##// END OF EJS Templates
Sync
paul -
r97:6e0139d937f6 VHDLib206
parent child
Show More
@@ -1,339 +1,339
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.0, 2014-02-13T07:01:15. -->
3 <!-- Written by QtCreator 3.0.0, 2014-02-14T07:07:03. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">1</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop</value>
55 55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop</value>
56 56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{e04e3924-0bd8-4708-be18-f1474e45608e}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 72 </valuemap>
73 73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 79 <value type="QString">-w</value>
80 80 <value type="QString">-r</value>
81 81 </valuelist>
82 82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 85 </valuemap>
86 86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 90 </valuemap>
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 98 <value type="QString">-w</value>
99 99 <value type="QString">-r</value>
100 100 </valuelist>
101 101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 104 </valuemap>
105 105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 109 </valuemap>
110 110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 118 </valuemap>
119 119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 126 </valuemap>
127 127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 131 </valuemap>
132 132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 153 <value type="int">0</value>
154 154 <value type="int">1</value>
155 155 <value type="int">2</value>
156 156 <value type="int">3</value>
157 157 <value type="int">4</value>
158 158 <value type="int">5</value>
159 159 <value type="int">6</value>
160 160 <value type="int">7</value>
161 161 <value type="int">8</value>
162 162 <value type="int">9</value>
163 163 <value type="int">10</value>
164 164 <value type="int">11</value>
165 165 <value type="int">12</value>
166 166 <value type="int">13</value>
167 167 <value type="int">14</value>
168 168 </valuelist>
169 169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 180 <value type="bool" key="RunConfiguration.UseCppDebugger">false</value>
181 181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">true</value>
182 182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 185 </valuemap>
186 186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 187 </valuemap>
188 188 </data>
189 189 <data>
190 190 <variable>ProjectExplorer.Project.Target.1</variable>
191 191 <valuemap type="QVariantMap">
192 192 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
193 193 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
194 194 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
195 195 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
196 196 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
197 197 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
198 198 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
199 199 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
200 200 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
201 201 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
202 202 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
203 203 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
204 204 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
205 205 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
206 206 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
207 207 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
208 208 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
209 209 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
210 210 </valuemap>
211 211 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
212 212 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
213 213 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
214 214 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
215 215 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
216 216 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
217 217 <value type="QString">-w</value>
218 218 <value type="QString">-r</value>
219 219 </valuelist>
220 220 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
221 221 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
222 222 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
223 223 </valuemap>
224 224 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
225 225 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
226 226 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
227 227 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
228 228 </valuemap>
229 229 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
230 230 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
231 231 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
232 232 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
233 233 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
234 234 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
235 235 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
236 236 <value type="QString">-w</value>
237 237 <value type="QString">-r</value>
238 238 </valuelist>
239 239 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
240 240 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
241 241 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
242 242 </valuemap>
243 243 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
244 244 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
245 245 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
246 246 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
247 247 </valuemap>
248 248 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
249 249 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
250 250 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
251 251 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
252 252 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
253 253 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
254 254 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
255 255 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
256 256 </valuemap>
257 257 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
258 258 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
259 259 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
260 260 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
261 261 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
262 262 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
263 263 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
264 264 </valuemap>
265 265 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
266 266 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
267 267 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
268 268 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
269 269 </valuemap>
270 270 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
271 271 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
272 272 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
273 273 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
274 274 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
275 275 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
276 276 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
277 277 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
278 278 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
279 279 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
280 280 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
281 281 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
282 282 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
283 283 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
284 284 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
285 285 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
286 286 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
287 287 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
288 288 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
289 289 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
290 290 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
291 291 <value type="int">0</value>
292 292 <value type="int">1</value>
293 293 <value type="int">2</value>
294 294 <value type="int">3</value>
295 295 <value type="int">4</value>
296 296 <value type="int">5</value>
297 297 <value type="int">6</value>
298 298 <value type="int">7</value>
299 299 <value type="int">8</value>
300 300 <value type="int">9</value>
301 301 <value type="int">10</value>
302 302 <value type="int">11</value>
303 303 <value type="int">12</value>
304 304 <value type="int">13</value>
305 305 <value type="int">14</value>
306 306 </valuelist>
307 307 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
308 308 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
309 309 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
310 310 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
311 311 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
312 312 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
313 313 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
314 314 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
315 315 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
316 316 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
317 317 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
318 318 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
319 319 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
320 320 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
321 321 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
322 322 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
323 323 </valuemap>
324 324 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
325 325 </valuemap>
326 326 </data>
327 327 <data>
328 328 <variable>ProjectExplorer.Project.TargetCount</variable>
329 329 <value type="int">2</value>
330 330 </data>
331 331 <data>
332 332 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
333 333 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
334 334 </data>
335 335 <data>
336 336 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
337 337 <value type="int">15</value>
338 338 </data>
339 339 </qtcreator>
@@ -1,230 +1,230
1 1 #ifndef FSW_PARAMS_H_INCLUDED
2 2 #define FSW_PARAMS_H_INCLUDED
3 3
4 4 #include "grlib_regs.h"
5 5 #include "fsw_params_processing.h"
6 6 #include "tm_byte_positions.h"
7 7 #include "ccsds_types.h"
8 8
9 9 #define GRSPW_DEVICE_NAME "/dev/grspw0"
10 10 #define UART_DEVICE_NAME "/dev/console"
11 11
12 12 typedef struct ring_node
13 13 {
14 14 struct ring_node *previous;
15 15 int buffer_address;
16 16 struct ring_node *next;
17 17 unsigned int status;
18 18 } ring_node;
19 19
20 20 typedef struct ring_node_sm
21 21 {
22 22 struct ring_node *previous;
23 23 volatile int *buffer_address;
24 24 struct ring_node *next;
25 25 unsigned int status;
26 26 } ring_node_sm;
27 27
28 28 //************************
29 29 // flight software version
30 30 // this parameters is handled by the Qt project options
31 31
32 32 //#define NB_SAMPLES_PER_SNAPSHOT 2048
33 33 #define NB_SAMPLES_PER_SNAPSHOT 2352 // 336 * 7 = 2352
34 34 #define TIME_OFFSET 2
35 35 #define TIME_OFFSET_IN_BYTES 8
36 36 #define WAVEFORM_EXTENDED_HEADER_OFFSET 22
37 37 #define NB_BYTES_SWF_BLK (2 * 6)
38 38 #define NB_WORDS_SWF_BLK 3
39 39 #define NB_BYTES_CWF3_LIGHT_BLK 6
40 40 #define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
41 41 #define NB_RING_NODES_F0 3 // AT LEAST 3
42 42 #define NB_RING_NODES_F1 5 // AT LEAST 3
43 43 #define NB_RING_NODES_F2 5 // AT LEAST 3
44 #define NB_RING_NODES_ASM_F0 12 // AT LEAST 3
44 #define NB_RING_NODES_ASM_F0 12 // AT LEAST 3
45 45 #define NB_RING_NODES_ASM_F1 2 // AT LEAST 3
46 46 #define NB_RING_NODES_ASM_F2 2 // AT LEAST 3
47 47
48 48 //**********
49 49 // LFR MODES
50 50 #define LFR_MODE_STANDBY 0
51 51 #define LFR_MODE_NORMAL 1
52 52 #define LFR_MODE_BURST 2
53 53 #define LFR_MODE_SBM1 3
54 54 #define LFR_MODE_SBM2 4
55 55 #define LFR_MODE_NORMAL_CWF_F3 5
56 56
57 57 #define RTEMS_EVENT_MODE_STANDBY RTEMS_EVENT_0
58 58 #define RTEMS_EVENT_MODE_NORMAL RTEMS_EVENT_1
59 59 #define RTEMS_EVENT_MODE_BURST RTEMS_EVENT_2
60 60 #define RTEMS_EVENT_MODE_SBM1 RTEMS_EVENT_3
61 61 #define RTEMS_EVENT_MODE_SBM2 RTEMS_EVENT_4
62 62 #define RTEMS_EVENT_MODE_SBM2_WFRM RTEMS_EVENT_5
63 63 #define RTEMS_EVENT_MODE_NORMAL_SWF_F0 RTEMS_EVENT_6
64 64 #define RTEMS_EVENT_MODE_NORMAL_SWF_F1 RTEMS_EVENT_7
65 65 #define RTEMS_EVENT_MODE_NORMAL_SWF_F2 RTEMS_EVENT_8
66 66
67 67 //****************************
68 68 // LFR DEFAULT MODE PARAMETERS
69 69 // COMMON
70 70 #define DEFAULT_SY_LFR_COMMON0 0x00
71 71 #define DEFAULT_SY_LFR_COMMON1 0x10 // default value 0 0 0 1 0 0 0 0
72 72 // NORM
73 73 #define SY_LFR_N_SWF_L 2048 // nb sample
74 #define SY_LFR_N_SWF_P 20 // sec
74 #define SY_LFR_N_SWF_P 300 // sec
75 75 #define SY_LFR_N_ASM_P 3600 // sec
76 76 #define SY_LFR_N_BP_P0 4 // sec
77 77 #define SY_LFR_N_BP_P1 20 // sec
78 78 #define MIN_DELTA_SNAPSHOT 16 // sec
79 79 // BURST
80 80 #define DEFAULT_SY_LFR_B_BP_P0 1 // sec
81 81 #define DEFAULT_SY_LFR_B_BP_P1 5 // sec
82 82 // SBM1
83 83 #define DEFAULT_SY_LFR_S1_BP_P0 1 // sec
84 84 #define DEFAULT_SY_LFR_S1_BP_P1 1 // sec
85 85 // SBM2
86 86 #define DEFAULT_SY_LFR_S2_BP_P0 1 // sec
87 87 #define DEFAULT_SY_LFR_S2_BP_P1 5 // sec
88 88 // ADDITIONAL PARAMETERS
89 89 #define TIME_BETWEEN_TWO_SWF_PACKETS 30 // nb x 10 ms => 300 ms
90 90 #define TIME_BETWEEN_TWO_CWF3_PACKETS 1000 // nb x 10 ms => 10 s
91 91 // STATUS WORD
92 92 #define DEFAULT_STATUS_WORD_BYTE0 0x0d // [0000] [1] [101] mode 4 bits / SPW enabled 1 bit / state is run 3 bits
93 93 #define DEFAULT_STATUS_WORD_BYTE1 0x00
94 94 //
95 95 #define SY_LFR_DPU_CONNECT_TIMEOUT 100 // 100 * 10 ms = 1 s
96 96 #define SY_LFR_DPU_CONNECT_ATTEMPT 3
97 97 //****************************
98 98
99 99 //*****************************
100 100 // APB REGISTERS BASE ADDRESSES
101 101 #define REGS_ADDR_APBUART 0x80000100
102 102 #define REGS_ADDR_GPTIMER 0x80000300
103 103 #define REGS_ADDR_GRSPW 0x80000500
104 104 #define REGS_ADDR_TIME_MANAGEMENT 0x80000600
105 105 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
106 106
107 107 #ifdef GSA
108 108 #else
109 109 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f20
110 110 #endif
111 111
112 112 #define APBUART_CTRL_REG_MASK_DB 0xfffff7ff
113 113 #define APBUART_CTRL_REG_MASK_TE 0x00000002
114 114 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400 (0x50)
115 115
116 116 //**********
117 117 // IRQ LINES
118 118 #define IRQ_SM 9
119 119 #define IRQ_SPARC_SM 0x19 // see sparcv8.pdf p.76 for interrupt levels
120 120 #define IRQ_WF 10
121 121 #define IRQ_SPARC_WF 0x1a // see sparcv8.pdf p.76 for interrupt levels
122 122 #define IRQ_TIME1 12
123 123 #define IRQ_SPARC_TIME1 0x1c // see sparcv8.pdf p.76 for interrupt levels
124 124 #define IRQ_TIME2 13
125 125 #define IRQ_SPARC_TIME2 0x1d // see sparcv8.pdf p.76 for interrupt levels
126 126 #define IRQ_WAVEFORM_PICKER 14
127 127 #define IRQ_SPARC_WAVEFORM_PICKER 0x1e // see sparcv8.pdf p.76 for interrupt levels
128 128 #define IRQ_SPECTRAL_MATRIX 6
129 129 #define IRQ_SPARC_SPECTRAL_MATRIX 0x16 // see sparcv8.pdf p.76 for interrupt levels
130 130
131 131 //*****
132 132 // TIME
133 133 #define CLKDIV_SM_SIMULATOR (10000 - 1) // 10 ms
134 134 #define CLKDIV_WF_SIMULATOR (10000000 - 1) // 10 000 000 * 1 us = 10 s
135 135 #define TIMER_SM_SIMULATOR 1
136 136 #define TIMER_WF_SIMULATOR 2
137 137 #define HK_PERIOD 100 // 100 * 10ms => 1sec
138 138
139 139 //**********
140 140 // LPP CODES
141 141 #define LFR_SUCCESSFUL 0
142 142 #define LFR_DEFAULT 1
143 143
144 144 //******
145 145 // RTEMS
146 146 #define TASKID_RECV 1
147 147 #define TASKID_ACTN 2
148 148 #define TASKID_SPIQ 3
149 149 #define TASKID_SMIQ 4
150 150 #define TASKID_STAT 5
151 151 #define TASKID_AVF0 6
152 152 #define TASKID_BPF0 7
153 153 #define TASKID_WFRM 8
154 154 #define TASKID_DUMB 9
155 155 #define TASKID_HOUS 10
156 156 #define TASKID_MATR 11
157 157 #define TASKID_CWF3 12
158 158 #define TASKID_CWF2 13
159 159 #define TASKID_CWF1 14
160 160 #define TASKID_SEND 15
161 161 #define TASKID_WTDG 16
162 162
163 163 #define TASK_PRIORITY_SPIQ 5
164 164 #define TASK_PRIORITY_SMIQ 10
165 165 #define TASK_PRIORITY_WTDG 20
166 166 #define TASK_PRIORITY_HOUS 30
167 167 #define TASK_PRIORITY_CWF1 35 // CWF1 and CWF2 are never running together
168 168 #define TASK_PRIORITY_CWF2 35 //
169 169 #define TASK_PRIORITY_WFRM 40
170 170 #define TASK_PRIORITY_CWF3 40 // there is a printf in this function, be careful with its priority wrt CWF1
171 171 #define TASK_PRIORITY_SEND 45
172 172 #define TASK_PRIORITY_RECV 50
173 173 #define TASK_PRIORITY_ACTN 50
174 174 #define TASK_PRIORITY_AVF0 60
175 175 #define TASK_PRIORITY_BPF0 60
176 176 #define TASK_PRIORITY_MATR 100
177 177 #define TASK_PRIORITY_STAT 200
178 178 #define TASK_PRIORITY_DUMB 200
179 179
180 180 #define ACTION_MSG_QUEUE_COUNT 10
181 181 #define ACTION_MSG_PKTS_COUNT 50
182 182 #define ACTION_MSG_PKTS_MAX_SIZE (PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES)
183 183 #define ACTION_MSG_SPW_IOCTL_SEND_SIZE 24 // hlen *hdr dlen *data sent options
184 184
185 185 #define QUEUE_RECV 0
186 186 #define QUEUE_SEND 1
187 187
188 188 //*******
189 189 // MACROS
190 190 #ifdef PRINT_MESSAGES_ON_CONSOLE
191 191 #define PRINTF(x) printf(x);
192 192 #define PRINTF1(x,y) printf(x,y);
193 193 #define PRINTF2(x,y,z) printf(x,y,z);
194 194 #else
195 195 #define PRINTF(x) ;
196 196 #define PRINTF1(x,y) ;
197 197 #define PRINTF2(x,y,z) ;
198 198 #endif
199 199
200 200 #ifdef BOOT_MESSAGES
201 201 #define BOOT_PRINTF(x) printf(x);
202 202 #define BOOT_PRINTF1(x,y) printf(x,y);
203 203 #define BOOT_PRINTF2(x,y,z) printf(x,y,z);
204 204 #else
205 205 #define BOOT_PRINTF(x) ;
206 206 #define BOOT_PRINTF1(x,y) ;
207 207 #define BOOT_PRINTF2(x,y,z) ;
208 208 #endif
209 209
210 210 #ifdef DEBUG_MESSAGES
211 211 #define DEBUG_PRINTF(x) printf(x);
212 212 #define DEBUG_PRINTF1(x,y) printf(x,y);
213 213 #define DEBUG_PRINTF2(x,y,z) printf(x,y,z);
214 214 #else
215 215 #define DEBUG_PRINTF(x) ;
216 216 #define DEBUG_PRINTF1(x,y) ;
217 217 #define DEBUG_PRINTF2(x,y,z) ;
218 218 #endif
219 219
220 220 #define CPU_USAGE_REPORT_PERIOD 6 // * 10 s = period
221 221
222 222 struct param_local_str{
223 223 unsigned int local_sbm1_nb_cwf_sent;
224 224 unsigned int local_sbm1_nb_cwf_max;
225 225 unsigned int local_sbm2_nb_cwf_sent;
226 226 unsigned int local_sbm2_nb_cwf_max;
227 227 unsigned int local_nb_interrupt_f0_MAX;
228 228 };
229 229
230 230 #endif // FSW_PARAMS_H_INCLUDED
@@ -1,92 +1,93
1 1 #ifndef WF_HANDLER_H_INCLUDED
2 2 #define WF_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <stdio.h>
7 7 #include <math.h>
8 8
9 9 #include "fsw_params.h"
10 10 #include "fsw_spacewire.h"
11 11 #include "fsw_misc.h"
12 12
13 13 #define pi 3.1415
14 14
15 15 extern int fdSPW;
16 16
17 17 //*****************
18 18 // waveform buffers
19 19 // F0
20 20 //extern volatile int wf_snap_f0[ ];
21 21 // F1 F2
22 22 extern volatile int wf_snap_f0[ ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 46 ];
23 23 extern volatile int wf_snap_f1[ ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 46 ];
24 24 extern volatile int wf_snap_f2[ ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 46 ];
25 25 // F3
26 26 extern volatile int wf_cont_f3_a[ ];
27 27 extern volatile int wf_cont_f3_b[ ];
28 28 extern char wf_cont_f3_light[ ];
29 29
30 30 #ifdef VHDL_DEV
31 31 extern waveform_picker_regs_new_t *waveform_picker_regs;
32 32 #else
33 33 extern waveform_picker_regs_t *waveform_picker_regs;
34 34 #endif
35 35 extern time_management_regs_t *time_management_regs;
36 36 extern Packet_TM_LFR_HK_t housekeeping_packet;
37 37 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
38 38 extern struct param_local_str param_local;
39 39
40 40 extern unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
41 41 extern unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
42 42
43 43 extern rtems_id Task_id[20]; /* array of task ids */
44 44
45 45 extern unsigned char lfrCurrentMode;
46 46
47 47 rtems_isr waveforms_isr( rtems_vector_number vector );
48 48 rtems_isr waveforms_isr_alt( rtems_vector_number vector );
49 49 rtems_task wfrm_task( rtems_task_argument argument );
50 50 rtems_task cwf3_task( rtems_task_argument argument );
51 51 rtems_task cwf2_task( rtems_task_argument argument );
52 52 rtems_task cwf1_task( rtems_task_argument argument );
53 53
54 54 //******************
55 55 // general functions
56 56 void init_waveforms( void );
57 57 void init_waveform_rings( void );
58 58 void reset_current_ring_nodes( void );
59 59 //
60 60 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF );
61 61 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
62 62 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
63 63 //
64 64 int send_waveform_SWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id );
65 65 int send_waveform_CWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
66 66 int send_waveform_CWF3( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
67 67 int send_waveform_CWF3_light( volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
68 68 //
69 69 void compute_acquisition_time(unsigned int *coarseTime, unsigned int *fineTime, unsigned int sid, unsigned char pa_lfr_pkt_nr );
70 70 //
71 71 rtems_id get_pkts_queue_id( void );
72 72
73 73 //**************
74 74 // wfp registers
75 void set_wfp_data_shaping();
76 char set_wfp_delta_snapshot();
75 // RESET
76 void reset_wfp_burst_enable( void );
77 void reset_wfp_status(void);
78 void reset_waveform_picker_regs( void );
79 // SET
80 void set_wfp_data_shaping(void);
77 81 void set_wfp_burst_enable_register( unsigned char mode );
78 void reset_wfp_burst_enable();
79 void reset_wfp_status();
80 void reset_waveform_picker_regs_vhdl_dev();
81 void reset_waveform_picker_regs_vhdl_dev_debug();
82 void reset_waveform_picker_regs_vhdl_dev_debug_64();
83 void reset_waveform_picker_regs();
84 void reset_new_waveform_picker_regs();
82 void set_wfp_delta_snapshot( void );
83 void set_wfp_delta_f0_f0_2( void );
84 void set_wfp_delta_f1( void );
85 void set_wfp_delta_f2( void );
85 86
86 87 //*****************
87 88 // local parameters
88 89 void set_local_nb_interrupt_f0_MAX( void );
89 90
90 91 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid );
91 92
92 93 #endif // WF_HANDLER_H_INCLUDED
@@ -1,837 +1,837
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14
15 15 //***********
16 16 // RTEMS TASK
17 17
18 18 rtems_task actn_task( rtems_task_argument unused )
19 19 {
20 20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 21 *
22 22 * @param unused is the starting argument of the RTEMS task
23 23 *
24 24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 25 * on the incoming TeleCommand.
26 26 *
27 27 */
28 28
29 29 int result;
30 30 rtems_status_code status; // RTEMS status code
31 31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 32 size_t size; // size of the incoming TC packet
33 33 unsigned char subtype; // subtype of the current TC packet
34 34 unsigned char time[6];
35 35 rtems_id queue_rcv_id;
36 36 rtems_id queue_snd_id;
37 37
38 38 status = get_message_queue_id_recv( &queue_rcv_id );
39 39 if (status != RTEMS_SUCCESSFUL)
40 40 {
41 41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 42 }
43 43
44 44 status = get_message_queue_id_send( &queue_snd_id );
45 45 if (status != RTEMS_SUCCESSFUL)
46 46 {
47 47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 48 }
49 49
50 50 result = LFR_SUCCESSFUL;
51 51 subtype = 0; // subtype of the current TC packet
52 52
53 53 BOOT_PRINTF("in ACTN *** \n")
54 54
55 55 while(1)
56 56 {
57 57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 59 getTime( time ); // set time to the current time
60 60 if (status!=RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 63 }
64 64 else
65 65 {
66 66 subtype = TC.serviceSubType;
67 67 switch(subtype)
68 68 {
69 69 case TC_SUBTYPE_RESET:
70 70 result = action_reset( &TC, queue_snd_id, time );
71 71 close_action( &TC, result, queue_snd_id, time );
72 72 break;
73 73 //
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id, time );
77 77 break;
78 78 //
79 79 case TC_SUBTYPE_LOAD_NORM:
80 80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 81 close_action( &TC, result, queue_snd_id, time );
82 82 break;
83 83 //
84 84 case TC_SUBTYPE_LOAD_BURST:
85 85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 86 close_action( &TC, result, queue_snd_id, time );
87 87 break;
88 88 //
89 89 case TC_SUBTYPE_LOAD_SBM1:
90 90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 91 close_action( &TC, result, queue_snd_id, time );
92 92 break;
93 93 //
94 94 case TC_SUBTYPE_LOAD_SBM2:
95 95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 96 close_action( &TC, result, queue_snd_id, time );
97 97 break;
98 98 //
99 99 case TC_SUBTYPE_DUMP:
100 100 result = action_dump_par( queue_snd_id );
101 101 close_action( &TC, result, queue_snd_id, time );
102 102 break;
103 103 //
104 104 case TC_SUBTYPE_ENTER:
105 105 result = action_enter_mode( &TC, queue_snd_id, time );
106 106 close_action( &TC, result, queue_snd_id, time );
107 107 break;
108 108 //
109 109 case TC_SUBTYPE_UPDT_INFO:
110 110 result = action_update_info( &TC, queue_snd_id );
111 111 close_action( &TC, result, queue_snd_id, time );
112 112 break;
113 113 //
114 114 case TC_SUBTYPE_EN_CAL:
115 115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id, time );
117 117 break;
118 118 //
119 119 case TC_SUBTYPE_DIS_CAL:
120 120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 121 close_action( &TC, result, queue_snd_id, time );
122 122 break;
123 123 //
124 124 case TC_SUBTYPE_UPDT_TIME:
125 125 result = action_update_time( &TC );
126 126 close_action( &TC, result, queue_snd_id, time );
127 127 break;
128 128 //
129 129 default:
130 130 break;
131 131 }
132 132 }
133 133 }
134 134 }
135 135
136 136 //***********
137 137 // TC ACTIONS
138 138
139 139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 140 {
141 141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 142 *
143 143 * @param TC points to the TeleCommand packet that is being processed
144 144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 145 *
146 146 */
147 147
148 148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 149 return LFR_DEFAULT;
150 150 }
151 151
152 152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
153 153 {
154 154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 158 *
159 159 */
160 160
161 161 rtems_status_code status;
162 162 unsigned char requestedMode;
163 163
164 164 requestedMode = TC->dataAndCRC[1];
165 165
166 166 if ( (requestedMode != LFR_MODE_STANDBY)
167 167 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
168 168 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
169 169 {
170 170 status = RTEMS_UNSATISFIED;
171 171 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_LFR_MODE, requestedMode, time );
172 172 }
173 173 else
174 174 {
175 175 printf("in action_enter_mode *** enter mode %d\n", requestedMode);
176 176
177 177 #ifdef PRINT_TASK_STATISTICS
178 178 if (requestedMode != LFR_MODE_STANDBY)
179 179 {
180 180 rtems_cpu_usage_reset();
181 181 maxCount = 0;
182 182 }
183 183 #endif
184 184
185 185 status = transition_validation(requestedMode);
186 186
187 187 if ( status == LFR_SUCCESSFUL ) {
188 188 if ( lfrCurrentMode != LFR_MODE_STANDBY)
189 189 {
190 190 status = stop_current_mode();
191 191 }
192 192 if (status != RTEMS_SUCCESSFUL)
193 193 {
194 194 PRINTF("ERR *** in action_enter *** stop_current_mode\n")
195 195 }
196 196 status = enter_mode( requestedMode );
197 197 }
198 198 else
199 199 {
200 200 PRINTF("ERR *** in action_enter *** transition rejected\n")
201 201 send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
202 202 }
203 203 }
204 204
205 205 return status;
206 206 }
207 207
208 208 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
209 209 {
210 210 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
211 211 *
212 212 * @param TC points to the TeleCommand packet that is being processed
213 213 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
214 214 *
215 215 * @return LFR directive status code:
216 216 * - LFR_DEFAULT
217 217 * - LFR_SUCCESSFUL
218 218 *
219 219 */
220 220
221 221 unsigned int val;
222 222 int result;
223 223
224 224 result = LFR_SUCCESSFUL;
225 225
226 226 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
227 227 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
228 228 val++;
229 229 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
230 230 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
231 231
232 232 return result;
233 233 }
234 234
235 235 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
236 236 {
237 237 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
238 238 *
239 239 * @param TC points to the TeleCommand packet that is being processed
240 240 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
241 241 *
242 242 */
243 243
244 244 int result;
245 245 unsigned char lfrMode;
246 246
247 247 result = LFR_DEFAULT;
248 248 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
249 249
250 250 if ( (lfrMode == LFR_MODE_STANDBY) || (lfrMode == LFR_MODE_BURST) || (lfrMode == LFR_MODE_SBM2) ) {
251 251 send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
252 252 result = LFR_DEFAULT;
253 253 }
254 254 else {
255 255 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
256 256 result = LFR_DEFAULT;
257 257 }
258 258 return result;
259 259 }
260 260
261 261 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
262 262 {
263 263 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
264 264 *
265 265 * @param TC points to the TeleCommand packet that is being processed
266 266 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
267 267 *
268 268 */
269 269
270 270 int result;
271 271 unsigned char lfrMode;
272 272
273 273 result = LFR_DEFAULT;
274 274 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
275 275
276 276 if ( (lfrMode == LFR_MODE_STANDBY) || (lfrMode == LFR_MODE_BURST) || (lfrMode == LFR_MODE_SBM2) ) {
277 277 send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
278 278 result = LFR_DEFAULT;
279 279 }
280 280 else {
281 281 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
282 282 result = LFR_DEFAULT;
283 283 }
284 284 return result;
285 285 }
286 286
287 287 int action_update_time(ccsdsTelecommandPacket_t *TC)
288 288 {
289 289 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
290 290 *
291 291 * @param TC points to the TeleCommand packet that is being processed
292 292 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
293 293 *
294 294 * @return LFR_SUCCESSFUL
295 295 *
296 296 */
297 297
298 298 unsigned int val;
299 299
300 300 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
301 301 + (TC->dataAndCRC[1] << 16)
302 302 + (TC->dataAndCRC[2] << 8)
303 303 + TC->dataAndCRC[3];
304 304 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
305 305 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
306 306 val++;
307 307 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
308 308 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
309 309 time_management_regs->ctrl = time_management_regs->ctrl | 1;
310 310
311 311 return LFR_SUCCESSFUL;
312 312 }
313 313
314 314 //*******************
315 315 // ENTERING THE MODES
316 316
317 317 int transition_validation(unsigned char requestedMode)
318 318 {
319 319 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
320 320 *
321 321 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
322 322 *
323 323 * @return LFR directive status codes:
324 324 * - LFR_SUCCESSFUL - the transition is authorized
325 325 * - LFR_DEFAULT - the transition is not authorized
326 326 *
327 327 */
328 328
329 329 int status;
330 330
331 331 switch (requestedMode)
332 332 {
333 333 case LFR_MODE_STANDBY:
334 334 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
335 335 status = LFR_DEFAULT;
336 336 }
337 337 else
338 338 {
339 339 status = LFR_SUCCESSFUL;
340 340 }
341 341 break;
342 342 case LFR_MODE_NORMAL:
343 343 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
344 344 status = LFR_DEFAULT;
345 345 }
346 346 else {
347 347 status = LFR_SUCCESSFUL;
348 348 }
349 349 break;
350 350 case LFR_MODE_BURST:
351 351 if ( lfrCurrentMode == LFR_MODE_BURST ) {
352 352 status = LFR_DEFAULT;
353 353 }
354 354 else {
355 355 status = LFR_SUCCESSFUL;
356 356 }
357 357 break;
358 358 case LFR_MODE_SBM1:
359 359 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
360 360 status = LFR_DEFAULT;
361 361 }
362 362 else {
363 363 status = LFR_SUCCESSFUL;
364 364 }
365 365 break;
366 366 case LFR_MODE_SBM2:
367 367 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
368 368 status = LFR_DEFAULT;
369 369 }
370 370 else {
371 371 status = LFR_SUCCESSFUL;
372 372 }
373 373 break;
374 374 default:
375 375 status = LFR_DEFAULT;
376 376 break;
377 377 }
378 378
379 379 return status;
380 380 }
381 381
382 382 int stop_current_mode()
383 383 {
384 384 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
385 385 *
386 386 * @return RTEMS directive status codes:
387 387 * - RTEMS_SUCCESSFUL - task restarted successfully
388 388 * - RTEMS_INVALID_ID - task id invalid
389 389 * - RTEMS_ALREADY_SUSPENDED - task already suspended
390 390 *
391 391 */
392 392
393 393 rtems_status_code status;
394 394
395 395 status = RTEMS_SUCCESSFUL;
396 396
397 397 // mask interruptions
398 398 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
399 399 //LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
400 400 LEON_Mask_interrupt( IRQ_SM ); // mask spectral matrix interrupt simulator
401 401 // reset registers
402 402 reset_wfp_burst_enable(); // reset burst and enable bits
403 403 reset_wfp_status(); // reset all the status bits
404 404 // clear interruptions
405 405 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
406 406 //LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
407 407 LEON_Clear_interrupt( IRQ_SM ); // clear spectral matrix interrupt simulator
408 408 //**********************
409 409 // suspend several tasks
410 410 if (lfrCurrentMode != LFR_MODE_STANDBY) {
411 411 status = suspend_science_tasks();
412 412 }
413 413
414 414 if (status != RTEMS_SUCCESSFUL)
415 415 {
416 416 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
417 417 }
418 418
419 419 return status;
420 420 }
421 421
422 422 int enter_mode(unsigned char mode )
423 423 {
424 424 /** This function is launched after a mode transition validation.
425 425 *
426 426 * @param mode is the mode in which LFR will be put.
427 427 *
428 428 * @return RTEMS directive status codes:
429 429 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
430 430 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
431 431 *
432 432 */
433 433
434 434 rtems_status_code status;
435 435
436 436 status = RTEMS_UNSATISFIED;
437 437
438 438 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((mode << 4) + 0x0d);
439 439 updateLFRCurrentMode();
440 440
441 441 switch(mode){
442 442 case LFR_MODE_STANDBY:
443 443 status = enter_standby_mode( );
444 444 break;
445 445 case LFR_MODE_NORMAL:
446 446 status = enter_normal_mode( );
447 447 break;
448 448 case LFR_MODE_BURST:
449 449 status = enter_burst_mode( );
450 450 break;
451 451 case LFR_MODE_SBM1:
452 452 status = enter_sbm1_mode( );
453 453 break;
454 454 case LFR_MODE_SBM2:
455 455 status = enter_sbm2_mode( );
456 456 break;
457 457 default:
458 458 status = RTEMS_UNSATISFIED;
459 459 }
460 460
461 461 if (status != RTEMS_SUCCESSFUL)
462 462 {
463 463 PRINTF("in enter_mode *** ERR\n")
464 464 status = RTEMS_UNSATISFIED;
465 465 }
466 466
467 467 return status;
468 468 }
469 469
470 470 int enter_standby_mode()
471 471 {
472 472 /** This function is used to enter the STANDBY mode.
473 473 *
474 474 * @return RTEMS directive status codes:
475 475 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
476 476 *
477 477 */
478 478
479 479 PRINTF1("maxCount = %d\n", maxCount)
480 480
481 481 #ifdef PRINT_TASK_STATISTICS
482 482 rtems_cpu_usage_report();
483 483 #endif
484 484
485 485 #ifdef PRINT_STACK_REPORT
486 486 rtems_stack_checker_report_usage();
487 487 #endif
488 488
489 489 return LFR_SUCCESSFUL;
490 490 }
491 491
492 492 int enter_normal_mode()
493 493 {
494 494 rtems_status_code status;
495 495
496 496 status = restart_science_tasks();
497 497
498 498 launch_waveform_picker( LFR_MODE_NORMAL );
499 499 // launch_spectral_matrix( LFR_MODE_NORMAL );
500 500
501 501 return status;
502 502 }
503 503
504 504 int enter_burst_mode()
505 505 {
506 506 /** This function is used to enter the STANDBY mode.
507 507 *
508 508 * @return RTEMS directive status codes:
509 509 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
510 510 * - RTEMS_INVALID_ID - task id invalid
511 511 * - RTEMS_INCORRECT_STATE - task never started
512 512 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
513 513 *
514 514 */
515 515
516 516 rtems_status_code status;
517 517
518 518 status = restart_science_tasks();
519 519
520 520 launch_waveform_picker( LFR_MODE_BURST );
521 521
522 522 return status;
523 523 }
524 524
525 525 int enter_sbm1_mode()
526 526 {
527 527 /** This function is used to enter the SBM1 mode.
528 528 *
529 529 * @return RTEMS directive status codes:
530 530 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
531 531 * - RTEMS_INVALID_ID - task id invalid
532 532 * - RTEMS_INCORRECT_STATE - task never started
533 533 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
534 534 *
535 535 */
536 536
537 537 rtems_status_code status;
538 538
539 539 status = restart_science_tasks();
540 540
541 541 launch_waveform_picker( LFR_MODE_SBM1 );
542 542
543 543 return status;
544 544 }
545 545
546 546 int enter_sbm2_mode()
547 547 {
548 548 /** This function is used to enter the SBM2 mode.
549 549 *
550 550 * @return RTEMS directive status codes:
551 551 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
552 552 * - RTEMS_INVALID_ID - task id invalid
553 553 * - RTEMS_INCORRECT_STATE - task never started
554 554 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
555 555 *
556 556 */
557 557
558 558 rtems_status_code status;
559 559
560 560 status = restart_science_tasks();
561 561
562 562 launch_waveform_picker( LFR_MODE_SBM2 );
563 563
564 564 return status;
565 565 }
566 566
567 567 int restart_science_tasks()
568 568 {
569 569 /** This function is used to restart all science tasks.
570 570 *
571 571 * @return RTEMS directive status codes:
572 572 * - RTEMS_SUCCESSFUL - task restarted successfully
573 573 * - RTEMS_INVALID_ID - task id invalid
574 574 * - RTEMS_INCORRECT_STATE - task never started
575 575 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
576 576 *
577 577 * Science tasks are AVF0, BPF0, WFRM, CWF3, CW2, CWF1
578 578 *
579 579 */
580 580
581 581 rtems_status_code status[6];
582 582 rtems_status_code ret;
583 583
584 584 ret = RTEMS_SUCCESSFUL;
585 585
586 586 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], 1 );
587 587 if (status[0] != RTEMS_SUCCESSFUL)
588 588 {
589 589 PRINTF1("in restart_science_task *** 0 ERR %d\n", status[0])
590 590 }
591 591
592 592 status[1] = rtems_task_restart( Task_id[TASKID_BPF0],1 );
593 593 if (status[1] != RTEMS_SUCCESSFUL)
594 594 {
595 595 PRINTF1("in restart_science_task *** 1 ERR %d\n", status[1])
596 596 }
597 597
598 598 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
599 599 if (status[2] != RTEMS_SUCCESSFUL)
600 600 {
601 601 PRINTF1("in restart_science_task *** 2 ERR %d\n", status[2])
602 602 }
603 603
604 604 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
605 605 if (status[3] != RTEMS_SUCCESSFUL)
606 606 {
607 607 PRINTF1("in restart_science_task *** 3 ERR %d\n", status[3])
608 608 }
609 609
610 610 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
611 611 if (status[4] != RTEMS_SUCCESSFUL)
612 612 {
613 613 PRINTF1("in restart_science_task *** 4 ERR %d\n", status[4])
614 614 }
615 615
616 616 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
617 617 if (status[5] != RTEMS_SUCCESSFUL)
618 618 {
619 619 PRINTF1("in restart_science_task *** 5 ERR %d\n", status[5])
620 620 }
621 621
622 622 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) || (status[2] != RTEMS_SUCCESSFUL) ||
623 623 (status[3] != RTEMS_SUCCESSFUL) || (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
624 624 {
625 625 ret = RTEMS_UNSATISFIED;
626 626 }
627 627
628 628 return ret;
629 629 }
630 630
631 631 int suspend_science_tasks()
632 632 {
633 633 /** This function suspends the science tasks.
634 634 *
635 635 * @return RTEMS directive status codes:
636 636 * - RTEMS_SUCCESSFUL - task restarted successfully
637 637 * - RTEMS_INVALID_ID - task id invalid
638 638 * - RTEMS_ALREADY_SUSPENDED - task already suspended
639 639 *
640 640 */
641 641
642 642 rtems_status_code status;
643 643
644 644 status = rtems_task_suspend( Task_id[TASKID_AVF0] );
645 645 if (status != RTEMS_SUCCESSFUL)
646 646 {
647 647 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
648 648 }
649 649
650 650 if (status == RTEMS_SUCCESSFUL) // suspend BPF0
651 651 {
652 652 status = rtems_task_suspend( Task_id[TASKID_BPF0] );
653 653 if (status != RTEMS_SUCCESSFUL)
654 654 {
655 655 PRINTF1("in suspend_science_task *** BPF0 ERR %d\n", status)
656 656 }
657 657 }
658 658
659 659 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
660 660 {
661 661 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
662 662 if (status != RTEMS_SUCCESSFUL)
663 663 {
664 664 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
665 665 }
666 666 }
667 667
668 668 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
669 669 {
670 670 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
671 671 if (status != RTEMS_SUCCESSFUL)
672 672 {
673 673 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
674 674 }
675 675 }
676 676
677 677 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
678 678 {
679 679 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
680 680 if (status != RTEMS_SUCCESSFUL)
681 681 {
682 682 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
683 683 }
684 684 }
685 685
686 686 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
687 687 {
688 688 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
689 689 if (status != RTEMS_SUCCESSFUL)
690 690 {
691 691 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
692 692 }
693 693 }
694 694
695 695 return status;
696 696 }
697 697
698 698 void launch_waveform_picker( unsigned char mode )
699 699 {
700 700 int startDate;
701 701
702 702 reset_current_ring_nodes();
703 reset_waveform_picker_regs_vhdl_dev_debug_64();
703 reset_waveform_picker_regs();
704 704 set_wfp_burst_enable_register( mode );
705 705 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
706 706 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
707 707 startDate = time_management_regs->coarse_time + 2;
708 708 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
709 709 waveform_picker_regs->start_date = startDate;
710 710 }
711 711
712 712 void launch_spectral_matrix( unsigned char mode )
713 713 {
714 714 reset_current_sm_ring_nodes();
715 715 reset_spectral_matrix_regs();
716 716 // Spectral Matrices simulator
717 717 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
718 718 set_local_nb_interrupt_f0_MAX();
719 719 LEON_Clear_interrupt( IRQ_SM );
720 720 LEON_Unmask_interrupt( IRQ_SM );
721 721 }
722 722
723 723 //****************
724 724 // CLOSING ACTIONS
725 725 void update_last_TC_exe(ccsdsTelecommandPacket_t *TC, unsigned char *time)
726 726 {
727 727 /** This function is used to update the HK packets statistics after a successful TC execution.
728 728 *
729 729 * @param TC points to the TC being processed
730 730 * @param time is the time used to date the TC execution
731 731 *
732 732 */
733 733
734 734 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
735 735 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
736 736 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
737 737 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
738 738 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
739 739 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
740 740 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
741 741 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
742 742 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
743 743 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
744 744 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
745 745 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
746 746 }
747 747
748 748 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char *time)
749 749 {
750 750 /** This function is used to update the HK packets statistics after a TC rejection.
751 751 *
752 752 * @param TC points to the TC being processed
753 753 * @param time is the time used to date the TC rejection
754 754 *
755 755 */
756 756
757 757 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
758 758 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
759 759 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
760 760 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
761 761 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
762 762 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
763 763 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
764 764 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
765 765 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
766 766 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
767 767 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
768 768 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
769 769 }
770 770
771 771 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id, unsigned char *time)
772 772 {
773 773 /** This function is the last step of the TC execution workflow.
774 774 *
775 775 * @param TC points to the TC being processed
776 776 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
777 777 * @param queue_id is the id of the RTEMS message queue used to send TM packets
778 778 * @param time is the time used to date the TC execution
779 779 *
780 780 */
781 781
782 782 unsigned int val = 0;
783 783
784 784 if (result == LFR_SUCCESSFUL)
785 785 {
786 786 if ( !( (TC->serviceType==TC_TYPE_TIME) && (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
787 787 &&
788 788 !( (TC->serviceType==TC_TYPE_GEN) && (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
789 789 )
790 790 {
791 791 send_tm_lfr_tc_exe_success( TC, queue_id, time );
792 792 }
793 793 update_last_TC_exe( TC, time );
794 794 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
795 795 val++;
796 796 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
797 797 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
798 798 }
799 799 else
800 800 {
801 801 update_last_TC_rej( TC, time );
802 802 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
803 803 val++;
804 804 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
805 805 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
806 806 }
807 807 }
808 808
809 809 //***************************
810 810 // Interrupt Service Routines
811 811 rtems_isr commutation_isr1( rtems_vector_number vector )
812 812 {
813 813 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
814 814 printf("In commutation_isr1 *** Error sending event to DUMB\n");
815 815 }
816 816 }
817 817
818 818 rtems_isr commutation_isr2( rtems_vector_number vector )
819 819 {
820 820 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
821 821 printf("In commutation_isr2 *** Error sending event to DUMB\n");
822 822 }
823 823 }
824 824
825 825 //****************
826 826 // OTHER FUNCTIONS
827 827 void updateLFRCurrentMode()
828 828 {
829 829 /** This function updates the value of the global variable lfrCurrentMode.
830 830 *
831 831 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
832 832 *
833 833 */
834 834 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
835 835 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
836 836 }
837 837
@@ -1,484 +1,482
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
18 18 {
19 19 /** This function updates the LFR registers with the incoming common parameters.
20 20 *
21 21 * @param TC points to the TeleCommand packet that is being processed
22 22 *
23 23 *
24 24 */
25 25
26 26 parameter_dump_packet.unused0 = TC->dataAndCRC[0];
27 27 parameter_dump_packet.bw_sp0_sp1_r0_r1 = TC->dataAndCRC[1];
28 set_wfp_data_shaping(parameter_dump_packet.bw_sp0_sp1_r0_r1);
28 set_wfp_data_shaping( );
29 29 return LFR_SUCCESSFUL;
30 30 }
31 31
32 32 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
33 33 {
34 34 /** This function updates the LFR registers with the incoming normal parameters.
35 35 *
36 36 * @param TC points to the TeleCommand packet that is being processed
37 37 * @param queue_id is the id of the queue which handles TM related to this execution step
38 38 *
39 39 */
40 40
41 41 int result;
42 42 int flag;
43 43 rtems_status_code status;
44 44
45 45 flag = LFR_SUCCESSFUL;
46 46
47 47 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
48 48 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
49 49 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
50 50 flag = LFR_DEFAULT;
51 51 }
52 52
53 53 //***************
54 54 // sy_lfr_n_swf_l
55 55 if (flag == LFR_SUCCESSFUL)
56 56 {
57 57 result = set_sy_lfr_n_swf_l( TC, queue_id, time );
58 58 if (result != LFR_SUCCESSFUL)
59 59 {
60 60 flag = LFR_DEFAULT;
61 61 }
62 62 }
63 63
64 64 //***************
65 65 // sy_lfr_n_swf_p
66 66 if (flag == LFR_SUCCESSFUL)
67 67 {
68 68 result = set_sy_lfr_n_swf_p( TC, queue_id, time );
69 69 if (result != LFR_SUCCESSFUL)
70 70 {
71 71 flag = LFR_DEFAULT;
72 72 }
73 73 }
74 74
75 75 //***************
76 76 // SY_LFR_N_ASM_P
77 77 if (flag == LFR_SUCCESSFUL)
78 78 {
79 79 result = set_sy_lfr_n_asm_p( TC, queue_id );
80 80 if (result != LFR_SUCCESSFUL)
81 81 {
82 82 flag = LFR_DEFAULT;
83 83 }
84 84 }
85 85
86 86 //***************
87 87 // SY_LFR_N_BP_P0
88 88 if (flag == LFR_SUCCESSFUL)
89 89 {
90 90 result = set_sy_lfr_n_bp_p0( TC, queue_id );
91 91 if (result != LFR_SUCCESSFUL)
92 92 {
93 93 flag = LFR_DEFAULT;
94 94 }
95 95 }
96 96
97 97 //***************
98 98 // sy_lfr_n_bp_p1
99 99 if (flag == LFR_SUCCESSFUL)
100 100 {
101 101 result = set_sy_lfr_n_bp_p1( TC, queue_id );
102 102 if (result != LFR_SUCCESSFUL)
103 103 {
104 104 flag = LFR_DEFAULT;
105 105 }
106 106 }
107 107
108 108 //*********************
109 109 // sy_lfr_n_cwf_long_f3
110 110 if (flag == LFR_SUCCESSFUL)
111 111 {
112 112 result = set_sy_lfr_n_cwf_long_f3( TC, queue_id );
113 113 if (result != LFR_SUCCESSFUL)
114 114 {
115 115 flag = LFR_DEFAULT;
116 116 }
117 117 }
118 118
119 119 return flag;
120 120 }
121 121
122 122 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
123 123 {
124 124 /** This function updates the LFR registers with the incoming burst parameters.
125 125 *
126 126 * @param TC points to the TeleCommand packet that is being processed
127 127 * @param queue_id is the id of the queue which handles TM related to this execution step
128 128 *
129 129 */
130 130
131 131 int result;
132 132 unsigned char lfrMode;
133 133 rtems_status_code status;
134 134
135 135 result = LFR_DEFAULT;
136 136 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
137 137
138 138 if ( lfrMode == LFR_MODE_BURST ) {
139 139 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
140 140 result = LFR_DEFAULT;
141 141 }
142 142 else {
143 143 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[0];
144 144 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[1];
145 145
146 146 result = LFR_SUCCESSFUL;
147 147 }
148 148
149 149 return result;
150 150 }
151 151
152 152 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
153 153 {
154 154 /** This function updates the LFR registers with the incoming sbm1 parameters.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM related to this execution step
158 158 *
159 159 */
160 160 int result;
161 161 unsigned char lfrMode;
162 162 rtems_status_code status;
163 163
164 164 result = LFR_DEFAULT;
165 165 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
166 166
167 167 if ( (lfrMode == LFR_MODE_SBM1) || (lfrMode == LFR_MODE_SBM2) ) {
168 168 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
169 169 result = LFR_DEFAULT;
170 170 }
171 171 else {
172 172 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[0];
173 173 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[1];
174 174
175 175 result = LFR_SUCCESSFUL;
176 176 }
177 177
178 178 return result;
179 179 }
180 180
181 181 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
182 182 {
183 183 /** This function updates the LFR registers with the incoming sbm2 parameters.
184 184 *
185 185 * @param TC points to the TeleCommand packet that is being processed
186 186 * @param queue_id is the id of the queue which handles TM related to this execution step
187 187 *
188 188 */
189 189
190 190 int result;
191 191 unsigned char lfrMode;
192 192 rtems_status_code status;
193 193
194 194 result = LFR_DEFAULT;
195 195 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
196 196
197 197 if ( (lfrMode == LFR_MODE_SBM2) || (lfrMode == LFR_MODE_SBM2) ) {
198 198 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
199 199 result = LFR_DEFAULT;
200 200 }
201 201 else {
202 202 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[0];
203 203 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[1];
204 204
205 205 result = LFR_SUCCESSFUL;
206 206 }
207 207
208 208 return result;
209 209 }
210 210
211 211 int action_dump_par( rtems_id queue_id )
212 212 {
213 213 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
214 214 *
215 215 * @param queue_id is the id of the queue which handles TM related to this execution step.
216 216 *
217 217 * @return RTEMS directive status codes:
218 218 * - RTEMS_SUCCESSFUL - message sent successfully
219 219 * - RTEMS_INVALID_ID - invalid queue id
220 220 * - RTEMS_INVALID_SIZE - invalid message size
221 221 * - RTEMS_INVALID_ADDRESS - buffer is NULL
222 222 * - RTEMS_UNSATISFIED - out of message buffers
223 223 * - RTEMS_TOO_MANY - queue s limit has been reached
224 224 *
225 225 */
226 226
227 227 int status;
228 228
229 229 // UPDATE TIME
230 230 increment_seq_counter( parameter_dump_packet.packetSequenceControl );
231 231 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
232 232 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
233 233 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
234 234 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
235 235 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
236 236 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
237 237 // SEND DATA
238 238 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
239 239 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
240 240 if (status != RTEMS_SUCCESSFUL) {
241 241 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
242 242 }
243 243
244 244 return status;
245 245 }
246 246
247 247 //***********************
248 248 // NORMAL MODE PARAMETERS
249 249
250 250 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time )
251 251 {
252 252 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
253 253 *
254 254 * @param TC points to the TeleCommand packet that is being processed
255 255 * @param queue_id is the id of the queue which handles TM related to this execution step
256 256 *
257 257 */
258 258
259 259 unsigned int tmp;
260 260 int result;
261 261 unsigned char msb;
262 262 unsigned char lsb;
263 263 rtems_status_code status;
264 264
265 265 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_L ];
266 266 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_L+1 ];
267 267
268 268 tmp = ( unsigned int ) floor(
269 269 ( ( msb*256 ) + lsb ) / 16
270 270 ) * 16;
271 271
272 272 if ( (tmp < 16) || (tmp > 2048) ) // the snapshot period is a multiple of 16
273 273 { // 2048 is the maximum limit due to the size of the buffers
274 274 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_SY_LFR_N_SWF_L+10, lsb, time );
275 275 result = WRONG_APP_DATA;
276 276 }
277 277 else if (tmp != 2048)
278 278 {
279 279 status = send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
280 280 result = FUNCT_NOT_IMPL;
281 281 }
282 282 else
283 283 {
284 284 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (tmp >> 8);
285 285 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (tmp );
286 286 result = LFR_SUCCESSFUL;
287 287 }
288 288
289 289 return result;
290 290 }
291 291
292 292 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time)
293 293 {
294 294 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
295 295 *
296 296 * @param TC points to the TeleCommand packet that is being processed
297 297 * @param queue_id is the id of the queue which handles TM related to this execution step
298 298 *
299 299 */
300 300
301 301 unsigned int tmp;
302 302 int result;
303 303 unsigned char msb;
304 304 unsigned char lsb;
305 305 rtems_status_code status;
306 306
307 307 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_P ];
308 308 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_P+1 ];
309 309
310 tmp = ( unsigned int ) floor(
311 ( ( msb*256 ) + lsb ) / 8
312 ) * 8;
310 tmp = msb * 256 + lsb;
313 311
314 if ( (tmp < 16) || (tmp > 65528) )
312 if ( tmp < 16 )
315 313 {
316 314 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_SY_LFR_N_SWF_P+10, lsb, time );
317 315 result = WRONG_APP_DATA;
318 316 }
319 317 else
320 318 {
321 319 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (tmp >> 8);
322 320 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (tmp );
323 321 result = LFR_SUCCESSFUL;
324 322 }
325 323
326 324 return result;
327 325 }
328 326
329 327 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
330 328 {
331 329 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
332 330 *
333 331 * @param TC points to the TeleCommand packet that is being processed
334 332 * @param queue_id is the id of the queue which handles TM related to this execution step
335 333 *
336 334 */
337 335
338 336 int result;
339 337 unsigned char msb;
340 338 unsigned char lsb;
341 339
342 340 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_ASM_P ];
343 341 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_ASM_P+1 ];
344 342
345 343 parameter_dump_packet.sy_lfr_n_asm_p[0] = msb;
346 344 parameter_dump_packet.sy_lfr_n_asm_p[1] = lsb;
347 345 result = LFR_SUCCESSFUL;
348 346
349 347 return result;
350 348 }
351 349
352 350 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
353 351 {
354 352 /** This function sets the time between two basic parameter sets, in s (SY_LFR_N_BP_P0).
355 353 *
356 354 * @param TC points to the TeleCommand packet that is being processed
357 355 * @param queue_id is the id of the queue which handles TM related to this execution step
358 356 *
359 357 */
360 358
361 359 int status;
362 360
363 361 status = LFR_SUCCESSFUL;
364 362
365 363 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_BP_P0 ];
366 364
367 365 return status;
368 366 }
369 367
370 368 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
371 369 {
372 370 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
373 371 *
374 372 * @param TC points to the TeleCommand packet that is being processed
375 373 * @param queue_id is the id of the queue which handles TM related to this execution step
376 374 *
377 375 */
378 376
379 377 int status;
380 378
381 379 status = LFR_SUCCESSFUL;
382 380
383 381 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_BP_P1 ];
384 382
385 383 return status;
386 384 }
387 385
388 386 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
389 387 {
390 388 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
391 389 *
392 390 * @param TC points to the TeleCommand packet that is being processed
393 391 * @param queue_id is the id of the queue which handles TM related to this execution step
394 392 *
395 393 */
396 394
397 395 int status;
398 396
399 397 status = LFR_SUCCESSFUL;
400 398
401 399 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_CWF_LONG_F3 ];
402 400
403 401 return status;
404 402 }
405 403
406 404 //**********************
407 405 // BURST MODE PARAMETERS
408 406
409 407 //*********************
410 408 // SBM1 MODE PARAMETERS
411 409
412 410 //*********************
413 411 // SBM2 MODE PARAMETERS
414 412
415 413 //**********
416 414 // init dump
417 415
418 416 void init_parameter_dump( void )
419 417 {
420 418 /** This function initialize the parameter_dump_packet global variable with default values.
421 419 *
422 420 */
423 421
424 422 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
425 423 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
426 424 parameter_dump_packet.reserved = CCSDS_RESERVED;
427 425 parameter_dump_packet.userApplication = CCSDS_USER_APP;
428 426 parameter_dump_packet.packetID[0] = (unsigned char) (TM_PACKET_ID_PARAMETER_DUMP >> 8);
429 427 parameter_dump_packet.packetID[1] = (unsigned char) TM_PACKET_ID_PARAMETER_DUMP;
430 428 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
431 429 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
432 430 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
433 431 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
434 432 // DATA FIELD HEADER
435 433 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
436 434 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
437 435 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
438 436 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
439 437 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
440 438 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
441 439 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
442 440 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
443 441 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
444 442 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
445 443 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
446 444
447 445 //******************
448 446 // COMMON PARAMETERS
449 447 parameter_dump_packet.unused0 = DEFAULT_SY_LFR_COMMON0;
450 448 parameter_dump_packet.bw_sp0_sp1_r0_r1 = DEFAULT_SY_LFR_COMMON1;
451 449
452 450 //******************
453 451 // NORMAL PARAMETERS
454 452 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (SY_LFR_N_SWF_L >> 8);
455 453 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (SY_LFR_N_SWF_L );
456 454 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (SY_LFR_N_SWF_P >> 8);
457 455 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (SY_LFR_N_SWF_P );
458 456 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (SY_LFR_N_ASM_P >> 8);
459 457 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (SY_LFR_N_ASM_P );
460 458 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) SY_LFR_N_BP_P0;
461 459 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) SY_LFR_N_BP_P1;
462 460
463 461 //*****************
464 462 // BURST PARAMETERS
465 463 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
466 464 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
467 465
468 466 //****************
469 467 // SBM1 PARAMETERS
470 468 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
471 469 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
472 470
473 471 //****************
474 472 // SBM2 PARAMETERS
475 473 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
476 474 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
477 475 }
478 476
479 477
480 478
481 479
482 480
483 481
484 482
@@ -1,1519 +1,1350
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //*****************
13 13 // waveform headers
14 14 // SWF
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
16 16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
17 17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
18 18 // CWF
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[7];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[7];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[7];
22 22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[7];
23 23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[7];
24 24
25 25 //**************
26 26 // waveform ring
27 27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
28 28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
29 29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
30 30 ring_node *current_ring_node_f0;
31 31 ring_node *ring_node_to_send_swf_f0;
32 32 ring_node *current_ring_node_f1;
33 33 ring_node *ring_node_to_send_swf_f1;
34 34 ring_node *ring_node_to_send_cwf_f1;
35 35 ring_node *current_ring_node_f2;
36 36 ring_node *ring_node_to_send_swf_f2;
37 37 ring_node *ring_node_to_send_cwf_f2;
38 38
39 39 rtems_isr waveforms_isr( rtems_vector_number vector )
40 40 {
41 41 /** This is the interrupt sub routine called by the waveform picker core.
42 42 *
43 43 * This ISR launch different actions depending mainly on two pieces of information:
44 44 * 1. the values read in the registers of the waveform picker.
45 45 * 2. the current LFR mode.
46 46 *
47 47 */
48 48
49 49 static unsigned char nb_swf = 0;
50 50
51 51 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
52 52 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
53 53 { // in modes other than STANDBY and BURST, send the CWF_F3 data
54 54 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
55 55 // (1) change the receiving buffer for the waveform picker
56 56 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
57 57 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_b);
58 58 }
59 59 else {
60 60 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a);
61 61 }
62 62 // (2) send an event for the waveforms transmission
63 63 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
64 64 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
65 65 }
66 66 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
67 67 }
68 68 }
69 69
70 70 switch(lfrCurrentMode)
71 71 {
72 72 //********
73 73 // STANDBY
74 74 case(LFR_MODE_STANDBY):
75 75 break;
76 76
77 77 //******
78 78 // NORMAL
79 79 case(LFR_MODE_NORMAL):
80 80 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
81 81 {
82 82 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
83 83 }
84 84 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
85 85 {
86 86 // change F0 ring node
87 87 ring_node_to_send_swf_f0 = current_ring_node_f0;
88 88 current_ring_node_f0 = current_ring_node_f0->next;
89 89 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
90 90 // change F1 ring node
91 91 ring_node_to_send_swf_f1 = current_ring_node_f1;
92 92 current_ring_node_f1 = current_ring_node_f1->next;
93 93 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
94 94 // change F2 ring node
95 95 ring_node_to_send_swf_f2 = current_ring_node_f2;
96 96 current_ring_node_f2 = current_ring_node_f2->next;
97 97 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
98 98 //
99 if (nb_swf < 2)
100 // if (true)
99 // if (nb_swf < 2)
100 if (true)
101 101 {
102 102 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
103 103 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
104 104 }
105 105 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
106 106 nb_swf = nb_swf + 1;
107 107 }
108 108 else
109 109 {
110 110 reset_wfp_burst_enable();
111 111 nb_swf = 0;
112 112 }
113 113
114 114 }
115 115
116 116 break;
117 117
118 118 //******
119 119 // BURST
120 120 case(LFR_MODE_BURST):
121 121 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
122 122 // (1) change the receiving buffer for the waveform picker
123 123 ring_node_to_send_cwf_f2 = current_ring_node_f2;
124 124 current_ring_node_f2 = current_ring_node_f2->next;
125 125 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
126 126 // (2) send an event for the waveforms transmission
127 127 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
128 128 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
129 129 }
130 130 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
131 131 }
132 132 break;
133 133
134 134 //*****
135 135 // SBM1
136 136 case(LFR_MODE_SBM1):
137 137 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
138 138 // (1) change the receiving buffer for the waveform picker
139 139 ring_node_to_send_cwf_f1 = current_ring_node_f1;
140 140 current_ring_node_f1 = current_ring_node_f1->next;
141 141 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
142 142 // (2) send an event for the waveforms transmission
143 143 if (rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 ) != RTEMS_SUCCESSFUL) {
144 144 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
145 145 }
146 146 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bit = 0
147 147 }
148 148 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
149 149 ring_node_to_send_swf_f1 = current_ring_node_f1->previous;
150 150 }
151 151 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
152 152 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
153 153 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
154 154 }
155 155 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2 and f0 bits = 0
156 156 }
157 157 break;
158 158
159 159 //*****
160 160 // SBM2
161 161 case(LFR_MODE_SBM2):
162 162 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
163 163 // (1) change the receiving buffer for the waveform picker
164 164 ring_node_to_send_cwf_f2 = current_ring_node_f2;
165 165 current_ring_node_f2 = current_ring_node_f2->next;
166 166 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
167 167 // (2) send an event for the waveforms transmission
168 168 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
169 169 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
170 170 }
171 171 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
172 172 }
173 173 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
174 174 ring_node_to_send_swf_f2 = current_ring_node_f2->previous;
175 175 }
176 176 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
177 177 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
178 178 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
179 179 }
180 180 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
181 181 }
182 182 break;
183 183
184 184 //********
185 185 // DEFAULT
186 186 default:
187 187 break;
188 188 }
189 189 }
190 190
191 191 rtems_isr waveforms_isr_alt( rtems_vector_number vector )
192 192 {
193 193 /** This is the interrupt sub routine called by the waveform picker core.
194 194 *
195 195 * This ISR launch different actions depending mainly on two pieces of information:
196 196 * 1. the values read in the registers of the waveform picker.
197 197 * 2. the current LFR mode.
198 198 *
199 199 */
200 200
201 201 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
202 202 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
203 203 { // in modes other than STANDBY and BURST, send the CWF_F3 data
204 204 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
205 205 // (1) change the receiving buffer for the waveform picker
206 206 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
207 207 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_b);
208 208 }
209 209 else {
210 210 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a);
211 211 }
212 212 // (2) send an event for the waveforms transmission
213 213 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
214 214 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
215 215 }
216 216 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
217 217 }
218 218 }
219 219
220 220 switch(lfrCurrentMode)
221 221 {
222 222 //********
223 223 // STANDBY
224 224 case(LFR_MODE_STANDBY):
225 225 break;
226 226
227 227 //******
228 228 // NORMAL
229 229 case(LFR_MODE_NORMAL):
230 230 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
231 231 {
232 232 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
233 233 }
234 234 if ( (waveform_picker_regs->status & 0x01) == 0x01) // [0001] check the f0 full bit
235 235 {
236 236 // change F0 ring node
237 237 ring_node_to_send_swf_f0 = current_ring_node_f0;
238 238 current_ring_node_f0 = current_ring_node_f0->next;
239 239 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
240 240 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1110 1110 1110]
241 241 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL_SWF_F0 ) != RTEMS_SUCCESSFUL) {
242 242 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
243 243 }
244 244 }
245 245 if ( (waveform_picker_regs->status & 0x02) == 0x02) // [0010] check the f1 full bit
246 246 {
247 247 // change F1 ring node
248 248 ring_node_to_send_swf_f1 = current_ring_node_f1;
249 249 current_ring_node_f1 = current_ring_node_f1->next;
250 250 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
251 251 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1101 1101 1101]
252 252 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL_SWF_F1 ) != RTEMS_SUCCESSFUL) {
253 253 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
254 254 }
255 255 }
256 256 if ( (waveform_picker_regs->status & 0x04) == 0x04) // [0100] check the f2 full bit
257 257 {
258 258 // change F2 ring node
259 259 ring_node_to_send_swf_f2 = current_ring_node_f2;
260 260 current_ring_node_f2 = current_ring_node_f2->next;
261 261 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
262 262 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1011 1011 1011]
263 263 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL_SWF_F2 ) != RTEMS_SUCCESSFUL) {
264 264 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
265 265 }
266 266 }
267 267 break;
268 268
269 269 //******
270 270 // BURST
271 271 case(LFR_MODE_BURST):
272 272 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
273 273 // (1) change the receiving buffer for the waveform picker
274 274 ring_node_to_send_cwf_f2 = current_ring_node_f2;
275 275 current_ring_node_f2 = current_ring_node_f2->next;
276 276 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
277 277 // (2) send an event for the waveforms transmission
278 278 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
279 279 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
280 280 }
281 281 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
282 282 }
283 283 break;
284 284
285 285 //*****
286 286 // SBM1
287 287 case(LFR_MODE_SBM1):
288 288 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
289 289 // (1) change the receiving buffer for the waveform picker
290 290 ring_node_to_send_cwf_f1 = current_ring_node_f1;
291 291 current_ring_node_f1 = current_ring_node_f1->next;
292 292 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
293 293 // (2) send an event for the waveforms transmission
294 294 if (rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 ) != RTEMS_SUCCESSFUL) {
295 295 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
296 296 }
297 297 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bit = 0
298 298 }
299 299 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
300 300 ring_node_to_send_swf_f1 = current_ring_node_f1->previous;
301 301 }
302 302 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
303 303 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
304 304 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
305 305 }
306 306 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2 and f0 bits = 0
307 307 }
308 308 break;
309 309
310 310 //*****
311 311 // SBM2
312 312 case(LFR_MODE_SBM2):
313 313 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
314 314 // (1) change the receiving buffer for the waveform picker
315 315 ring_node_to_send_cwf_f2 = current_ring_node_f2;
316 316 current_ring_node_f2 = current_ring_node_f2->next;
317 317 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
318 318 // (2) send an event for the waveforms transmission
319 319 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
320 320 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
321 321 }
322 322 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
323 323 }
324 324 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
325 325 ring_node_to_send_swf_f2 = current_ring_node_f2->previous;
326 326 }
327 327 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
328 328 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
329 329 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
330 330 }
331 331 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
332 332 }
333 333 break;
334 334
335 335 //********
336 336 // DEFAULT
337 337 default:
338 338 break;
339 339 }
340 340 }
341 341
342 342 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
343 343 {
344 344 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
345 345 *
346 346 * @param unused is the starting argument of the RTEMS task
347 347 *
348 348 * The following data packets are sent by this task:
349 349 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
350 350 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
351 351 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
352 352 *
353 353 */
354 354
355 355 rtems_event_set event_out;
356 356 rtems_id queue_id;
357 357 rtems_status_code status;
358 358
359 359 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
360 360 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
361 361 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
362 362
363 363 init_waveforms();
364 364
365 365 status = get_message_queue_id_send( &queue_id );
366 366 if (status != RTEMS_SUCCESSFUL)
367 367 {
368 368 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
369 369 }
370 370
371 371 BOOT_PRINTF("in WFRM ***\n")
372 372
373 373 while(1){
374 374 // wait for an RTEMS_EVENT
375 375 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
376 376 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM
377 377 | RTEMS_EVENT_MODE_NORMAL_SWF_F0
378 378 | RTEMS_EVENT_MODE_NORMAL_SWF_F1
379 379 | RTEMS_EVENT_MODE_NORMAL_SWF_F2,
380 380 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
381 381 if (event_out == RTEMS_EVENT_MODE_NORMAL)
382 382 {
383 383 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
384 384 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
385 385 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
386 386 }
387 387 if ( (event_out & RTEMS_EVENT_MODE_NORMAL_SWF_F0) == RTEMS_EVENT_MODE_NORMAL_SWF_F0)
388 388 {
389 389 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
390 390 }
391 391 if ( (event_out & RTEMS_EVENT_MODE_NORMAL_SWF_F1) == RTEMS_EVENT_MODE_NORMAL_SWF_F1)
392 392 {
393 393 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
394 394 }
395 395 if ( (event_out & RTEMS_EVENT_MODE_NORMAL_SWF_F2) == RTEMS_EVENT_MODE_NORMAL_SWF_F2)
396 396 {
397 397 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
398 398 }
399 399 }
400 400 }
401 401
402 402 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
403 403 {
404 404 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
405 405 *
406 406 * @param unused is the starting argument of the RTEMS task
407 407 *
408 408 * The following data packet is sent by this task:
409 409 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
410 410 *
411 411 */
412 412
413 413 rtems_event_set event_out;
414 414 rtems_id queue_id;
415 415 rtems_status_code status;
416 416
417 417 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
418 418 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
419 419
420 420 status = get_message_queue_id_send( &queue_id );
421 421 if (status != RTEMS_SUCCESSFUL)
422 422 {
423 423 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
424 424 }
425 425
426 426 BOOT_PRINTF("in CWF3 ***\n")
427 427
428 428 while(1){
429 429 // wait for an RTEMS_EVENT
430 430 rtems_event_receive( RTEMS_EVENT_0,
431 431 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
432 432 PRINTF("send CWF F3 \n")
433 433 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
434 434 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
435 435 {
436 436 send_waveform_CWF( wf_cont_f3_b, SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
437 437 }
438 438 else
439 439 {
440 440 send_waveform_CWF3_light( wf_cont_f3_b, headerCWF_F3_light, queue_id );
441 441 }
442 442 }
443 443 else
444 444 {
445 445 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x00)
446 446 {
447 447 send_waveform_CWF( wf_cont_f3_a, SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
448 448 }
449 449 else
450 450 {
451 451 send_waveform_CWF3_light( wf_cont_f3_a, headerCWF_F3_light, queue_id );
452 452 }
453 453
454 454 }
455 455 }
456 456 }
457 457
458 458 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
459 459 {
460 460 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
461 461 *
462 462 * @param unused is the starting argument of the RTEMS task
463 463 *
464 464 * The following data packet is sent by this function:
465 465 * - TM_LFR_SCIENCE_BURST_CWF_F2
466 466 * - TM_LFR_SCIENCE_SBM2_CWF_F2
467 467 *
468 468 */
469 469
470 470 rtems_event_set event_out;
471 471 rtems_id queue_id;
472 472 rtems_status_code status;
473 473
474 474 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
475 475 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
476 476
477 477 status = get_message_queue_id_send( &queue_id );
478 478 if (status != RTEMS_SUCCESSFUL)
479 479 {
480 480 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
481 481 }
482 482
483 483 BOOT_PRINTF("in CWF2 ***\n")
484 484
485 485 while(1){
486 486 // wait for an RTEMS_EVENT
487 487 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
488 488 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
489 489 if (event_out == RTEMS_EVENT_MODE_BURST)
490 490 {
491 491 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
492 492 }
493 493 if (event_out == RTEMS_EVENT_MODE_SBM2)
494 494 {
495 495 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
496 496 }
497 497 }
498 498 }
499 499
500 500 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
501 501 {
502 502 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
503 503 *
504 504 * @param unused is the starting argument of the RTEMS task
505 505 *
506 506 * The following data packet is sent by this function:
507 507 * - TM_LFR_SCIENCE_SBM1_CWF_F1
508 508 *
509 509 */
510 510
511 511 rtems_event_set event_out;
512 512 rtems_id queue_id;
513 513 rtems_status_code status;
514 514
515 515 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
516 516
517 517 status = get_message_queue_id_send( &queue_id );
518 518 if (status != RTEMS_SUCCESSFUL)
519 519 {
520 520 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
521 521 }
522 522
523 523 BOOT_PRINTF("in CWF1 ***\n")
524 524
525 525 while(1){
526 526 // wait for an RTEMS_EVENT
527 527 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
528 528 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
529 529 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
530 530 }
531 531 }
532 532
533 533 //******************
534 534 // general functions
535 535 void init_waveforms( void )
536 536 {
537 537 int i = 0;
538 538
539 539 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
540 540 {
541 541 //***
542 542 // F0
543 543 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x88887777; //
544 544 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111; //
545 545 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0x44443333; //
546 546
547 547 //***
548 548 // F1
549 549 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x22221111;
550 550 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x44443333;
551 551 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
552 552
553 553 //***
554 554 // F2
555 555 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x44443333;
556 556 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111;
557 557 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
558 558
559 559 //***
560 560 // F3
561 561 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 0 ] = val1;
562 562 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 1 ] = val2;
563 563 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 2 ] = 0xaaaa0000;
564 564 }
565 565 }
566 566
567 567 void init_waveform_rings( void )
568 568 {
569 569 unsigned char i;
570 570
571 571 // F0 RING
572 572 waveform_ring_f0[0].next = (ring_node*) &waveform_ring_f0[1];
573 573 waveform_ring_f0[0].previous = (ring_node*) &waveform_ring_f0[NB_RING_NODES_F0-1];
574 574 waveform_ring_f0[0].buffer_address = (int) &wf_snap_f0[0][0];
575 575
576 576 waveform_ring_f0[NB_RING_NODES_F0-1].next = (ring_node*) &waveform_ring_f0[0];
577 577 waveform_ring_f0[NB_RING_NODES_F0-1].previous = (ring_node*) &waveform_ring_f0[NB_RING_NODES_F0-2];
578 578 waveform_ring_f0[NB_RING_NODES_F0-1].buffer_address = (int) &wf_snap_f0[NB_RING_NODES_F0-1][0];
579 579
580 580 for(i=1; i<NB_RING_NODES_F0-1; i++)
581 581 {
582 582 waveform_ring_f0[i].next = (ring_node*) &waveform_ring_f0[i+1];
583 583 waveform_ring_f0[i].previous = (ring_node*) &waveform_ring_f0[i-1];
584 584 waveform_ring_f0[i].buffer_address = (int) &wf_snap_f0[i][0];
585 585 }
586 586
587 587 // F1 RING
588 588 waveform_ring_f1[0].next = (ring_node*) &waveform_ring_f1[1];
589 589 waveform_ring_f1[0].previous = (ring_node*) &waveform_ring_f1[NB_RING_NODES_F1-1];
590 590 waveform_ring_f1[0].buffer_address = (int) &wf_snap_f1[0][0];
591 591
592 592 waveform_ring_f1[NB_RING_NODES_F1-1].next = (ring_node*) &waveform_ring_f1[0];
593 593 waveform_ring_f1[NB_RING_NODES_F1-1].previous = (ring_node*) &waveform_ring_f1[NB_RING_NODES_F1-2];
594 594 waveform_ring_f1[NB_RING_NODES_F1-1].buffer_address = (int) &wf_snap_f1[NB_RING_NODES_F1-1][0];
595 595
596 596 for(i=1; i<NB_RING_NODES_F1-1; i++)
597 597 {
598 598 waveform_ring_f1[i].next = (ring_node*) &waveform_ring_f1[i+1];
599 599 waveform_ring_f1[i].previous = (ring_node*) &waveform_ring_f1[i-1];
600 600 waveform_ring_f1[i].buffer_address = (int) &wf_snap_f1[i][0];
601 601 }
602 602
603 603 // F2 RING
604 604 waveform_ring_f2[0].next = (ring_node*) &waveform_ring_f2[1];
605 605 waveform_ring_f2[0].previous = (ring_node*) &waveform_ring_f2[NB_RING_NODES_F2-1];
606 606 waveform_ring_f2[0].buffer_address = (int) &wf_snap_f2[0][0];
607 607
608 608 waveform_ring_f2[NB_RING_NODES_F2-1].next = (ring_node*) &waveform_ring_f2[0];
609 609 waveform_ring_f2[NB_RING_NODES_F2-1].previous = (ring_node*) &waveform_ring_f2[NB_RING_NODES_F2-2];
610 610 waveform_ring_f2[NB_RING_NODES_F2-1].buffer_address = (int) &wf_snap_f2[NB_RING_NODES_F2-1][0];
611 611
612 612 for(i=1; i<NB_RING_NODES_F2-1; i++)
613 613 {
614 614 waveform_ring_f2[i].next = (ring_node*) &waveform_ring_f2[i+1];
615 615 waveform_ring_f2[i].previous = (ring_node*) &waveform_ring_f2[i-1];
616 616 waveform_ring_f2[i].buffer_address = (int) &wf_snap_f2[i][0];
617 617 }
618 618
619 619 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
620 620 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
621 621 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
622 622
623 623 }
624 624
625 625 void reset_current_ring_nodes( void )
626 626 {
627 627 current_ring_node_f0 = waveform_ring_f0;
628 628 ring_node_to_send_swf_f0 = waveform_ring_f0;
629 629
630 630 current_ring_node_f1 = waveform_ring_f1;
631 631 ring_node_to_send_cwf_f1 = waveform_ring_f1;
632 632 ring_node_to_send_swf_f1 = waveform_ring_f1;
633 633
634 634 current_ring_node_f2 = waveform_ring_f2;
635 635 ring_node_to_send_cwf_f2 = waveform_ring_f2;
636 636 ring_node_to_send_swf_f2 = waveform_ring_f2;
637 637 }
638 638
639 639 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
640 640 {
641 641 unsigned char i;
642 642
643 643 for (i=0; i<7; i++)
644 644 {
645 645 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
646 646 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
647 647 headerSWF[ i ].reserved = DEFAULT_RESERVED;
648 648 headerSWF[ i ].userApplication = CCSDS_USER_APP;
649 649 headerSWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
650 650 headerSWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
651 651 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
652 652 if (i == 6)
653 653 {
654 654 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
655 655 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
656 656 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
657 657 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
658 658 }
659 659 else
660 660 {
661 661 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
662 662 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
663 663 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
664 664 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
665 665 }
666 666 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
667 667 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
668 668 headerSWF[ i ].pktNr = i+1; // PKT_NR
669 669 // DATA FIELD HEADER
670 670 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
671 671 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
672 672 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
673 673 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
674 674 // AUXILIARY DATA HEADER
675 675 headerSWF[ i ].time[0] = 0x00;
676 676 headerSWF[ i ].time[0] = 0x00;
677 677 headerSWF[ i ].time[0] = 0x00;
678 678 headerSWF[ i ].time[0] = 0x00;
679 679 headerSWF[ i ].time[0] = 0x00;
680 680 headerSWF[ i ].time[0] = 0x00;
681 681 headerSWF[ i ].sid = sid;
682 682 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
683 683 }
684 684 return LFR_SUCCESSFUL;
685 685 }
686 686
687 687 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
688 688 {
689 689 unsigned int i;
690 690
691 691 for (i=0; i<7; i++)
692 692 {
693 693 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
694 694 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
695 695 headerCWF[ i ].reserved = DEFAULT_RESERVED;
696 696 headerCWF[ i ].userApplication = CCSDS_USER_APP;
697 697 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
698 698 {
699 699 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2 >> 8);
700 700 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2);
701 701 }
702 702 else
703 703 {
704 704 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
705 705 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
706 706 }
707 707 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
708 708 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
709 709 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
710 710 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
711 711 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
712 712 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
713 713 // DATA FIELD HEADER
714 714 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
715 715 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
716 716 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
717 717 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
718 718 // AUXILIARY DATA HEADER
719 719 headerCWF[ i ].sid = sid;
720 720 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
721 721 headerCWF[ i ].time[0] = 0x00;
722 722 headerCWF[ i ].time[0] = 0x00;
723 723 headerCWF[ i ].time[0] = 0x00;
724 724 headerCWF[ i ].time[0] = 0x00;
725 725 headerCWF[ i ].time[0] = 0x00;
726 726 headerCWF[ i ].time[0] = 0x00;
727 727 }
728 728 return LFR_SUCCESSFUL;
729 729 }
730 730
731 731 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
732 732 {
733 733 unsigned int i;
734 734
735 735 for (i=0; i<7; i++)
736 736 {
737 737 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
738 738 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
739 739 headerCWF[ i ].reserved = DEFAULT_RESERVED;
740 740 headerCWF[ i ].userApplication = CCSDS_USER_APP;
741 741
742 742 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
743 743 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
744 744
745 745 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
746 746 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
747 747 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
748 748 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
749 749 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
750 750
751 751 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
752 752 // DATA FIELD HEADER
753 753 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
754 754 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
755 755 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
756 756 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
757 757 // AUXILIARY DATA HEADER
758 758 headerCWF[ i ].sid = SID_NORM_CWF_F3;
759 759 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
760 760 headerCWF[ i ].time[0] = 0x00;
761 761 headerCWF[ i ].time[0] = 0x00;
762 762 headerCWF[ i ].time[0] = 0x00;
763 763 headerCWF[ i ].time[0] = 0x00;
764 764 headerCWF[ i ].time[0] = 0x00;
765 765 headerCWF[ i ].time[0] = 0x00;
766 766 }
767 767 return LFR_SUCCESSFUL;
768 768 }
769 769
770 770 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
771 771 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
772 772 {
773 773 /** This function sends SWF CCSDS packets (F2, F1 or F0).
774 774 *
775 775 * @param waveform points to the buffer containing the data that will be send.
776 776 * @param sid is the source identifier of the data that will be sent.
777 777 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
778 778 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
779 779 * contain information to setup the transmission of the data packets.
780 780 *
781 781 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
782 782 *
783 783 */
784 784
785 785 unsigned int i;
786 786 int ret;
787 787 unsigned int coarseTime;
788 788 unsigned int fineTime;
789 789 rtems_status_code status;
790 790 spw_ioctl_pkt_send spw_ioctl_send_SWF;
791 791
792 792 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
793 793 spw_ioctl_send_SWF.options = 0;
794 794
795 795 ret = LFR_DEFAULT;
796 796
797 797 PRINTF1("sid = %d, ", sid)
798 798 PRINTF2("coarse = %x, fine = %x\n", waveform[0], waveform[1])
799 799
800 800 for (i=0; i<7; i++) // send waveform
801 801 {
802 802 #ifdef VHDL_DEV
803 803 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
804 804 #else
805 805 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
806 806 #endif
807 807 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
808 808 // BUILD THE DATA
809 809 if (i==6) {
810 810 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
811 811 }
812 812 else {
813 813 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
814 814 }
815 815 // SET PACKET SEQUENCE COUNTER
816 816 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
817 817 // SET PACKET TIME
818 818 #ifdef VHDL_DEV
819 819 coarseTime = waveform[0];
820 820 fineTime = waveform[1];
821 821 compute_acquisition_time( &coarseTime, &fineTime, sid, i);
822 822
823 823 headerSWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime >> 24 );
824 824 headerSWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime >> 16 );
825 825 headerSWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime >> 8 );
826 826 headerSWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime );
827 827 headerSWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime >> 8 );
828 828 headerSWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime );
829 829 #else
830 830 headerSWF[ i ].acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
831 831 headerSWF[ i ].acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
832 832 headerSWF[ i ].acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
833 833 headerSWF[ i ].acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
834 834 headerSWF[ i ].acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
835 835 headerSWF[ i ].acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
836 836 #endif
837 837 headerSWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
838 838 headerSWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
839 839 headerSWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
840 840 headerSWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
841 841 headerSWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
842 842 headerSWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
843 843 // SEND PACKET
844 844 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
845 845 if (status != RTEMS_SUCCESSFUL) {
846 846 printf("%d-%d, ERR %d\n", sid, i, (int) status);
847 847 ret = LFR_DEFAULT;
848 848 }
849 849 // rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
850 850 }
851 851
852 852 return ret;
853 853 }
854 854
855 855 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
856 856 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
857 857 {
858 858 /** This function sends CWF CCSDS packets (F2, F1 or F0).
859 859 *
860 860 * @param waveform points to the buffer containing the data that will be send.
861 861 * @param sid is the source identifier of the data that will be sent.
862 862 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
863 863 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
864 864 * contain information to setup the transmission of the data packets.
865 865 *
866 866 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
867 867 *
868 868 */
869 869
870 870 unsigned int i;
871 871 int ret;
872 872 unsigned char *coarseTimePtr;
873 873 unsigned char *fineTimePtr;
874 874 rtems_status_code status;
875 875 spw_ioctl_pkt_send spw_ioctl_send_CWF;
876 876
877 877 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
878 878 spw_ioctl_send_CWF.options = 0;
879 879
880 880 ret = LFR_DEFAULT;
881 881
882 882 for (i=0; i<7; i++) // send waveform
883 883 {
884 884 int coarseTime = 0x00;
885 885 int fineTime = 0x00;
886 886 #ifdef VHDL_DEV
887 887 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
888 888 #else
889 889 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
890 890 #endif
891 891 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
892 892 // BUILD THE DATA
893 893 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
894 894 // SET PACKET SEQUENCE COUNTER
895 895 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
896 896 // SET PACKET TIME
897 897 #ifdef VHDL_DEV
898 898 coarseTimePtr = (unsigned char *) &waveform;
899 899 fineTimePtr = (unsigned char *) &waveform[1];
900 900 headerCWF[ i ].acquisitionTime[0] = coarseTimePtr[2];
901 901 headerCWF[ i ].acquisitionTime[1] = coarseTimePtr[3];
902 902 headerCWF[ i ].acquisitionTime[2] = coarseTimePtr[0];
903 903 headerCWF[ i ].acquisitionTime[3] = coarseTimePtr[1];
904 904 headerCWF[ i ].acquisitionTime[4] = fineTimePtr[0];
905 905 headerCWF[ i ].acquisitionTime[5] = fineTimePtr[1];
906 906 #else
907 907 coarseTime = time_management_regs->coarse_time;
908 908 fineTime = time_management_regs->fine_time;
909 909 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
910 910 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
911 911 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
912 912 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
913 913 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
914 914 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
915 915 #endif
916 916
917 917 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
918 918 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
919 919 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
920 920 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
921 921 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
922 922 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
923 923 // SEND PACKET
924 924 if (sid == SID_NORM_CWF_LONG_F3)
925 925 {
926 926 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
927 927 if (status != RTEMS_SUCCESSFUL) {
928 928 printf("%d-%d, ERR %d\n", sid, i, (int) status);
929 929 ret = LFR_DEFAULT;
930 930 }
931 931 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
932 932 }
933 933 else
934 934 {
935 935 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
936 936 if (status != RTEMS_SUCCESSFUL) {
937 937 printf("%d-%d, ERR %d\n", sid, i, (int) status);
938 938 ret = LFR_DEFAULT;
939 939 }
940 940 }
941 941 }
942 942
943 943 return ret;
944 944 }
945 945
946 946 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
947 947 {
948 948 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
949 949 *
950 950 * @param waveform points to the buffer containing the data that will be send.
951 951 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
952 952 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
953 953 * contain information to setup the transmission of the data packets.
954 954 *
955 955 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
956 956 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
957 957 *
958 958 */
959 959
960 960 unsigned int i;
961 961 int ret;
962 962 unsigned char *coarseTimePtr;
963 963 unsigned char *fineTimePtr;
964 964 rtems_status_code status;
965 965 spw_ioctl_pkt_send spw_ioctl_send_CWF;
966 966 char *sample;
967 967
968 968 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
969 969 spw_ioctl_send_CWF.options = 0;
970 970
971 971 ret = LFR_DEFAULT;
972 972
973 973 //**********************
974 974 // BUILD CWF3_light DATA
975 975 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
976 976 {
977 977 #ifdef VHDL_DEV
978 978 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
979 979 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
980 980 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
981 981 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
982 982 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
983 983 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
984 984 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
985 985 #else
986 986 sample = (char*) &waveform[ i * NB_WORDS_SWF_BLK ];
987 987 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
988 988 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
989 989 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
990 990 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
991 991 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
992 992 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
993 993 #endif
994 994 }
995 995
996 996 //*********************
997 997 // SEND CWF3_light DATA
998 998
999 999 for (i=0; i<7; i++) // send waveform
1000 1000 {
1001 1001 int coarseTime = 0x00;
1002 1002 int fineTime = 0x00;
1003 1003
1004 1004 #ifdef VHDL_DEV
1005 1005 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
1006 1006 #else
1007 1007 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1008 1008 #endif
1009 1009 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
1010 1010 // BUILD THE DATA
1011 1011 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1012 1012 // SET PACKET SEQUENCE COUNTER
1013 1013 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
1014 1014 // SET PACKET TIME
1015 1015 #ifdef VHDL_DEV
1016 1016 coarseTimePtr = (unsigned char *) &waveform;
1017 1017 fineTimePtr = (unsigned char *) &waveform[1];
1018 1018 headerCWF[ i ].acquisitionTime[0] = coarseTimePtr[2];
1019 1019 headerCWF[ i ].acquisitionTime[1] = coarseTimePtr[3];
1020 1020 headerCWF[ i ].acquisitionTime[2] = coarseTimePtr[0];
1021 1021 headerCWF[ i ].acquisitionTime[3] = coarseTimePtr[1];
1022 1022 headerCWF[ i ].acquisitionTime[4] = fineTimePtr[0];
1023 1023 headerCWF[ i ].acquisitionTime[5] = fineTimePtr[1];
1024 1024 #else
1025 1025 coarseTime = time_management_regs->coarse_time;
1026 1026 fineTime = time_management_regs->fine_time;
1027 1027 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
1028 1028 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
1029 1029 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
1030 1030 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
1031 1031 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
1032 1032 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
1033 1033 #endif
1034 1034 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
1035 1035 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
1036 1036 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
1037 1037 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
1038 1038 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
1039 1039 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
1040 1040 // SEND PACKET
1041 1041 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
1042 1042 if (status != RTEMS_SUCCESSFUL) {
1043 1043 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
1044 1044 ret = LFR_DEFAULT;
1045 1045 }
1046 1046 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
1047 1047 }
1048 1048
1049 1049 return ret;
1050 1050 }
1051 1051
1052 1052 void compute_acquisition_time( unsigned int *coarseTime, unsigned int *fineTime, unsigned int sid, unsigned char pa_lfr_pkt_nr )
1053 1053 {
1054 1054 unsigned long long int acquisitionTimeAsLong;
1055 1055 unsigned char acquisitionTime[6];
1056 1056 float deltaT = 0.;
1057 1057
1058 1058 acquisitionTime[0] = (unsigned char) ( *coarseTime >> 8 );
1059 1059 acquisitionTime[1] = (unsigned char) ( *coarseTime );
1060 1060 acquisitionTime[2] = (unsigned char) ( *coarseTime >> 24 );
1061 1061 acquisitionTime[3] = (unsigned char) ( *coarseTime >> 16 );
1062 1062 acquisitionTime[4] = (unsigned char) ( *fineTime >> 24 );
1063 1063 acquisitionTime[5] = (unsigned char) ( *fineTime >> 16 );
1064 1064
1065 1065 acquisitionTimeAsLong = ( (unsigned long long int) acquisitionTime[0] << 40 )
1066 1066 + ( (unsigned long long int) acquisitionTime[1] << 32 )
1067 1067 + ( acquisitionTime[2] << 24 )
1068 1068 + ( acquisitionTime[3] << 16 )
1069 1069 + ( acquisitionTime[4] << 8 )
1070 1070 + ( acquisitionTime[5] );
1071 1071
1072 1072 switch( sid )
1073 1073 {
1074 1074 case SID_NORM_SWF_F0:
1075 1075 deltaT = ( (float ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
1076 1076 break;
1077 1077
1078 1078 case SID_NORM_SWF_F1:
1079 1079 deltaT = ( (float ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
1080 1080 break;
1081 1081
1082 1082 case SID_NORM_SWF_F2:
1083 1083 deltaT = ( (float ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
1084 1084 break;
1085 1085
1086 1086 default:
1087 1087 deltaT = 0.;
1088 1088 break;
1089 1089 }
1090 1090
1091 1091 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
1092 1092
1093 1093 *coarseTime = (unsigned int) (acquisitionTimeAsLong >> 16);
1094 1094 *fineTime = (unsigned int) (acquisitionTimeAsLong & 0xffff);
1095 1095 }
1096 1096
1097 1097 //**************
1098 1098 // wfp registers
1099 void set_wfp_data_shaping()
1099 void reset_wfp_burst_enable(void)
1100 {
1101 /** This function resets the waveform picker burst_enable register.
1102 *
1103 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1104 *
1105 */
1106
1107 #ifdef VHDL_DEV
1108 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1109 #else
1110 waveform_picker_regs->burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1111 #endif
1112 }
1113
1114 void reset_wfp_status( void )
1115 {
1116 /** This function resets the waveform picker status register.
1117 *
1118 * All status bits are set to 0 [new_err full_err full].
1119 *
1120 */
1121
1122 #ifdef GSA
1123 #else
1124 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1125 #endif
1126 }
1127
1128 void reset_waveform_picker_regs(void)
1129 {
1130 /** This function resets the waveform picker module registers.
1131 *
1132 * The registers affected by this function are located at the following offset addresses:
1133 * - 0x00 data_shaping
1134 * - 0x04 run_burst_enable
1135 * - 0x08 addr_data_f0
1136 * - 0x0C addr_data_f1
1137 * - 0x10 addr_data_f2
1138 * - 0x14 addr_data_f3
1139 * - 0x18 status
1140 * - 0x1C delta_snapshot
1141 * - 0x20 delta_f0
1142 * - 0x24 delta_f0_2
1143 * - 0x28 delta_f1
1144 * - 0x2c delta_f2
1145 * - 0x30 nb_data_by_buffer
1146 * - 0x34 nb_snapshot_param
1147 * - 0x38 start_date
1148 * - 0x3c nb_word_in_buffer
1149 *
1150 */
1151
1152 waveform_picker_regs->data_shaping = 0x01; // 0x00 *** R1 R0 SP1 SP0 BW
1153 waveform_picker_regs->run_burst_enable = 0x00; // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1154 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1155 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1156 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1157 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a); // 0x14
1158 waveform_picker_regs->status = 0x00; // 0x18
1159 //
1160 set_wfp_delta_snapshot(); // 0x1c
1161 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1162 set_wfp_delta_f1(); // 0x28
1163 set_wfp_delta_f2(); // 0x2c
1164 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1165 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1166 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1167 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1168 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1169 // 2352 = 7 * 336
1170 waveform_picker_regs->nb_data_by_buffer = 0x92f; // 0x30 *** 2352 - 1 => nb samples -1
1171 waveform_picker_regs->snapshot_param = 0x930; // 0x34 *** 2352 => nb samples
1172 waveform_picker_regs->start_date = 0x00; // 0x38
1173 waveform_picker_regs->nb_word_in_buffer = 0x1b92; // 0x3c *** 2352 * 3 + 2 = 7058
1174 }
1175
1176 void set_wfp_data_shaping( void )
1100 1177 {
1101 1178 /** This function sets the data_shaping register of the waveform picker module.
1102 1179 *
1103 1180 * The value is read from one field of the parameter_dump_packet structure:\n
1104 1181 * bw_sp0_sp1_r0_r1
1105 1182 *
1106 1183 */
1107 1184
1108 1185 unsigned char data_shaping;
1109 1186
1110 1187 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1111 1188 // waveform picker : [R1 R0 SP1 SP0 BW]
1112 1189
1113 1190 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1114 1191
1115 #ifdef GSA
1116 #else
1117 1192 waveform_picker_regs->data_shaping =
1118 1193 ( (data_shaping & 0x10) >> 4 ) // BW
1119 1194 + ( (data_shaping & 0x08) >> 2 ) // SP0
1120 1195 + ( (data_shaping & 0x04) ) // SP1
1121 1196 + ( (data_shaping & 0x02) << 2 ) // R0
1122 1197 + ( (data_shaping & 0x01) << 4 ); // R1
1123 #endif
1124 1198 }
1125 1199
1126 char set_wfp_delta_snapshot()
1127 {
1128 /** This function sets the delta_snapshot register of the waveform picker module.
1129 *
1130 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1131 * - sy_lfr_n_swf_p[0]
1132 * - sy_lfr_n_swf_p[1]
1133 *
1134 */
1135
1136 char ret;
1137 unsigned int delta_snapshot;
1138 unsigned int aux;
1139
1140 aux = 0;
1141 ret = LFR_DEFAULT;
1142
1143 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1144 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1145
1146 #ifdef GSA
1147 #else
1148 if ( delta_snapshot < MIN_DELTA_SNAPSHOT )
1149 {
1150 aux = MIN_DELTA_SNAPSHOT;
1151 ret = LFR_DEFAULT;
1152 }
1153 else
1154 {
1155 aux = delta_snapshot ;
1156 ret = LFR_SUCCESSFUL;
1157 }
1158 waveform_picker_regs->delta_snapshot = aux - 1; // max 2 bytes
1159 #endif
1160
1161 return ret;
1162 }
1163
1164 #ifdef VHDL_DEV
1165 1200 void set_wfp_burst_enable_register( unsigned char mode )
1166 1201 {
1167 1202 /** This function sets the waveform picker burst_enable register depending on the mode.
1168 1203 *
1169 1204 * @param mode is the LFR mode to launch.
1170 1205 *
1171 1206 * The burst bits shall be before the enable bits.
1172 1207 *
1173 1208 */
1174 1209
1175 1210 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1176 1211 // the burst bits shall be set first, before the enable bits
1177 1212 switch(mode) {
1178 1213 case(LFR_MODE_NORMAL):
1179 1214 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1180 1215 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1181 1216 break;
1182 1217 case(LFR_MODE_BURST):
1183 1218 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1184 1219 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1185 1220 break;
1186 1221 case(LFR_MODE_SBM1):
1187 1222 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1188 1223 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1189 1224 break;
1190 1225 case(LFR_MODE_SBM2):
1191 1226 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1192 1227 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1193 1228 break;
1194 1229 default:
1195 1230 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1196 1231 break;
1197 1232 }
1198 1233 }
1199 #else
1200 void set_wfp_burst_enable_register( unsigned char mode )
1234
1235 void set_wfp_delta_snapshot( void )
1201 1236 {
1202 /** This function sets the waveform picker burst_enable register depending on the mode.
1203 *
1204 * @param mode is the LFR mode to launch.
1205 *
1206 * The burst bits shall be before the enable bits.
1237 /** This function sets the delta_snapshot register of the waveform picker module.
1207 1238 *
1208 */
1209
1210 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1211 // the burst bits shall be set first, before the enable bits
1212 switch(mode) {
1213 case(LFR_MODE_NORMAL):
1214 waveform_picker_regs->burst_enable = 0x00; // [0000 0000] no burst enable
1215 waveform_picker_regs->burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1216 break;
1217 case(LFR_MODE_BURST):
1218 waveform_picker_regs->burst_enable = 0x40; // [0100 0000] f2 burst enabled
1219 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x04; // [0100] enable f2
1220 break;
1221 case(LFR_MODE_SBM1):
1222 waveform_picker_regs->burst_enable = 0x20; // [0010 0000] f1 burst enabled
1223 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1224 break;
1225 case(LFR_MODE_SBM2):
1226 waveform_picker_regs->burst_enable = 0x40; // [0100 0000] f2 burst enabled
1227 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1228 break;
1229 default:
1230 waveform_picker_regs->burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1231 break;
1232 }
1233 }
1234 #endif
1235
1236 void reset_wfp_burst_enable()
1237 {
1238 /** This function resets the waveform picker burst_enable register.
1239 *
1240 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1241 *
1242 */
1243
1244 #ifdef VHDL_DEV
1245 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1246 #else
1247 waveform_picker_regs->burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1248 #endif
1249 }
1250
1251 void reset_wfp_status()
1252 {
1253 /** This function resets the waveform picker status register.
1254 *
1255 * All status bits are set to 0 [new_err full_err full].
1239 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1240 * - sy_lfr_n_swf_p[0]
1241 * - sy_lfr_n_swf_p[1]
1256 1242 *
1257 1243 */
1258 1244
1259 #ifdef GSA
1260 #else
1261 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1262 #endif
1263 }
1245 unsigned int delta_snapshot;
1246 unsigned int delta_snapshot_in_T2;
1264 1247
1265 void reset_waveform_picker_regs_vhdl_dev()
1266 {
1267 /** This function resets the waveform picker module registers.
1268 *
1269 * The registers affected by this function are located at the following offset addresses:
1270 * - 0x00 data_shaping
1271 * - 0x04 run_burst_enable
1272 * - 0x08 addr_data_f0
1273 * - 0x0C addr_data_f1
1274 * - 0x10 addr_data_f2
1275 * - 0x14 addr_data_f3
1276 * - 0x18 status
1277 * - 0x1C delta_snapshot
1278 * - 0x20 delta_f0
1279 * - 0x24 delta_f0_2
1280 * - 0x28 delta_f1
1281 * - 0x2c delta_f2
1282 * - 0x30 nb_data_by_buffer
1283 * - 0x34 nb_snapshot_param
1284 * - 0x38 start_date
1285 * - 0x3c nb_word_in_buffer
1286 *
1287 */
1288 waveform_picker_regs->data_shaping = 0x01; // 0x00 *** R1 R0 SP1 SP0 BW
1289 waveform_picker_regs->run_burst_enable = 0x00; // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1290 //waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0); // 0x08
1291 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1292 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1293 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1294 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a); // 0x14
1295 waveform_picker_regs->status = 0x00; // 0x18
1296 //
1297 waveform_picker_regs->delta_snapshot = 0x1000; // 0x1c *** 4096 = 16 * 256
1298 waveform_picker_regs->delta_f0 = 0xc0b; // 0x20 *** 3083 = 4096 - 1013
1299 waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7 [7 bits]
1300 waveform_picker_regs->delta_f1 = 0xc40; // 0x28 *** 3136 = 4096 - 960
1301 waveform_picker_regs->delta_f2 = 0xc00; // 0x2c *** 3072 = 12 * 256
1302 //
1303 // waveform_picker_regs->delta_snapshot = 0x1000; // 0x1c *** 4096 = 16 * 256
1304 // waveform_picker_regs->delta_f0 = 0x1; // 0x20 ***
1305 // waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7 [7 bits]
1306 // waveform_picker_regs->delta_f1 = 0x1; // 0x28 ***
1307 // waveform_picker_regs->delta_f2 = 0x1; // 0x2c ***
1308 //
1309 // waveform_picker_regs->delta_snapshot = 0x1000; // 0x1c *** 4096 = 16 * 256
1310 // waveform_picker_regs->delta_f0 = 0x0fff; // 0x20 ***
1311 // waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7 [7 bits]
1312 // waveform_picker_regs->delta_f1 = 0x0fff; // 0x28 ***
1313 // waveform_picker_regs->delta_f2 = 0x1; // 0x2c ***
1314 // 2048
1315 // waveform_picker_regs->nb_data_by_buffer = 0x7ff; // 0x30 *** 2048 -1 => nb samples -1
1316 // waveform_picker_regs->snapshot_param = 0x800; // 0x34 *** 2048 => nb samples
1317 // waveform_picker_regs->start_date = 0x00; // 0x38
1318 // waveform_picker_regs->nb_word_in_buffer = 0x1802; // 0x3c *** 2048 * 3 + 2 = 6146
1319 // 2352 = 7 * 336
1320 // waveform_picker_regs->nb_data_by_buffer = 0x92f; // 0x30 *** 2352 - 1 => nb samples -1
1321 // waveform_picker_regs->snapshot_param = 0x930; // 0x34 *** 2352 => nb samples
1322 // waveform_picker_regs->start_date = 0x00; // 0x38
1323 // waveform_picker_regs->nb_word_in_buffer = 0x1b92; // 0x3c *** 2352 * 3 + 2 = 7058
1324 // 128
1325 waveform_picker_regs->nb_data_by_buffer = 0x7f; // 0x30 *** 128 - 1 => nb samples -1
1326 waveform_picker_regs->snapshot_param = 0x80; // 0x34 *** 128 => nb samples
1327 waveform_picker_regs->start_date = 0x00; // 0x38
1328 waveform_picker_regs->nb_word_in_buffer = 0x182; // 0x3c *** 128 * 3 + 2 = 386
1248 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1249 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1250
1251 delta_snapshot_in_T2 = delta_snapshot * 256;
1252 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2; // max 4 bytes
1329 1253 }
1330 1254
1331 void reset_waveform_picker_regs_vhdl_dev_debug()
1255 void set_wfp_delta_f0_f0_2( void )
1332 1256 {
1333 /** This function resets the waveform picker module registers.
1334 *
1335 * The registers affected by this function are located at the following offset addresses:
1336 * - 0x00 data_shaping
1337 * - 0x04 run_burst_enable
1338 * - 0x08 addr_data_f0
1339 * - 0x0C addr_data_f1
1340 * - 0x10 addr_data_f2
1341 * - 0x14 addr_data_f3
1342 * - 0x18 status
1343 * - 0x1C delta_snapshot
1344 * - 0x20 delta_f0
1345 * - 0x24 delta_f0_2
1346 * - 0x28 delta_f1
1347 * - 0x2c delta_f2
1348 * - 0x30 nb_data_by_buffer
1349 * - 0x34 nb_snapshot_param
1350 * - 0x38 start_date
1351 * - 0x3c nb_word_in_buffer
1352 *
1353 */
1354 waveform_picker_regs->data_shaping = 0x01; // 0x00 *** R1 R0 SP1 SP0 BW
1355 waveform_picker_regs->run_burst_enable = 0x00; // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1356 //waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0); // 0x08
1357 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1358 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1359 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1360 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a); // 0x14
1361 waveform_picker_regs->status = 0x00; // 0x18
1362 //
1363 waveform_picker_regs->delta_snapshot = 0x100; // 0x1c *** 256
1364 waveform_picker_regs->delta_f0 = 0xc1; // 0x20 *** 256 - 63
1365 waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7 [7 bits]
1366 waveform_picker_regs->delta_f1 = 0xc4; // 0x28 *** 256 - 60
1367 waveform_picker_regs->delta_f2 = 0xc0; // 0x2c *** 192
1368 // 128
1369 waveform_picker_regs->nb_data_by_buffer = 0x7f; // 0x30 *** 128 - 1 => nb samples -1
1370 waveform_picker_regs->snapshot_param = 0x80; // 0x34 *** 128 => nb samples
1371 waveform_picker_regs->start_date = 0x00; // 0x38
1372 waveform_picker_regs->nb_word_in_buffer = 0x182; // 0x3c *** 128 * 3 + 2 = 386
1257 unsigned int delta_snapshot;
1258 unsigned int nb_samples_per_snapshot;
1259 float delta_f0_in_float;
1260
1261 delta_snapshot = waveform_picker_regs->delta_snapshot;
1262 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1263 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1264
1265 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1266 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1373 1267 }
1374 1268
1375 void reset_waveform_picker_regs_vhdl_dev_debug_64()
1269 void set_wfp_delta_f1( void )
1376 1270 {
1377 /** This function resets the waveform picker module registers.
1378 *
1379 * The registers affected by this function are located at the following offset addresses:
1380 * - 0x00 data_shaping
1381 * - 0x04 run_burst_enable
1382 * - 0x08 addr_data_f0
1383 * - 0x0C addr_data_f1
1384 * - 0x10 addr_data_f2
1385 * - 0x14 addr_data_f3
1386 * - 0x18 status
1387 * - 0x1C delta_snapshot
1388 * - 0x20 delta_f0
1389 * - 0x24 delta_f0_2
1390 * - 0x28 delta_f1
1391 * - 0x2c delta_f2
1392 * - 0x30 nb_data_by_buffer
1393 * - 0x34 nb_snapshot_param
1394 * - 0x38 start_date
1395 * - 0x3c nb_word_in_buffer
1396 *
1397 */
1398 waveform_picker_regs->data_shaping = 0x01; // 0x00 *** R1 R0 SP1 SP0 BW
1399 waveform_picker_regs->run_burst_enable = 0x00; // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1400 //waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0); // 0x08
1401 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1402 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1403 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1404 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a); // 0x14
1405 waveform_picker_regs->status = 0x00; // 0x18
1406 //
1407 waveform_picker_regs->delta_snapshot = 0x80; // 0x1c *** 128
1408 waveform_picker_regs->delta_f0 = 0x60; // 0x20 *** 128 - 32 = 96
1409 waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7 [7 bits]
1410 waveform_picker_regs->delta_f1 = 0x62; // 0x28 *** 128 - 30 = 90
1411 waveform_picker_regs->delta_f2 = 0x60; // 0x2c *** 192
1412 // 128
1413 waveform_picker_regs->nb_data_by_buffer = 0x3f; // 0x30 *** 64 - 1 => nb samples -1
1414 waveform_picker_regs->snapshot_param = 0x40; // 0x34 *** 64 => nb samples
1415 waveform_picker_regs->start_date = 0x00; // 0x38
1416 waveform_picker_regs->nb_word_in_buffer = 0xc2; // 0x3c *** 64 * 3 + 2 = 194
1271 unsigned int delta_snapshot;
1272 unsigned int nb_samples_per_snapshot;
1273 float delta_f1_in_float;
1274
1275 delta_snapshot = waveform_picker_regs->delta_snapshot;
1276 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1277 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1278
1279 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1417 1280 }
1418 1281
1419 void reset_waveform_picker_regs()
1282 void set_wfp_delta_f2()
1420 1283 {
1421 /** This function resets the waveform picker module registers.
1422 *
1423 * The registers affected by this function are located at the following offset addresses:
1424 * - 0x00 data_shaping
1425 * - 0x04 burst_enable
1426 * - 0x08 addr_data_f0
1427 * - 0x0C addr_data_f1
1428 * - 0x10 addr_data_f2
1429 * - 0x14 addr_data_f3
1430 * - 0x18 status
1431 * - 0x1C delta_snapshot
1432 * - 0x20 delta_f2_f1
1433 * - 0x24 delta_f2_f0
1434 * - 0x28 nb_burst
1435 * - 0x2C nb_snapshot
1436 *
1437 */
1284 unsigned int delta_snapshot;
1285 unsigned int nb_samples_per_snapshot;
1438 1286
1439 #ifdef VHDL_DEV
1440 #else
1441 reset_wfp_burst_enable();
1442 reset_wfp_status();
1443 // set buffer addresses
1444 waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0);
1445 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
1446 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
1447 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a);
1448 // set other parameters
1449 set_wfp_data_shaping();
1450 set_wfp_delta_snapshot(); // time in seconds between two snapshots
1451 waveform_picker_regs->delta_f2_f1 = 0xffff; // 0x16800 => 92160 (max 4 bytes)
1452 waveform_picker_regs->delta_f2_f0 = 0x17c00; // 97 280 (max 5 bytes)
1453 // waveform_picker_regs->nb_burst_available = 0x180; // max 3 bytes, size of the buffer in burst (1 burst = 16 x 4 octets)
1454 // // 3 * 2048 / 16 = 384
1455 // waveform_picker_regs->nb_snapshot_param = 0x7ff; // max 3 octets, 2048 - 1
1456 waveform_picker_regs->nb_burst_available = 0x1b9; // max 3 bytes, size of the buffer in burst (1 burst = 16 x 4 octets)
1457 // 3 * 2352 / 16 = 441
1458 waveform_picker_regs->nb_snapshot_param = 0x944; // max 3 octets, 2372 - 1
1459 #endif
1287 delta_snapshot = waveform_picker_regs->delta_snapshot;
1288 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1289
1290 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1460 1291 }
1461 1292
1462 1293 //*****************
1463 1294 // local parameters
1464 1295 void set_local_nb_interrupt_f0_MAX( void )
1465 1296 {
1466 1297 /** This function sets the value of the nb_interrupt_f0_MAX local parameter.
1467 1298 *
1468 1299 * This parameter is used for the SM validation only.\n
1469 1300 * The software waits param_local.local_nb_interrupt_f0_MAX interruptions from the spectral matrices
1470 1301 * module before launching a basic processing.
1471 1302 *
1472 1303 */
1473 1304
1474 1305 param_local.local_nb_interrupt_f0_MAX = ( (parameter_dump_packet.sy_lfr_n_asm_p[0]) * 256
1475 1306 + parameter_dump_packet.sy_lfr_n_asm_p[1] ) * 100;
1476 1307 }
1477 1308
1478 1309 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1479 1310 {
1480 1311 unsigned short *sequence_cnt;
1481 1312 unsigned short segmentation_grouping_flag;
1482 1313 unsigned short new_packet_sequence_control;
1483 1314
1484 1315 if ( (sid ==SID_NORM_SWF_F0) || (sid ==SID_NORM_SWF_F1) || (sid ==SID_NORM_SWF_F2)
1485 1316 || (sid ==SID_NORM_CWF_F3) || (sid==SID_NORM_CWF_LONG_F3) || (sid ==SID_BURST_CWF_F2) )
1486 1317 {
1487 1318 sequence_cnt = &sequenceCounters_SCIENCE_NORMAL_BURST;
1488 1319 }
1489 1320 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2) )
1490 1321 {
1491 1322 sequence_cnt = &sequenceCounters_SCIENCE_SBM1_SBM2;
1492 1323 }
1493 1324 else
1494 1325 {
1495 1326 sequence_cnt = NULL;
1496 1327 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1497 1328 }
1498 1329
1499 1330 if (sequence_cnt != NULL)
1500 1331 {
1501 1332 segmentation_grouping_flag = (packet_sequence_control[ 0 ] & 0xc0) << 8;
1502 1333 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1503 1334
1504 1335 new_packet_sequence_control = segmentation_grouping_flag | *sequence_cnt ;
1505 1336
1506 1337 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1507 1338 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1508 1339
1509 1340 // increment the sequence counter for the next packet
1510 1341 if ( *sequence_cnt < SEQ_CNT_MAX)
1511 1342 {
1512 1343 *sequence_cnt = *sequence_cnt + 1;
1513 1344 }
1514 1345 else
1515 1346 {
1516 1347 *sequence_cnt = 0;
1517 1348 }
1518 1349 }
1519 1350 }
General Comments 0
You need to be logged in to leave comments. Login now