 215
216 216 obj/tc_handler.o: ../src/tc_handler.c
217 217 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
218 218
219 219 obj/fsw_processing.o: ../src/fsw_processing.c ../src/fsw_processing_globals.c
220 220 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/fsw_processing.c
221 221
222 222 obj/fsw_misc.o: ../src/fsw_misc.c
223 223 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
224 224
225 225 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
226 226 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
227 227
228 228 obj/fsw_globals.o: ../src/fsw_globals.c
229 229 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
230 230
231 231 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
232 232 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
233 233
234 234 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
235 235 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
236 236
237 237 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
238 238 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
239 239
240 240 obj/tc_acceptance.o: ../src/tc_acceptance.c
241 241 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
242 242
243 obj/basic_parameters.o: ../../LFR_basic-parameters/basic_parameters.c ../../LFR_basic-parameters/basic_parameters.h
244 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../../LFR_basic-parameters/basic_parameters.c
243 obj/basic_parameters.o: ../src/basic_parameters/basic_parameters.c ../src/basic_parameters/basic_parameters.h
244 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../src/basic_parameters/basic_parameters.c
245 245
246 246 ####### Install
247 247
248 248 install: FORCE
249 249
250 250 uninstall: FORCE
251 251
252 252 FORCE:
253 253
@@ -1,85 +1,85
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
4 4 CONFIG += console verbose cpu_usage_report
5 5 CONFIG -= qt
6 6
7 7 include(./sparc.pri)
8 8
9 9 # flight software version
10 10 SWVERSION=-1-0
11 11 DEFINES += SW_VERSION_N1=1 # major
12 12 DEFINES += SW_VERSION_N2=0 # minor
13 13 DEFINES += SW_VERSION_N3=0 # patch
14 14 DEFINES += SW_VERSION_N4=6 # internal
15 15
16 16 contains( CONFIG, debug_tch ) {
17 17 DEFINES += DEBUG_TCH
18 18 }
19 19
20 20 contains( CONFIG, vhdl_dev ) {
21 21 DEFINES += VHDL_DEV
22 22 }
23 23
24 24 contains( CONFIG, verbose ) {
25 25 DEFINES += PRINT_MESSAGES_ON_CONSOLE
26 26 }
27 27
28 28 contains( CONFIG, debug_messages ) {
29 29 DEFINES += DEBUG_MESSAGES
30 30 }
31 31
32 32 contains( CONFIG, cpu_usage_report ) {
33 33 DEFINES += PRINT_TASK_STATISTICS
34 34 }
35 35
36 36 contains( CONFIG, stack_report ) {
37 37 DEFINES += PRINT_STACK_REPORT
38 38 }
39 39
40 40 contains( CONFIG, boot_messages ) {
41 41 DEFINES += BOOT_MESSAGES
42 42 }
43 43
44 44 #doxygen.target = doxygen
45 45 #doxygen.commands = doxygen ../doc/Doxyfile
46 46 #QMAKE_EXTRA_TARGETS += doxygen
47 47
48 48 TARGET = fsw
49 49
50 50 INCLUDEPATH += \
51 51 ../src \
52 52 ../header \
53 ../../LFR_basic-parameters
53 ../src/basic_parameters
54 54
55 55 SOURCES += \
56 56 ../src/wf_handler.c \
57 57 ../src/tc_handler.c \
58 58 ../src/fsw_processing.c \
59 59 ../src/fsw_misc.c \
60 60 ../src/fsw_init.c \
61 61 ../src/fsw_globals.c \
62 62 ../src/fsw_spacewire.c \
63 63 ../src/tc_load_dump_parameters.c \
64 64 ../src/tm_lfr_tc_exe.c \
65 65 ../src/tc_acceptance.c \
66 ../../LFR_basic-parameters/basic_parameters.c
66 ../src/basic_parameters/basic_parameters.c
67 67
68 68
69 69 HEADERS += \
70 70 ../header/wf_handler.h \
71 71 ../header/tc_handler.h \
72 72 ../header/grlib_regs.h \
73 73 ../header/fsw_processing.h \
74 74 ../header/fsw_params.h \
75 75 ../header/fsw_misc.h \
76 76 ../header/fsw_init.h \
77 77 ../header/ccsds_types.h \
78 78 ../header/fsw_params_processing.h \
79 79 ../header/fsw_spacewire.h \
80 80 ../header/tc_load_dump_parameters.h \
81 81 ../header/tm_lfr_tc_exe.h \
82 82 ../header/tc_acceptance.h \
83 83 ../header/fsw_params_nb_bytes.h \
84 ../../LFR_basic-parameters/basic_parameters.h
84 ../src/basic_parameters/basic_parameters.h
85 85
@@ -1,339 +1,339
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.1, 2014-04-11T12:08:35. -->
3 <!-- Written by QtCreator 3.0.1, 2014-04-16T10:43:41. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">1</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop</value>
55 55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop</value>
56 56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{e04e3924-0bd8-4708-be18-f1474e45608e}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 72 </valuemap>
73 73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 79 <value type="QString">-w</value>
80 80 <value type="QString">-r</value>
81 81 </valuelist>
82 82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 85 </valuemap>
86 86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 90 </valuemap>
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 98 <value type="QString">-w</value>
99 99 <value type="QString">-r</value>
100 100 </valuelist>
101 101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 104 </valuemap>
105 105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 109 </valuemap>
110 110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 118 </valuemap>
119 119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 126 </valuemap>
127 127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 131 </valuemap>
132 132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 153 <value type="int">0</value>
154 154 <value type="int">1</value>
155 155 <value type="int">2</value>
156 156 <value type="int">3</value>
157 157 <value type="int">4</value>
158 158 <value type="int">5</value>
159 159 <value type="int">6</value>
160 160 <value type="int">7</value>
161 161 <value type="int">8</value>
162 162 <value type="int">9</value>
163 163 <value type="int">10</value>
164 164 <value type="int">11</value>
165 165 <value type="int">12</value>
166 166 <value type="int">13</value>
167 167 <value type="int">14</value>
168 168 </valuelist>
169 169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 180 <value type="bool" key="RunConfiguration.UseCppDebugger">false</value>
181 181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">true</value>
182 182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 185 </valuemap>
186 186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 187 </valuemap>
188 188 </data>
189 189 <data>
190 190 <variable>ProjectExplorer.Project.Target.1</variable>
191 191 <valuemap type="QVariantMap">
192 192 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
193 193 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
194 194 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
195 195 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
196 196 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
197 197 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
198 198 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
199 199 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
200 200 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
201 201 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
202 202 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
203 203 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
204 204 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
205 205 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
206 206 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
207 207 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
208 208 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
209 209 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
210 210 </valuemap>
211 211 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
212 212 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
213 213 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
214 214 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
215 215 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
216 216 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
217 217 <value type="QString">-w</value>
218 218 <value type="QString">-r</value>
219 219 </valuelist>
220 220 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
221 221 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
222 222 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
223 223 </valuemap>
224 224 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
225 225 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
226 226 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
227 227 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
228 228 </valuemap>
229 229 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
230 230 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
231 231 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
232 232 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
233 233 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
234 234 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
235 235 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
236 236 <value type="QString">-w</value>
237 237 <value type="QString">-r</value>
238 238 </valuelist>
239 239 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
240 240 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
241 241 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
242 242 </valuemap>
243 243 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
244 244 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
245 245 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
246 246 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
247 247 </valuemap>
248 248 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
249 249 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
250 250 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
251 251 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
252 252 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
253 253 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
254 254 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
255 255 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
256 256 </valuemap>
257 257 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
258 258 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
259 259 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
260 260 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
261 261 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
262 262 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
263 263 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
264 264 </valuemap>
265 265 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
266 266 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
267 267 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
268 268 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
269 269 </valuemap>
270 270 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
271 271 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
272 272 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
273 273 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
274 274 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
275 275 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
276 276 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
277 277 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
278 278 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
279 279 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
280 280 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
281 281 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
282 282 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
283 283 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
284 284 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
285 285 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
286 286 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
287 287 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
288 288 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
289 289 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
290 290 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
291 291 <value type="int">0</value>
292 292 <value type="int">1</value>
293 293 <value type="int">2</value>
294 294 <value type="int">3</value>
295 295 <value type="int">4</value>
296 296 <value type="int">5</value>
297 297 <value type="int">6</value>
298 298 <value type="int">7</value>
299 299 <value type="int">8</value>
300 300 <value type="int">9</value>
301 301 <value type="int">10</value>
302 302 <value type="int">11</value>
303 303 <value type="int">12</value>
304 304 <value type="int">13</value>
305 305 <value type="int">14</value>
306 306 </valuelist>
307 307 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
308 308 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
309 309 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
310 310 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
311 311 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
312 312 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
313 313 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
314 314 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
315 315 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
316 316 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
317 317 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
318 318 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
319 319 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
320 320 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
321 321 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
322 322 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
323 323 </valuemap>
324 324 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
325 325 </valuemap>
326 326 </data>
327 327 <data>
328 328 <variable>ProjectExplorer.Project.TargetCount</variable>
329 329 <value type="int">2</value>
330 330 </data>
331 331 <data>
332 332 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
333 333 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
334 334 </data>
335 335 <data>
336 336 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
337 337 <value type="int">15</value>
338 338 </data>
339 339 </qtcreator>
@@ -1,41 +1,42
1 1 #ifndef FSW_INIT_H_INCLUDED
2 2 #define FSW_INIT_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "fsw_misc.h"
9 9 #include "fsw_processing.h"
10 10 #include "tc_handler.h"
11 11 #include "wf_handler.h"
12 12
13 13 #include "fsw_spacewire.h"
14 14
15 15 extern rtems_name Task_name[20]; /* array of task names */
16 16 extern rtems_id Task_id[20]; /* array of task ids */
17 17
18 18 // RTEMS TASKS
19 19 rtems_task Init( rtems_task_argument argument);
20 20
21 21 // OTHER functions
22 22 void create_names( void );
23 23 int create_all_tasks( void );
24 24 int start_all_tasks( void );
25 25 //
26 26 rtems_status_code create_message_queues( void );
27 27 rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
28 28 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
29 rtems_status_code get_message_queue_id_matr( rtems_id *queue_id );
29 30 //
30 31 int start_recv_send_tasks( void );
31 32 //
32 33 void init_local_mode_parameters( void );
33 34 void reset_local_time( void );
34 35
35 36 extern int rtems_cpu_usage_report( void );
36 37 extern int rtems_cpu_usage_reset( void );
37 38 extern void rtems_stack_checker_report_usage( void );
38 39
39 40 extern int sched_yield( void );
40 41
41 42 #endif // FSW_INIT_H_INCLUDED
@@ -1,40 +1,42
1 1 #ifndef FSW_MISC_H_INCLUDED
2 2 #define FSW_MISC_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6 #include <grspw.h>
7 7
8 8 #include "fsw_params.h"
9 9 #include "fsw_spacewire.h"
10 10
11 11 rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
12 12 rtems_id HK_id; // id of the HK rate monotonic period
13 13
14 14 //extern rtems_name misc_name[5];
15 15 //time_management_regs_t *time_management_regs;
16 16 //extern Packet_TM_LFR_HK_t housekeeping_packet;
17 17
18 18 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
19 19 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
20 20 void timer_start( gptimer_regs_t *gptimer_regs, unsigned char timer );
21 21 void timer_stop( gptimer_regs_t *gptimer_regs, unsigned char timer );
22 22 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider);
23 23
24 24 // SERIAL LINK
25 25 int send_console_outputs_on_apbuart_port( void );
26 26 int enable_apbuart_transmitter( void );
27 27 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
28 28
29 29 // RTEMS TASKS
30 30 rtems_task stat_task( rtems_task_argument argument );
31 31 rtems_task hous_task( rtems_task_argument argument );
32 32 rtems_task dumb_task( rtems_task_argument unused );
33 33
34 34 void init_housekeeping_parameters( void );
35 35 void increment_seq_counter( unsigned char *packet_sequence_control);
36 36 void getTime( unsigned char *time);
37 37 unsigned long long int getTimeAsUnsignedLongLongInt( );
38 38 void send_dumb_hk( void );
39 39
40 extern int sched_yield( void );
41
40 42 #endif // FSW_MISC_H_INCLUDED
@@ -1,252 +1,255
1 1 #ifndef FSW_PARAMS_H_INCLUDED
2 2 #define FSW_PARAMS_H_INCLUDED
3 3
4 4 #include "grlib_regs.h"
5 5 #include "fsw_params_processing.h"
6 6 #include "fsw_params_nb_bytes.h"
7 7 #include "tm_byte_positions.h"
8 8 #include "ccsds_types.h"
9 9
10 10 #define GRSPW_DEVICE_NAME "/dev/grspw0"
11 11 #define UART_DEVICE_NAME "/dev/console"
12 12
13 13 typedef struct ring_node
14 14 {
15 15 struct ring_node *previous;
16 16 int buffer_address;
17 17 struct ring_node *next;
18 18 unsigned int status;
19 19 } ring_node;
20 20
21 21 typedef struct {
22 22 unsigned int f0;
23 23 unsigned int norm_bp1_f0;
24 24 unsigned int norm_bp2_f0;
25 25 unsigned int norm_asm_f0;
26 26 unsigned int sbm_bp1_f0;
27 27 unsigned int sbm_bp2_f0;
28 28 } nb_sm_t;
29 29
30 30 typedef struct {
31 31 unsigned int norm_bp1_f0;
32 32 unsigned int norm_bp2_f0;
33 33 unsigned int norm_asm_f0;
34 34 unsigned int burst_sbm_bp1_f0;
35 35 unsigned int burst_sbm_bp2_f0;
36 36 unsigned int burst_bp1_f0;
37 37 unsigned int burst_bp2_f0;
38 38 unsigned int sbm1_bp1_f0;
39 39 unsigned int sbm1_bp2_f0;
40 40 unsigned int sbm2_bp1_f0;
41 41 unsigned int sbm2_bp2_f0;
42 42 } nb_sm_before_bp_t;
43 43
44 44 //************************
45 45 // flight software version
46 46 // this parameters is handled by the Qt project options
47 47
48 48 #define NB_PACKETS_PER_GROUP_OF_CWF 8 // 8 packets containing 336 blk
49 49 #define NB_PACKETS_PER_GROUP_OF_CWF_LIGHT 4 // 4 packets containing 672 blk
50 50 #define NB_SAMPLES_PER_SNAPSHOT 2688 // 336 * 8 = 672 * 4 = 2688
51 51 #define TIME_OFFSET 2
52 52 #define TIME_OFFSET_IN_BYTES 8
53 53 #define WAVEFORM_EXTENDED_HEADER_OFFSET 22
54 54 #define NB_BYTES_SWF_BLK (2 * 6)
55 55 #define NB_WORDS_SWF_BLK 3
56 56 #define NB_BYTES_CWF3_LIGHT_BLK 6
57 57 #define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
58 58 #define NB_RING_NODES_F0 3 // AT LEAST 3
59 59 #define NB_RING_NODES_F1 5 // AT LEAST 3
60 60 #define NB_RING_NODES_F2 5 // AT LEAST 3
61 61
62 62 //**********
63 63 // LFR MODES
64 64 #define LFR_MODE_STANDBY 0
65 65 #define LFR_MODE_NORMAL 1
66 66 #define LFR_MODE_BURST 2
67 67 #define LFR_MODE_SBM1 3
68 68 #define LFR_MODE_SBM2 4
69 69
70 70 #define TDS_MODE_LFM 5
71 71 #define TDS_MODE_STANDBY 0
72 72 #define TDS_MODE_NORMAL 1
73 73 #define TDS_MODE_BURST 2
74 74 #define TDS_MODE_SBM1 3
75 75 #define TDS_MODE_SBM2 4
76 76
77 77 #define THR_MODE_STANDBY 0
78 78 #define THR_MODE_NORMAL 1
79 79 #define THR_MODE_BURST 2
80 80
81 81 #define RTEMS_EVENT_MODE_STANDBY RTEMS_EVENT_0
82 82 #define RTEMS_EVENT_MODE_NORMAL RTEMS_EVENT_1
83 83 #define RTEMS_EVENT_MODE_BURST RTEMS_EVENT_2
84 84 #define RTEMS_EVENT_MODE_SBM1 RTEMS_EVENT_3
85 85 #define RTEMS_EVENT_MODE_SBM2 RTEMS_EVENT_4
86 86 #define RTEMS_EVENT_MODE_SBM2_WFRM RTEMS_EVENT_5
87 87 #define RTEMS_EVENT_NORM_BP1_F0 RTEMS_EVENT_6
88 88 #define RTEMS_EVENT_NORM_BP2_F0 RTEMS_EVENT_7
89 89 #define RTEMS_EVENT_NORM_ASM_F0 RTEMS_EVENT_8
90 90 #define RTEMS_EVENT_BURST_SBM_BP1_F0 RTEMS_EVENT_9
91 91 #define RTEMS_EVENT_BURST_SBM_BP2_F0 RTEMS_EVENT_10
92 92
93 93 //****************************
94 94 // LFR DEFAULT MODE PARAMETERS
95 95 // COMMON
96 96 #define DEFAULT_SY_LFR_COMMON0 0x00
97 97 #define DEFAULT_SY_LFR_COMMON1 0x10 // default value 0 0 0 1 0 0 0 0
98 98 // NORM
99 99 #define SY_LFR_N_SWF_L 2048 // nb sample
100 100 #define SY_LFR_N_SWF_P 300 // sec
101 101 #define SY_LFR_N_ASM_P 3600 // sec
102 102 #define SY_LFR_N_BP_P0 4 // sec
103 103 #define SY_LFR_N_BP_P1 20 // sec
104 104 #define SY_LFR_N_CWF_LONG_F3 0 // 0 => production of light continuous waveforms at f3
105 105 #define MIN_DELTA_SNAPSHOT 16 // sec
106 106 // BURST
107 107 #define DEFAULT_SY_LFR_B_BP_P0 1 // sec
108 108 #define DEFAULT_SY_LFR_B_BP_P1 5 // sec
109 109 // SBM1
110 110 #define DEFAULT_SY_LFR_S1_BP_P0 1 // sec
111 111 #define DEFAULT_SY_LFR_S1_BP_P1 1 // sec
112 112 // SBM2
113 113 #define DEFAULT_SY_LFR_S2_BP_P0 1 // sec
114 114 #define DEFAULT_SY_LFR_S2_BP_P1 5 // sec
115 115 // ADDITIONAL PARAMETERS
116 116 #define TIME_BETWEEN_TWO_SWF_PACKETS 30 // nb x 10 ms => 300 ms
117 117 #define TIME_BETWEEN_TWO_CWF3_PACKETS 1000 // nb x 10 ms => 10 s
118 118 // STATUS WORD
119 119 #define DEFAULT_STATUS_WORD_BYTE0 0x0d // [0000] [1] [101] mode 4 bits / SPW enabled 1 bit / state is run 3 bits
120 120 #define DEFAULT_STATUS_WORD_BYTE1 0x00
121 121 //
122 122 #define SY_LFR_DPU_CONNECT_TIMEOUT 100 // 100 * 10 ms = 1 s
123 123 #define SY_LFR_DPU_CONNECT_ATTEMPT 3
124 124 //****************************
125 125
126 126 //*****************************
127 127 // APB REGISTERS BASE ADDRESSES
128 128 #define REGS_ADDR_APBUART 0x80000100
129 129 #define REGS_ADDR_GPTIMER 0x80000300
130 130 #define REGS_ADDR_GRSPW 0x80000500
131 131 #define REGS_ADDR_TIME_MANAGEMENT 0x80000600
132 132 #define REGS_ADDR_GRGPIO 0x80000b00
133 133
134 134 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
135 135 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f40
136 136
137 137 #define APBUART_CTRL_REG_MASK_DB 0xfffff7ff
138 138 #define APBUART_CTRL_REG_MASK_TE 0x00000002
139 139 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400 (0x50)
140 140
141 141 //**********
142 142 // IRQ LINES
143 143 #define IRQ_SM_SIMULATOR 9
144 144 #define IRQ_SPARC_SM_SIMULATOR 0x19 // see sparcv8.pdf p.76 for interrupt levels
145 145 #define IRQ_WAVEFORM_PICKER 14
146 146 #define IRQ_SPARC_WAVEFORM_PICKER 0x1e // see sparcv8.pdf p.76 for interrupt levels
147 147 #define IRQ_SPECTRAL_MATRIX 6
148 148 #define IRQ_SPARC_SPECTRAL_MATRIX 0x16 // see sparcv8.pdf p.76 for interrupt levels
149 149
150 150 //*****
151 151 // TIME
152 152 #define CLKDIV_SM_SIMULATOR (10416 - 1) // 10 ms => nominal is 1/96 = 0.010416667, 10417 - 1 = 10416
153 153 #define TIMER_SM_SIMULATOR 1
154 154 #define HK_PERIOD 100 // 100 * 10ms => 1s
155 155 #define SY_LFR_TIME_SYN_TIMEOUT_in_ms 2000
156 156 #define SY_LFR_TIME_SYN_TIMEOUT_in_ticks 200 // 200 * 10 ms = 2 s
157 157
158 158 //**********
159 159 // LPP CODES
160 160 #define LFR_SUCCESSFUL 0
161 161 #define LFR_DEFAULT 1
162 162 #define LFR_EXE_ERROR 2
163 163
164 164 //******
165 165 // RTEMS
166 166 #define TASKID_RECV 1
167 167 #define TASKID_ACTN 2
168 168 #define TASKID_SPIQ 3
169 169 #define TASKID_SMIQ 4
170 170 #define TASKID_STAT 5
171 171 #define TASKID_AVF0 6
172 172 #define TASKID_SWBD 7
173 173 #define TASKID_WFRM 8
174 174 #define TASKID_DUMB 9
175 175 #define TASKID_HOUS 10
176 176 #define TASKID_MATR 11
177 177 #define TASKID_CWF3 12
178 178 #define TASKID_CWF2 13
179 179 #define TASKID_CWF1 14
180 180 #define TASKID_SEND 15
181 181 #define TASKID_WTDG 16
182 182
183 183 #define TASK_PRIORITY_SPIQ 5
184 184 #define TASK_PRIORITY_SMIQ 10
185 185 #define TASK_PRIORITY_WTDG 20
186 186 #define TASK_PRIORITY_HOUS 30
187 187 #define TASK_PRIORITY_CWF1 35 // CWF1 and CWF2 are never running together
188 188 #define TASK_PRIORITY_CWF2 35 //
189 189 #define TASK_PRIORITY_SWBD 37 // SWBD has a lower priority than WFRM, this is to extract the snapshot before sending it
190 190 #define TASK_PRIORITY_WFRM 40
191 191 #define TASK_PRIORITY_CWF3 40 // there is a printf in this function, be careful with its priority wrt CWF1
192 192 #define TASK_PRIORITY_SEND 45
193 193 #define TASK_PRIORITY_RECV 50
194 194 #define TASK_PRIORITY_ACTN 50
195 195 #define TASK_PRIORITY_AVF0 60
196 196 #define TASK_PRIORITY_BPF0 60
197 197 #define TASK_PRIORITY_MATR 100
198 198 #define TASK_PRIORITY_STAT 200
199 199 #define TASK_PRIORITY_DUMB 200
200 200
201 #define ACTION_MSG_QUEUE_COUNT 10
202 #define ACTION_MSG_PKTS_COUNT 50
203 //#define ACTION_MSG_PKTS_MAX_SIZE (PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES)
204 #define ACTION_MSG_PKTS_MAX_SIZE 810 // 806 + 4 => TM_LFR_SCIENCE_BURST_BP2_F1
201 #define MSG_QUEUE_COUNT_RECV 10
202 #define MSG_QUEUE_COUNT_SEND 50
203 #define MSG_QUEUE_COUNT_MATR 10
204 //#define MSG_QUEUE_SIZE_SEND (PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES)
205 #define MSG_QUEUE_SIZE_SEND 810 // 806 + 4 => TM_LFR_SCIENCE_BURST_BP2_F1
205 206 #define ACTION_MSG_SPW_IOCTL_SEND_SIZE 24 // hlen *hdr dlen *data sent options
207 #define MSG_QUEUE_SIZE_MATR 20 // two pointers and one rtems_event + 2 integers
206 208
207 209 #define QUEUE_RECV 0
208 210 #define QUEUE_SEND 1
211 #define QUEUE_MATR 2
209 212
210 213 //*******
211 214 // MACROS
212 215 #ifdef PRINT_MESSAGES_ON_CONSOLE
213 216 #define PRINTF(x) printf(x);
214 217 #define PRINTF1(x,y) printf(x,y);
215 218 #define PRINTF2(x,y,z) printf(x,y,z);
216 219 #else
217 220 #define PRINTF(x) ;
218 221 #define PRINTF1(x,y) ;
219 222 #define PRINTF2(x,y,z) ;
220 223 #endif
221 224
222 225 #ifdef BOOT_MESSAGES
223 226 #define BOOT_PRINTF(x) printf(x);
224 227 #define BOOT_PRINTF1(x,y) printf(x,y);
225 228 #define BOOT_PRINTF2(x,y,z) printf(x,y,z);
226 229 #else
227 230 #define BOOT_PRINTF(x) ;
228 231 #define BOOT_PRINTF1(x,y) ;
229 232 #define BOOT_PRINTF2(x,y,z) ;
230 233 #endif
231 234
232 235 #ifdef DEBUG_MESSAGES
233 236 #define DEBUG_PRINTF(x) printf(x);
234 237 #define DEBUG_PRINTF1(x,y) printf(x,y);
235 238 #define DEBUG_PRINTF2(x,y,z) printf(x,y,z);
236 239 #else
237 240 #define DEBUG_PRINTF(x) ;
238 241 #define DEBUG_PRINTF1(x,y) ;
239 242 #define DEBUG_PRINTF2(x,y,z) ;
240 243 #endif
241 244
242 245 #define CPU_USAGE_REPORT_PERIOD 6 // * 10 s = period
243 246
244 247 struct param_local_str{
245 248 unsigned int local_sbm1_nb_cwf_sent;
246 249 unsigned int local_sbm1_nb_cwf_max;
247 250 unsigned int local_sbm2_nb_cwf_sent;
248 251 unsigned int local_sbm2_nb_cwf_max;
249 252 unsigned int local_nb_interrupt_f0_MAX;
250 253 };
251 254
252 255 #endif // FSW_PARAMS_H_INCLUDED
@@ -1,66 +1,67
1 1 #ifndef FSW_PARAMS_PROCESSING_H
2 2 #define FSW_PARAMS_PROCESSING_H
3 3
4 4 #define NB_BINS_PER_SM 128
5 5 #define NB_VALUES_PER_SM 25
6 6 #define TOTAL_SIZE_SM 3200 // 25 * 128
7 7 #define TOTAL_SIZE_NORM_BP1_F0 99 // 11 * 9 = 99
8 8 #define TOTAL_SIZE_NORM_BP1_F1 117 // 13 * 9 = 117
9 9 #define TOTAL_SIZE_NORM_BP1_F2 108 // 12 * 9 = 108
10 10 #define TOTAL_SIZE_SBM1_BP1_F0 198 // 22 * 9 = 198
11 11 //
12 12 #define NB_RING_NODES_SM_F0 12 // AT LEAST 3
13 13 #define NB_RING_NODES_SM_F1 3 // AT LEAST 3
14 14 #define NB_RING_NODES_SM_F2 3 // AT LEAST 3
15 15 #define NB_RING_NODES_ASM_BURST_SBM_F0 10 // AT LEAST 3
16 #define NB_RING_NODES_ASM_NORM_F0 10 // AT LEAST 3
16 17 //
17 18 #define NB_BINS_PER_ASM_F0 88
18 19 #define NB_BINS_PER_PKT_ASM_F0 44
19 20 #define TOTAL_SIZE_ASM_F0_IN_BYTES 4400 // 25 * 88 * 2
20 21 #define ASM_F0_INDICE_START 17 // 88 bins
21 22 #define ASM_F0_INDICE_STOP 104 // 2 packets of 44 bins
22 23 //
23 24 #define NB_BINS_PER_ASM_F1 104
24 25 #define NB_BINS_PER_PKT_ASM_F1 52
25 26 #define TOTAL_SIZE_ASM_F1 2600 // 25 * 104
26 27 #define ASM_F1_INDICE_START 6 // 104 bins
27 28 #define ASM_F1_INDICE_STOP 109 // 2 packets of 52 bins
28 29 //
29 30 #define NB_BINS_PER_ASM_F2 96
30 31 #define NB_BINS_PER_PKT_ASM_F2 48
31 32 #define TOTAL_SIZE_ASM_F2 2400 // 25 * 96
32 33 #define ASM_F2_INDICE_START 7 // 96 bins
33 34 #define ASM_F2_INDICE_STOP 102 // 2 packets of 48 bins
34 35 //
35 36 #define NB_BINS_COMPRESSED_SM_F0 11
36 37 #define NB_BINS_COMPRESSED_SM_F1 13
37 38 #define NB_BINS_COMPRESSED_SM_F2 12
38 39 #define NB_BINS_COMPRESSED_SM_SBM_F0 22
39 40
40 41 //
41 42 #define NB_BINS_TO_AVERAGE_ASM_F0 8
42 43 #define NB_BINS_TO_AVERAGE_ASM_F1 8
43 44 #define NB_BINS_TO_AVERAGE_ASM_F2 8
44 45 #define NB_BINS_TO_AVERAGE_ASM_SBM_F0 4
45 46 //
46 47 #define TOTAL_SIZE_COMPRESSED_ASM_F0 275 // 11 * 25 WORDS
47 48 #define TOTAL_SIZE_COMPRESSED_ASM_F1 325 // 13 * 25 WORDS
48 49 #define TOTAL_SIZE_COMPRESSED_ASM_F2 300 // 12 * 25 WORDS
49 50 #define TOTAL_SIZE_COMPRESSED_ASM_SBM1 550 // 22 * 25 WORDS
50 51 // NORM
51 52 #define NB_SM_BEFORE_NORM_BP1_F0 384 // 96 * 4
52 53 #define NB_SM_BEFORE_NORM_BP2_F0 1920 // 96 * 20
53 54 #define NB_SM_BEFORE_NORM_ASM_F0 384 // 384 matrices at f0 = 4.00 second
54 55 // BURST
55 56 #define NB_SM_BEFORE_BURST_BP1_F0 96 // 96 matrices at f0 = 1.00 second
56 57 #define NB_SM_BEFORE_BURST_BP2_F0 480 // 480 matrices at f0 = 5.00 second
57 58 // SBM1
58 59 #define NB_SM_BEFORE_SBM1_BP1_F0 24 // 24 matrices at f0 = 0.25 second
59 60 #define NB_SM_BEFORE_SBM1_BP2_F0 96 // 96 matrices at f0 = 1.00 second
60 61 // SBM2
61 62 #define NB_SM_BEFORE_SBM2_BP1_F0 96 // 96 matrices at f0 = 1.00 second
62 63 #define NB_SM_BEFORE_SBM2_BP2_F0 480 // 480 matrices at f0 = 5.00 second
63 64 // GENERAL
64 65 #define NB_SM_BEFORE_AVF0 8
65 66
66 67 #endif // FSW_PARAMS_PROCESSING_H
@@ -1,109 +1,120
1 1 #ifndef FSW_PROCESSING_H_INCLUDED
2 2 #define FSW_PROCESSING_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <math.h>
7 7 #include <stdlib.h> // abs() is in the stdlib
8 8 #include <stdio.h> // printf()
9 9 #include <math.h>
10 10
11 11 #include "fsw_params.h"
12 12 #include "fsw_spacewire.h"
13 13
14 14 typedef struct ring_node_sm
15 15 {
16 16 struct ring_node_sm *previous;
17 17 struct ring_node_sm *next;
18 18 int buffer_address;
19 19 unsigned int status;
20 20 unsigned int coarseTime;
21 21 unsigned int fineTime;
22 22 } ring_node_sm;
23 23
24 24 typedef struct ring_node_asm
25 25 {
26 26 struct ring_node_asm *previous;
27 27 struct ring_node_asm *next;
28 float asm_burst_sbm_f0[ TIME_OFFSET + TOTAL_SIZE_SM ];
28 float matrix[ TOTAL_SIZE_SM ];
29 29 unsigned int status;
30 30 } ring_node_asm;
31 31
32 32 typedef struct bp_packet
33 33 {
34 34 Header_TM_LFR_SCIENCE_BP_t header;
35 35 unsigned char data[ 30 * 22 ]; // MAX size is 22 * 30 [TM_LFR_SCIENCE_BURST_BP2_F1]
36 36 } bp_packet;
37 37
38 38 typedef struct bp_packet_with_spare
39 39 {
40 40 Header_TM_LFR_SCIENCE_BP_with_spare_t header;
41 41 unsigned char data[ 9 * 13 ]; // only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
42 42 } bp_packet_with_spare;
43 43
44 typedef struct asm_msg
45 {
46 ring_node_asm *norm_f0;
47 ring_node_asm *burst_sbmf0;
48 rtems_event_set event;
49 unsigned int coarseTime;
50 unsigned int fineTime;
51 } asm_msg;
52
44 53 extern nb_sm_t nb_sm;
45 54 extern nb_sm_before_bp_t nb_sm_before_bp;
46 55
47 56 extern volatile int sm_f0[ ];
48 57 extern volatile int sm_f1[ ];
49 58 extern volatile int sm_f2[ ];
50 59
51 60 // parameters
52 61 extern struct param_local_str param_local;
53 62
54 63 // registers
55 64 extern time_management_regs_t *time_management_regs;
56 65 extern spectral_matrix_regs_t *spectral_matrix_regs;
57 66
58 67 extern rtems_name misc_name[5];
59 68 extern rtems_id Task_id[20]; /* array of task ids */
60 69
61 70 // ISR
62 71 void reset_nb_sm_f0( unsigned char lfrMode );
63 72 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
64 73 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
65 74
66 75 // RTEMS TASKS
67 76 rtems_task smiq_task( rtems_task_argument argument ); // added to test the spectral matrix simulator
68 77 rtems_task avf0_task( rtems_task_argument lfrRequestedMode );
69 78 rtems_task matr_task( rtems_task_argument lfrRequestedMode );
70 79
71 80 //******************
72 81 // Spectral Matrices
73 82 void SM_init_rings( void );
74 void ASM_init_ring( void );
83 void ASM_init_rings( void );
75 84 void SM_reset_current_ring_nodes( void );
76 85 void ASM_reset_current_ring_node( void );
77 86 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header);
78 87 void SM_average(float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
79 88 ring_node_sm *ring_node_tab[],
80 89 unsigned int firstTimeF0, unsigned int firstTimeF1 );
81 90 void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
82 91 float divider );
83 92 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
84 93 float divider,
85 94 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
86 95 void ASM_convert(volatile float *input_matrix, char *output_matrix);
87 96 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
88 97 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id);
89 98
90 99 //*****************
91 100 // Basic Parameters
92 101
93 102 void BP_reset_current_ring_nodes( void );
94 103 void BP_init_header(Header_TM_LFR_SCIENCE_BP_t *header,
95 104 unsigned int apid, unsigned char sid,
96 105 unsigned int packetLength , unsigned char blkNr);
97 106 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
98 107 unsigned int apid, unsigned char sid,
99 108 unsigned int packetLength, unsigned char blkNr );
100 109 void BP_send(char *data,
101 110 rtems_id queue_id ,
102 111 unsigned int nbBytesToSend );
103 112
104 113 //******************
105 114 // general functions
106 115 void reset_spectral_matrix_regs( void );
107 116 void set_time(unsigned char *time, unsigned char *timeInBuffer );
108 117
118 extern rtems_status_code get_message_queue_id_matr( rtems_id *queue_id );
119
109 120 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,60 +1,60
1 1 #ifndef TC_HANDLER_H_INCLUDED
2 2 #define TC_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "tc_load_dump_parameters.h"
8 8 #include "tc_acceptance.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "wf_handler.h"
11 11 #include "fsw_processing.h"
12 12
13 13 // MODE PARAMETERS
14 14 extern unsigned int maxCount;
15 15
16 16 //****
17 17 // ISR
18 18 rtems_isr commutation_isr1( rtems_vector_number vector );
19 19 rtems_isr commutation_isr2( rtems_vector_number vector );
20 20
21 21 //***********
22 22 // RTEMS TASK
23 23 rtems_task actn_task( rtems_task_argument unused );
24 24
25 25 //***********
26 26 // TC ACTIONS
27 27 int action_reset( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
28 28 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
29 29 int action_update_info( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
30 30 int action_enable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
31 31 int action_disable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
32 32 int action_update_time( ccsdsTelecommandPacket_t *TC);
33 33
34 34 // mode transition
35 35 int check_mode_value( unsigned char requestedMode );
36 36 int check_mode_transition( unsigned char requestedMode );
37 37 int check_transition_date( unsigned int transitionCoarseTime );
38 38 int stop_current_mode( void );
39 39 int enter_mode( unsigned char mode , unsigned int transitionCoarseTime );
40 40 int restart_science_tasks(unsigned char lfrRequestedMode );
41 41 int suspend_science_tasks();
42 42 void launch_waveform_picker(unsigned char mode , unsigned int transitionCoarseTime);
43 void launch_spectral_matrix( unsigned char mode );
43 void launch_spectral_matrix( void );
44 void launch_spectral_matrix_simu( void );
44 45 void set_irq_on_new_ready_matrix(unsigned char value );
45 46 void set_run_matrix_spectral( unsigned char value );
46 void launch_spectral_matrix_simu( unsigned char mode );
47 47
48 48 // other functions
49 49 void updateLFRCurrentMode();
50 50 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC , unsigned char *time );
51 51 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC , unsigned char *time );
52 52 void close_action( ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
53 53
54 54 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
55 55 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
56 56
57 57 #endif // TC_HANDLER_H_INCLUDED
58 58
59 59
60 60
@@ -1,645 +1,674
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 36 #define CONFIGURE_MAXIMUM_PERIODS 5
37 37 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 2
38 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 3
39 39 #ifdef PRINT_STACK_REPORT
40 40 #define CONFIGURE_STACK_CHECKER_ENABLED
41 41 #endif
42 42
43 43 #include <rtems/confdefs.h>
44 44
45 45 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 46 #ifdef RTEMS_DRVMGR_STARTUP
47 47 #ifdef LEON3
48 48 /* Add Timer and UART Driver */
49 49 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 50 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 51 #endif
52 52 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 54 #endif
55 55 #endif
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 57 #include <drvmgr/drvmgr_confdefs.h>
58 58 #endif
59 59
60 60 #include "fsw_init.h"
61 61 #include "fsw_config.c"
62 62
63 63 rtems_task Init( rtems_task_argument ignored )
64 64 {
65 65 /** This is the RTEMS INIT taks, it the first task launched by the system.
66 66 *
67 67 * @param unused is the starting argument of the RTEMS task
68 68 *
69 69 * The INIT task create and run all other RTEMS tasks.
70 70 *
71 71 */
72 72
73 73 reset_local_time();
74 74
75 75 rtems_status_code status;
76 76 rtems_status_code status_spw;
77 77 rtems_isr_entry old_isr_handler;
78 78
79 79 // UART settings
80 80 send_console_outputs_on_apbuart_port();
81 81 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
82 82 enable_apbuart_transmitter();
83 83 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
84 84
85 85 PRINTF("\n\n\n\n\n")
86 86 PRINTF("*************************\n")
87 87 PRINTF("** LFR Flight Software **\n")
88 88 PRINTF1("** %d.", SW_VERSION_N1)
89 89 PRINTF1("%d.", SW_VERSION_N2)
90 90 PRINTF1("%d.", SW_VERSION_N3)
91 91 PRINTF1("%d **\n", SW_VERSION_N4)
92 92 PRINTF("*************************\n")
93 93 PRINTF("\n\n")
94 94
95 95 init_parameter_dump();
96 96 init_local_mode_parameters();
97 97 init_housekeeping_parameters();
98 98
99 99 init_waveform_rings(); // initialize the waveform rings
100 100 SM_init_rings(); // initialize spectral matrices rings
101 ASM_init_ring(); // initialize the average spectral matrix ring (just for burst, sbm1 and sbm2 asm @ f0 storage)
101 ASM_init_rings(); // initialize the average spectral matrix ring (just for burst, sbm1 and sbm2 asm @ f0 storage)
102 102
103 103 reset_wfp_burst_enable();
104 104 reset_wfp_status();
105 105 set_wfp_data_shaping();
106 106
107 107 updateLFRCurrentMode();
108 108
109 109 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
110 110
111 111 create_names(); // create all names
112 112
113 113 status = create_message_queues(); // create message queues
114 114 if (status != RTEMS_SUCCESSFUL)
115 115 {
116 116 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
117 117 }
118 118
119 119 status = create_all_tasks(); // create all tasks
120 120 if (status != RTEMS_SUCCESSFUL)
121 121 {
122 122 PRINTF1("in INIT *** ERR in create_all_tasks, code %d", status)
123 123 }
124 124
125 125 // **************************
126 126 // <SPACEWIRE INITIALIZATION>
127 127 grspw_timecode_callback = &timecode_irq_handler;
128 128
129 129 status_spw = spacewire_open_link(); // (1) open the link
130 130 if ( status_spw != RTEMS_SUCCESSFUL )
131 131 {
132 132 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
133 133 }
134 134
135 135 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
136 136 {
137 137 status_spw = spacewire_configure_link( fdSPW );
138 138 if ( status_spw != RTEMS_SUCCESSFUL )
139 139 {
140 140 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
141 141 }
142 142 }
143 143
144 144 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
145 145 {
146 146 status_spw = spacewire_start_link( fdSPW );
147 147 if ( status_spw != RTEMS_SUCCESSFUL )
148 148 {
149 149 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
150 150 }
151 151 }
152 152 // </SPACEWIRE INITIALIZATION>
153 153 // ***************************
154 154
155 155 status = start_all_tasks(); // start all tasks
156 156 if (status != RTEMS_SUCCESSFUL)
157 157 {
158 158 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
159 159 }
160 160
161 161 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
162 162 status = start_recv_send_tasks();
163 163 if ( status != RTEMS_SUCCESSFUL )
164 164 {
165 165 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
166 166 }
167 167
168 168 // suspend science tasks, they will be restarted later depending on the mode
169 169 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
170 170 if (status != RTEMS_SUCCESSFUL)
171 171 {
172 172 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
173 173 }
174 174
175 175 //******************************
176 176 // <SPECTRAL MATRICES SIMULATOR>
177 177 LEON_Mask_interrupt( IRQ_SM_SIMULATOR );
178 178 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
179 179 IRQ_SPARC_SM_SIMULATOR, spectral_matrices_isr_simu );
180 180 // </SPECTRAL MATRICES SIMULATOR>
181 181 //*******************************
182 182
183 183 // configure IRQ handling for the waveform picker unit
184 184 status = rtems_interrupt_catch( waveforms_isr,
185 185 IRQ_SPARC_WAVEFORM_PICKER,
186 186 &old_isr_handler) ;
187 187 // configure IRQ handling for the spectral matrices unit
188 188 status = rtems_interrupt_catch( spectral_matrices_isr,
189 189 IRQ_SPARC_SPECTRAL_MATRIX,
190 190 &old_isr_handler) ;
191 191
192 192 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
193 193 if ( status_spw != RTEMS_SUCCESSFUL )
194 194 {
195 195 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
196 196 if ( status != RTEMS_SUCCESSFUL ) {
197 197 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
198 198 }
199 199 }
200 200
201 201 BOOT_PRINTF("delete INIT\n")
202 202
203 203 send_dumb_hk();
204 204
205 205 status = rtems_task_delete(RTEMS_SELF);
206 206
207 207 }
208 208
209 209 void init_local_mode_parameters( void )
210 210 {
211 211 /** This function initialize the param_local global variable with default values.
212 212 *
213 213 */
214 214
215 215 unsigned int i;
216 216
217 217 // LOCAL PARAMETERS
218 218 set_local_nb_interrupt_f0_MAX();
219 219
220 220 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
221 221 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
222 222 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
223 223
224 224 // init sequence counters
225 225
226 226 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
227 227 {
228 228 sequenceCounters_TC_EXE[i] = 0x00;
229 229 }
230 230 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
231 231 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
232 232 }
233 233
234 234 void reset_local_time( void )
235 235 {
236 236 time_management_regs->ctrl = 0x02; // software reset, coarse time = 0x80000000
237 237 }
238 238
239 239 void create_names( void ) // create all names for tasks and queues
240 240 {
241 241 /** This function creates all RTEMS names used in the software for tasks and queues.
242 242 *
243 243 * @return RTEMS directive status codes:
244 244 * - RTEMS_SUCCESSFUL - successful completion
245 245 *
246 246 */
247 247
248 248 // task names
249 249 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
250 250 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
251 251 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
252 252 Task_name[TASKID_SMIQ] = rtems_build_name( 'S', 'M', 'I', 'Q' );
253 253 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
254 254 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
255 255 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
256 256 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
257 257 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
258 258 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
259 259 Task_name[TASKID_MATR] = rtems_build_name( 'M', 'A', 'T', 'R' );
260 260 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
261 261 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
262 262 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
263 263 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
264 264 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
265 265
266 266 // rate monotonic period names
267 267 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
268 268
269 269 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
270 270 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
271 misc_name[QUEUE_MATR] = rtems_build_name( 'Q', '_', 'M', 'R' );
271 272 }
272 273
273 274 int create_all_tasks( void ) // create all tasks which run in the software
274 275 {
275 276 /** This function creates all RTEMS tasks used in the software.
276 277 *
277 278 * @return RTEMS directive status codes:
278 279 * - RTEMS_SUCCESSFUL - task created successfully
279 280 * - RTEMS_INVALID_ADDRESS - id is NULL
280 281 * - RTEMS_INVALID_NAME - invalid task name
281 282 * - RTEMS_INVALID_PRIORITY - invalid task priority
282 283 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
283 284 * - RTEMS_TOO_MANY - too many tasks created
284 285 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
285 286 * - RTEMS_TOO_MANY - too many global objects
286 287 *
287 288 */
288 289
289 290 rtems_status_code status;
290 291
291 292 //**********
292 293 // SPACEWIRE
293 294 // RECV
294 295 status = rtems_task_create(
295 296 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
296 297 RTEMS_DEFAULT_MODES,
297 298 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
298 299 );
299 300 if (status == RTEMS_SUCCESSFUL) // SEND
300 301 {
301 302 status = rtems_task_create(
302 303 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
303 304 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
304 305 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
305 306 );
306 307 }
307 308 if (status == RTEMS_SUCCESSFUL) // WTDG
308 309 {
309 310 status = rtems_task_create(
310 311 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
311 312 RTEMS_DEFAULT_MODES,
312 313 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
313 314 );
314 315 }
315 316 if (status == RTEMS_SUCCESSFUL) // ACTN
316 317 {
317 318 status = rtems_task_create(
318 319 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
319 320 RTEMS_DEFAULT_MODES,
320 321 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
321 322 );
322 323 }
323 324 if (status == RTEMS_SUCCESSFUL) // SPIQ
324 325 {
325 326 status = rtems_task_create(
326 327 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
327 328 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
328 329 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
329 330 );
330 331 }
331 332
332 333 //******************
333 334 // SPECTRAL MATRICES
334 335 if (status == RTEMS_SUCCESSFUL) // SMIQ
335 336 {
336 337 status = rtems_task_create(
337 338 Task_name[TASKID_SMIQ], TASK_PRIORITY_SMIQ, RTEMS_MINIMUM_STACK_SIZE,
338 339 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
339 340 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SMIQ]
340 341 );
341 342 }
342 343 if (status == RTEMS_SUCCESSFUL) // AVF0
343 344 {
344 345 status = rtems_task_create(
345 346 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
346 347 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
347 348 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
348 349 );
349 350 }
350 351 if (status == RTEMS_SUCCESSFUL) // MATR
351 352 {
352 353 status = rtems_task_create(
353 Task_name[TASKID_MATR], TASK_PRIORITY_MATR, RTEMS_MINIMUM_STACK_SIZE,
354 Task_name[TASKID_MATR], TASK_PRIORITY_MATR, RTEMS_MINIMUM_STACK_SIZE * 2,
354 355 RTEMS_DEFAULT_MODES,
355 356 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_MATR]
356 357 );
357 358 }
358 359
359 360 //****************
360 361 // WAVEFORM PICKER
361 362 if (status == RTEMS_SUCCESSFUL) // WFRM
362 363 {
363 364 status = rtems_task_create(
364 365 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
365 366 RTEMS_DEFAULT_MODES,
366 367 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
367 368 );
368 369 }
369 370 if (status == RTEMS_SUCCESSFUL) // CWF3
370 371 {
371 372 status = rtems_task_create(
372 373 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
373 374 RTEMS_DEFAULT_MODES,
374 375 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
375 376 );
376 377 }
377 378 if (status == RTEMS_SUCCESSFUL) // CWF2
378 379 {
379 380 status = rtems_task_create(
380 381 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
381 382 RTEMS_DEFAULT_MODES,
382 383 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
383 384 );
384 385 }
385 386 if (status == RTEMS_SUCCESSFUL) // CWF1
386 387 {
387 388 status = rtems_task_create(
388 389 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
389 390 RTEMS_DEFAULT_MODES,
390 391 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
391 392 );
392 393 }
393 394 if (status == RTEMS_SUCCESSFUL) // SWBD
394 395 {
395 396 status = rtems_task_create(
396 397 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
397 398 RTEMS_DEFAULT_MODES,
398 399 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
399 400 );
400 401 }
401 402
402 403 //*****
403 404 // MISC
404 405 if (status == RTEMS_SUCCESSFUL) // STAT
405 406 {
406 407 status = rtems_task_create(
407 408 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
408 409 RTEMS_DEFAULT_MODES,
409 410 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
410 411 );
411 412 }
412 413 if (status == RTEMS_SUCCESSFUL) // DUMB
413 414 {
414 415 status = rtems_task_create(
415 416 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
416 417 RTEMS_DEFAULT_MODES,
417 418 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
418 419 );
419 420 }
420 421 if (status == RTEMS_SUCCESSFUL) // HOUS
421 422 {
422 423 status = rtems_task_create(
423 424 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
424 425 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
425 426 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_HOUS]
426 427 );
427 428 }
428 429
429 430 return status;
430 431 }
431 432
432 433 int start_recv_send_tasks( void )
433 434 {
434 435 rtems_status_code status;
435 436
436 437 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
437 438 if (status!=RTEMS_SUCCESSFUL) {
438 439 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
439 440 }
440 441
441 442 if (status == RTEMS_SUCCESSFUL) // SEND
442 443 {
443 444 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
444 445 if (status!=RTEMS_SUCCESSFUL) {
445 446 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
446 447 }
447 448 }
448 449
449 450 return status;
450 451 }
451 452
452 453 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
453 454 {
454 455 /** This function starts all RTEMS tasks used in the software.
455 456 *
456 457 * @return RTEMS directive status codes:
457 458 * - RTEMS_SUCCESSFUL - ask started successfully
458 459 * - RTEMS_INVALID_ADDRESS - invalid task entry point
459 460 * - RTEMS_INVALID_ID - invalid task id
460 461 * - RTEMS_INCORRECT_STATE - task not in the dormant state
461 462 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
462 463 *
463 464 */
464 465 // starts all the tasks fot eh flight software
465 466
466 467 rtems_status_code status;
467 468
468 469 //**********
469 470 // SPACEWIRE
470 471 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
471 472 if (status!=RTEMS_SUCCESSFUL) {
472 473 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
473 474 }
474 475
475 476 if (status == RTEMS_SUCCESSFUL) // WTDG
476 477 {
477 478 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
478 479 if (status!=RTEMS_SUCCESSFUL) {
479 480 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
480 481 }
481 482 }
482 483
483 484 if (status == RTEMS_SUCCESSFUL) // ACTN
484 485 {
485 486 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
486 487 if (status!=RTEMS_SUCCESSFUL) {
487 488 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
488 489 }
489 490 }
490 491
491 492 //******************
492 493 // SPECTRAL MATRICES
493 494 if (status == RTEMS_SUCCESSFUL) // SMIQ
494 495 {
495 496 status = rtems_task_start( Task_id[TASKID_SMIQ], smiq_task, 1 );
496 497 if (status!=RTEMS_SUCCESSFUL) {
497 498 BOOT_PRINTF("in INIT *** Error starting TASK_BPPR\n")
498 499 }
499 500 }
500 501
501 502 if (status == RTEMS_SUCCESSFUL) // AVF0
502 503 {
503 504 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, 1 );
504 505 if (status!=RTEMS_SUCCESSFUL) {
505 506 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
506 507 }
507 508 }
508 509
509 510 if (status == RTEMS_SUCCESSFUL) // MATR
510 511 {
511 512 status = rtems_task_start( Task_id[TASKID_MATR], matr_task, 1 );
512 513 if (status!=RTEMS_SUCCESSFUL) {
513 514 BOOT_PRINTF("in INIT *** Error starting TASK_MATR\n")
514 515 }
515 516 }
516 517
517 518 //****************
518 519 // WAVEFORM PICKER
519 520 if (status == RTEMS_SUCCESSFUL) // WFRM
520 521 {
521 522 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
522 523 if (status!=RTEMS_SUCCESSFUL) {
523 524 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
524 525 }
525 526 }
526 527
527 528 if (status == RTEMS_SUCCESSFUL) // CWF3
528 529 {
529 530 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
530 531 if (status!=RTEMS_SUCCESSFUL) {
531 532 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
532 533 }
533 534 }
534 535
535 536 if (status == RTEMS_SUCCESSFUL) // CWF2
536 537 {
537 538 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
538 539 if (status!=RTEMS_SUCCESSFUL) {
539 540 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
540 541 }
541 542 }
542 543
543 544 if (status == RTEMS_SUCCESSFUL) // CWF1
544 545 {
545 546 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
546 547 if (status!=RTEMS_SUCCESSFUL) {
547 548 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
548 549 }
549 550 }
550 551
551 552 if (status == RTEMS_SUCCESSFUL) // SWBD
552 553 {
553 554 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
554 555 if (status!=RTEMS_SUCCESSFUL) {
555 556 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
556 557 }
557 558 }
558 559
559 560 //*****
560 561 // MISC
561 562 if (status == RTEMS_SUCCESSFUL) // HOUS
562 563 {
563 564 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
564 565 if (status!=RTEMS_SUCCESSFUL) {
565 566 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
566 567 }
567 568 }
568 569
569 570 if (status == RTEMS_SUCCESSFUL) // DUMB
570 571 {
571 572 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
572 573 if (status!=RTEMS_SUCCESSFUL) {
573 574 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
574 575 }
575 576 }
576 577
577 578 if (status == RTEMS_SUCCESSFUL) // STAT
578 579 {
579 580 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
580 581 if (status!=RTEMS_SUCCESSFUL) {
581 582 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
582 583 }
583 584 }
584 585
585 586 return status;
586 587 }
587 588
588 589 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
589 590 {
590 591 rtems_status_code status_recv;
591 592 rtems_status_code status_send;
593 rtems_status_code status_matr;
592 594 rtems_status_code ret;
593 595 rtems_id queue_id;
594 596
597 //****************************************
595 598 // create the queue for handling valid TCs
596 599 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
597 ACTION_MSG_QUEUE_COUNT, CCSDS_TC_PKT_MAX_SIZE,
600 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
598 601 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
599 602 if ( status_recv != RTEMS_SUCCESSFUL ) {
600 603 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
601 604 }
602 605
606 //************************************************
603 607 // create the queue for handling TM packet sending
604 608 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
605 ACTION_MSG_PKTS_COUNT, ACTION_MSG_PKTS_MAX_SIZE,
609 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
606 610 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
607 611 if ( status_send != RTEMS_SUCCESSFUL ) {
608 612 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
609 613 }
610 614
615 //************************************************************************
616 // create the queue for handling averaged spectral matrices for processing
617 status_matr = rtems_message_queue_create( misc_name[QUEUE_MATR],
618 MSG_QUEUE_COUNT_MATR, MSG_QUEUE_SIZE_MATR,
619 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
620 if ( status_send != RTEMS_SUCCESSFUL ) {
621 PRINTF1("in create_message_queues *** ERR creating MATR queue, %d\n", status_matr)
622 }
623
611 624 if ( status_recv != RTEMS_SUCCESSFUL )
612 625 {
613 626 ret = status_recv;
614 627 }
628 else if( status_send != RTEMS_SUCCESSFUL )
629 {
630 ret = status_send;
631 }
615 632 else
616 633 {
617 ret = status_send;
634 ret = status_matr;
618 635 }
619 636
620 637 return ret;
621 638 }
622 639
623 640 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
624 641 {
625 642 rtems_status_code status;
626 643 rtems_name queue_name;
627 644
628 645 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
629 646
630 647 status = rtems_message_queue_ident( queue_name, 0, queue_id );
631 648
632 649 return status;
633 650 }
634 651
635 652 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
636 653 {
637 654 rtems_status_code status;
638 655 rtems_name queue_name;
639 656
640 657 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
641 658
642 659 status = rtems_message_queue_ident( queue_name, 0, queue_id );
643 660
644 661 return status;
645 662 }
663
664 rtems_status_code get_message_queue_id_matr( rtems_id *queue_id )
665 {
666 rtems_status_code status;
667 rtems_name queue_name;
668
669 queue_name = rtems_build_name( 'Q', '_', 'M', 'R' );
670
671 status = rtems_message_queue_ident( queue_name, 0, queue_id );
672
673 return status;
674 }
@@ -1,889 +1,892
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include <fsw_processing.h>
11 11
12 12 #include "fsw_processing_globals.c"
13 13
14 14 //************************
15 15 // spectral matrices rings
16 16 ring_node_sm sm_ring_f0[ NB_RING_NODES_SM_F0 ];
17 17 ring_node_sm sm_ring_f1[ NB_RING_NODES_SM_F1 ];
18 18 ring_node_sm sm_ring_f2[ NB_RING_NODES_SM_F2 ];
19 19 ring_node_sm *current_ring_node_sm_f0;
20 20 ring_node_sm *ring_node_for_averaging_sm_f0;
21 21 ring_node_sm *current_ring_node_sm_f1;
22 22 ring_node_sm *current_ring_node_sm_f2;
23 23
24 24 ring_node_asm asm_ring_burst_sbm_f0[ NB_RING_NODES_ASM_BURST_SBM_F0 ];
25 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_BURST_SBM_F0 ];
25 26 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
26 ring_node_asm *ring_node_for_processing_asm_burst_sbm_f0;
27 ring_node_asm *current_ring_node_asm_norm_f0;
27 28
28 //*****
29 // NORM
30 // F0
31 float asm_norm_f0 [ TIME_OFFSET + TOTAL_SIZE_SM ];
32 float asm_f0_reorganized [ TIME_OFFSET + TOTAL_SIZE_SM ];
29 float asm_norm_f0 [ TOTAL_SIZE_SM ];
30 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
33 31 char asm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
34 float compressed_sm_norm_f0[ TIME_OFFSET + TOTAL_SIZE_COMPRESSED_ASM_F0 ];
35
36 //*****
37 // SBM1
38 float asm_sbm_f0 [ TIME_OFFSET + TOTAL_SIZE_SM ];
39 float compressed_sm_sbm[ TIME_OFFSET + TOTAL_SIZE_COMPRESSED_ASM_SBM1 ];
40
41 unsigned char LFR_BP1_F0[ TIME_OFFSET_IN_BYTES + TOTAL_SIZE_NORM_BP1_F0 * 2 ];
42 unsigned char LFR_BP1_F1[ TIME_OFFSET_IN_BYTES + TOTAL_SIZE_NORM_BP1_F1 ];
43 unsigned char LFR_BP1_F2[ TIME_OFFSET_IN_BYTES + TOTAL_SIZE_NORM_BP1_F2 ];
32 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_F0 ];
33 float compressed_sm_sbm [ TOTAL_SIZE_COMPRESSED_ASM_SBM1 ];
44 34
45 35 //***********************************************************
46 36 // Interrupt Service Routine for spectral matrices processing
47 37 void reset_nb_sm_f0( unsigned char lfrMode )
48 38 {
49 39 nb_sm.f0 = 0;
50 40 nb_sm.norm_bp1_f0 = 0;
51 41 nb_sm.norm_bp2_f0 = 0;
52 42 nb_sm.norm_asm_f0 = 0;
53 43 nb_sm.sbm_bp1_f0 = 0;
54 44 nb_sm.sbm_bp2_f0 = 0;
55 45
56 46 nb_sm_before_bp.norm_bp1_f0 = parameter_dump_packet.sy_lfr_n_bp_p0 * 96;
57 47 nb_sm_before_bp.norm_bp2_f0 = parameter_dump_packet.sy_lfr_n_bp_p1 * 96;
58 48 nb_sm_before_bp.norm_asm_f0 = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 96;
59 49 nb_sm_before_bp.sbm1_bp1_f0 = parameter_dump_packet.sy_lfr_s1_bp_p0 * 24;
60 50 nb_sm_before_bp.sbm1_bp2_f0 = parameter_dump_packet.sy_lfr_s1_bp_p1 * 96;
61 51 nb_sm_before_bp.sbm2_bp1_f0 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 96;
62 52 nb_sm_before_bp.sbm2_bp2_f0 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 96;
63 53 nb_sm_before_bp.burst_bp1_f0 = parameter_dump_packet.sy_lfr_b_bp_p0 * 96;
64 54 nb_sm_before_bp.burst_bp2_f0 = parameter_dump_packet.sy_lfr_b_bp_p1 * 96;
65 55
66 56 if (lfrMode == LFR_MODE_SBM1)
67 57 {
68 58 nb_sm_before_bp.burst_sbm_bp1_f0 = nb_sm_before_bp.sbm1_bp1_f0;
69 59 nb_sm_before_bp.burst_sbm_bp2_f0 = nb_sm_before_bp.sbm1_bp2_f0;
70 60 }
71 61 else if (lfrMode == LFR_MODE_SBM2)
72 62 {
73 63 nb_sm_before_bp.burst_sbm_bp1_f0 = nb_sm_before_bp.sbm2_bp1_f0;
74 64 nb_sm_before_bp.burst_sbm_bp2_f0 = nb_sm_before_bp.sbm2_bp2_f0;
75 65 }
76 66 else if (lfrMode == LFR_MODE_BURST)
77 67 {
78 68 nb_sm_before_bp.burst_sbm_bp1_f0 = nb_sm_before_bp.burst_bp1_f0;
79 69 nb_sm_before_bp.burst_sbm_bp2_f0 = nb_sm_before_bp.burst_bp2_f0;
80 70 }
81 71 else
82 72 {
83 73 nb_sm_before_bp.burst_sbm_bp1_f0 = nb_sm_before_bp.burst_bp1_f0;
84 74 nb_sm_before_bp.burst_sbm_bp2_f0 = nb_sm_before_bp.burst_bp2_f0;
85 75 }
86 76 }
87 77
88 78 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
89 79 {
80 ring_node_sm *previous_ring_node_sm_f0;
81
90 82 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
91 83
92 // if ( (spectral_matrix_regs->status & 0x1) == 0x01)
93 // {
94 // current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
95 // spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
96 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe; // 1110
97 // nb_sm_f0 = nb_sm_f0 + 1;
98 // }
99 // else if ( (spectral_matrix_regs->status & 0x2) == 0x02)
100 // {
101 // current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
102 // spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
103 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // 1101
104 // nb_sm_f0 = nb_sm_f0 + 1;
105 // }
84 previous_ring_node_sm_f0 = current_ring_node_sm_f0;
85
86 if ( (spectral_matrix_regs->status & 0x2) == 0x02) // check ready matrix bit f0_1
87 {
88 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
89 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
90 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // 1101
91 nb_sm.f0 = nb_sm.f0 + 1;
92 }
106 93
107 // if ( (spectral_matrix_regs->status & 0x30) != 0x00)
108 // {
109 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
110 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // 1100 1111
111 // }
112
113 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff3; // 0011
94 //************************
95 // reset status error bits
96 if ( (spectral_matrix_regs->status & 0x30) != 0x00)
97 {
98 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
99 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // 1100 1111
100 }
114 101
115 // if (nb_sm_f0 == (NB_SM_BEFORE_AVF0-1) )
116 // {
117 // ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
118 // if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
119 // {
120 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
121 // }
122 // nb_sm_f0 = 0;
123 // }
124 // else
125 // {
126 // nb_sm.nb_sm_f0 = nb_sm.nb_sm_f0 + 1;
127 // }
102 //**************************************
103 // reset ready matrix bits for f0_0, f1 and f2
104 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff2; // 0010
105
106 if (nb_sm.f0 == NB_SM_BEFORE_AVF0)
107 {
108 ring_node_for_averaging_sm_f0 = previous_ring_node_sm_f0;
109 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
110 {
111 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
112 }
113 nb_sm.f0 = 0;
114 }
115
128 116 }
129 117
130 118 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
131 119 {
132 120 if (nb_sm.f0 == (NB_SM_BEFORE_AVF0-1) )
133 121 {
134 122 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
135 123 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
136 124 {
137 125 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
138 126 }
139 127 nb_sm.f0 = 0;
140 128 }
141 129 else
142 130 {
143 131 nb_sm.f0 = nb_sm.f0 + 1;
144 132 }
145 133 }
146 134
147 135 //************
148 136 // RTEMS TASKS
149 137
150 138 rtems_task smiq_task( rtems_task_argument argument ) // process the Spectral Matrices IRQ
151 139 {
152 140 rtems_event_set event_out;
153 141
154 142 BOOT_PRINTF("in SMIQ *** \n")
155 143
156 144 while(1){
157 145 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
158 146 }
159 147 }
160 148
161 149 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
162 150 {
163 151 int i;
164 152
165 153 rtems_event_set event_out;
166 rtems_event_set event_for_matr;
167 154 rtems_status_code status;
155 rtems_id queue_id_matr;
156 asm_msg msgForMATR;
168 157 ring_node_sm *ring_node_tab[8];
169 unsigned long long int localTime;
170 158
171 159 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
172 160
173 161 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", lfrRequestedMode)
174 162
163 status = get_message_queue_id_matr( &queue_id_matr );
164 if (status != RTEMS_SUCCESSFUL)
165 {
166 PRINTF1("in MATR *** ERR get_message_queue_id_matr %d\n", status)
167 }
168
175 169 while(1){
176 170 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
177 171 ring_node_tab[NB_SM_BEFORE_AVF0-1] = ring_node_for_averaging_sm_f0;
178 172 for ( i = 2; i < (NB_SM_BEFORE_AVF0+1); i++ )
179 173 {
180 174 ring_node_for_averaging_sm_f0 = ring_node_for_averaging_sm_f0->previous;
181 175 ring_node_tab[NB_SM_BEFORE_AVF0-i] = ring_node_for_averaging_sm_f0;
182 176 }
183 177
184 localTime = getTimeAsUnsignedLongLongInt( );
185
186 178 // compute the average and store it in the averaged_sm_f1 buffer
187 SM_average( asm_norm_f0, current_ring_node_asm_burst_sbm_f0->asm_burst_sbm_f0,
179 SM_average( current_ring_node_asm_norm_f0->matrix,
180 current_ring_node_asm_burst_sbm_f0->matrix,
188 181 ring_node_tab,
189 182 nb_sm.norm_bp1_f0, nb_sm.sbm_bp1_f0 );
190 183
191 localTime = getTimeAsUnsignedLongLongInt( ) - localTime;
192
193 184 // update nb_average
194 185 nb_sm.norm_bp1_f0 = nb_sm.norm_bp1_f0 + NB_SM_BEFORE_AVF0;
195 186 nb_sm.norm_bp2_f0 = nb_sm.norm_bp2_f0 + NB_SM_BEFORE_AVF0;
196 187 nb_sm.norm_asm_f0 = nb_sm.norm_asm_f0 + NB_SM_BEFORE_AVF0;
197 188 nb_sm.sbm_bp1_f0 = nb_sm.sbm_bp1_f0 + NB_SM_BEFORE_AVF0;
198 189 nb_sm.sbm_bp2_f0 = nb_sm.sbm_bp2_f0 + NB_SM_BEFORE_AVF0;
199 190
200 //***********************************************************
201 // build a composite event that will be sent to the MATR task
202 event_for_matr = 0x00;
191 //****************************************
192 // initialize the mesage for the MATR task
193 msgForMATR.event = 0x00; // this composite event will be sent to the MATR task
194 msgForMATR.burst_sbmf0 = current_ring_node_asm_burst_sbm_f0;
195 msgForMATR.norm_f0 = current_ring_node_asm_norm_f0;
196 msgForMATR.coarseTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[0];
197 msgForMATR.fineTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[1];
203 198
204 199 if (nb_sm.sbm_bp1_f0 == nb_sm_before_bp.burst_sbm_bp1_f0)
205 200 {
206 201 nb_sm.sbm_bp1_f0 = 0;
207 // the ring node is ready for BP calculations
208 ring_node_for_processing_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0;
209 202 // set another ring for the ASM storage
210 203 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
211 204 if ( (lfrCurrentMode == LFR_MODE_BURST)
212 205 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
213 206 {
214 event_for_matr = event_for_matr | RTEMS_EVENT_BURST_SBM_BP1_F0;
207 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP1_F0;
215 208 }
216 209 }
217 210
218 211 if (nb_sm.sbm_bp2_f0 == nb_sm_before_bp.burst_sbm_bp2_f0)
219 212 {
220 213 nb_sm.sbm_bp2_f0 = 0;
221 214 if ( (lfrCurrentMode == LFR_MODE_BURST)
222 215 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
223 216 {
224 event_for_matr = event_for_matr | RTEMS_EVENT_BURST_SBM_BP2_F0;
217 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP2_F0;
225 218 }
226 219 }
227 220
228 221 if (nb_sm.norm_bp1_f0 == nb_sm_before_bp.norm_bp1_f0)
229 222 {
230 223 nb_sm.norm_bp1_f0 = 0;
224 // set another ring for the ASM storage
225 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
231 226 if (lfrCurrentMode == LFR_MODE_NORMAL)
232 227 {
233 event_for_matr = event_for_matr | RTEMS_EVENT_NORM_BP1_F0;
228 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F0;
234 229 }
235 230 }
236 231
237 232 if (nb_sm.norm_bp2_f0 == nb_sm_before_bp.norm_bp2_f0)
238 233 {
239 234 nb_sm.norm_bp2_f0 = 0;
240 235 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
241 236 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
242 237 {
243 event_for_matr = event_for_matr | RTEMS_EVENT_NORM_BP2_F0;
238 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F0;
244 239 }
245 240 }
246 241
247 242 if (nb_sm.norm_asm_f0 == nb_sm_before_bp.norm_asm_f0)
248 243 {
249 244 nb_sm.norm_asm_f0 = 0;
250 245 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
251 246 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
252 247 {
253 248 // PRINTF1("%lld\n", localTime)
254 event_for_matr = event_for_matr | RTEMS_EVENT_NORM_ASM_F0;
249 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F0;
255 250 }
256 251 }
257 252
258 //*********************************
259 // send the composite event to MATR
260 status = rtems_event_send( Task_id[TASKID_MATR], event_for_matr );
253 //*************************
254 // send the message to MATR
255 if (msgForMATR.event != 0x00)
256 {
257 status = rtems_message_queue_send( queue_id_matr, (char *) & msgForMATR, MSG_QUEUE_SIZE_MATR);
258 }
259
261 260 if (status != RTEMS_SUCCESSFUL) {
262 printf("in AVF0 *** Error sending RTEMS_EVENT_0, code %d\n", status);
261 printf("in AVF0 *** Error sending message to MATR, code %d\n", status);
263 262 }
264 263 }
265 264 }
266 265
267 266 rtems_task matr_task( rtems_task_argument lfrRequestedMode )
268 267 {
268 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
269 size_t size; // size of the incoming TC packet
270 asm_msg *incomingMsg;
271 //
269 272 spw_ioctl_pkt_send spw_ioctl_send_ASM;
270 rtems_event_set event_out;
271 273 rtems_status_code status;
272 274 rtems_id queue_id;
275 rtems_id queue_id_matr;
273 276 Header_TM_LFR_SCIENCE_ASM_t headerASM;
274 277 bp_packet_with_spare current_node_norm_bp1_f0;
275 278 bp_packet current_node_norm_bp2_f0;
276 279 bp_packet current_node_sbm_bp1_f0;
277 280 bp_packet current_node_sbm_bp2_f0;
281
278 282 unsigned long long int localTime;
279 283
280 284 ASM_init_header( &headerASM );
281 285
282 286 //*************
283 287 // NORM headers
284 288 BP_init_header_with_spare( &current_node_norm_bp1_f0.header,
285 289 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
286 290 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
287 291 BP_init_header( &current_node_norm_bp2_f0.header,
288 292 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
289 293 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
290 294
291 295 //****************************
292 296 // BURST SBM1 and SBM2 headers
293 297 if ( (lfrRequestedMode == LFR_MODE_BURST)
294 298 || (lfrRequestedMode == LFR_MODE_NORMAL) || (lfrRequestedMode == LFR_MODE_STANDBY) )
295 299 {
296 300 BP_init_header( &current_node_sbm_bp1_f0.header,
297 301 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
298 302 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
299 303 BP_init_header( &current_node_sbm_bp2_f0.header,
300 304 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
301 305 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
302 306 }
303 307 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
304 308 {
305 309 BP_init_header( &current_node_sbm_bp1_f0.header,
306 310 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
307 311 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
308 312 BP_init_header( &current_node_sbm_bp2_f0.header,
309 313 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
310 314 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
311 315 }
312 316 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
313 317 {
314 318 BP_init_header( &current_node_sbm_bp1_f0.header,
315 319 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
316 320 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
317 321 BP_init_header( &current_node_sbm_bp2_f0.header,
318 322 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
319 323 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
320 324 }
321 325 else
322 326 {
323 327 PRINTF1("ERR *** in MATR *** unexpected lfrRequestedMode passed as argument = %d\n", (unsigned int) lfrRequestedMode)
324 328 }
325 329
326 330 status = get_message_queue_id_send( &queue_id );
327 331 if (status != RTEMS_SUCCESSFUL)
328 332 {
329 333 PRINTF1("in MATR *** ERR get_message_queue_id_send %d\n", status)
330 334 }
335 status = get_message_queue_id_matr( &queue_id_matr);
336 if (status != RTEMS_SUCCESSFUL)
337 {
338 PRINTF1("in MATR *** ERR get_message_queue_id_matr %d\n", status)
339 }
331 340
332 341 BOOT_PRINTF1("in MATR *** lfrRequestedMode = %d\n", lfrRequestedMode)
333 342
334 343 while(1){
335 rtems_event_receive( RTEMS_EVENT_NORM_BP1_F0 | RTEMS_EVENT_NORM_BP2_F0 | RTEMS_EVENT_NORM_ASM_F0
336 | RTEMS_EVENT_BURST_SBM_BP1_F0 | RTEMS_EVENT_BURST_SBM_BP2_F0,
337 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
344 status = rtems_message_queue_receive( queue_id_matr, incomingData, &size, //************************************
345 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
346
347 incomingMsg = (asm_msg*) incomingData;
348
338 349 localTime = getTimeAsUnsignedLongLongInt( );
339 350 //****************
340 351 //****************
341 352 // BURST SBM1 SBM2
342 353 //****************
343 354 //****************
344 if ( event_out & RTEMS_EVENT_BURST_SBM_BP1_F0 )
355 if (incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP1_F0 )
345 356 {
346 357 // 1) compress the matrix for Basic Parameters calculation
347 ASM_compress_reorganize_and_divide( current_ring_node_asm_burst_sbm_f0->asm_burst_sbm_f0, compressed_sm_sbm,
358 ASM_compress_reorganize_and_divide( incomingMsg->burst_sbmf0->matrix, compressed_sm_sbm,
348 359 nb_sm_before_bp.burst_sbm_bp1_f0,
349 360 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
350 361 ASM_F0_INDICE_START);
351 362 // 2) compute the BP1 set
352 363
353 364 // 3) send the BP1 set
354 set_time( current_node_sbm_bp1_f0.header.time, (unsigned char *) &compressed_sm_sbm );
355 set_time( current_node_sbm_bp1_f0.header.acquisitionTime, (unsigned char *) &compressed_sm_sbm );
365 set_time( current_node_sbm_bp1_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
366 set_time( current_node_sbm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
356 367 BP_send( (char *) &current_node_sbm_bp1_f0.header, queue_id,
357 368 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA);
358 369 // 4) compute the BP2 set if needed
359 if ( event_out & RTEMS_EVENT_BURST_SBM_BP2_F0 )
370 if ( incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP2_F0 )
360 371 {
361 372 // 1) compute the BP2 set
362 373
363 374 // 2) send the BP2 set
364 set_time( current_node_sbm_bp2_f0.header.time, (unsigned char *) &compressed_sm_sbm );
365 set_time( current_node_sbm_bp2_f0.header.acquisitionTime, (unsigned char *) &compressed_sm_sbm );
375 set_time( current_node_sbm_bp2_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
376 set_time( current_node_sbm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
366 377 BP_send( (char *) &current_node_sbm_bp2_f0.header, queue_id,
367 378 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA);
368 379 }
369 380 }
370 381
371 382 //*****
372 383 //*****
373 384 // NORM
374 385 //*****
375 386 //*****
376 if (event_out & RTEMS_EVENT_NORM_BP1_F0)
387 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
377 388 {
378 389 // 1) compress the matrix for Basic Parameters calculation
379 ASM_compress_reorganize_and_divide( asm_norm_f0, compressed_sm_norm_f0,
390 ASM_compress_reorganize_and_divide( incomingMsg->norm_f0->matrix, compressed_sm_norm_f0,
380 391 nb_sm_before_bp.norm_bp1_f0,
381 392 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
382 393 ASM_F0_INDICE_START );
383 394 // 2) compute the BP1 set
384 395
385 396 // 3) send the BP1 set
386 set_time( current_node_norm_bp1_f0.header.time, (unsigned char *) &compressed_sm_norm_f0 );
387 set_time( current_node_norm_bp1_f0.header.acquisitionTime, (unsigned char *) &compressed_sm_norm_f0 );
397 set_time( current_node_norm_bp1_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
398 set_time( current_node_norm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
388 399 BP_send( (char *) &current_node_norm_bp1_f0.header, queue_id,
389 400 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA);
390 if (event_out & RTEMS_EVENT_NORM_BP2_F0)
401 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
391 402 {
392 403 // 1) compute the BP2 set
393 404
394 405 // 2) send the BP2 set
395 set_time( current_node_norm_bp2_f0.header.time, (unsigned char *) &compressed_sm_norm_f0 );
396 set_time( current_node_norm_bp2_f0.header.acquisitionTime, (unsigned char *) &compressed_sm_norm_f0 );
406 set_time( current_node_norm_bp2_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
407 set_time( current_node_norm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
397 408 BP_send( (char *) &current_node_norm_bp2_f0.header, queue_id,
398 409 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA);
399 410 }
400 411 }
401 412
402 if (event_out & RTEMS_EVENT_NORM_ASM_F0)
413 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
403 414 {
404 415 // 1) reorganize the ASM and divide
405 ASM_reorganize_and_divide( asm_norm_f0, asm_f0_reorganized, NB_SM_BEFORE_NORM_BP1_F0 );
416 ASM_reorganize_and_divide( incomingMsg->norm_f0->matrix, asm_f0_reorganized, NB_SM_BEFORE_NORM_BP1_F0 );
406 417 // 2) convert the float array in a char array
407 418 ASM_convert( asm_f0_reorganized, asm_f0_char);
408 419 // 3) send the spectral matrix packets
420 set_time( headerASM.time , (unsigned char *) &incomingMsg->coarseTime );
421 set_time( headerASM.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
409 422 ASM_send( &headerASM, asm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
410 // localTime = getTimeAsUnsignedLongLongInt( ) - localTime;
411 // PRINTF1("in MATR *** %lld\n", localTime)
412 423 }
413 424
414 425 }
415 426 }
416 427
417 428 //******************
418 429 // Spectral Matrices
419 430
420 431 void SM_init_rings( void )
421 432 {
422 433 unsigned char i;
423 434
424 435 // F0 RING
425 436 sm_ring_f0[0].next = (ring_node_sm*) &sm_ring_f0[1];
426 437 sm_ring_f0[0].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-1];
427 438 sm_ring_f0[0].buffer_address =
428 439 (int) &sm_f0[ 0 ];
429 440
430 441 sm_ring_f0[NB_RING_NODES_SM_F0-1].next = (ring_node_sm*) &sm_ring_f0[0];
431 442 sm_ring_f0[NB_RING_NODES_SM_F0-1].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-2];
432 443 sm_ring_f0[NB_RING_NODES_SM_F0-1].buffer_address =
433 444 (int) &sm_f0[ (NB_RING_NODES_SM_F0-1) * TOTAL_SIZE_SM ];
434 445
435 446 for(i=1; i<NB_RING_NODES_SM_F0-1; i++)
436 447 {
437 448 sm_ring_f0[i].next = (ring_node_sm*) &sm_ring_f0[i+1];
438 449 sm_ring_f0[i].previous = (ring_node_sm*) &sm_ring_f0[i-1];
439 450 sm_ring_f0[i].buffer_address =
440 451 (int) &sm_f0[ i * TOTAL_SIZE_SM ];
441 452 }
442 453
443 454 // F1 RING
444 455 sm_ring_f1[0].next = (ring_node_sm*) &sm_ring_f1[1];
445 456 sm_ring_f1[0].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-1];
446 457 sm_ring_f1[0].buffer_address =
447 458 (int) &sm_f1[ 0 ];
448 459
449 460 sm_ring_f1[NB_RING_NODES_SM_F1-1].next = (ring_node_sm*) &sm_ring_f1[0];
450 461 sm_ring_f1[NB_RING_NODES_SM_F1-1].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-2];
451 462 sm_ring_f1[NB_RING_NODES_SM_F1-1].buffer_address =
452 463 (int) &sm_f1[ (NB_RING_NODES_SM_F1-1) * TOTAL_SIZE_SM ];
453 464
454 465 for(i=1; i<NB_RING_NODES_SM_F1-1; i++)
455 466 {
456 467 sm_ring_f1[i].next = (ring_node_sm*) &sm_ring_f1[i+1];
457 468 sm_ring_f1[i].previous = (ring_node_sm*) &sm_ring_f1[i-1];
458 469 sm_ring_f1[i].buffer_address =
459 470 (int) &sm_f1[ i * TOTAL_SIZE_SM ];
460 471 }
461 472
462 473 // F2 RING
463 474 sm_ring_f2[0].next = (ring_node_sm*) &sm_ring_f2[1];
464 475 sm_ring_f2[0].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-1];
465 476 sm_ring_f2[0].buffer_address =
466 477 (int) &sm_f2[ 0 ];
467 478
468 479 sm_ring_f2[NB_RING_NODES_SM_F2-1].next = (ring_node_sm*) &sm_ring_f2[0];
469 480 sm_ring_f2[NB_RING_NODES_SM_F2-1].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-2];
470 481 sm_ring_f2[NB_RING_NODES_SM_F2-1].buffer_address =
471 482 (int) &sm_f2[ (NB_RING_NODES_SM_F2-1) * TOTAL_SIZE_SM ];
472 483
473 484 for(i=1; i<NB_RING_NODES_SM_F2-1; i++)
474 485 {
475 486 sm_ring_f2[i].next = (ring_node_sm*) &sm_ring_f2[i+1];
476 487 sm_ring_f2[i].previous = (ring_node_sm*) &sm_ring_f2[i-1];
477 488 sm_ring_f2[i].buffer_address =
478 489 (int) &sm_f2[ i * TOTAL_SIZE_SM ];
479 490 }
480 491
481 492 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
482 493 DEBUG_PRINTF1("asm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
483 494 DEBUG_PRINTF1("asm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
484 495
485 496 spectral_matrix_regs->matrixF0_Address0 = sm_ring_f0[0].buffer_address;
486 497 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->matrixF0_Address0)
487 498 }
488 499
489 void ASM_init_ring( void )
500 void ASM_init_rings( void )
490 501 {
491 502 unsigned char i;
492 503
504 //*************
505 // BURST_SBM_F0
493 506 asm_ring_burst_sbm_f0[0].next = (ring_node_asm*) &asm_ring_burst_sbm_f0[1];
494 507 asm_ring_burst_sbm_f0[0].previous = (ring_node_asm*) &asm_ring_burst_sbm_f0[NB_RING_NODES_ASM_BURST_SBM_F0-1];
495 508
496 509 asm_ring_burst_sbm_f0[NB_RING_NODES_ASM_BURST_SBM_F0-1].next
497 510 = (ring_node_asm*) &asm_ring_burst_sbm_f0[0];
498 511 asm_ring_burst_sbm_f0[NB_RING_NODES_ASM_BURST_SBM_F0-1].previous
499 512 = (ring_node_asm*) &asm_ring_burst_sbm_f0[NB_RING_NODES_ASM_BURST_SBM_F0-2];
500 513
501 514 for(i=1; i<NB_RING_NODES_ASM_BURST_SBM_F0-1; i++)
502 515 {
503 516 asm_ring_burst_sbm_f0[i].next = (ring_node_asm*) &asm_ring_burst_sbm_f0[i+1];
504 517 asm_ring_burst_sbm_f0[i].previous = (ring_node_asm*) &asm_ring_burst_sbm_f0[i-1];
505 518 }
519
520 //*************
521 // NORM_F0
522 asm_ring_norm_f0[0].next = (ring_node_asm*) &asm_ring_norm_f0[1];
523 asm_ring_norm_f0[0].previous = (ring_node_asm*) &asm_ring_norm_f0[NB_RING_NODES_ASM_BURST_SBM_F0-1];
524
525 asm_ring_norm_f0[NB_RING_NODES_ASM_NORM_F0-1].next
526 = (ring_node_asm*) &asm_ring_norm_f0[0];
527 asm_ring_norm_f0[NB_RING_NODES_ASM_NORM_F0-1].previous
528 = (ring_node_asm*) &asm_ring_norm_f0[NB_RING_NODES_ASM_NORM_F0-2];
529
530 for(i=1; i<NB_RING_NODES_ASM_NORM_F0-1; i++)
531 {
532 asm_ring_norm_f0[i].next = (ring_node_asm*) &asm_ring_norm_f0[i+1];
533 asm_ring_norm_f0[i].previous = (ring_node_asm*) &asm_ring_norm_f0[i-1];
534 }
506 535 }
507 536
508 537 void SM_reset_current_ring_nodes( void )
509 538 {
510 539 current_ring_node_sm_f0 = sm_ring_f0;
511 540 current_ring_node_sm_f1 = sm_ring_f1;
512 541 current_ring_node_sm_f2 = sm_ring_f2;
513 542
514 543 ring_node_for_averaging_sm_f0 = sm_ring_f0;
515 544 }
516 545
517 546 void ASM_reset_current_ring_node( void )
518 547 {
548 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
519 549 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
520 ring_node_for_processing_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
521 550 }
522 551
523 552 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header)
524 553 {
525 554 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
526 555 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
527 556 header->reserved = 0x00;
528 557 header->userApplication = CCSDS_USER_APP;
529 558 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
530 559 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
531 560 header->packetSequenceControl[0] = 0xc0;
532 561 header->packetSequenceControl[1] = 0x00;
533 562 header->packetLength[0] = 0x00;
534 563 header->packetLength[1] = 0x00;
535 564 // DATA FIELD HEADER
536 565 header->spare1_pusVersion_spare2 = 0x10;
537 566 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
538 567 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
539 568 header->destinationID = TM_DESTINATION_ID_GROUND;
540 569 // AUXILIARY DATA HEADER
541 570 header->sid = 0x00;
542 571 header->biaStatusInfo = 0x00;
543 572 header->pa_lfr_pkt_cnt_asm = 0x00;
544 573 header->pa_lfr_pkt_nr_asm = 0x00;
545 574 header->time[0] = 0x00;
546 575 header->time[0] = 0x00;
547 576 header->time[0] = 0x00;
548 577 header->time[0] = 0x00;
549 578 header->time[0] = 0x00;
550 579 header->time[0] = 0x00;
551 580 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
552 581 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
553 582 }
554 583
555 584 void SM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
556 585 ring_node_sm *ring_node_tab[],
557 586 unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 )
558 587 {
559 588 float sum;
560 589 unsigned int i;
561 unsigned char *ptr;
562 590
563 591 for(i=0; i<TOTAL_SIZE_SM; i++)
564 592 {
565 593 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
566 594 + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
567 595 + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
568 596 + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
569 597 + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
570 598 + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
571 599 + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
572 600 + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
573 601
574 602 if ( (nbAverageNormF0 == 0) && (nbAverageSBM1F0 == 0) )
575 603 {
576 averaged_spec_mat_f0[ TIME_OFFSET + i ] = sum;
577 averaged_spec_mat_f1[ TIME_OFFSET + i ] = sum;
604 averaged_spec_mat_f0[ i ] = sum;
605 averaged_spec_mat_f1[ i ] = sum;
578 606 }
579 607 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 != 0) )
580 608 {
581 averaged_spec_mat_f0[ TIME_OFFSET + i ] = ( averaged_spec_mat_f0[ TIME_OFFSET + i ] + sum );
582 averaged_spec_mat_f1[ TIME_OFFSET + i ] = ( averaged_spec_mat_f1[ TIME_OFFSET + i ] + sum );
609 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
610 averaged_spec_mat_f1[ i ] = ( averaged_spec_mat_f1[ i ] + sum );
583 611 }
584 612 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 == 0) )
585 613 {
586 averaged_spec_mat_f0[ TIME_OFFSET + i ] = ( averaged_spec_mat_f0[ TIME_OFFSET + i ] + sum );
587 averaged_spec_mat_f1[ TIME_OFFSET + i ] = sum;
614 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
615 averaged_spec_mat_f1[ i ] = sum;
588 616 }
589 617 else
590 618 {
591 619 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNormF0, nbAverageSBM1F0)
592 620 }
593 621 }
594 if ( (nbAverageNormF0 == 0) && (nbAverageSBM1F0 == 0) )
595 {
596 ptr = (unsigned char *) averaged_spec_mat_f0;
597 ptr[0] = (unsigned char) (time_management_regs->coarse_time >> 24);
598 ptr[1] = (unsigned char) (time_management_regs->coarse_time >> 16);
599 ptr[2] = (unsigned char) (time_management_regs->coarse_time >> 8 );
600 ptr[3] = (unsigned char) (time_management_regs->coarse_time );
601 ptr[4] = (unsigned char) (time_management_regs->fine_time >> 24);
602 ptr[5] = (unsigned char) (time_management_regs->fine_time >> 16);
603 ptr[6] = (unsigned char) (time_management_regs->fine_time >> 8 );
604 ptr[7] = (unsigned char) (time_management_regs->fine_time );
605 ptr = (unsigned char *) averaged_spec_mat_f1;
606 ptr[0] = (unsigned char) (time_management_regs->coarse_time >> 24);
607 ptr[1] = (unsigned char) (time_management_regs->coarse_time >> 16);
608 ptr[2] = (unsigned char) (time_management_regs->coarse_time >> 8 );
609 ptr[3] = (unsigned char) (time_management_regs->coarse_time );
610 ptr[4] = (unsigned char) (time_management_regs->fine_time >> 24);
611 ptr[5] = (unsigned char) (time_management_regs->fine_time >> 16);
612 ptr[6] = (unsigned char) (time_management_regs->fine_time >> 8 );
613 ptr[7] = (unsigned char) (time_management_regs->fine_time );
614 }
615 622 }
616 623
617 624 void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
618 625 {
619 626 int frequencyBin;
620 627 int asmComponent;
621
622 // copy the time information
623 averaged_spec_mat_reorganized[ 0 ] = averaged_spec_mat[ 0 ];
624 averaged_spec_mat_reorganized[ 1 ] = averaged_spec_mat[ 1 ];
628 unsigned int offsetAveragedSpecMatReorganized;
629 unsigned int offsetAveragedSpecMat;
625 630
626 631 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
627 632 {
628 633 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
629 634 {
630 averaged_spec_mat_reorganized[ TIME_OFFSET + frequencyBin * NB_VALUES_PER_SM + asmComponent ] =
631 averaged_spec_mat[ TIME_OFFSET + asmComponent * NB_BINS_PER_SM + frequencyBin ] / divider;
635 offsetAveragedSpecMatReorganized =
636 frequencyBin * NB_VALUES_PER_SM
637 + asmComponent;
638 offsetAveragedSpecMat =
639 asmComponent * NB_BINS_PER_SM
640 + frequencyBin;
641 averaged_spec_mat_reorganized[offsetAveragedSpecMatReorganized ] =
642 averaged_spec_mat[ offsetAveragedSpecMat ] / divider;
632 643 }
633 644 }
634 645 }
635 646
636 647 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
637 648 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
638 649 {
639 650 int frequencyBin;
640 651 int asmComponent;
641 652 int offsetASM;
642 653 int offsetCompressed;
643 654 int k;
644 655
645 // copy the time information
646 compressed_spec_mat[ 0 ] = averaged_spec_mat[ 0 ];
647 compressed_spec_mat[ 1 ] = averaged_spec_mat[ 1 ];
648
649 656 // build data
650 657 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
651 658 {
652 659 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
653 660 {
654 offsetCompressed = TIME_OFFSET
655 + frequencyBin * NB_VALUES_PER_SM
661 offsetCompressed = // NO TIME OFFSET
662 frequencyBin * NB_VALUES_PER_SM
656 663 + asmComponent;
657 offsetASM = TIME_OFFSET
658 + asmComponent * NB_BINS_PER_SM
664 offsetASM = // NO TIME OFFSET
665 asmComponent * NB_BINS_PER_SM
659 666 + ASMIndexStart
660 667 + frequencyBin * nbBinsToAverage;
661 668 compressed_spec_mat[ offsetCompressed ] = 0;
662 669 for ( k = 0; k < nbBinsToAverage; k++ )
663 670 {
664 671 compressed_spec_mat[offsetCompressed ] =
665 672 ( compressed_spec_mat[ offsetCompressed ]
666 673 + averaged_spec_mat[ offsetASM + k ] ) / (divider * nbBinsToAverage);
667 674 }
668 675 }
669 676 }
670 677 }
671 678
672 679 void ASM_convert( volatile float *input_matrix, char *output_matrix)
673 680 {
674 unsigned int i;
675 681 unsigned int frequencyBin;
676 682 unsigned int asmComponent;
677 683 char * pt_char_input;
678 684 char * pt_char_output;
685 unsigned int offsetInput;
686 unsigned int offsetOutput;
679 687
680 688 pt_char_input = (char*) &input_matrix;
681 689 pt_char_output = (char*) &output_matrix;
682 690
683 // copy the time information
684 for (i=0; i<TIME_OFFSET_IN_BYTES; i++)
685 {
686 pt_char_output[ i ] = pt_char_output[ i ];
687 }
688
689 691 // convert all other data
690 692 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
691 693 {
692 694 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
693 695 {
694 pt_char_input = (char*) &input_matrix [ (frequencyBin*NB_VALUES_PER_SM) + asmComponent + TIME_OFFSET ];
695 pt_char_output = (char*) &output_matrix[ 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) + TIME_OFFSET_IN_BYTES ];
696 offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
697 offsetOutput = 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
698 pt_char_input = (char*) &input_matrix [ offsetInput ];
699 pt_char_output = (char*) &output_matrix[ offsetOutput ];
696 700 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
697 701 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
698 702 }
699 703 }
700 704 }
701 705
702 706 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
703 707 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
704 708 {
705 709 unsigned int i;
706 710 unsigned int length = 0;
707 711 rtems_status_code status;
708 712
709 713 for (i=0; i<2; i++)
710 714 {
711 715 // (1) BUILD THE DATA
712 716 switch(sid)
713 717 {
714 718 case SID_NORM_ASM_F0:
715 719 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2;
716 720 spw_ioctl_send->data = &spectral_matrix[
717 721 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
718 + TIME_OFFSET_IN_BYTES
719 722 ];
720 723 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
721 724 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
722 725 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
723 726 break;
724 727 case SID_NORM_ASM_F1:
725 728 break;
726 729 case SID_NORM_ASM_F2:
727 730 break;
728 731 default:
729 732 PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
730 733 break;
731 734 }
732 735 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
733 736 spw_ioctl_send->hdr = (char *) header;
734 737 spw_ioctl_send->options = 0;
735 738
736 739 // (2) BUILD THE HEADER
737 740 header->packetLength[0] = (unsigned char) (length>>8);
738 741 header->packetLength[1] = (unsigned char) (length);
739 742 header->sid = (unsigned char) sid; // SID
740 743 header->pa_lfr_pkt_cnt_asm = 2;
741 744 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
742 745
743 746 // (3) SET PACKET TIME
744 747 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
745 748 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
746 749 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
747 750 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
748 751 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
749 752 header->time[5] = (unsigned char) (time_management_regs->fine_time);
750 753 //
751 754 header->acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
752 755 header->acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
753 756 header->acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
754 757 header->acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
755 758 header->acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
756 759 header->acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
757 760
758 761 // (4) SEND PACKET
759 762 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
760 763 if (status != RTEMS_SUCCESSFUL) {
761 764 printf("in ASM_send *** ERR %d\n", (int) status);
762 765 }
763 766 }
764 767 }
765 768
766 769 //*****************
767 770 // Basic Parameters
768 771
769 772 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
770 773 unsigned int apid, unsigned char sid,
771 774 unsigned int packetLength, unsigned char blkNr )
772 775 {
773 776 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
774 777 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
775 778 header->reserved = 0x00;
776 779 header->userApplication = CCSDS_USER_APP;
777 780 header->packetID[0] = (unsigned char) (apid >> 8);
778 781 header->packetID[1] = (unsigned char) (apid);
779 782 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
780 783 header->packetSequenceControl[1] = 0x00;
781 784 header->packetLength[0] = (unsigned char) (packetLength >> 8);
782 785 header->packetLength[1] = (unsigned char) (packetLength);
783 786 // DATA FIELD HEADER
784 787 header->spare1_pusVersion_spare2 = 0x10;
785 788 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
786 789 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
787 790 header->destinationID = TM_DESTINATION_ID_GROUND;
788 791 // AUXILIARY DATA HEADER
789 792 header->sid = sid;
790 793 header->biaStatusInfo = 0x00;
791 794 header->time[0] = 0x00;
792 795 header->time[0] = 0x00;
793 796 header->time[0] = 0x00;
794 797 header->time[0] = 0x00;
795 798 header->time[0] = 0x00;
796 799 header->time[0] = 0x00;
797 800 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
798 801 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
799 802 }
800 803
801 804 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
802 805 unsigned int apid, unsigned char sid,
803 806 unsigned int packetLength , unsigned char blkNr)
804 807 {
805 808 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
806 809 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
807 810 header->reserved = 0x00;
808 811 header->userApplication = CCSDS_USER_APP;
809 812 header->packetID[0] = (unsigned char) (apid >> 8);
810 813 header->packetID[1] = (unsigned char) (apid);
811 814 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
812 815 header->packetSequenceControl[1] = 0x00;
813 816 header->packetLength[0] = (unsigned char) (packetLength >> 8);
814 817 header->packetLength[1] = (unsigned char) (packetLength);
815 818 // DATA FIELD HEADER
816 819 header->spare1_pusVersion_spare2 = 0x10;
817 820 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
818 821 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
819 822 header->destinationID = TM_DESTINATION_ID_GROUND;
820 823 // AUXILIARY DATA HEADER
821 824 header->sid = sid;
822 825 header->biaStatusInfo = 0x00;
823 826 header->time[0] = 0x00;
824 827 header->time[0] = 0x00;
825 828 header->time[0] = 0x00;
826 829 header->time[0] = 0x00;
827 830 header->time[0] = 0x00;
828 831 header->time[0] = 0x00;
829 832 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
830 833 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
831 834 }
832 835
833 836 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend )
834 837 {
835 838 rtems_status_code status;
836 839
837 840 // SEND PACKET
838 841 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
839 842 if (status != RTEMS_SUCCESSFUL)
840 843 {
841 844 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
842 845 }
843 846 }
844 847
845 848 //******************
846 849 // general functions
847 850
848 851 void reset_spectral_matrix_regs( void )
849 852 {
850 853 /** This function resets the spectral matrices module registers.
851 854 *
852 855 * The registers affected by this function are located at the following offset addresses:
853 856 *
854 857 * - 0x00 config
855 858 * - 0x04 status
856 859 * - 0x08 matrixF0_Address0
857 860 * - 0x10 matrixFO_Address1
858 861 * - 0x14 matrixF1_Address
859 862 * - 0x18 matrixF2_Address
860 863 *
861 864 */
862 865
863 866 spectral_matrix_regs->config = 0x00;
864 867 spectral_matrix_regs->status = 0x00;
865 868
866 869 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
867 870 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
868 871 spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
869 872 spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
870 873 }
871 874
872 875 void set_time( unsigned char *time, unsigned char * timeInBuffer )
873 876 {
874 877 // time[0] = timeInBuffer[2];
875 878 // time[1] = timeInBuffer[3];
876 879 // time[2] = timeInBuffer[0];
877 880 // time[3] = timeInBuffer[1];
878 881 // time[4] = timeInBuffer[6];
879 882 // time[5] = timeInBuffer[7];
880 883
881 884 time[0] = timeInBuffer[0];
882 885 time[1] = timeInBuffer[1];
883 886 time[2] = timeInBuffer[2];
884 887 time[3] = timeInBuffer[3];
885 888 time[4] = timeInBuffer[6];
886 889 time[5] = timeInBuffer[7];
887 890 }
888 891
889 892
@@ -1,610 +1,610
1 1 /** Functions related to the SpaceWire interface.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle SpaceWire transmissions:
7 7 * - configuration of the SpaceWire link
8 8 * - SpaceWire related interruption requests processing
9 9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 10 * - reception of TeleCommands by a dedicated RTEMS task
11 11 *
12 12 */
13 13
14 14 #include "fsw_spacewire.h"
15 15
16 16 rtems_name semq_name;
17 17 rtems_id semq_id;
18 18
19 19 //***********
20 20 // RTEMS TASK
21 21 rtems_task spiq_task(rtems_task_argument unused)
22 22 {
23 23 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
24 24 *
25 25 * @param unused is the starting argument of the RTEMS task
26 26 *
27 27 */
28 28
29 29 rtems_event_set event_out;
30 30 rtems_status_code status;
31 31 int linkStatus;
32 32
33 33 BOOT_PRINTF("in SPIQ *** \n")
34 34
35 35 while(true){
36 36 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
37 37 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
38 38
39 39 // [0] SUSPEND RECV AND SEND TASKS
40 40 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
41 41 if ( status != RTEMS_SUCCESSFUL ) {
42 42 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
43 43 }
44 44 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
45 45 if ( status != RTEMS_SUCCESSFUL ) {
46 46 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
47 47 }
48 48
49 49 // [1] CHECK THE LINK
50 50 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
51 51 if ( linkStatus != 5) {
52 52 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
53 53 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
54 54 }
55 55
56 56 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
57 57 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
58 58 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
59 59 {
60 60 spacewire_compute_stats_offsets();
61 61 status = spacewire_reset_link( );
62 62 }
63 63 else // [2.b] in run state, start the link
64 64 {
65 65 status = spacewire_stop_start_link( fdSPW ); // start the link
66 66 if ( status != RTEMS_SUCCESSFUL)
67 67 {
68 68 PRINTF1("in SPIQ *** ERR spacewire_start_link %d\n", status)
69 69 }
70 70 }
71 71
72 72 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
73 73 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
74 74 {
75 75 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
76 76 if ( status != RTEMS_SUCCESSFUL ) {
77 77 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
78 78 }
79 79 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
80 80 if ( status != RTEMS_SUCCESSFUL ) {
81 81 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
82 82 }
83 83 }
84 84 else // [3.b] the link is not in run state, go in STANDBY mode
85 85 {
86 86 status = stop_current_mode();
87 87 if ( status != RTEMS_SUCCESSFUL ) {
88 88 PRINTF1("in SPIQ *** ERR stop_current_mode *** code %d\n", status)
89 89 }
90 90 status = enter_mode( LFR_MODE_STANDBY, 0 );
91 91 if ( status != RTEMS_SUCCESSFUL ) {
92 92 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
93 93 }
94 94 // wake the WTDG task up to wait for the link recovery
95 95 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
96 96 status = rtems_task_suspend( RTEMS_SELF );
97 97 }
98 98 }
99 99 }
100 100
101 101 rtems_task recv_task( rtems_task_argument unused )
102 102 {
103 103 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
104 104 *
105 105 * @param unused is the starting argument of the RTEMS task
106 106 *
107 107 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
108 108 * 1. It reads the incoming data.
109 109 * 2. Launches the acceptance procedure.
110 110 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
111 111 *
112 112 */
113 113
114 114 int len;
115 115 ccsdsTelecommandPacket_t currentTC;
116 116 unsigned char computed_CRC[ 2 ];
117 117 unsigned char currentTC_LEN_RCV[ 2 ];
118 118 unsigned char destinationID;
119 119 unsigned int estimatedPacketLength;
120 120 unsigned int parserCode;
121 121 rtems_status_code status;
122 122 rtems_id queue_recv_id;
123 123 rtems_id queue_send_id;
124 124
125 125 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
126 126
127 127 status = get_message_queue_id_recv( &queue_recv_id );
128 128 if (status != RTEMS_SUCCESSFUL)
129 129 {
130 130 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
131 131 }
132 132
133 133 status = get_message_queue_id_send( &queue_send_id );
134 134 if (status != RTEMS_SUCCESSFUL)
135 135 {
136 136 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
137 137 }
138 138
139 139 BOOT_PRINTF("in RECV *** \n")
140 140
141 141 while(1)
142 142 {
143 143 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
144 144 if (len == -1){ // error during the read call
145 145 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
146 146 }
147 147 else {
148 148 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
149 149 PRINTF("in RECV *** packet lenght too short\n")
150 150 }
151 151 else {
152 152 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
153 153 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> 8);
154 154 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
155 155 // CHECK THE TC
156 156 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
157 157 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
158 158 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
159 159 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
160 160 || (parserCode == WRONG_SRC_ID) )
161 161 { // send TM_LFR_TC_EXE_CORRUPTED
162 162 PRINTF1("TC corrupted received, with code: %d\n", parserCode)
163 163 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
164 164 &&
165 165 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
166 166 )
167 167 {
168 168 if ( parserCode == WRONG_SRC_ID )
169 169 {
170 170 destinationID = SID_TC_GROUND;
171 171 }
172 172 else
173 173 {
174 174 destinationID = currentTC.sourceID;
175 175 }
176 176 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
177 177 computed_CRC, currentTC_LEN_RCV,
178 178 destinationID );
179 179 }
180 180 }
181 181 else
182 182 { // send valid TC to the action launcher
183 183 status = rtems_message_queue_send( queue_recv_id, &currentTC,
184 184 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + 3);
185 185 }
186 186 }
187 187 }
188 188 }
189 189 }
190 190
191 191 rtems_task send_task( rtems_task_argument argument)
192 192 {
193 193 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
194 194 *
195 195 * @param unused is the starting argument of the RTEMS task
196 196 *
197 197 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
198 198 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
199 199 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
200 200 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
201 201 * data it contains.
202 202 *
203 203 */
204 204
205 205 rtems_status_code status; // RTEMS status code
206 char incomingData[ACTION_MSG_PKTS_MAX_SIZE]; // incoming data buffer
206 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
207 207 spw_ioctl_pkt_send *spw_ioctl_send;
208 208 size_t size; // size of the incoming TC packet
209 209 u_int32_t count;
210 210 rtems_id queue_id;
211 211
212 212 status = get_message_queue_id_send( &queue_id );
213 213 if (status != RTEMS_SUCCESSFUL)
214 214 {
215 215 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
216 216 }
217 217
218 218 BOOT_PRINTF("in SEND *** \n")
219 219
220 220 while(1)
221 221 {
222 222 status = rtems_message_queue_receive( queue_id, incomingData, &size,
223 223 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
224 224
225 225 if (status!=RTEMS_SUCCESSFUL)
226 226 {
227 227 PRINTF1("in SEND *** (1) ERR = %d\n", status)
228 228 }
229 229 else
230 230 {
231 231 if ( incomingData[0] == CCSDS_DESTINATION_ID) // the incoming message is a ccsds packet
232 232 {
233 233 status = write( fdSPW, incomingData, size );
234 234 if (status == -1){
235 235 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
236 236 }
237 237 }
238 238 else // the incoming message is a spw_ioctl_pkt_send structure
239 239 {
240 240 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
241 241 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
242 242 if (status == -1){
243 243 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
244 244 }
245 245 }
246 246 }
247 247
248 248 status = rtems_message_queue_get_number_pending( queue_id, &count );
249 249 if (status != RTEMS_SUCCESSFUL)
250 250 {
251 251 PRINTF1("in SEND *** (3) ERR = %d\n", status)
252 252 }
253 253 else
254 254 {
255 255 if (count > maxCount)
256 256 {
257 257 maxCount = count;
258 258 }
259 259 }
260 260 }
261 261 }
262 262
263 263 rtems_task wtdg_task( rtems_task_argument argument )
264 264 {
265 265 rtems_event_set event_out;
266 266 rtems_status_code status;
267 267 int linkStatus;
268 268
269 269 BOOT_PRINTF("in WTDG ***\n")
270 270
271 271 while(1)
272 272 {
273 273 // wait for an RTEMS_EVENT
274 274 rtems_event_receive( RTEMS_EVENT_0,
275 275 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
276 276 PRINTF("in WTDG *** wait for the link\n")
277 277 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
278 278 while( linkStatus != 5) // wait for the link
279 279 {
280 280 rtems_task_wake_after( 10 );
281 281 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
282 282 }
283 283
284 284 status = spacewire_stop_start_link( fdSPW );
285 285
286 286 if (status != RTEMS_SUCCESSFUL)
287 287 {
288 288 PRINTF1("in WTDG *** ERR link not started %d\n", status)
289 289 }
290 290 else
291 291 {
292 292 PRINTF("in WTDG *** OK link started\n")
293 293 }
294 294
295 295 // restart the SPIQ task
296 296 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
297 297 if ( status != RTEMS_SUCCESSFUL ) {
298 298 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
299 299 }
300 300
301 301 // restart RECV and SEND
302 302 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
303 303 if ( status != RTEMS_SUCCESSFUL ) {
304 304 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
305 305 }
306 306 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
307 307 if ( status != RTEMS_SUCCESSFUL ) {
308 308 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
309 309 }
310 310 }
311 311 }
312 312
313 313 //****************
314 314 // OTHER FUNCTIONS
315 315 int spacewire_open_link( void )
316 316 {
317 317 /** This function opens the SpaceWire link.
318 318 *
319 319 * @return a valid file descriptor in case of success, -1 in case of a failure
320 320 *
321 321 */
322 322 rtems_status_code status;
323 323
324 324 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
325 325 if ( fdSPW < 0 ) {
326 326 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
327 327 }
328 328 else
329 329 {
330 330 status = RTEMS_SUCCESSFUL;
331 331 }
332 332
333 333 return status;
334 334 }
335 335
336 336 int spacewire_start_link( int fd )
337 337 {
338 338 rtems_status_code status;
339 339
340 340 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
341 341 // -1 default hardcoded driver timeout
342 342
343 343 return status;
344 344 }
345 345
346 346 int spacewire_stop_start_link( int fd )
347 347 {
348 348 rtems_status_code status;
349 349
350 350 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
351 351 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
352 352 // -1 default hardcoded driver timeout
353 353
354 354 return status;
355 355 }
356 356
357 357 int spacewire_configure_link( int fd )
358 358 {
359 359 /** This function configures the SpaceWire link.
360 360 *
361 361 * @return GR-RTEMS-DRIVER directive status codes:
362 362 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
363 363 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
364 364 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
365 365 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
366 366 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
367 367 * - 5 EIO - Error when writing to grswp hardware registers.
368 368 * - 2 ENOENT - No such file or directory
369 369 */
370 370
371 371 rtems_status_code status;
372 372
373 373 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
374 374 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
375 375
376 376 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
377 377 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
378 378 //
379 379 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
380 380 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
381 381 //
382 382 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
383 383 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
384 384 //
385 385 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
386 386 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
387 387 //
388 388 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 0); // transmission blocks
389 389 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
390 390 //
391 391 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
392 392 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
393 393 //
394 394 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
395 395 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
396 396
397 397 return status;
398 398 }
399 399
400 400 int spacewire_reset_link( void )
401 401 {
402 402 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
403 403 *
404 404 * @return RTEMS directive status code:
405 405 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
406 406 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
407 407 *
408 408 */
409 409
410 410 rtems_status_code status_spw;
411 411 int i;
412 412
413 413 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
414 414 {
415 415 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
416 416
417 417 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
418 418
419 419 status_spw = spacewire_stop_start_link( fdSPW );
420 420 if ( status_spw != RTEMS_SUCCESSFUL )
421 421 {
422 422 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
423 423 }
424 424
425 425 if ( status_spw == RTEMS_SUCCESSFUL)
426 426 {
427 427 break;
428 428 }
429 429 }
430 430
431 431 return status_spw;
432 432 }
433 433
434 434 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
435 435 {
436 436 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
437 437 *
438 438 * @param val is the value, 0 or 1, used to set the value of the NP bit.
439 439 * @param regAddr is the address of the GRSPW control register.
440 440 *
441 441 * NP is the bit 20 of the GRSPW control register.
442 442 *
443 443 */
444 444
445 445 unsigned int *spwptr = (unsigned int*) regAddr;
446 446
447 447 if (val == 1) {
448 448 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
449 449 }
450 450 if (val== 0) {
451 451 *spwptr = *spwptr & 0xffdfffff;
452 452 }
453 453 }
454 454
455 455 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
456 456 {
457 457 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
458 458 *
459 459 * @param val is the value, 0 or 1, used to set the value of the RE bit.
460 460 * @param regAddr is the address of the GRSPW control register.
461 461 *
462 462 * RE is the bit 16 of the GRSPW control register.
463 463 *
464 464 */
465 465
466 466 unsigned int *spwptr = (unsigned int*) regAddr;
467 467
468 468 if (val == 1)
469 469 {
470 470 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
471 471 }
472 472 if (val== 0)
473 473 {
474 474 *spwptr = *spwptr & 0xfffdffff;
475 475 }
476 476 }
477 477
478 478 void spacewire_compute_stats_offsets( void )
479 479 {
480 480 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
481 481 *
482 482 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
483 483 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
484 484 * during the open systel call).
485 485 *
486 486 */
487 487
488 488 spw_stats spacewire_stats_grspw;
489 489 rtems_status_code status;
490 490
491 491 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
492 492
493 493 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
494 494 + spacewire_stats.packets_received;
495 495 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
496 496 + spacewire_stats.packets_sent;
497 497 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
498 498 + spacewire_stats.parity_err;
499 499 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
500 500 + spacewire_stats.disconnect_err;
501 501 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
502 502 + spacewire_stats.escape_err;
503 503 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
504 504 + spacewire_stats.credit_err;
505 505 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
506 506 + spacewire_stats.write_sync_err;
507 507 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
508 508 + spacewire_stats.rx_rmap_header_crc_err;
509 509 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
510 510 + spacewire_stats.rx_rmap_data_crc_err;
511 511 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
512 512 + spacewire_stats.early_ep;
513 513 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
514 514 + spacewire_stats.invalid_address;
515 515 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
516 516 + spacewire_stats.rx_eep_err;
517 517 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
518 518 + spacewire_stats.rx_truncated;
519 519 }
520 520
521 521 void spacewire_update_statistics( void )
522 522 {
523 523 rtems_status_code status;
524 524 spw_stats spacewire_stats_grspw;
525 525
526 526 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
527 527
528 528 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
529 529 + spacewire_stats_grspw.packets_received;
530 530 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
531 531 + spacewire_stats_grspw.packets_sent;
532 532 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
533 533 + spacewire_stats_grspw.parity_err;
534 534 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
535 535 + spacewire_stats_grspw.disconnect_err;
536 536 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
537 537 + spacewire_stats_grspw.escape_err;
538 538 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
539 539 + spacewire_stats_grspw.credit_err;
540 540 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
541 541 + spacewire_stats_grspw.write_sync_err;
542 542 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
543 543 + spacewire_stats_grspw.rx_rmap_header_crc_err;
544 544 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
545 545 + spacewire_stats_grspw.rx_rmap_data_crc_err;
546 546 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
547 547 + spacewire_stats_grspw.early_ep;
548 548 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
549 549 + spacewire_stats_grspw.invalid_address;
550 550 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
551 551 + spacewire_stats_grspw.rx_eep_err;
552 552 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
553 553 + spacewire_stats_grspw.rx_truncated;
554 554 //spacewire_stats.tx_link_err;
555 555
556 556 //****************************
557 557 // DPU_SPACEWIRE_IF_STATISTICS
558 558 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
559 559 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
560 560 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
561 561 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
562 562 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
563 563 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
564 564
565 565 //******************************************
566 566 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
567 567 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
568 568 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
569 569 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
570 570 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
571 571 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
572 572
573 573 //*********************************************
574 574 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
575 575 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
576 576 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
577 577 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
578 578 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
579 579 }
580 580
581 581 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
582 582 {
583 583 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_9 );
584 584 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
585 585
586 586 grgpio_regs->io_port_direction_register =
587 587 grgpio_regs->io_port_direction_register | 0x08; // [0001 1000], 0 = output disabled, 1 = output enabled
588 588
589 589 if ( (grgpio_regs->io_port_output_register & 0x08) == 0x08 )
590 590 {
591 591 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xf7;
592 592 }
593 593 else
594 594 {
595 595 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register | 0x08;
596 596 }
597 597 }
598 598
599 599 rtems_timer_service_routine user_routine( rtems_id timer_id, void *user_data )
600 600 {
601 601 int linkStatus;
602 602 rtems_status_code status;
603 603
604 604 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
605 605
606 606 if ( linkStatus == 5) {
607 607 PRINTF("in spacewire_reset_link *** link is running\n")
608 608 status = RTEMS_SUCCESSFUL;
609 609 }
610 610 }
@@ -1,886 +1,888
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14
15 15 //***********
16 16 // RTEMS TASK
17 17
18 18 rtems_task actn_task( rtems_task_argument unused )
19 19 {
20 20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 21 *
22 22 * @param unused is the starting argument of the RTEMS task
23 23 *
24 24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 25 * on the incoming TeleCommand.
26 26 *
27 27 */
28 28
29 29 int result;
30 30 rtems_status_code status; // RTEMS status code
31 31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 32 size_t size; // size of the incoming TC packet
33 33 unsigned char subtype; // subtype of the current TC packet
34 34 unsigned char time[6];
35 35 rtems_id queue_rcv_id;
36 36 rtems_id queue_snd_id;
37 37
38 38 status = get_message_queue_id_recv( &queue_rcv_id );
39 39 if (status != RTEMS_SUCCESSFUL)
40 40 {
41 41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 42 }
43 43
44 44 status = get_message_queue_id_send( &queue_snd_id );
45 45 if (status != RTEMS_SUCCESSFUL)
46 46 {
47 47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 48 }
49 49
50 50 result = LFR_SUCCESSFUL;
51 51 subtype = 0; // subtype of the current TC packet
52 52
53 53 BOOT_PRINTF("in ACTN *** \n")
54 54
55 55 while(1)
56 56 {
57 57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 59 getTime( time ); // set time to the current time
60 60 if (status!=RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 63 }
64 64 else
65 65 {
66 66 subtype = TC.serviceSubType;
67 67 switch(subtype)
68 68 {
69 69 case TC_SUBTYPE_RESET:
70 70 result = action_reset( &TC, queue_snd_id, time );
71 71 close_action( &TC, result, queue_snd_id );
72 72 break;
73 73 //
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 //
79 79 case TC_SUBTYPE_LOAD_NORM:
80 80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 81 close_action( &TC, result, queue_snd_id );
82 82 break;
83 83 //
84 84 case TC_SUBTYPE_LOAD_BURST:
85 85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 86 close_action( &TC, result, queue_snd_id );
87 87 break;
88 88 //
89 89 case TC_SUBTYPE_LOAD_SBM1:
90 90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 91 close_action( &TC, result, queue_snd_id );
92 92 break;
93 93 //
94 94 case TC_SUBTYPE_LOAD_SBM2:
95 95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 //
99 99 case TC_SUBTYPE_DUMP:
100 100 result = action_dump_par( queue_snd_id );
101 101 close_action( &TC, result, queue_snd_id );
102 102 break;
103 103 //
104 104 case TC_SUBTYPE_ENTER:
105 105 result = action_enter_mode( &TC, queue_snd_id );
106 106 close_action( &TC, result, queue_snd_id );
107 107 break;
108 108 //
109 109 case TC_SUBTYPE_UPDT_INFO:
110 110 result = action_update_info( &TC, queue_snd_id );
111 111 close_action( &TC, result, queue_snd_id );
112 112 break;
113 113 //
114 114 case TC_SUBTYPE_EN_CAL:
115 115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 //
119 119 case TC_SUBTYPE_DIS_CAL:
120 120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 121 close_action( &TC, result, queue_snd_id );
122 122 break;
123 123 //
124 124 case TC_SUBTYPE_UPDT_TIME:
125 125 result = action_update_time( &TC );
126 126 close_action( &TC, result, queue_snd_id );
127 127 break;
128 128 //
129 129 default:
130 130 break;
131 131 }
132 132 }
133 133 }
134 134 }
135 135
136 136 //***********
137 137 // TC ACTIONS
138 138
139 139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 140 {
141 141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 142 *
143 143 * @param TC points to the TeleCommand packet that is being processed
144 144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 145 *
146 146 */
147 147
148 148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 149 return LFR_DEFAULT;
150 150 }
151 151
152 152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
153 153 {
154 154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 158 *
159 159 */
160 160
161 161 rtems_status_code status;
162 162 unsigned char requestedMode;
163 163 unsigned int *transitionCoarseTime_ptr;
164 164 unsigned int transitionCoarseTime;
165 165 unsigned char * bytePosPtr;
166 166
167 167 bytePosPtr = (unsigned char *) &TC->packetID;
168 168
169 169 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
170 170 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
171 171 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
172 172
173 173 status = check_mode_value( requestedMode );
174 174
175 175 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
176 176 {
177 177 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
178 178 }
179 179 else // the mode value is consistent, check the transition
180 180 {
181 181 status = check_mode_transition(requestedMode);
182 182 if (status != LFR_SUCCESSFUL)
183 183 {
184 184 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
185 185 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
186 186 }
187 187 }
188 188
189 189 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
190 190 {
191 191 status = check_transition_date( transitionCoarseTime );
192 192 if (status != LFR_SUCCESSFUL)
193 193 {
194 194 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
195 195 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
196 196 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
197 197 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
198 198 }
199 199 }
200 200
201 201 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
202 202 {
203 203 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
204 204 status = enter_mode( requestedMode, transitionCoarseTime );
205 205 }
206 206
207 207 return status;
208 208 }
209 209
210 210 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
211 211 {
212 212 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
213 213 *
214 214 * @param TC points to the TeleCommand packet that is being processed
215 215 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
216 216 *
217 217 * @return LFR directive status code:
218 218 * - LFR_DEFAULT
219 219 * - LFR_SUCCESSFUL
220 220 *
221 221 */
222 222
223 223 unsigned int val;
224 224 int result;
225 225 unsigned int status;
226 226 unsigned char mode;
227 227 unsigned char * bytePosPtr;
228 228
229 229 bytePosPtr = (unsigned char *) &TC->packetID;
230 230
231 231 // check LFR mode
232 232 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
233 233 status = check_update_info_hk_lfr_mode( mode );
234 234 if (status == LFR_SUCCESSFUL) // check TDS mode
235 235 {
236 236 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
237 237 status = check_update_info_hk_tds_mode( mode );
238 238 }
239 239 if (status == LFR_SUCCESSFUL) // check THR mode
240 240 {
241 241 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
242 242 status = check_update_info_hk_thr_mode( mode );
243 243 }
244 244 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
245 245 {
246 246 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
247 247 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
248 248 val++;
249 249 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
250 250 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
251 251 }
252 252
253 253 result = status;
254 254
255 255 return result;
256 256 }
257 257
258 258 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
259 259 {
260 260 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
261 261 *
262 262 * @param TC points to the TeleCommand packet that is being processed
263 263 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
264 264 *
265 265 */
266 266
267 267 int result;
268 268 unsigned char lfrMode;
269 269
270 270 result = LFR_DEFAULT;
271 271 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
272 272
273 273 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
274 274 result = LFR_DEFAULT;
275 275
276 276 return result;
277 277 }
278 278
279 279 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
280 280 {
281 281 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
282 282 *
283 283 * @param TC points to the TeleCommand packet that is being processed
284 284 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
285 285 *
286 286 */
287 287
288 288 int result;
289 289 unsigned char lfrMode;
290 290
291 291 result = LFR_DEFAULT;
292 292 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
293 293
294 294 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
295 295 result = LFR_DEFAULT;
296 296
297 297 return result;
298 298 }
299 299
300 300 int action_update_time(ccsdsTelecommandPacket_t *TC)
301 301 {
302 302 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
303 303 *
304 304 * @param TC points to the TeleCommand packet that is being processed
305 305 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
306 306 *
307 307 * @return LFR_SUCCESSFUL
308 308 *
309 309 */
310 310
311 311 unsigned int val;
312 312
313 313 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
314 314 + (TC->dataAndCRC[1] << 16)
315 315 + (TC->dataAndCRC[2] << 8)
316 316 + TC->dataAndCRC[3];
317 317
318 318 PRINTF1("time received: %x\n", time_management_regs->coarse_time_load)
319 319
320 320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
321 321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
322 322 val++;
323 323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
324 324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
325 325 // time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
326 326
327 327 return LFR_SUCCESSFUL;
328 328 }
329 329
330 330 //*******************
331 331 // ENTERING THE MODES
332 332 int check_mode_value( unsigned char requestedMode )
333 333 {
334 334 int status;
335 335
336 336 if ( (requestedMode != LFR_MODE_STANDBY)
337 337 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
338 338 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
339 339 {
340 340 status = LFR_DEFAULT;
341 341 }
342 342 else
343 343 {
344 344 status = LFR_SUCCESSFUL;
345 345 }
346 346
347 347 return status;
348 348 }
349 349
350 350 int check_mode_transition( unsigned char requestedMode )
351 351 {
352 352 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
353 353 *
354 354 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
355 355 *
356 356 * @return LFR directive status codes:
357 357 * - LFR_SUCCESSFUL - the transition is authorized
358 358 * - LFR_DEFAULT - the transition is not authorized
359 359 *
360 360 */
361 361
362 362 int status;
363 363
364 364 switch (requestedMode)
365 365 {
366 366 case LFR_MODE_STANDBY:
367 367 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
368 368 status = LFR_DEFAULT;
369 369 }
370 370 else
371 371 {
372 372 status = LFR_SUCCESSFUL;
373 373 }
374 374 break;
375 375 case LFR_MODE_NORMAL:
376 376 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
377 377 status = LFR_DEFAULT;
378 378 }
379 379 else {
380 380 status = LFR_SUCCESSFUL;
381 381 }
382 382 break;
383 383 case LFR_MODE_BURST:
384 384 if ( lfrCurrentMode == LFR_MODE_BURST ) {
385 385 status = LFR_DEFAULT;
386 386 }
387 387 else {
388 388 status = LFR_SUCCESSFUL;
389 389 }
390 390 break;
391 391 case LFR_MODE_SBM1:
392 392 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
393 393 status = LFR_DEFAULT;
394 394 }
395 395 else {
396 396 status = LFR_SUCCESSFUL;
397 397 }
398 398 break;
399 399 case LFR_MODE_SBM2:
400 400 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
401 401 status = LFR_DEFAULT;
402 402 }
403 403 else {
404 404 status = LFR_SUCCESSFUL;
405 405 }
406 406 break;
407 407 default:
408 408 status = LFR_DEFAULT;
409 409 break;
410 410 }
411 411
412 412 return status;
413 413 }
414 414
415 415 int check_transition_date( unsigned int transitionCoarseTime )
416 416 {
417 417 int status;
418 418 unsigned int localCoarseTime;
419 419 unsigned int deltaCoarseTime;
420 420
421 421 status = LFR_SUCCESSFUL;
422 422
423 423 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
424 424 {
425 425 status = LFR_SUCCESSFUL;
426 426 }
427 427 else
428 428 {
429 429 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
430 430
431 431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
432 432 {
433 433 status = LFR_DEFAULT;
434 434 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
435 435 }
436 436
437 437 if (status == LFR_SUCCESSFUL)
438 438 {
439 439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
440 440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
441 441 {
442 442 status = LFR_DEFAULT;
443 443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
444 444 }
445 445 }
446 446 }
447 447
448 448 return status;
449 449 }
450 450
451 451 int stop_current_mode( void )
452 452 {
453 453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
454 454 *
455 455 * @return RTEMS directive status codes:
456 456 * - RTEMS_SUCCESSFUL - task restarted successfully
457 457 * - RTEMS_INVALID_ID - task id invalid
458 458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
459 459 *
460 460 */
461 461
462 462 rtems_status_code status;
463 463
464 464 status = RTEMS_SUCCESSFUL;
465 465
466 466 // (1) mask interruptions
467 467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
468 468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
469 469
470 470 // (2) clear interruptions
471 471 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
472 472 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
473 473
474 474 // (3) reset waveform picker registers
475 475 reset_wfp_burst_enable(); // reset burst and enable bits
476 476 reset_wfp_status(); // reset all the status bits
477 477
478 478 // (4) reset spectral matrices registers
479 479 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
480 480 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
481 481 reset_extractSWF(); // reset the extractSWF flag to false
482 482
483 483 // <Spectral Matrices simulator>
484 484 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
485 485 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
486 486 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
487 487 // </Spectral Matrices simulator>
488 488
489 489 // suspend several tasks
490 490 if (lfrCurrentMode != LFR_MODE_STANDBY) {
491 491 status = suspend_science_tasks();
492 492 }
493 493
494 494 if (status != RTEMS_SUCCESSFUL)
495 495 {
496 496 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
497 497 }
498 498
499 499 return status;
500 500 }
501 501
502 502 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
503 503 {
504 504 /** This function is launched after a mode transition validation.
505 505 *
506 506 * @param mode is the mode in which LFR will be put.
507 507 *
508 508 * @return RTEMS directive status codes:
509 509 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
510 510 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
511 511 *
512 512 */
513 513
514 514 rtems_status_code status;
515 515
516 516 //**********************
517 517 // STOP THE CURRENT MODE
518 518 status = stop_current_mode();
519 519 if (status != RTEMS_SUCCESSFUL)
520 520 {
521 521 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
522 522 }
523 523
524 524 //*************************
525 525 // ENTER THE REQUESTED MODE
526 526 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
527 527 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
528 528 {
529 529 #ifdef PRINT_TASK_STATISTICS
530 530 rtems_cpu_usage_reset();
531 531 maxCount = 0;
532 532 #endif
533 533 status = restart_science_tasks( mode );
534 534 launch_waveform_picker( mode, transitionCoarseTime );
535 launch_spectral_matrix_simu( mode );
535 // launch_spectral_matrix( );
536 // launch_spectral_matrix_simu( );
536 537 }
537 538 else if ( mode == LFR_MODE_STANDBY )
538 539 {
539 540 #ifdef PRINT_TASK_STATISTICS
540 541 rtems_cpu_usage_report();
541 542 #endif
542 543
543 544 #ifdef PRINT_STACK_REPORT
545 PRINTF("stack report selected\n")
544 546 rtems_stack_checker_report_usage();
545 547 #endif
546 548 PRINTF1("maxCount = %d\n", maxCount)
547 549 }
548 550 else
549 551 {
550 552 status = RTEMS_UNSATISFIED;
551 553 }
552 554
553 555 if (status != RTEMS_SUCCESSFUL)
554 556 {
555 557 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
556 558 status = RTEMS_UNSATISFIED;
557 559 }
558 560
559 561 return status;
560 562 }
561 563
562 564 int restart_science_tasks(unsigned char lfrRequestedMode )
563 565 {
564 566 /** This function is used to restart all science tasks.
565 567 *
566 568 * @return RTEMS directive status codes:
567 569 * - RTEMS_SUCCESSFUL - task restarted successfully
568 570 * - RTEMS_INVALID_ID - task id invalid
569 571 * - RTEMS_INCORRECT_STATE - task never started
570 572 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
571 573 *
572 574 * Science tasks are AVF0, BPF0, WFRM, CWF3, CW2, CWF1
573 575 *
574 576 */
575 577
576 578 rtems_status_code status[7];
577 579 rtems_status_code ret;
578 580
579 581 ret = RTEMS_SUCCESSFUL;
580 582
581 583 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
582 584 if (status[0] != RTEMS_SUCCESSFUL)
583 585 {
584 586 PRINTF1("in restart_science_task *** 0 ERR %d\n", status[0])
585 587 }
586 588
587 589 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
588 590 if (status[2] != RTEMS_SUCCESSFUL)
589 591 {
590 592 PRINTF1("in restart_science_task *** 2 ERR %d\n", status[2])
591 593 }
592 594
593 595 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
594 596 if (status[3] != RTEMS_SUCCESSFUL)
595 597 {
596 598 PRINTF1("in restart_science_task *** 3 ERR %d\n", status[3])
597 599 }
598 600
599 601 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
600 602 if (status[4] != RTEMS_SUCCESSFUL)
601 603 {
602 604 PRINTF1("in restart_science_task *** 4 ERR %d\n", status[4])
603 605 }
604 606
605 607 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
606 608 if (status[5] != RTEMS_SUCCESSFUL)
607 609 {
608 610 PRINTF1("in restart_science_task *** 5 ERR %d\n", status[5])
609 611 }
610 612
611 613 status[6] = rtems_task_restart( Task_id[TASKID_MATR], lfrRequestedMode );
612 614 if (status[6] != RTEMS_SUCCESSFUL)
613 615 {
614 616 PRINTF1("in restart_science_task *** 6 ERR %d\n", status[6])
615 617 }
616 618
617 619 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[2] != RTEMS_SUCCESSFUL) ||
618 620 (status[3] != RTEMS_SUCCESSFUL) || (status[4] != RTEMS_SUCCESSFUL) ||
619 621 (status[5] != RTEMS_SUCCESSFUL) || (status[6] != RTEMS_SUCCESSFUL) )
620 622 {
621 623 ret = RTEMS_UNSATISFIED;
622 624 }
623 625
624 626 return ret;
625 627 }
626 628
627 629 int suspend_science_tasks()
628 630 {
629 631 /** This function suspends the science tasks.
630 632 *
631 633 * @return RTEMS directive status codes:
632 634 * - RTEMS_SUCCESSFUL - task restarted successfully
633 635 * - RTEMS_INVALID_ID - task id invalid
634 636 * - RTEMS_ALREADY_SUSPENDED - task already suspended
635 637 *
636 638 */
637 639
638 640 rtems_status_code status;
639 641
640 642 status = rtems_task_suspend( Task_id[TASKID_AVF0] );
641 643 if (status != RTEMS_SUCCESSFUL)
642 644 {
643 645 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
644 646 }
645 647
646 648 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
647 649 {
648 650 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
649 651 if (status != RTEMS_SUCCESSFUL)
650 652 {
651 653 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
652 654 }
653 655 }
654 656
655 657 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
656 658 {
657 659 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
658 660 if (status != RTEMS_SUCCESSFUL)
659 661 {
660 662 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
661 663 }
662 664 }
663 665
664 666 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
665 667 {
666 668 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
667 669 if (status != RTEMS_SUCCESSFUL)
668 670 {
669 671 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
670 672 }
671 673 }
672 674
673 675 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
674 676 {
675 677 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
676 678 if (status != RTEMS_SUCCESSFUL)
677 679 {
678 680 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
679 681 }
680 682 }
681 683
682 684 return status;
683 685 }
684 686
685 687 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
686 688 {
687 689 reset_current_ring_nodes();
688 690 reset_waveform_picker_regs();
689 691 set_wfp_burst_enable_register( mode );
690 692
691 693 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
692 694 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
693 695
694 696 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
695 697 if (transitionCoarseTime == 0)
696 698 {
697 699 waveform_picker_regs->start_date = time_management_regs->coarse_time;
698 700 }
699 701 else
700 702 {
701 703 waveform_picker_regs->start_date = transitionCoarseTime;
702 704 }
703 705 }
704 706
705 void launch_spectral_matrix( unsigned char mode )
707 void launch_spectral_matrix( void )
706 708 {
707 709 SM_reset_current_ring_nodes();
708 710 ASM_reset_current_ring_node();
709 711 reset_spectral_matrix_regs();
710 712
711 713 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
712 714 grgpio_regs->io_port_direction_register =
713 grgpio_regs->io_port_direction_register | 0x01; // [0001 1000], 0 = output disabled, 1 = output enabled
714 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register | 0x00; // set the bit 0 to 1
715 grgpio_regs->io_port_direction_register | 0x01; // [0000 0001], 0 = output disabled, 1 = output enabled
716 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfffffffe; // set the bit 0 to 0
715 717 set_irq_on_new_ready_matrix( 1 );
716 718 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
717 719 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
718 720 set_run_matrix_spectral( 1 );
719 721
720 722 }
721 723
724 void launch_spectral_matrix_simu( void )
725 {
726 SM_reset_current_ring_nodes();
727 ASM_reset_current_ring_node();
728 reset_spectral_matrix_regs();
729
730 // Spectral Matrices simulator
731 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
732 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
733 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
734 set_local_nb_interrupt_f0_MAX();
735 }
736
722 737 void set_irq_on_new_ready_matrix( unsigned char value )
723 738 {
724 739 if (value == 1)
725 740 {
726 741 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
727 742 }
728 743 else
729 744 {
730 745 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
731 746 }
732 747 }
733 748
734 749 void set_run_matrix_spectral( unsigned char value )
735 750 {
736 751 if (value == 1)
737 752 {
738 753 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // [0100] set run_matrix spectral to 1
739 754 }
740 755 else
741 756 {
742 757 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // [1011] set run_matrix spectral to 0
743 758 }
744 759 }
745 760
746 void launch_spectral_matrix_simu( unsigned char mode )
747 {
748 SM_reset_current_ring_nodes();
749 ASM_reset_current_ring_node();
750 reset_spectral_matrix_regs();
751
752 // Spectral Matrices simulator
753 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
754 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
755 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
756 set_local_nb_interrupt_f0_MAX();
757 }
758
759 761 //****************
760 762 // CLOSING ACTIONS
761 763 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
762 764 {
763 765 /** This function is used to update the HK packets statistics after a successful TC execution.
764 766 *
765 767 * @param TC points to the TC being processed
766 768 * @param time is the time used to date the TC execution
767 769 *
768 770 */
769 771
770 772 unsigned int val;
771 773
772 774 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
773 775 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
774 776 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
775 777 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
776 778 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
777 779 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
778 780 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
779 781 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
780 782 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
781 783 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
782 784 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
783 785 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
784 786
785 787 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
786 788 val++;
787 789 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
788 790 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
789 791 }
790 792
791 793 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
792 794 {
793 795 /** This function is used to update the HK packets statistics after a TC rejection.
794 796 *
795 797 * @param TC points to the TC being processed
796 798 * @param time is the time used to date the TC rejection
797 799 *
798 800 */
799 801
800 802 unsigned int val;
801 803
802 804 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
803 805 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
804 806 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
805 807 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
806 808 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
807 809 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
808 810 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
809 811 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
810 812 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
811 813 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
812 814 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
813 815 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
814 816
815 817 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
816 818 val++;
817 819 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
818 820 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
819 821 }
820 822
821 823 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
822 824 {
823 825 /** This function is the last step of the TC execution workflow.
824 826 *
825 827 * @param TC points to the TC being processed
826 828 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
827 829 * @param queue_id is the id of the RTEMS message queue used to send TM packets
828 830 * @param time is the time used to date the TC execution
829 831 *
830 832 */
831 833
832 834 unsigned char requestedMode;
833 835
834 836 if (result == LFR_SUCCESSFUL)
835 837 {
836 838 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
837 839 &
838 840 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
839 841 )
840 842 {
841 843 send_tm_lfr_tc_exe_success( TC, queue_id );
842 844 }
843 845 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
844 846 {
845 847 //**********************************
846 848 // UPDATE THE LFRMODE LOCAL VARIABLE
847 849 requestedMode = TC->dataAndCRC[1];
848 850 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
849 851 updateLFRCurrentMode();
850 852 }
851 853 }
852 854 else if (result == LFR_EXE_ERROR)
853 855 {
854 856 send_tm_lfr_tc_exe_error( TC, queue_id );
855 857 }
856 858 }
857 859
858 860 //***************************
859 861 // Interrupt Service Routines
860 862 rtems_isr commutation_isr1( rtems_vector_number vector )
861 863 {
862 864 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
863 865 printf("In commutation_isr1 *** Error sending event to DUMB\n");
864 866 }
865 867 }
866 868
867 869 rtems_isr commutation_isr2( rtems_vector_number vector )
868 870 {
869 871 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
870 872 printf("In commutation_isr2 *** Error sending event to DUMB\n");
871 873 }
872 874 }
873 875
874 876 //****************
875 877 // OTHER FUNCTIONS
876 878 void updateLFRCurrentMode()
877 879 {
878 880 /** This function updates the value of the global variable lfrCurrentMode.
879 881 *
880 882 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
881 883 *
882 884 */
883 885 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
884 886 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
885 887 }
886 888
@@ -1,759 +1,776
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
18 18 {
19 19 /** This function updates the LFR registers with the incoming common parameters.
20 20 *
21 21 * @param TC points to the TeleCommand packet that is being processed
22 22 *
23 23 *
24 24 */
25 25
26 26 parameter_dump_packet.unused0 = TC->dataAndCRC[0];
27 27 parameter_dump_packet.bw_sp0_sp1_r0_r1 = TC->dataAndCRC[1];
28 28 set_wfp_data_shaping( );
29 29 return LFR_SUCCESSFUL;
30 30 }
31 31
32 32 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
33 33 {
34 34 /** This function updates the LFR registers with the incoming normal parameters.
35 35 *
36 36 * @param TC points to the TeleCommand packet that is being processed
37 37 * @param queue_id is the id of the queue which handles TM related to this execution step
38 38 *
39 39 */
40 40
41 41 int result;
42 42 int flag;
43 43 rtems_status_code status;
44 44 unsigned char sy_lfr_n_bp_p0;
45 45 unsigned char sy_lfr_n_bp_p1;
46 unsigned int sy_lfr_n_asm_p;
46 47 float aux;
47 48
48 49 flag = LFR_SUCCESSFUL;
49 50
50 51 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
51 52 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
52 53 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
53 54 flag = LFR_DEFAULT;
54 55 }
55 56
56 57 //***************
57 58 // sy_lfr_n_swf_l
58 59 if (flag == LFR_SUCCESSFUL)
59 60 {
60 61 result = set_sy_lfr_n_swf_l( TC, queue_id, time );
61 62 if (result != LFR_SUCCESSFUL)
62 63 {
63 64 flag = LFR_DEFAULT;
64 65 }
65 66 }
66 67
67 68 //***************
68 69 // sy_lfr_n_swf_p
69 70 if (flag == LFR_SUCCESSFUL)
70 71 {
71 72 result = set_sy_lfr_n_swf_p( TC, queue_id, time );
72 73 if (result != LFR_SUCCESSFUL)
73 74 {
74 75 flag = LFR_DEFAULT;
75 76 }
76 77 }
77 78
78 //***************
79 // sy_lfr_n_asm_p
80 if (flag == LFR_SUCCESSFUL)
81 {
82 result = set_sy_lfr_n_asm_p( TC, queue_id );
83 if (result != LFR_SUCCESSFUL)
84 {
85 flag = LFR_DEFAULT;
86 }
87 }
88
89 79 //****************************************************************
90 80 // check the consistency between sy_lfr_n_bp_p0 and sy_lfr_n_bp_p1
91 81 if (flag == LFR_SUCCESSFUL)
92 82 {
93 83 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
94 84 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
95 85 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
96 86 if (aux != 0)
97 87 {
98 88 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
99 89 flag = LFR_DEFAULT;
100 90 }
101 91 }
102 92
103 93 //***************
104 94 // sy_lfr_n_bp_p0
105 95 if (flag == LFR_SUCCESSFUL)
106 96 {
107 97 result = set_sy_lfr_n_bp_p0( TC, queue_id );
108 98 if (result != LFR_SUCCESSFUL)
109 99 {
110 100 flag = LFR_DEFAULT;
111 101 }
112 102 }
113 103
114 104 //***************
115 105 // sy_lfr_n_bp_p1
116 106 if (flag == LFR_SUCCESSFUL)
117 107 {
118 108 result = set_sy_lfr_n_bp_p1( TC, queue_id );
119 109 if (result != LFR_SUCCESSFUL)
120 110 {
121 111 flag = LFR_DEFAULT;
122 112 }
123 113 }
124 114
115 //****************************************************************
116 // check the consistency between sy_lfr_n_asm_p and sy_lfr_n_bp_p0
117 if (flag == LFR_SUCCESSFUL)
118 {
119 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
120 sy_lfr_n_asm_p =
121 TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ] * 256
122 + TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P + 1 ];
123 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
124 if (aux != 0)
125 {
126 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
127 flag = LFR_DEFAULT;
128 }
129 }
130
131 //***************
132 // sy_lfr_n_asm_p
133 if (flag == LFR_SUCCESSFUL)
134 {
135 result = set_sy_lfr_n_asm_p( TC, queue_id );
136 if (result != LFR_SUCCESSFUL)
137 {
138 flag = LFR_DEFAULT;
139 }
140 }
141
125 142 //*********************
126 143 // sy_lfr_n_cwf_long_f3
127 144 if (flag == LFR_SUCCESSFUL)
128 145 {
129 146 result = set_sy_lfr_n_cwf_long_f3( TC, queue_id );
130 147 if (result != LFR_SUCCESSFUL)
131 148 {
132 149 flag = LFR_DEFAULT;
133 150 }
134 151 }
135 152
136 153 return flag;
137 154 }
138 155
139 156 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 157 {
141 158 /** This function updates the LFR registers with the incoming burst parameters.
142 159 *
143 160 * @param TC points to the TeleCommand packet that is being processed
144 161 * @param queue_id is the id of the queue which handles TM related to this execution step
145 162 *
146 163 */
147 164
148 165 int result;
149 166 int flag;
150 167 rtems_status_code status;
151 168 unsigned char sy_lfr_b_bp_p0;
152 169 unsigned char sy_lfr_b_bp_p1;
153 170 float aux;
154 171
155 172 flag = LFR_SUCCESSFUL;
156 173
157 174 if ( lfrCurrentMode == LFR_MODE_BURST ) {
158 175 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
159 176 result = LFR_DEFAULT;
160 177 }
161 178
162 179 //****************************************************************
163 180 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
164 181 if (flag == LFR_SUCCESSFUL)
165 182 {
166 183 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
167 184 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
168 185 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
169 186 if (aux != 0)
170 187 {
171 188 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
172 189 flag = LFR_DEFAULT;
173 190 }
174 191 }
175 192
176 193 //***************
177 194 // sy_lfr_b_bp_p0
178 195 if (flag == LFR_SUCCESSFUL)
179 196 {
180 197 result = set_sy_lfr_b_bp_p0( TC, queue_id );
181 198 if (result != LFR_SUCCESSFUL)
182 199 {
183 200 flag = LFR_DEFAULT;
184 201 }
185 202 }
186 203
187 204 //***************
188 205 // sy_lfr_b_bp_p1
189 206 if (flag == LFR_SUCCESSFUL)
190 207 {
191 208 result = set_sy_lfr_b_bp_p1( TC, queue_id );
192 209 if (result != LFR_SUCCESSFUL)
193 210 {
194 211 flag = LFR_DEFAULT;
195 212 }
196 213 }
197 214
198 215 return flag;
199 216 }
200 217
201 218 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
202 219 {
203 220 /** This function updates the LFR registers with the incoming sbm1 parameters.
204 221 *
205 222 * @param TC points to the TeleCommand packet that is being processed
206 223 * @param queue_id is the id of the queue which handles TM related to this execution step
207 224 *
208 225 */
209 226
210 227 int result;
211 228 int flag;
212 229 rtems_status_code status;
213 230 unsigned char sy_lfr_s1_bp_p0;
214 231 unsigned char sy_lfr_s1_bp_p1;
215 232 float aux;
216 233
217 234 flag = LFR_SUCCESSFUL;
218 235
219 236 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
220 237 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
221 238 result = LFR_DEFAULT;
222 239 }
223 240
224 241 //******************************************************************
225 242 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
226 243 if (flag == LFR_SUCCESSFUL)
227 244 {
228 245 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
229 246 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
230 247 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
231 248 if (aux != 0)
232 249 {
233 250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
234 251 flag = LFR_DEFAULT;
235 252 }
236 253 }
237 254
238 255 //***************
239 256 // sy_lfr_s1_bp_p0
240 257 if (flag == LFR_SUCCESSFUL)
241 258 {
242 259 result = set_sy_lfr_s1_bp_p0( TC, queue_id );
243 260 if (result != LFR_SUCCESSFUL)
244 261 {
245 262 flag = LFR_DEFAULT;
246 263 }
247 264 }
248 265
249 266 //***************
250 267 // sy_lfr_s1_bp_p1
251 268 if (flag == LFR_SUCCESSFUL)
252 269 {
253 270 result = set_sy_lfr_s1_bp_p1( TC, queue_id );
254 271 if (result != LFR_SUCCESSFUL)
255 272 {
256 273 flag = LFR_DEFAULT;
257 274 }
258 275 }
259 276
260 277 return flag;
261 278 }
262 279
263 280 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
264 281 {
265 282 /** This function updates the LFR registers with the incoming sbm2 parameters.
266 283 *
267 284 * @param TC points to the TeleCommand packet that is being processed
268 285 * @param queue_id is the id of the queue which handles TM related to this execution step
269 286 *
270 287 */
271 288
272 289 int result;
273 290 int flag;
274 291 rtems_status_code status;
275 292 unsigned char sy_lfr_s2_bp_p0;
276 293 unsigned char sy_lfr_s2_bp_p1;
277 294 float aux;
278 295
279 296 flag = LFR_SUCCESSFUL;
280 297
281 298 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
282 299 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
283 300 result = LFR_DEFAULT;
284 301 }
285 302
286 303 //******************************************************************
287 304 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
288 305 if (flag == LFR_SUCCESSFUL)
289 306 {
290 307 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
291 308 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
292 309 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
293 310 if (aux != 0)
294 311 {
295 312 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
296 313 flag = LFR_DEFAULT;
297 314 }
298 315 }
299 316
300 317 //***************
301 318 // sy_lfr_s2_bp_p0
302 319 if (flag == LFR_SUCCESSFUL)
303 320 {
304 321 result = set_sy_lfr_s2_bp_p0( TC, queue_id );
305 322 if (result != LFR_SUCCESSFUL)
306 323 {
307 324 flag = LFR_DEFAULT;
308 325 }
309 326 }
310 327
311 328 //***************
312 329 // sy_lfr_s2_bp_p1
313 330 if (flag == LFR_SUCCESSFUL)
314 331 {
315 332 result = set_sy_lfr_s2_bp_p1( TC, queue_id );
316 333 if (result != LFR_SUCCESSFUL)
317 334 {
318 335 flag = LFR_DEFAULT;
319 336 }
320 337 }
321 338
322 339 return flag;
323 340 }
324 341
325 342 int action_dump_par( rtems_id queue_id )
326 343 {
327 344 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
328 345 *
329 346 * @param queue_id is the id of the queue which handles TM related to this execution step.
330 347 *
331 348 * @return RTEMS directive status codes:
332 349 * - RTEMS_SUCCESSFUL - message sent successfully
333 350 * - RTEMS_INVALID_ID - invalid queue id
334 351 * - RTEMS_INVALID_SIZE - invalid message size
335 352 * - RTEMS_INVALID_ADDRESS - buffer is NULL
336 353 * - RTEMS_UNSATISFIED - out of message buffers
337 354 * - RTEMS_TOO_MANY - queue s limit has been reached
338 355 *
339 356 */
340 357
341 358 int status;
342 359
343 360 // UPDATE TIME
344 361 increment_seq_counter( parameter_dump_packet.packetSequenceControl );
345 362 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
346 363 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
347 364 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
348 365 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
349 366 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
350 367 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
351 368 // SEND DATA
352 369 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
353 370 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
354 371 if (status != RTEMS_SUCCESSFUL) {
355 372 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
356 373 }
357 374
358 375 return status;
359 376 }
360 377
361 378 //***********************
362 379 // NORMAL MODE PARAMETERS
363 380
364 381 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time )
365 382 {
366 383 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
367 384 *
368 385 * @param TC points to the TeleCommand packet that is being processed
369 386 * @param queue_id is the id of the queue which handles TM related to this execution step
370 387 *
371 388 */
372 389
373 390 unsigned int tmp;
374 391 int result;
375 392 unsigned char msb;
376 393 unsigned char lsb;
377 394 rtems_status_code status;
378 395
379 396 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
380 397 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
381 398
382 399 tmp = ( unsigned int ) floor(
383 400 ( ( msb*256 ) + lsb ) / 16
384 401 ) * 16;
385 402
386 403 if ( (tmp < 16) || (tmp > 2048) ) // the snapshot period is a multiple of 16
387 404 { // 2048 is the maximum limit due to the size of the buffers
388 405 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, lsb );
389 406 result = WRONG_APP_DATA;
390 407 }
391 408 else if (tmp != 2048)
392 409 {
393 410 status = send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
394 411 result = FUNCT_NOT_IMPL;
395 412 }
396 413 else
397 414 {
398 415 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (tmp >> 8);
399 416 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (tmp );
400 417 result = LFR_SUCCESSFUL;
401 418 }
402 419
403 420 return result;
404 421 }
405 422
406 423 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time)
407 424 {
408 425 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
409 426 *
410 427 * @param TC points to the TeleCommand packet that is being processed
411 428 * @param queue_id is the id of the queue which handles TM related to this execution step
412 429 *
413 430 */
414 431
415 432 unsigned int tmp;
416 433 int result;
417 434 unsigned char msb;
418 435 unsigned char lsb;
419 436 rtems_status_code status;
420 437
421 438 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
422 439 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
423 440
424 441 tmp = msb * 256 + lsb;
425 442
426 443 if ( tmp < 16 )
427 444 {
428 445 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, lsb );
429 446 result = WRONG_APP_DATA;
430 447 }
431 448 else
432 449 {
433 450 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (tmp >> 8);
434 451 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (tmp );
435 452 result = LFR_SUCCESSFUL;
436 453 }
437 454
438 455 return result;
439 456 }
440 457
441 458 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
442 459 {
443 460 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
444 461 *
445 462 * @param TC points to the TeleCommand packet that is being processed
446 463 * @param queue_id is the id of the queue which handles TM related to this execution step
447 464 *
448 465 */
449 466
450 467 int result;
451 468 unsigned char msb;
452 469 unsigned char lsb;
453 470
454 471 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
455 472 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
456 473
457 474 parameter_dump_packet.sy_lfr_n_asm_p[0] = msb;
458 475 parameter_dump_packet.sy_lfr_n_asm_p[1] = lsb;
459 476 result = LFR_SUCCESSFUL;
460 477
461 478 return result;
462 479 }
463 480
464 481 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
465 482 {
466 483 /** This function sets the time between two basic parameter sets, in s (SY_LFR_N_BP_P0).
467 484 *
468 485 * @param TC points to the TeleCommand packet that is being processed
469 486 * @param queue_id is the id of the queue which handles TM related to this execution step
470 487 *
471 488 */
472 489
473 490 int status;
474 491
475 492 status = LFR_SUCCESSFUL;
476 493
477 494 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
478 495
479 496 return status;
480 497 }
481 498
482 499 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
483 500 {
484 501 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
485 502 *
486 503 * @param TC points to the TeleCommand packet that is being processed
487 504 * @param queue_id is the id of the queue which handles TM related to this execution step
488 505 *
489 506 */
490 507
491 508 int status;
492 509
493 510 status = LFR_SUCCESSFUL;
494 511
495 512 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
496 513
497 514 return status;
498 515 }
499 516
500 517 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
501 518 {
502 519 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
503 520 *
504 521 * @param TC points to the TeleCommand packet that is being processed
505 522 * @param queue_id is the id of the queue which handles TM related to this execution step
506 523 *
507 524 */
508 525
509 526 int status;
510 527
511 528 status = LFR_SUCCESSFUL;
512 529
513 530 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
514 531
515 532 return status;
516 533 }
517 534
518 535 //**********************
519 536 // BURST MODE PARAMETERS
520 537 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
521 538 {
522 539 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
523 540 *
524 541 * @param TC points to the TeleCommand packet that is being processed
525 542 * @param queue_id is the id of the queue which handles TM related to this execution step
526 543 *
527 544 */
528 545
529 546 int status;
530 547
531 548 status = LFR_SUCCESSFUL;
532 549
533 550 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
534 551
535 552 return status;
536 553 }
537 554
538 555 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
539 556 {
540 557 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
541 558 *
542 559 * @param TC points to the TeleCommand packet that is being processed
543 560 * @param queue_id is the id of the queue which handles TM related to this execution step
544 561 *
545 562 */
546 563
547 564 int status;
548 565
549 566 status = LFR_SUCCESSFUL;
550 567
551 568 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
552 569
553 570 return status;
554 571 }
555 572
556 573 //*********************
557 574 // SBM1 MODE PARAMETERS
558 575 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
559 576 {
560 577 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
561 578 *
562 579 * @param TC points to the TeleCommand packet that is being processed
563 580 * @param queue_id is the id of the queue which handles TM related to this execution step
564 581 *
565 582 */
566 583
567 584 int status;
568 585
569 586 status = LFR_SUCCESSFUL;
570 587
571 588 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
572 589
573 590 return status;
574 591 }
575 592
576 593 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
577 594 {
578 595 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
579 596 *
580 597 * @param TC points to the TeleCommand packet that is being processed
581 598 * @param queue_id is the id of the queue which handles TM related to this execution step
582 599 *
583 600 */
584 601
585 602 int status;
586 603
587 604 status = LFR_SUCCESSFUL;
588 605
589 606 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
590 607
591 608 return status;
592 609 }
593 610
594 611 //*********************
595 612 // SBM2 MODE PARAMETERS
596 613 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
597 614 {
598 615 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
599 616 *
600 617 * @param TC points to the TeleCommand packet that is being processed
601 618 * @param queue_id is the id of the queue which handles TM related to this execution step
602 619 *
603 620 */
604 621
605 622 int status;
606 623
607 624 status = LFR_SUCCESSFUL;
608 625
609 626 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
610 627
611 628 return status;
612 629 }
613 630
614 631 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
615 632 {
616 633 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
617 634 *
618 635 * @param TC points to the TeleCommand packet that is being processed
619 636 * @param queue_id is the id of the queue which handles TM related to this execution step
620 637 *
621 638 */
622 639
623 640 int status;
624 641
625 642 status = LFR_SUCCESSFUL;
626 643
627 644 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
628 645
629 646 return status;
630 647 }
631 648
632 649
633 650 //*******************
634 651 // TC_LFR_UPDATE_INFO
635 652 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
636 653 {
637 654 unsigned int status;
638 655
639 656 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
640 657 || (mode == LFR_MODE_BURST)
641 658 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
642 659 {
643 660 status = LFR_SUCCESSFUL;
644 661 }
645 662 else
646 663 {
647 664 status = LFR_DEFAULT;
648 665 }
649 666
650 667 return status;
651 668 }
652 669
653 670 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
654 671 {
655 672 unsigned int status;
656 673
657 674 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
658 675 || (mode == TDS_MODE_BURST)
659 676 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
660 677 || (mode == TDS_MODE_LFM))
661 678 {
662 679 status = LFR_SUCCESSFUL;
663 680 }
664 681 else
665 682 {
666 683 status = LFR_DEFAULT;
667 684 }
668 685
669 686 return status;
670 687 }
671 688
672 689 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
673 690 {
674 691 unsigned int status;
675 692
676 693 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
677 694 || (mode == THR_MODE_BURST))
678 695 {
679 696 status = LFR_SUCCESSFUL;
680 697 }
681 698 else
682 699 {
683 700 status = LFR_DEFAULT;
684 701 }
685 702
686 703 return status;
687 704 }
688 705
689 706 //**********
690 707 // init dump
691 708
692 709 void init_parameter_dump( void )
693 710 {
694 711 /** This function initialize the parameter_dump_packet global variable with default values.
695 712 *
696 713 */
697 714
698 715 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
699 716 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
700 717 parameter_dump_packet.reserved = CCSDS_RESERVED;
701 718 parameter_dump_packet.userApplication = CCSDS_USER_APP;
702 719 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
703 720 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
704 721 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
705 722 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
706 723 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
707 724 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
708 725 // DATA FIELD HEADER
709 726 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
710 727 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
711 728 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
712 729 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
713 730 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
714 731 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
715 732 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
716 733 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
717 734 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
718 735 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
719 736 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
720 737
721 738 //******************
722 739 // COMMON PARAMETERS
723 740 parameter_dump_packet.unused0 = DEFAULT_SY_LFR_COMMON0;
724 741 parameter_dump_packet.bw_sp0_sp1_r0_r1 = DEFAULT_SY_LFR_COMMON1;
725 742
726 743 //******************
727 744 // NORMAL PARAMETERS
728 745 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (SY_LFR_N_SWF_L >> 8);
729 746 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (SY_LFR_N_SWF_L );
730 747 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (SY_LFR_N_SWF_P >> 8);
731 748 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (SY_LFR_N_SWF_P );
732 749 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (SY_LFR_N_ASM_P >> 8);
733 750 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (SY_LFR_N_ASM_P );
734 751 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) SY_LFR_N_BP_P0;
735 752 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) SY_LFR_N_BP_P1;
736 753 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) SY_LFR_N_CWF_LONG_F3;
737 754
738 755 //*****************
739 756 // BURST PARAMETERS
740 757 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
741 758 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
742 759
743 760 //****************
744 761 // SBM1 PARAMETERS
745 762 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
746 763 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
747 764
748 765 //****************
749 766 // SBM2 PARAMETERS
750 767 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
751 768 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
752 769 }
753 770
754 771
755 772
756 773
757 774
758 775
759 776
@@ -1,1351 +1,1339
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //*****************
13 13 // waveform headers
14 14 // SWF
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
16 16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
17 17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
18 18 // CWF
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[ NB_PACKETS_PER_GROUP_OF_CWF ];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[ NB_PACKETS_PER_GROUP_OF_CWF ];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[ NB_PACKETS_PER_GROUP_OF_CWF ];
22 22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[ NB_PACKETS_PER_GROUP_OF_CWF ];
23 23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[ NB_PACKETS_PER_GROUP_OF_CWF_LIGHT ];
24 24
25 25 //**************
26 26 // waveform ring
27 27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
28 28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
29 29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
30 30 ring_node *current_ring_node_f0;
31 31 ring_node *ring_node_to_send_swf_f0;
32 32 ring_node *current_ring_node_f1;
33 33 ring_node *ring_node_to_send_swf_f1;
34 34 ring_node *ring_node_to_send_cwf_f1;
35 35 ring_node *current_ring_node_f2;
36 36 ring_node *ring_node_to_send_swf_f2;
37 37 ring_node *ring_node_to_send_cwf_f2;
38 38
39 39 bool extractSWF = false;
40 40 bool swf_f0_ready = false;
41 41 bool swf_f1_ready = false;
42 42 bool swf_f2_ready = false;
43 43
44 44 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
45 45
46 46 //*********************
47 47 // Interrupt SubRoutine
48 48
49 49 void reset_extractSWF( void )
50 50 {
51 51 extractSWF = false;
52 52 swf_f0_ready = false;
53 53 swf_f1_ready = false;
54 54 swf_f2_ready = false;
55 55 }
56 56
57 57 rtems_isr waveforms_isr( rtems_vector_number vector )
58 58 {
59 59 /** This is the interrupt sub routine called by the waveform picker core.
60 60 *
61 61 * This ISR launch different actions depending mainly on two pieces of information:
62 62 * 1. the values read in the registers of the waveform picker.
63 63 * 2. the current LFR mode.
64 64 *
65 65 */
66 66
67 67 rtems_status_code status;
68 static unsigned char nb_swf = 0;
69 68
70 69 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
71 70 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
72 71 { // in modes other than STANDBY and BURST, send the CWF_F3 data
73 72 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
74 73 // (1) change the receiving buffer for the waveform picker
75 74 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
76 75 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_b);
77 76 }
78 77 else {
79 78 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a);
80 79 }
81 80 // (2) send an event for the waveforms transmission
82 81 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
83 82 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
84 83 }
85 84 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
86 85 }
87 86 }
88 87
89 88 switch(lfrCurrentMode)
90 89 {
91 90 //********
92 91 // STANDBY
93 92 case(LFR_MODE_STANDBY):
94 93 break;
95 94
96 95 //******
97 96 // NORMAL
98 97 case(LFR_MODE_NORMAL):
99 98 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
100 99 {
101 100 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
102 101 }
103 102 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
104 103 {
105 104 // change F0 ring node
106 105 ring_node_to_send_swf_f0 = current_ring_node_f0;
107 106 current_ring_node_f0 = current_ring_node_f0->next;
108 107 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
109 108 // change F1 ring node
110 109 ring_node_to_send_swf_f1 = current_ring_node_f1;
111 110 current_ring_node_f1 = current_ring_node_f1->next;
112 111 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
113 112 // change F2 ring node
114 113 ring_node_to_send_swf_f2 = current_ring_node_f2;
115 114 current_ring_node_f2 = current_ring_node_f2->next;
116 115 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
117 116 //
118 // if (nb_swf < 2)
119 if (true)
117 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL)
120 118 {
121 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
122 119 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
123 120 }
124 121 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
125 nb_swf = nb_swf + 1;
126 122 }
127 else
128 {
129 reset_wfp_burst_enable();
130 nb_swf = 0;
131 }
132
133 }
134
135 123 break;
136 124
137 125 //******
138 126 // BURST
139 127 case(LFR_MODE_BURST):
140 128 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
141 129 // (1) change the receiving buffer for the waveform picker
142 130 ring_node_to_send_cwf_f2 = current_ring_node_f2;
143 131 current_ring_node_f2 = current_ring_node_f2->next;
144 132 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
145 133 // (2) send an event for the waveforms transmission
146 134 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
147 135 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
148 136 }
149 137 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
150 138 }
151 139 break;
152 140
153 141 //*****
154 142 // SBM1
155 143 case(LFR_MODE_SBM1):
156 144 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
157 145 // (1) change the receiving buffer for the waveform picker
158 146 ring_node_to_send_cwf_f1 = current_ring_node_f1;
159 147 current_ring_node_f1 = current_ring_node_f1->next;
160 148 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
161 149 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
162 150 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
163 151 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
164 152 }
165 153 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
166 154 swf_f0_ready = true;
167 155 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
168 156 }
169 157 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
170 158 swf_f2_ready = true;
171 159 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
172 160 }
173 161 break;
174 162
175 163 //*****
176 164 // SBM2
177 165 case(LFR_MODE_SBM2):
178 166 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
179 167 // (1) change the receiving buffer for the waveform picker
180 168 ring_node_to_send_cwf_f2 = current_ring_node_f2;
181 169 current_ring_node_f2 = current_ring_node_f2->next;
182 170 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
183 171 // (2) send an event for the waveforms transmission
184 172 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
185 173 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
186 174 }
187 175 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
188 176 swf_f0_ready = true;
189 177 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
190 178 }
191 179 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
192 180 swf_f1_ready = true;
193 181 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
194 182 }
195 183 break;
196 184
197 185 //********
198 186 // DEFAULT
199 187 default:
200 188 break;
201 189 }
202 190 }
203 191
204 192 //************
205 193 // RTEMS TASKS
206 194
207 195 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
208 196 {
209 197 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
210 198 *
211 199 * @param unused is the starting argument of the RTEMS task
212 200 *
213 201 * The following data packets are sent by this task:
214 202 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
215 203 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
216 204 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
217 205 *
218 206 */
219 207
220 208 rtems_event_set event_out;
221 209 rtems_id queue_id;
222 210 rtems_status_code status;
223 211
224 212 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
225 213 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
226 214 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
227 215
228 216 init_waveforms();
229 217
230 218 status = get_message_queue_id_send( &queue_id );
231 219 if (status != RTEMS_SUCCESSFUL)
232 220 {
233 221 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
234 222 }
235 223
236 224 BOOT_PRINTF("in WFRM ***\n")
237 225
238 226 while(1){
239 227 // wait for an RTEMS_EVENT
240 228 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
241 229 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
242 230 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
243 231 if (event_out == RTEMS_EVENT_MODE_NORMAL)
244 232 {
245 233 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
246 234 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
247 235 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
248 236 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
249 237 }
250 238 if (event_out == RTEMS_EVENT_MODE_SBM1)
251 239 {
252 240 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
253 241 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
254 242 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F1, headerSWF_F1, queue_id);
255 243 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
256 244 }
257 245 if (event_out == RTEMS_EVENT_MODE_SBM2)
258 246 {
259 247 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
260 248 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
261 249 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
262 250 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F2, headerSWF_F2, queue_id);
263 251 }
264 252 }
265 253 }
266 254
267 255 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
268 256 {
269 257 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
270 258 *
271 259 * @param unused is the starting argument of the RTEMS task
272 260 *
273 261 * The following data packet is sent by this task:
274 262 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
275 263 *
276 264 */
277 265
278 266 rtems_event_set event_out;
279 267 rtems_id queue_id;
280 268 rtems_status_code status;
281 269
282 270 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
283 271 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
284 272
285 273 status = get_message_queue_id_send( &queue_id );
286 274 if (status != RTEMS_SUCCESSFUL)
287 275 {
288 276 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
289 277 }
290 278
291 279 BOOT_PRINTF("in CWF3 ***\n")
292 280
293 281 while(1){
294 282 // wait for an RTEMS_EVENT
295 283 rtems_event_receive( RTEMS_EVENT_0,
296 284 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
297 285 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
298 286 {
299 287 PRINTF("send CWF_LONG_F3\n")
300 288 }
301 289 else
302 290 {
303 291 PRINTF("send CWF_F3 (light)\n")
304 292 }
305 293 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
306 294 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
307 295 {
308 296 send_waveform_CWF( wf_cont_f3_b, SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
309 297 }
310 298 else
311 299 {
312 300 send_waveform_CWF3_light( wf_cont_f3_b, headerCWF_F3_light, queue_id );
313 301 }
314 302 }
315 303 else
316 304 {
317 305 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
318 306 {
319 307 send_waveform_CWF( wf_cont_f3_a, SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
320 308 }
321 309 else
322 310 {
323 311 send_waveform_CWF3_light( wf_cont_f3_a, headerCWF_F3_light, queue_id );
324 312 }
325 313
326 314 }
327 315 }
328 316 }
329 317
330 318 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
331 319 {
332 320 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
333 321 *
334 322 * @param unused is the starting argument of the RTEMS task
335 323 *
336 324 * The following data packet is sent by this function:
337 325 * - TM_LFR_SCIENCE_BURST_CWF_F2
338 326 * - TM_LFR_SCIENCE_SBM2_CWF_F2
339 327 *
340 328 */
341 329
342 330 rtems_event_set event_out;
343 331 rtems_id queue_id;
344 332 rtems_status_code status;
345 333
346 334 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
347 335 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
348 336
349 337 status = get_message_queue_id_send( &queue_id );
350 338 if (status != RTEMS_SUCCESSFUL)
351 339 {
352 340 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
353 341 }
354 342
355 343 BOOT_PRINTF("in CWF2 ***\n")
356 344
357 345 while(1){
358 346 // wait for an RTEMS_EVENT
359 347 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
360 348 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
361 349 if (event_out == RTEMS_EVENT_MODE_BURST)
362 350 {
363 351 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
364 352 }
365 353 if (event_out == RTEMS_EVENT_MODE_SBM2)
366 354 {
367 355 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
368 356 // launch snapshot extraction if needed
369 357 if (extractSWF == true)
370 358 {
371 359 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
372 360 // extract the snapshot
373 361 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
374 362 // send the snapshot when built
375 363 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
376 364 extractSWF = false;
377 365 }
378 366 if (swf_f0_ready && swf_f1_ready)
379 367 {
380 368 extractSWF = true;
381 369 swf_f0_ready = false;
382 370 swf_f1_ready = false;
383 371 }
384 372 }
385 373 }
386 374 }
387 375
388 376 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
389 377 {
390 378 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
391 379 *
392 380 * @param unused is the starting argument of the RTEMS task
393 381 *
394 382 * The following data packet is sent by this function:
395 383 * - TM_LFR_SCIENCE_SBM1_CWF_F1
396 384 *
397 385 */
398 386
399 387 rtems_event_set event_out;
400 388 rtems_id queue_id;
401 389 rtems_status_code status;
402 390
403 391 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
404 392
405 393 status = get_message_queue_id_send( &queue_id );
406 394 if (status != RTEMS_SUCCESSFUL)
407 395 {
408 396 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
409 397 }
410 398
411 399 BOOT_PRINTF("in CWF1 ***\n")
412 400
413 401 while(1){
414 402 // wait for an RTEMS_EVENT
415 403 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
416 404 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
417 405 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
418 406 // launch snapshot extraction if needed
419 407 if (extractSWF == true)
420 408 {
421 409 ring_node_to_send_swf_f1 = ring_node_to_send_cwf_f1;
422 410 // launch the snapshot extraction
423 411 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
424 412 extractSWF = false;
425 413 }
426 414 if (swf_f0_ready == true)
427 415 {
428 416 extractSWF = true;
429 417 swf_f0_ready = false; // this step shall be executed only one time
430 418 }
431 419 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
432 420 {
433 421 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
434 422 swf_f1_ready = false;
435 423 swf_f2_ready = false;
436 424 }
437 425 }
438 426 }
439 427
440 428 rtems_task swbd_task(rtems_task_argument argument)
441 429 {
442 430 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
443 431 *
444 432 * @param unused is the starting argument of the RTEMS task
445 433 *
446 434 */
447 435
448 436 rtems_event_set event_out;
449 437
450 438 BOOT_PRINTF("in SWBD ***\n")
451 439
452 440 while(1){
453 441 // wait for an RTEMS_EVENT
454 442 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
455 443 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
456 444 if (event_out == RTEMS_EVENT_MODE_SBM1)
457 445 {
458 446 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
459 447 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
460 448 }
461 449 else
462 450 {
463 451 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
464 452 }
465 453 }
466 454 }
467 455
468 456 //******************
469 457 // general functions
470 458 void init_waveforms( void )
471 459 {
472 460 int i = 0;
473 461
474 462 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
475 463 {
476 464 //***
477 465 // F0
478 466 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x88887777; //
479 467 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111; //
480 468 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0x44443333; //
481 469
482 470 //***
483 471 // F1
484 472 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x22221111;
485 473 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x44443333;
486 474 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
487 475
488 476 //***
489 477 // F2
490 478 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x44443333;
491 479 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111;
492 480 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
493 481
494 482 //***
495 483 // F3
496 484 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 0 ] = val1;
497 485 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 1 ] = val2;
498 486 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 2 ] = 0xaaaa0000;
499 487 }
500 488 }
501 489
502 490 void init_waveform_rings( void )
503 491 {
504 492 unsigned char i;
505 493
506 494 // F0 RING
507 495 waveform_ring_f0[0].next = (ring_node*) &waveform_ring_f0[1];
508 496 waveform_ring_f0[0].previous = (ring_node*) &waveform_ring_f0[NB_RING_NODES_F0-1];
509 497 waveform_ring_f0[0].buffer_address = (int) &wf_snap_f0[0][0];
510 498
511 499 waveform_ring_f0[NB_RING_NODES_F0-1].next = (ring_node*) &waveform_ring_f0[0];
512 500 waveform_ring_f0[NB_RING_NODES_F0-1].previous = (ring_node*) &waveform_ring_f0[NB_RING_NODES_F0-2];
513 501 waveform_ring_f0[NB_RING_NODES_F0-1].buffer_address = (int) &wf_snap_f0[NB_RING_NODES_F0-1][0];
514 502
515 503 for(i=1; i<NB_RING_NODES_F0-1; i++)
516 504 {
517 505 waveform_ring_f0[i].next = (ring_node*) &waveform_ring_f0[i+1];
518 506 waveform_ring_f0[i].previous = (ring_node*) &waveform_ring_f0[i-1];
519 507 waveform_ring_f0[i].buffer_address = (int) &wf_snap_f0[i][0];
520 508 }
521 509
522 510 // F1 RING
523 511 waveform_ring_f1[0].next = (ring_node*) &waveform_ring_f1[1];
524 512 waveform_ring_f1[0].previous = (ring_node*) &waveform_ring_f1[NB_RING_NODES_F1-1];
525 513 waveform_ring_f1[0].buffer_address = (int) &wf_snap_f1[0][0];
526 514
527 515 waveform_ring_f1[NB_RING_NODES_F1-1].next = (ring_node*) &waveform_ring_f1[0];
528 516 waveform_ring_f1[NB_RING_NODES_F1-1].previous = (ring_node*) &waveform_ring_f1[NB_RING_NODES_F1-2];
529 517 waveform_ring_f1[NB_RING_NODES_F1-1].buffer_address = (int) &wf_snap_f1[NB_RING_NODES_F1-1][0];
530 518
531 519 for(i=1; i<NB_RING_NODES_F1-1; i++)
532 520 {
533 521 waveform_ring_f1[i].next = (ring_node*) &waveform_ring_f1[i+1];
534 522 waveform_ring_f1[i].previous = (ring_node*) &waveform_ring_f1[i-1];
535 523 waveform_ring_f1[i].buffer_address = (int) &wf_snap_f1[i][0];
536 524 }
537 525
538 526 // F2 RING
539 527 waveform_ring_f2[0].next = (ring_node*) &waveform_ring_f2[1];
540 528 waveform_ring_f2[0].previous = (ring_node*) &waveform_ring_f2[NB_RING_NODES_F2-1];
541 529 waveform_ring_f2[0].buffer_address = (int) &wf_snap_f2[0][0];
542 530
543 531 waveform_ring_f2[NB_RING_NODES_F2-1].next = (ring_node*) &waveform_ring_f2[0];
544 532 waveform_ring_f2[NB_RING_NODES_F2-1].previous = (ring_node*) &waveform_ring_f2[NB_RING_NODES_F2-2];
545 533 waveform_ring_f2[NB_RING_NODES_F2-1].buffer_address = (int) &wf_snap_f2[NB_RING_NODES_F2-1][0];
546 534
547 535 for(i=1; i<NB_RING_NODES_F2-1; i++)
548 536 {
549 537 waveform_ring_f2[i].next = (ring_node*) &waveform_ring_f2[i+1];
550 538 waveform_ring_f2[i].previous = (ring_node*) &waveform_ring_f2[i-1];
551 539 waveform_ring_f2[i].buffer_address = (int) &wf_snap_f2[i][0];
552 540 }
553 541
554 542 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
555 543 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
556 544 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
557 545
558 546 }
559 547
560 548 void reset_current_ring_nodes( void )
561 549 {
562 550 current_ring_node_f0 = waveform_ring_f0;
563 551 ring_node_to_send_swf_f0 = waveform_ring_f0;
564 552
565 553 current_ring_node_f1 = waveform_ring_f1;
566 554 ring_node_to_send_cwf_f1 = waveform_ring_f1;
567 555 ring_node_to_send_swf_f1 = waveform_ring_f1;
568 556
569 557 current_ring_node_f2 = waveform_ring_f2;
570 558 ring_node_to_send_cwf_f2 = waveform_ring_f2;
571 559 ring_node_to_send_swf_f2 = waveform_ring_f2;
572 560 }
573 561
574 562 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
575 563 {
576 564 unsigned char i;
577 565
578 566 for (i=0; i<7; i++)
579 567 {
580 568 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
581 569 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
582 570 headerSWF[ i ].reserved = DEFAULT_RESERVED;
583 571 headerSWF[ i ].userApplication = CCSDS_USER_APP;
584 572 headerSWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
585 573 headerSWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
586 574 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
587 575 if (i == 6)
588 576 {
589 577 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
590 578 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
591 579 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
592 580 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
593 581 }
594 582 else
595 583 {
596 584 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
597 585 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
598 586 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
599 587 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
600 588 }
601 589 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
602 590 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
603 591 headerSWF[ i ].pktNr = i+1; // PKT_NR
604 592 // DATA FIELD HEADER
605 593 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
606 594 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
607 595 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
608 596 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
609 597 // AUXILIARY DATA HEADER
610 598 headerSWF[ i ].time[0] = 0x00;
611 599 headerSWF[ i ].time[0] = 0x00;
612 600 headerSWF[ i ].time[0] = 0x00;
613 601 headerSWF[ i ].time[0] = 0x00;
614 602 headerSWF[ i ].time[0] = 0x00;
615 603 headerSWF[ i ].time[0] = 0x00;
616 604 headerSWF[ i ].sid = sid;
617 605 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
618 606 }
619 607 return LFR_SUCCESSFUL;
620 608 }
621 609
622 610 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
623 611 {
624 612 unsigned int i;
625 613
626 614 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++)
627 615 {
628 616 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
629 617 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
630 618 headerCWF[ i ].reserved = DEFAULT_RESERVED;
631 619 headerCWF[ i ].userApplication = CCSDS_USER_APP;
632 620 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
633 621 {
634 622 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
635 623 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
636 624 }
637 625 else
638 626 {
639 627 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
640 628 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
641 629 }
642 630 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
643 631 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
644 632 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
645 633 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
646 634 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
647 635 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
648 636 // DATA FIELD HEADER
649 637 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
650 638 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
651 639 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
652 640 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
653 641 // AUXILIARY DATA HEADER
654 642 headerCWF[ i ].sid = sid;
655 643 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
656 644 headerCWF[ i ].time[0] = 0x00;
657 645 headerCWF[ i ].time[0] = 0x00;
658 646 headerCWF[ i ].time[0] = 0x00;
659 647 headerCWF[ i ].time[0] = 0x00;
660 648 headerCWF[ i ].time[0] = 0x00;
661 649 headerCWF[ i ].time[0] = 0x00;
662 650 }
663 651 return LFR_SUCCESSFUL;
664 652 }
665 653
666 654 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
667 655 {
668 656 unsigned int i;
669 657
670 658 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++)
671 659 {
672 660 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
673 661 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
674 662 headerCWF[ i ].reserved = DEFAULT_RESERVED;
675 663 headerCWF[ i ].userApplication = CCSDS_USER_APP;
676 664
677 665 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
678 666 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
679 667
680 668 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
681 669 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
682 670 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
683 671 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
684 672 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
685 673
686 674 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
687 675 // DATA FIELD HEADER
688 676 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
689 677 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
690 678 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
691 679 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
692 680 // AUXILIARY DATA HEADER
693 681 headerCWF[ i ].sid = SID_NORM_CWF_F3;
694 682 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
695 683 headerCWF[ i ].time[0] = 0x00;
696 684 headerCWF[ i ].time[0] = 0x00;
697 685 headerCWF[ i ].time[0] = 0x00;
698 686 headerCWF[ i ].time[0] = 0x00;
699 687 headerCWF[ i ].time[0] = 0x00;
700 688 headerCWF[ i ].time[0] = 0x00;
701 689 }
702 690 return LFR_SUCCESSFUL;
703 691 }
704 692
705 693 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
706 694 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
707 695 {
708 696 /** This function sends SWF CCSDS packets (F2, F1 or F0).
709 697 *
710 698 * @param waveform points to the buffer containing the data that will be send.
711 699 * @param sid is the source identifier of the data that will be sent.
712 700 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
713 701 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
714 702 * contain information to setup the transmission of the data packets.
715 703 *
716 704 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
717 705 *
718 706 */
719 707
720 708 unsigned int i;
721 709 int ret;
722 710 unsigned int coarseTime;
723 711 unsigned int fineTime;
724 712 rtems_status_code status;
725 713 spw_ioctl_pkt_send spw_ioctl_send_SWF;
726 714
727 715 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
728 716 spw_ioctl_send_SWF.options = 0;
729 717
730 718 ret = LFR_DEFAULT;
731 719
732 720 coarseTime = waveform[0];
733 721 fineTime = waveform[1];
734 722
735 723 for (i=0; i<7; i++) // send waveform
736 724 {
737 725 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
738 726 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
739 727 // BUILD THE DATA
740 728 if (i==6) {
741 729 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
742 730 }
743 731 else {
744 732 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
745 733 }
746 734 // SET PACKET SEQUENCE COUNTER
747 735 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
748 736 // SET PACKET TIME
749 737 compute_acquisition_time( coarseTime, fineTime, sid, i, headerSWF[ i ].acquisitionTime );
750 738 //
751 739 headerSWF[ i ].time[0] = headerSWF[ i ].acquisitionTime[0];
752 740 headerSWF[ i ].time[1] = headerSWF[ i ].acquisitionTime[1];
753 741 headerSWF[ i ].time[2] = headerSWF[ i ].acquisitionTime[2];
754 742 headerSWF[ i ].time[3] = headerSWF[ i ].acquisitionTime[3];
755 743 headerSWF[ i ].time[4] = headerSWF[ i ].acquisitionTime[4];
756 744 headerSWF[ i ].time[5] = headerSWF[ i ].acquisitionTime[5];
757 745 // SEND PACKET
758 746 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
759 747 if (status != RTEMS_SUCCESSFUL) {
760 748 printf("%d-%d, ERR %d\n", sid, i, (int) status);
761 749 ret = LFR_DEFAULT;
762 750 }
763 751 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
764 752 }
765 753
766 754 return ret;
767 755 }
768 756
769 757 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
770 758 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
771 759 {
772 760 /** This function sends CWF CCSDS packets (F2, F1 or F0).
773 761 *
774 762 * @param waveform points to the buffer containing the data that will be send.
775 763 * @param sid is the source identifier of the data that will be sent.
776 764 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
777 765 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
778 766 * contain information to setup the transmission of the data packets.
779 767 *
780 768 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
781 769 *
782 770 */
783 771
784 772 unsigned int i;
785 773 int ret;
786 774 unsigned int coarseTime;
787 775 unsigned int fineTime;
788 776 rtems_status_code status;
789 777 spw_ioctl_pkt_send spw_ioctl_send_CWF;
790 778
791 779 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
792 780 spw_ioctl_send_CWF.options = 0;
793 781
794 782 ret = LFR_DEFAULT;
795 783
796 784 coarseTime = waveform[0];
797 785 fineTime = waveform[1];
798 786
799 787 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
800 788 {
801 789 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
802 790 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
803 791 // BUILD THE DATA
804 792 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
805 793 // SET PACKET SEQUENCE COUNTER
806 794 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
807 795 // SET PACKET TIME
808 796 compute_acquisition_time( coarseTime, fineTime, sid, i, headerCWF[ i ].acquisitionTime);
809 797 //
810 798 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
811 799 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
812 800 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
813 801 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
814 802 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
815 803 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
816 804 // SEND PACKET
817 805 if (sid == SID_NORM_CWF_LONG_F3)
818 806 {
819 807 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
820 808 if (status != RTEMS_SUCCESSFUL) {
821 809 printf("%d-%d, ERR %d\n", sid, i, (int) status);
822 810 ret = LFR_DEFAULT;
823 811 }
824 812 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
825 813 }
826 814 else
827 815 {
828 816 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
829 817 if (status != RTEMS_SUCCESSFUL) {
830 818 printf("%d-%d, ERR %d\n", sid, i, (int) status);
831 819 ret = LFR_DEFAULT;
832 820 }
833 821 }
834 822 }
835 823
836 824 return ret;
837 825 }
838 826
839 827 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
840 828 {
841 829 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
842 830 *
843 831 * @param waveform points to the buffer containing the data that will be send.
844 832 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
845 833 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
846 834 * contain information to setup the transmission of the data packets.
847 835 *
848 836 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
849 837 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
850 838 *
851 839 */
852 840
853 841 unsigned int i;
854 842 int ret;
855 843 unsigned int coarseTime;
856 844 unsigned int fineTime;
857 845 rtems_status_code status;
858 846 spw_ioctl_pkt_send spw_ioctl_send_CWF;
859 847 char *sample;
860 848
861 849 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
862 850 spw_ioctl_send_CWF.options = 0;
863 851
864 852 ret = LFR_DEFAULT;
865 853
866 854 //**********************
867 855 // BUILD CWF3_light DATA
868 856 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
869 857 {
870 858 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
871 859 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
872 860 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
873 861 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
874 862 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
875 863 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
876 864 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
877 865 }
878 866
879 867 coarseTime = waveform[0];
880 868 fineTime = waveform[1];
881 869
882 870 //*********************
883 871 // SEND CWF3_light DATA
884 872 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
885 873 {
886 874 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
887 875 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
888 876 // BUILD THE DATA
889 877 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
890 878 // SET PACKET SEQUENCE COUNTER
891 879 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
892 880 // SET PACKET TIME
893 881 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, headerCWF[ i ].acquisitionTime );
894 882 //
895 883 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
896 884 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
897 885 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
898 886 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
899 887 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
900 888 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
901 889 // SEND PACKET
902 890 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
903 891 if (status != RTEMS_SUCCESSFUL) {
904 892 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
905 893 ret = LFR_DEFAULT;
906 894 }
907 895 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
908 896 }
909 897
910 898 return ret;
911 899 }
912 900
913 901 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
914 902 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
915 903 {
916 904 unsigned long long int acquisitionTimeAsLong;
917 905 unsigned char localAcquisitionTime[6];
918 906 double deltaT;
919 907
920 908 deltaT = 0.;
921 909
922 910 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 8 );
923 911 localAcquisitionTime[1] = (unsigned char) ( coarseTime );
924 912 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 24 );
925 913 localAcquisitionTime[3] = (unsigned char) ( coarseTime >> 16 );
926 914 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 24 );
927 915 localAcquisitionTime[5] = (unsigned char) ( fineTime >> 16 );
928 916
929 917 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
930 918 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
931 919 + ( localAcquisitionTime[2] << 24 )
932 920 + ( localAcquisitionTime[3] << 16 )
933 921 + ( localAcquisitionTime[4] << 8 )
934 922 + ( localAcquisitionTime[5] );
935 923
936 924 switch( sid )
937 925 {
938 926 case SID_NORM_SWF_F0:
939 927 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
940 928 break;
941 929
942 930 case SID_NORM_SWF_F1:
943 931 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
944 932 break;
945 933
946 934 case SID_NORM_SWF_F2:
947 935 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
948 936 break;
949 937
950 938 case SID_SBM1_CWF_F1:
951 939 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
952 940 break;
953 941
954 942 case SID_SBM2_CWF_F2:
955 943 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
956 944 break;
957 945
958 946 case SID_BURST_CWF_F2:
959 947 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
960 948 break;
961 949
962 950 case SID_NORM_CWF_F3:
963 951 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
964 952 break;
965 953
966 954 case SID_NORM_CWF_LONG_F3:
967 955 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
968 956 break;
969 957
970 958 default:
971 959 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
972 960 deltaT = 0.;
973 961 break;
974 962 }
975 963
976 964 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
977 965 //
978 966 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
979 967 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
980 968 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
981 969 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
982 970 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
983 971 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
984 972
985 973 }
986 974
987 975 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
988 976 {
989 977 unsigned int i;
990 978 unsigned long long int centerTime_asLong;
991 979 unsigned long long int acquisitionTimeF0_asLong;
992 980 unsigned long long int acquisitionTime_asLong;
993 981 unsigned long long int bufferAcquisitionTime_asLong;
994 982 unsigned char *ptr1;
995 983 unsigned char *ptr2;
996 984 unsigned char nb_ring_nodes;
997 985 unsigned long long int frequency_asLong;
998 986 unsigned long long int nbTicksPerSample_asLong;
999 987 unsigned long long int nbSamplesPart1_asLong;
1000 988 unsigned long long int sampleOffset_asLong;
1001 989
1002 990 unsigned int deltaT_F0;
1003 991 unsigned int deltaT_F1;
1004 992 unsigned long long int deltaT_F2;
1005 993
1006 994 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
1007 995 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
1008 996 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
1009 997 sampleOffset_asLong = 0x00;
1010 998
1011 999 // (1) get the f0 acquisition time
1012 1000 build_acquisition_time( &acquisitionTimeF0_asLong, current_ring_node_f0 );
1013 1001
1014 1002 // (2) compute the central reference time
1015 1003 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
1016 1004
1017 1005 // (3) compute the acquisition time of the current snapshot
1018 1006 switch(frequencyChannel)
1019 1007 {
1020 1008 case 1: // 1 is for F1 = 4096 Hz
1021 1009 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
1022 1010 nb_ring_nodes = NB_RING_NODES_F1;
1023 1011 frequency_asLong = 4096;
1024 1012 nbTicksPerSample_asLong = 16; // 65536 / 4096;
1025 1013 break;
1026 1014 case 2: // 2 is for F2 = 256 Hz
1027 1015 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
1028 1016 nb_ring_nodes = NB_RING_NODES_F2;
1029 1017 frequency_asLong = 256;
1030 1018 nbTicksPerSample_asLong = 256; // 65536 / 256;
1031 1019 break;
1032 1020 default:
1033 1021 acquisitionTime_asLong = centerTime_asLong;
1034 1022 frequency_asLong = 256;
1035 1023 nbTicksPerSample_asLong = 256;
1036 1024 break;
1037 1025 }
1038 1026
1039 1027 //****************************************************************************
1040 1028 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
1041 1029 for (i=0; i<nb_ring_nodes; i++)
1042 1030 {
1043 1031 PRINTF1("%d ... ", i)
1044 1032 build_acquisition_time( &bufferAcquisitionTime_asLong, ring_node_to_send );
1045 1033 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
1046 1034 {
1047 1035 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
1048 1036 break;
1049 1037 }
1050 1038 ring_node_to_send = ring_node_to_send->previous;
1051 1039 }
1052 1040
1053 1041 // (5) compute the number of samples to take in the current buffer
1054 1042 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
1055 1043 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
1056 1044 PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong)
1057 1045
1058 1046 // (6) compute the final acquisition time
1059 1047 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
1060 1048 sampleOffset_asLong * nbTicksPerSample_asLong;
1061 1049
1062 1050 // (7) copy the acquisition time at the beginning of the extrated snapshot
1063 1051 ptr1 = (unsigned char*) &acquisitionTime_asLong;
1064 1052 ptr2 = (unsigned char*) wf_snap_extracted;
1065 1053 ptr2[0] = ptr1[ 2 + 2 ];
1066 1054 ptr2[1] = ptr1[ 3 + 2 ];
1067 1055 ptr2[2] = ptr1[ 0 + 2 ];
1068 1056 ptr2[3] = ptr1[ 1 + 2 ];
1069 1057 ptr2[4] = ptr1[ 4 + 2 ];
1070 1058 ptr2[5] = ptr1[ 5 + 2 ];
1071 1059
1072 1060 // re set the synchronization bit
1073 1061
1074 1062
1075 1063 // copy the part 1 of the snapshot in the extracted buffer
1076 1064 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1077 1065 {
1078 1066 wf_snap_extracted[i + TIME_OFFSET] =
1079 1067 ((int*) ring_node_to_send->buffer_address)[i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) + TIME_OFFSET];
1080 1068 }
1081 1069 // copy the part 2 of the snapshot in the extracted buffer
1082 1070 ring_node_to_send = ring_node_to_send->next;
1083 1071 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1084 1072 {
1085 1073 wf_snap_extracted[i + TIME_OFFSET] =
1086 1074 ((int*) ring_node_to_send->buffer_address)[(i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) + TIME_OFFSET];
1087 1075 }
1088 1076 }
1089 1077
1090 1078 void build_acquisition_time( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1091 1079 {
1092 1080 unsigned char *acquisitionTimeCharPtr;
1093 1081
1094 1082 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1095 1083
1096 1084 *acquisitionTimeAslong = 0x00;
1097 1085 *acquisitionTimeAslong = ( acquisitionTimeCharPtr[0] << 24 )
1098 1086 + ( acquisitionTimeCharPtr[1] << 16 )
1099 1087 + ( (unsigned long long int) (acquisitionTimeCharPtr[2] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1100 1088 + ( (unsigned long long int) acquisitionTimeCharPtr[3] << 32 )
1101 1089 + ( acquisitionTimeCharPtr[4] << 8 )
1102 1090 + ( acquisitionTimeCharPtr[5] );
1103 1091 }
1104 1092
1105 1093 //**************
1106 1094 // wfp registers
1107 1095 void reset_wfp_burst_enable(void)
1108 1096 {
1109 1097 /** This function resets the waveform picker burst_enable register.
1110 1098 *
1111 1099 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1112 1100 *
1113 1101 */
1114 1102
1115 1103 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1116 1104 }
1117 1105
1118 1106 void reset_wfp_status( void )
1119 1107 {
1120 1108 /** This function resets the waveform picker status register.
1121 1109 *
1122 1110 * All status bits are set to 0 [new_err full_err full].
1123 1111 *
1124 1112 */
1125 1113
1126 1114 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1127 1115 }
1128 1116
1129 1117 void reset_waveform_picker_regs(void)
1130 1118 {
1131 1119 /** This function resets the waveform picker module registers.
1132 1120 *
1133 1121 * The registers affected by this function are located at the following offset addresses:
1134 1122 * - 0x00 data_shaping
1135 1123 * - 0x04 run_burst_enable
1136 1124 * - 0x08 addr_data_f0
1137 1125 * - 0x0C addr_data_f1
1138 1126 * - 0x10 addr_data_f2
1139 1127 * - 0x14 addr_data_f3
1140 1128 * - 0x18 status
1141 1129 * - 0x1C delta_snapshot
1142 1130 * - 0x20 delta_f0
1143 1131 * - 0x24 delta_f0_2
1144 1132 * - 0x28 delta_f1
1145 1133 * - 0x2c delta_f2
1146 1134 * - 0x30 nb_data_by_buffer
1147 1135 * - 0x34 nb_snapshot_param
1148 1136 * - 0x38 start_date
1149 1137 * - 0x3c nb_word_in_buffer
1150 1138 *
1151 1139 */
1152 1140
1153 1141 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1154 1142 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1155 1143 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1156 1144 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1157 1145 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1158 1146 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a); // 0x14
1159 1147 reset_wfp_status(); // 0x18
1160 1148 //
1161 1149 set_wfp_delta_snapshot(); // 0x1c
1162 1150 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1163 1151 set_wfp_delta_f1(); // 0x28
1164 1152 set_wfp_delta_f2(); // 0x2c
1165 1153 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1166 1154 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1167 1155 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1168 1156 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1169 1157 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1170 1158 // 2688 = 8 * 336
1171 1159 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1172 1160 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1173 1161 waveform_picker_regs->start_date = 0x00; // 0x38
1174 1162 waveform_picker_regs->nb_word_in_buffer = 0x1f82; // 0x3c *** 2688 * 3 + 2 = 8066
1175 1163 }
1176 1164
1177 1165 void set_wfp_data_shaping( void )
1178 1166 {
1179 1167 /** This function sets the data_shaping register of the waveform picker module.
1180 1168 *
1181 1169 * The value is read from one field of the parameter_dump_packet structure:\n
1182 1170 * bw_sp0_sp1_r0_r1
1183 1171 *
1184 1172 */
1185 1173
1186 1174 unsigned char data_shaping;
1187 1175
1188 1176 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1189 1177 // waveform picker : [R1 R0 SP1 SP0 BW]
1190 1178
1191 1179 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1192 1180
1193 1181 waveform_picker_regs->data_shaping =
1194 1182 ( (data_shaping & 0x10) >> 4 ) // BW
1195 1183 + ( (data_shaping & 0x08) >> 2 ) // SP0
1196 1184 + ( (data_shaping & 0x04) ) // SP1
1197 1185 + ( (data_shaping & 0x02) << 2 ) // R0
1198 1186 + ( (data_shaping & 0x01) << 4 ); // R1
1199 1187 }
1200 1188
1201 1189 void set_wfp_burst_enable_register( unsigned char mode )
1202 1190 {
1203 1191 /** This function sets the waveform picker burst_enable register depending on the mode.
1204 1192 *
1205 1193 * @param mode is the LFR mode to launch.
1206 1194 *
1207 1195 * The burst bits shall be before the enable bits.
1208 1196 *
1209 1197 */
1210 1198
1211 1199 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1212 1200 // the burst bits shall be set first, before the enable bits
1213 1201 switch(mode) {
1214 1202 case(LFR_MODE_NORMAL):
1215 1203 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1216 1204 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1217 1205 break;
1218 1206 case(LFR_MODE_BURST):
1219 1207 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1220 1208 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1221 1209 break;
1222 1210 case(LFR_MODE_SBM1):
1223 1211 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1224 1212 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1225 1213 break;
1226 1214 case(LFR_MODE_SBM2):
1227 1215 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1228 1216 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1229 1217 break;
1230 1218 default:
1231 1219 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1232 1220 break;
1233 1221 }
1234 1222 }
1235 1223
1236 1224 void set_wfp_delta_snapshot( void )
1237 1225 {
1238 1226 /** This function sets the delta_snapshot register of the waveform picker module.
1239 1227 *
1240 1228 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1241 1229 * - sy_lfr_n_swf_p[0]
1242 1230 * - sy_lfr_n_swf_p[1]
1243 1231 *
1244 1232 */
1245 1233
1246 1234 unsigned int delta_snapshot;
1247 1235 unsigned int delta_snapshot_in_T2;
1248 1236
1249 1237 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1250 1238 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1251 1239
1252 1240 delta_snapshot_in_T2 = delta_snapshot * 256;
1253 1241 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2; // max 4 bytes
1254 1242 }
1255 1243
1256 1244 void set_wfp_delta_f0_f0_2( void )
1257 1245 {
1258 1246 unsigned int delta_snapshot;
1259 1247 unsigned int nb_samples_per_snapshot;
1260 1248 float delta_f0_in_float;
1261 1249
1262 1250 delta_snapshot = waveform_picker_regs->delta_snapshot;
1263 1251 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1264 1252 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1265 1253
1266 1254 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1267 1255 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1268 1256 }
1269 1257
1270 1258 void set_wfp_delta_f1( void )
1271 1259 {
1272 1260 unsigned int delta_snapshot;
1273 1261 unsigned int nb_samples_per_snapshot;
1274 1262 float delta_f1_in_float;
1275 1263
1276 1264 delta_snapshot = waveform_picker_regs->delta_snapshot;
1277 1265 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1278 1266 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1279 1267
1280 1268 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1281 1269 }
1282 1270
1283 1271 void set_wfp_delta_f2()
1284 1272 {
1285 1273 unsigned int delta_snapshot;
1286 1274 unsigned int nb_samples_per_snapshot;
1287 1275
1288 1276 delta_snapshot = waveform_picker_regs->delta_snapshot;
1289 1277 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1290 1278
1291 1279 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1292 1280 }
1293 1281
1294 1282 //*****************
1295 1283 // local parameters
1296 1284 void set_local_nb_interrupt_f0_MAX( void )
1297 1285 {
1298 1286 /** This function sets the value of the nb_interrupt_f0_MAX local parameter.
1299 1287 *
1300 1288 * This parameter is used for the SM validation only.\n
1301 1289 * The software waits param_local.local_nb_interrupt_f0_MAX interruptions from the spectral matrices
1302 1290 * module before launching a basic processing.
1303 1291 *
1304 1292 */
1305 1293
1306 1294 param_local.local_nb_interrupt_f0_MAX = ( (parameter_dump_packet.sy_lfr_n_asm_p[0]) * 256
1307 1295 + parameter_dump_packet.sy_lfr_n_asm_p[1] ) * 100;
1308 1296 }
1309 1297
1310 1298 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1311 1299 {
1312 1300 unsigned short *sequence_cnt;
1313 1301 unsigned short segmentation_grouping_flag;
1314 1302 unsigned short new_packet_sequence_control;
1315 1303
1316 1304 if ( (sid ==SID_NORM_SWF_F0) || (sid ==SID_NORM_SWF_F1) || (sid ==SID_NORM_SWF_F2)
1317 1305 || (sid ==SID_NORM_CWF_F3) || (sid==SID_NORM_CWF_LONG_F3) || (sid ==SID_BURST_CWF_F2) )
1318 1306 {
1319 1307 sequence_cnt = &sequenceCounters_SCIENCE_NORMAL_BURST;
1320 1308 }
1321 1309 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2) )
1322 1310 {
1323 1311 sequence_cnt = &sequenceCounters_SCIENCE_SBM1_SBM2;
1324 1312 }
1325 1313 else
1326 1314 {
1327 1315 sequence_cnt = NULL;
1328 1316 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1329 1317 }
1330 1318
1331 1319 if (sequence_cnt != NULL)
1332 1320 {
1333 1321 segmentation_grouping_flag = (packet_sequence_control[ 0 ] & 0xc0) << 8;
1334 1322 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1335 1323
1336 1324 new_packet_sequence_control = segmentation_grouping_flag | *sequence_cnt ;
1337 1325
1338 1326 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1339 1327 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1340 1328
1341 1329 // increment the sequence counter for the next packet
1342 1330 if ( *sequence_cnt < SEQ_CNT_MAX)
1343 1331 {
1344 1332 *sequence_cnt = *sequence_cnt + 1;
1345 1333 }
1346 1334 else
1347 1335 {
1348 1336 *sequence_cnt = 0;
1349 1337 }
1350 1338 }
1351 1339 }
General Comments 0
You need to be logged in to leave comments. Login now