##// END OF EJS Templates
Bug 801 Don_Initialisation_P2
paul -
r320:6303d998f250 R3_plus draft
parent child
Show More
@@ -1,938 +1,945
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
36 36 #define CONFIGURE_MAXIMUM_DRIVERS 16
37 37 #define CONFIGURE_MAXIMUM_PERIODS 5
38 38 #define CONFIGURE_MAXIMUM_TIMERS 5 // [spiq] [link] [spacewire_reset_link]
39 39 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
40 40 #ifdef PRINT_STACK_REPORT
41 41 #define CONFIGURE_STACK_CHECKER_ENABLED
42 42 #endif
43 43
44 44 #include <rtems/confdefs.h>
45 45
46 46 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
47 47 #ifdef RTEMS_DRVMGR_STARTUP
48 48 #ifdef LEON3
49 49 /* Add Timer and UART Driver */
50 50
51 51 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
52 52 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
53 53 #endif
54 54
55 55 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
57 57 #endif
58 58
59 59 #endif
60 60 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
61 61
62 62 #include <drvmgr/drvmgr_confdefs.h>
63 63 #endif
64 64
65 65 #include "fsw_init.h"
66 66 #include "fsw_config.c"
67 67 #include "GscMemoryLPP.hpp"
68 68
69 69 void initCache()
70 70 {
71 71 // ASI 2 contains a few control registers that have not been assigned as ancillary state registers.
72 72 // These should only be read and written using 32-bit LDA/STA instructions.
73 73 // All cache registers are accessed through load/store operations to the alternate address space (LDA/STA), using ASI = 2.
74 74 // The table below shows the register addresses:
75 75 // 0x00 Cache control register
76 76 // 0x04 Reserved
77 77 // 0x08 Instruction cache configuration register
78 78 // 0x0C Data cache configuration register
79 79
80 80 // Cache Control Register Leon3 / Leon3FT
81 81 // 31..30 29 28 27..24 23 22 21 20..19 18 17 16
82 82 // RFT PS TB DS FD FI FT ST IB
83 83 // 15 14 13..12 11..10 9..8 7..6 5 4 3..2 1..0
84 84 // IP DP ITE IDE DTE DDE DF IF DCS ICS
85 85
86 86 unsigned int cacheControlRegister;
87 87
88 88 CCR_resetCacheControlRegister();
89 89 ASR16_resetRegisterProtectionControlRegister();
90 90
91 91 cacheControlRegister = CCR_getValue();
92 92 PRINTF1("(0) CCR - Cache Control Register = %x\n", cacheControlRegister);
93 93 PRINTF1("(0) ASR16 = %x\n", *asr16Ptr);
94 94
95 95 CCR_enableInstructionCache(); // ICS bits
96 96 CCR_enableDataCache(); // DCS bits
97 97 CCR_enableInstructionBurstFetch(); // IB bit
98 98
99 99 faultTolerantScheme();
100 100
101 101 cacheControlRegister = CCR_getValue();
102 102 PRINTF1("(1) CCR - Cache Control Register = %x\n", cacheControlRegister);
103 103 PRINTF1("(1) ASR16 Register protection control register = %x\n", *asr16Ptr);
104 104
105 105 PRINTF("\n");
106 106 }
107 107
108 108 rtems_task Init( rtems_task_argument ignored )
109 109 {
110 110 /** This is the RTEMS INIT taks, it is the first task launched by the system.
111 111 *
112 112 * @param unused is the starting argument of the RTEMS task
113 113 *
114 114 * The INIT task create and run all other RTEMS tasks.
115 115 *
116 116 */
117 117
118 118 //***********
119 119 // INIT CACHE
120 120
121 121 unsigned char *vhdlVersion;
122 122
123 123 reset_lfr();
124 124
125 125 reset_local_time();
126 126
127 127 rtems_cpu_usage_reset();
128 128
129 129 rtems_status_code status;
130 130 rtems_status_code status_spw;
131 131 rtems_isr_entry old_isr_handler;
132 132
133 old_isr_handler = NULL;
134
133 135 // UART settings
134 136 enable_apbuart_transmitter();
135 137 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
136 138
137 139 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
138 140
139 141
140 142 PRINTF("\n\n\n\n\n")
141 143
142 144 initCache();
143 145
144 146 PRINTF("*************************\n")
145 147 PRINTF("** LFR Flight Software **\n")
146 148
147 149 PRINTF1("** %d-", SW_VERSION_N1)
148 150 PRINTF1("%d-" , SW_VERSION_N2)
149 151 PRINTF1("%d-" , SW_VERSION_N3)
150 152 PRINTF1("%d **\n", SW_VERSION_N4)
151 153
152 154 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
153 155 PRINTF("** VHDL **\n")
154 156 PRINTF1("** %d.", vhdlVersion[1])
155 157 PRINTF1("%d." , vhdlVersion[2])
156 158 PRINTF1("%d **\n", vhdlVersion[3])
157 159 PRINTF("*************************\n")
158 160 PRINTF("\n\n")
159 161
160 162 init_parameter_dump();
161 163 init_kcoefficients_dump();
162 164 init_local_mode_parameters();
163 165 init_housekeeping_parameters();
164 166 init_k_coefficients_prc0();
165 167 init_k_coefficients_prc1();
166 168 init_k_coefficients_prc2();
167 169 pa_bia_status_info = INIT_CHAR;
168 170 cp_rpw_sc_rw_f_flags = INIT_CHAR;
169 171 cp_rpw_sc_rw1_f1 = INIT_FLOAT;
170 172 cp_rpw_sc_rw1_f2 = INIT_FLOAT;
171 173 cp_rpw_sc_rw2_f1 = INIT_FLOAT;
172 174 cp_rpw_sc_rw2_f2 = INIT_FLOAT;
173 175 cp_rpw_sc_rw3_f1 = INIT_FLOAT;
174 176 cp_rpw_sc_rw3_f2 = INIT_FLOAT;
175 177 cp_rpw_sc_rw4_f1 = INIT_FLOAT;
176 178 cp_rpw_sc_rw4_f2 = INIT_FLOAT;
177 179 // initialize filtering parameters
178 180 filterPar.spare_sy_lfr_pas_filter_enabled = DEFAULT_SY_LFR_PAS_FILTER_ENABLED;
179 181 filterPar.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
180 182 filterPar.sy_lfr_pas_filter_tbad = DEFAULT_SY_LFR_PAS_FILTER_TBAD;
181 183 filterPar.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
182 184 filterPar.sy_lfr_pas_filter_shift = DEFAULT_SY_LFR_PAS_FILTER_SHIFT;
183 185 filterPar.sy_lfr_sc_rw_delta_f = DEFAULT_SY_LFR_SC_RW_DELTA_F;
184 186 update_last_valid_transition_date( DEFAULT_LAST_VALID_TRANSITION_DATE );
185 187
186 188 // waveform picker initialization
187 189 WFP_init_rings();
188 190 LEON_Clear_interrupt( IRQ_SPARC_GPTIMER_WATCHDOG ); // initialize the waveform rings
189 191 WFP_reset_current_ring_nodes();
190 192 reset_waveform_picker_regs();
191 193
192 194 // spectral matrices initialization
193 195 SM_init_rings(); // initialize spectral matrices rings
194 196 SM_reset_current_ring_nodes();
195 197 reset_spectral_matrix_regs();
196 198
197 199 // configure calibration
198 200 configureCalibration( false ); // true means interleaved mode, false is for normal mode
199 201
200 202 updateLFRCurrentMode( LFR_MODE_STANDBY );
201 203
202 204 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
203 205
204 206 create_names(); // create all names
205 207
206 208 status = create_timecode_timer(); // create the timer used by timecode_irq_handler
207 209 if (status != RTEMS_SUCCESSFUL)
208 210 {
209 211 PRINTF1("in INIT *** ERR in create_timer_timecode, code %d", status)
210 212 }
211 213
212 214 status = create_message_queues(); // create message queues
213 215 if (status != RTEMS_SUCCESSFUL)
214 216 {
215 217 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
216 218 }
217 219
218 220 status = create_all_tasks(); // create all tasks
219 221 if (status != RTEMS_SUCCESSFUL)
220 222 {
221 223 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
222 224 }
223 225
224 226 // **************************
225 227 // <SPACEWIRE INITIALIZATION>
226 228 status_spw = spacewire_open_link(); // (1) open the link
227 229 if ( status_spw != RTEMS_SUCCESSFUL )
228 230 {
229 231 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
230 232 }
231 233
232 234 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
233 235 {
234 236 status_spw = spacewire_configure_link( fdSPW );
235 237 if ( status_spw != RTEMS_SUCCESSFUL )
236 238 {
237 239 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
238 240 }
239 241 }
240 242
241 243 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
242 244 {
243 245 status_spw = spacewire_start_link( fdSPW );
244 246 if ( status_spw != RTEMS_SUCCESSFUL )
245 247 {
246 248 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
247 249 }
248 250 }
249 251 // </SPACEWIRE INITIALIZATION>
250 252 // ***************************
251 253
252 254 status = start_all_tasks(); // start all tasks
253 255 if (status != RTEMS_SUCCESSFUL)
254 256 {
255 257 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
256 258 }
257 259
258 260 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
259 261 status = start_recv_send_tasks();
260 262 if ( status != RTEMS_SUCCESSFUL )
261 263 {
262 264 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
263 265 }
264 266
265 267 // suspend science tasks, they will be restarted later depending on the mode
266 268 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
267 269 if (status != RTEMS_SUCCESSFUL)
268 270 {
269 271 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
270 272 }
271 273
272 274 // configure IRQ handling for the waveform picker unit
273 275 status = rtems_interrupt_catch( waveforms_isr,
274 276 IRQ_SPARC_WAVEFORM_PICKER,
275 277 &old_isr_handler) ;
276 278 // configure IRQ handling for the spectral matrices unit
277 279 status = rtems_interrupt_catch( spectral_matrices_isr,
278 280 IRQ_SPARC_SPECTRAL_MATRIX,
279 281 &old_isr_handler) ;
280 282
281 283 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
282 284 if ( status_spw != RTEMS_SUCCESSFUL )
283 285 {
284 286 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
285 287 if ( status != RTEMS_SUCCESSFUL ) {
286 288 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
287 289 }
288 290 }
289 291
290 292 BOOT_PRINTF("delete INIT\n")
291 293
292 294 set_hk_lfr_sc_potential_flag( true );
293 295
294 296 // start the timer to detect a missing spacewire timecode
295 297 // the timeout is larger because the spw IP needs to receive several valid timecodes before generating a tickout
296 298 // if a tickout is generated, the timer is restarted
297 299 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT_INIT, timecode_timer_routine, NULL );
298 300
299 301 grspw_timecode_callback = &timecode_irq_handler;
300 302
301 303 status = rtems_task_delete(RTEMS_SELF);
302 304
303 305 }
304 306
305 307 void init_local_mode_parameters( void )
306 308 {
307 309 /** This function initialize the param_local global variable with default values.
308 310 *
309 311 */
310 312
311 313 unsigned int i;
312 314
313 315 // LOCAL PARAMETERS
314 316
315 317 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
316 318 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
317 319
318 320 // init sequence counters
319 321
320 322 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
321 323 {
322 324 sequenceCounters_TC_EXE[i] = INIT_CHAR;
323 325 sequenceCounters_TM_DUMP[i] = INIT_CHAR;
324 326 }
325 327 sequenceCounters_SCIENCE_NORMAL_BURST = INIT_CHAR;
326 328 sequenceCounters_SCIENCE_SBM1_SBM2 = INIT_CHAR;
327 329 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << TM_PACKET_SEQ_SHIFT;
328 330 }
329 331
330 332 void reset_local_time( void )
331 333 {
332 334 time_management_regs->ctrl = time_management_regs->ctrl | VAL_SOFTWARE_RESET; // [0010] software reset, coarse time = 0x80000000
333 335 }
334 336
335 337 void create_names( void ) // create all names for tasks and queues
336 338 {
337 339 /** This function creates all RTEMS names used in the software for tasks and queues.
338 340 *
339 341 * @return RTEMS directive status codes:
340 342 * - RTEMS_SUCCESSFUL - successful completion
341 343 *
342 344 */
343 345
344 346 // task names
345 347 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
346 348 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
347 349 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
348 350 Task_name[TASKID_LOAD] = rtems_build_name( 'L', 'O', 'A', 'D' );
349 351 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
350 352 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
351 353 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
352 354 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
353 355 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
354 356 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
355 357 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
356 358 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
357 359 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
358 360 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
359 361 Task_name[TASKID_LINK] = rtems_build_name( 'L', 'I', 'N', 'K' );
360 362 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
361 363 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
362 364 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
363 365 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
364 366
365 367 // rate monotonic period names
366 368 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
367 369
368 370 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
369 371 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
370 372 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
371 373 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
372 374 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
373 375
374 376 timecode_timer_name = rtems_build_name( 'S', 'P', 'T', 'C' );
375 377 }
376 378
377 379 int create_all_tasks( void ) // create all tasks which run in the software
378 380 {
379 381 /** This function creates all RTEMS tasks used in the software.
380 382 *
381 383 * @return RTEMS directive status codes:
382 384 * - RTEMS_SUCCESSFUL - task created successfully
383 385 * - RTEMS_INVALID_ADDRESS - id is NULL
384 386 * - RTEMS_INVALID_NAME - invalid task name
385 387 * - RTEMS_INVALID_PRIORITY - invalid task priority
386 388 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
387 389 * - RTEMS_TOO_MANY - too many tasks created
388 390 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
389 391 * - RTEMS_TOO_MANY - too many global objects
390 392 *
391 393 */
392 394
393 395 rtems_status_code status;
394 396
395 397 //**********
396 398 // SPACEWIRE
397 399 // RECV
398 400 status = rtems_task_create(
399 401 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
400 402 RTEMS_DEFAULT_MODES,
401 403 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
402 404 );
403 405 if (status == RTEMS_SUCCESSFUL) // SEND
404 406 {
405 407 status = rtems_task_create(
406 408 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
407 409 RTEMS_DEFAULT_MODES,
408 410 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
409 411 );
410 412 }
411 413 if (status == RTEMS_SUCCESSFUL) // LINK
412 414 {
413 415 status = rtems_task_create(
414 416 Task_name[TASKID_LINK], TASK_PRIORITY_LINK, RTEMS_MINIMUM_STACK_SIZE,
415 417 RTEMS_DEFAULT_MODES,
416 418 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LINK]
417 419 );
418 420 }
419 421 if (status == RTEMS_SUCCESSFUL) // ACTN
420 422 {
421 423 status = rtems_task_create(
422 424 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
423 425 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
424 426 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
425 427 );
426 428 }
427 429 if (status == RTEMS_SUCCESSFUL) // SPIQ
428 430 {
429 431 status = rtems_task_create(
430 432 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
431 433 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
432 434 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
433 435 );
434 436 }
435 437
436 438 //******************
437 439 // SPECTRAL MATRICES
438 440 if (status == RTEMS_SUCCESSFUL) // AVF0
439 441 {
440 442 status = rtems_task_create(
441 443 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
442 444 RTEMS_DEFAULT_MODES,
443 445 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
444 446 );
445 447 }
446 448 if (status == RTEMS_SUCCESSFUL) // PRC0
447 449 {
448 450 status = rtems_task_create(
449 451 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
450 452 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
451 453 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
452 454 );
453 455 }
454 456 if (status == RTEMS_SUCCESSFUL) // AVF1
455 457 {
456 458 status = rtems_task_create(
457 459 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
458 460 RTEMS_DEFAULT_MODES,
459 461 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
460 462 );
461 463 }
462 464 if (status == RTEMS_SUCCESSFUL) // PRC1
463 465 {
464 466 status = rtems_task_create(
465 467 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
466 468 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
467 469 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
468 470 );
469 471 }
470 472 if (status == RTEMS_SUCCESSFUL) // AVF2
471 473 {
472 474 status = rtems_task_create(
473 475 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
474 476 RTEMS_DEFAULT_MODES,
475 477 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
476 478 );
477 479 }
478 480 if (status == RTEMS_SUCCESSFUL) // PRC2
479 481 {
480 482 status = rtems_task_create(
481 483 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
482 484 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
483 485 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
484 486 );
485 487 }
486 488
487 489 //****************
488 490 // WAVEFORM PICKER
489 491 if (status == RTEMS_SUCCESSFUL) // WFRM
490 492 {
491 493 status = rtems_task_create(
492 494 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
493 495 RTEMS_DEFAULT_MODES,
494 496 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
495 497 );
496 498 }
497 499 if (status == RTEMS_SUCCESSFUL) // CWF3
498 500 {
499 501 status = rtems_task_create(
500 502 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
501 503 RTEMS_DEFAULT_MODES,
502 504 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
503 505 );
504 506 }
505 507 if (status == RTEMS_SUCCESSFUL) // CWF2
506 508 {
507 509 status = rtems_task_create(
508 510 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
509 511 RTEMS_DEFAULT_MODES,
510 512 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
511 513 );
512 514 }
513 515 if (status == RTEMS_SUCCESSFUL) // CWF1
514 516 {
515 517 status = rtems_task_create(
516 518 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
517 519 RTEMS_DEFAULT_MODES,
518 520 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
519 521 );
520 522 }
521 523 if (status == RTEMS_SUCCESSFUL) // SWBD
522 524 {
523 525 status = rtems_task_create(
524 526 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
525 527 RTEMS_DEFAULT_MODES,
526 528 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
527 529 );
528 530 }
529 531
530 532 //*****
531 533 // MISC
532 534 if (status == RTEMS_SUCCESSFUL) // LOAD
533 535 {
534 536 status = rtems_task_create(
535 537 Task_name[TASKID_LOAD], TASK_PRIORITY_LOAD, RTEMS_MINIMUM_STACK_SIZE,
536 538 RTEMS_DEFAULT_MODES,
537 539 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LOAD]
538 540 );
539 541 }
540 542 if (status == RTEMS_SUCCESSFUL) // DUMB
541 543 {
542 544 status = rtems_task_create(
543 545 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
544 546 RTEMS_DEFAULT_MODES,
545 547 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
546 548 );
547 549 }
548 550 if (status == RTEMS_SUCCESSFUL) // HOUS
549 551 {
550 552 status = rtems_task_create(
551 553 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
552 554 RTEMS_DEFAULT_MODES,
553 555 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
554 556 );
555 557 }
556 558
557 559 return status;
558 560 }
559 561
560 562 int start_recv_send_tasks( void )
561 563 {
562 564 rtems_status_code status;
563 565
564 566 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
565 567 if (status!=RTEMS_SUCCESSFUL) {
566 568 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
567 569 }
568 570
569 571 if (status == RTEMS_SUCCESSFUL) // SEND
570 572 {
571 573 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
572 574 if (status!=RTEMS_SUCCESSFUL) {
573 575 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
574 576 }
575 577 }
576 578
577 579 return status;
578 580 }
579 581
580 582 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
581 583 {
582 584 /** This function starts all RTEMS tasks used in the software.
583 585 *
584 586 * @return RTEMS directive status codes:
585 587 * - RTEMS_SUCCESSFUL - ask started successfully
586 588 * - RTEMS_INVALID_ADDRESS - invalid task entry point
587 589 * - RTEMS_INVALID_ID - invalid task id
588 590 * - RTEMS_INCORRECT_STATE - task not in the dormant state
589 591 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
590 592 *
591 593 */
592 594 // starts all the tasks fot eh flight software
593 595
594 596 rtems_status_code status;
595 597
596 598 //**********
597 599 // SPACEWIRE
598 600 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
599 601 if (status!=RTEMS_SUCCESSFUL) {
600 602 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
601 603 }
602 604
603 605 if (status == RTEMS_SUCCESSFUL) // LINK
604 606 {
605 607 status = rtems_task_start( Task_id[TASKID_LINK], link_task, 1 );
606 608 if (status!=RTEMS_SUCCESSFUL) {
607 609 BOOT_PRINTF("in INIT *** Error starting TASK_LINK\n")
608 610 }
609 611 }
610 612
611 613 if (status == RTEMS_SUCCESSFUL) // ACTN
612 614 {
613 615 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
614 616 if (status!=RTEMS_SUCCESSFUL) {
615 617 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
616 618 }
617 619 }
618 620
619 621 //******************
620 622 // SPECTRAL MATRICES
621 623 if (status == RTEMS_SUCCESSFUL) // AVF0
622 624 {
623 625 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
624 626 if (status!=RTEMS_SUCCESSFUL) {
625 627 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
626 628 }
627 629 }
628 630 if (status == RTEMS_SUCCESSFUL) // PRC0
629 631 {
630 632 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
631 633 if (status!=RTEMS_SUCCESSFUL) {
632 634 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
633 635 }
634 636 }
635 637 if (status == RTEMS_SUCCESSFUL) // AVF1
636 638 {
637 639 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
638 640 if (status!=RTEMS_SUCCESSFUL) {
639 641 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
640 642 }
641 643 }
642 644 if (status == RTEMS_SUCCESSFUL) // PRC1
643 645 {
644 646 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
645 647 if (status!=RTEMS_SUCCESSFUL) {
646 648 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
647 649 }
648 650 }
649 651 if (status == RTEMS_SUCCESSFUL) // AVF2
650 652 {
651 653 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
652 654 if (status!=RTEMS_SUCCESSFUL) {
653 655 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
654 656 }
655 657 }
656 658 if (status == RTEMS_SUCCESSFUL) // PRC2
657 659 {
658 660 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
659 661 if (status!=RTEMS_SUCCESSFUL) {
660 662 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
661 663 }
662 664 }
663 665
664 666 //****************
665 667 // WAVEFORM PICKER
666 668 if (status == RTEMS_SUCCESSFUL) // WFRM
667 669 {
668 670 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
669 671 if (status!=RTEMS_SUCCESSFUL) {
670 672 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
671 673 }
672 674 }
673 675 if (status == RTEMS_SUCCESSFUL) // CWF3
674 676 {
675 677 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
676 678 if (status!=RTEMS_SUCCESSFUL) {
677 679 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
678 680 }
679 681 }
680 682 if (status == RTEMS_SUCCESSFUL) // CWF2
681 683 {
682 684 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
683 685 if (status!=RTEMS_SUCCESSFUL) {
684 686 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
685 687 }
686 688 }
687 689 if (status == RTEMS_SUCCESSFUL) // CWF1
688 690 {
689 691 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
690 692 if (status!=RTEMS_SUCCESSFUL) {
691 693 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
692 694 }
693 695 }
694 696 if (status == RTEMS_SUCCESSFUL) // SWBD
695 697 {
696 698 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
697 699 if (status!=RTEMS_SUCCESSFUL) {
698 700 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
699 701 }
700 702 }
701 703
702 704 //*****
703 705 // MISC
704 706 if (status == RTEMS_SUCCESSFUL) // HOUS
705 707 {
706 708 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
707 709 if (status!=RTEMS_SUCCESSFUL) {
708 710 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
709 711 }
710 712 }
711 713 if (status == RTEMS_SUCCESSFUL) // DUMB
712 714 {
713 715 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
714 716 if (status!=RTEMS_SUCCESSFUL) {
715 717 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
716 718 }
717 719 }
718 720 if (status == RTEMS_SUCCESSFUL) // LOAD
719 721 {
720 722 status = rtems_task_start( Task_id[TASKID_LOAD], load_task, 1 );
721 723 if (status!=RTEMS_SUCCESSFUL) {
722 724 BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n")
723 725 }
724 726 }
725 727
726 728 return status;
727 729 }
728 730
729 731 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
730 732 {
731 733 rtems_status_code status_recv;
732 734 rtems_status_code status_send;
733 735 rtems_status_code status_q_p0;
734 736 rtems_status_code status_q_p1;
735 737 rtems_status_code status_q_p2;
736 738 rtems_status_code ret;
737 739 rtems_id queue_id;
738 740
741 ret = RTEMS_SUCCESSFUL;
742 queue_id = RTEMS_ID_NONE;
743
739 744 //****************************************
740 745 // create the queue for handling valid TCs
741 746 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
742 747 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
743 748 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
744 749 if ( status_recv != RTEMS_SUCCESSFUL ) {
745 750 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
746 751 }
747 752
748 753 //************************************************
749 754 // create the queue for handling TM packet sending
750 755 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
751 756 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
752 757 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
753 758 if ( status_send != RTEMS_SUCCESSFUL ) {
754 759 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
755 760 }
756 761
757 762 //*****************************************************************************
758 763 // create the queue for handling averaged spectral matrices for processing @ f0
759 764 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
760 765 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
761 766 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
762 767 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
763 768 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
764 769 }
765 770
766 771 //*****************************************************************************
767 772 // create the queue for handling averaged spectral matrices for processing @ f1
768 773 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
769 774 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
770 775 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
771 776 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
772 777 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
773 778 }
774 779
775 780 //*****************************************************************************
776 781 // create the queue for handling averaged spectral matrices for processing @ f2
777 782 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
778 783 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
779 784 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
780 785 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
781 786 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
782 787 }
783 788
784 789 if ( status_recv != RTEMS_SUCCESSFUL )
785 790 {
786 791 ret = status_recv;
787 792 }
788 793 else if( status_send != RTEMS_SUCCESSFUL )
789 794 {
790 795 ret = status_send;
791 796 }
792 797 else if( status_q_p0 != RTEMS_SUCCESSFUL )
793 798 {
794 799 ret = status_q_p0;
795 800 }
796 801 else if( status_q_p1 != RTEMS_SUCCESSFUL )
797 802 {
798 803 ret = status_q_p1;
799 804 }
800 805 else
801 806 {
802 807 ret = status_q_p2;
803 808 }
804 809
805 810 return ret;
806 811 }
807 812
808 813 rtems_status_code create_timecode_timer( void )
809 814 {
810 815 rtems_status_code status;
811 816
812 817 status = rtems_timer_create( timecode_timer_name, &timecode_timer_id );
813 818
814 819 if ( status != RTEMS_SUCCESSFUL )
815 820 {
816 821 PRINTF1("in create_timer_timecode *** ERR creating SPTC timer, %d\n", status)
817 822 }
818 823 else
819 824 {
820 825 PRINTF("in create_timer_timecode *** OK creating SPTC timer\n")
821 826 }
822 827
823 828 return status;
824 829 }
825 830
826 831 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
827 832 {
828 833 rtems_status_code status;
829 834 rtems_name queue_name;
830 835
831 836 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
832 837
833 838 status = rtems_message_queue_ident( queue_name, 0, queue_id );
834 839
835 840 return status;
836 841 }
837 842
838 843 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
839 844 {
840 845 rtems_status_code status;
841 846 rtems_name queue_name;
842 847
843 848 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
844 849
845 850 status = rtems_message_queue_ident( queue_name, 0, queue_id );
846 851
847 852 return status;
848 853 }
849 854
850 855 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
851 856 {
852 857 rtems_status_code status;
853 858 rtems_name queue_name;
854 859
855 860 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
856 861
857 862 status = rtems_message_queue_ident( queue_name, 0, queue_id );
858 863
859 864 return status;
860 865 }
861 866
862 867 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
863 868 {
864 869 rtems_status_code status;
865 870 rtems_name queue_name;
866 871
867 872 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
868 873
869 874 status = rtems_message_queue_ident( queue_name, 0, queue_id );
870 875
871 876 return status;
872 877 }
873 878
874 879 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
875 880 {
876 881 rtems_status_code status;
877 882 rtems_name queue_name;
878 883
879 884 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
880 885
881 886 status = rtems_message_queue_ident( queue_name, 0, queue_id );
882 887
883 888 return status;
884 889 }
885 890
886 891 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max )
887 892 {
888 893 u_int32_t count;
889 894 rtems_status_code status;
890 895
896 count = 0;
897
891 898 status = rtems_message_queue_get_number_pending( queue_id, &count );
892 899
893 900 count = count + 1;
894 901
895 902 if (status != RTEMS_SUCCESSFUL)
896 903 {
897 904 PRINTF1("in update_queue_max_count *** ERR = %d\n", status)
898 905 }
899 906 else
900 907 {
901 908 if (count > *fifo_size_max)
902 909 {
903 910 *fifo_size_max = count;
904 911 }
905 912 }
906 913 }
907 914
908 915 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
909 916 {
910 917 unsigned char i;
911 918
912 919 //***************
913 920 // BUFFER ADDRESS
914 921 for(i=0; i<nbNodes; i++)
915 922 {
916 923 ring[i].coarseTime = INT32_ALL_F;
917 924 ring[i].fineTime = INT32_ALL_F;
918 925 ring[i].sid = INIT_CHAR;
919 926 ring[i].status = INIT_CHAR;
920 927 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
921 928 }
922 929
923 930 //*****
924 931 // NEXT
925 932 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
926 933 for(i=0; i<nbNodes-1; i++)
927 934 {
928 935 ring[i].next = (ring_node*) &ring[ i + 1 ];
929 936 }
930 937
931 938 //*********
932 939 // PREVIOUS
933 940 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
934 941 for(i=1; i<nbNodes; i++)
935 942 {
936 943 ring[i].previous = (ring_node*) &ring[ i - 1 ];
937 944 }
938 945 }
@@ -1,997 +1,995
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void timer_configure(unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 old_isr_handler = NULL;
29
28 30 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
29 31
30 32 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 33 if (status!=RTEMS_SUCCESSFUL)
32 34 {
33 35 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 36 }
35 37
36 38 timer_set_clock_divider( timer, clock_divider);
37 39 }
38 40
39 41 void timer_start(unsigned char timer)
40 42 {
41 43 /** This function starts a GPTIMER timer.
42 44 *
43 45 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 46 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 47 *
46 48 */
47 49
48 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
49 51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
50 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
51 53 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
52 54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
53 55 }
54 56
55 57 void timer_stop(unsigned char timer)
56 58 {
57 59 /** This function stops a GPTIMER timer.
58 60 *
59 61 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 62 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 63 *
62 64 */
63 65
64 66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
65 67 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
66 68 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
67 69 }
68 70
69 71 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
70 72 {
71 73 /** This function sets the clock divider of a GPTIMER timer.
72 74 *
73 75 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 76 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 77 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 78 *
77 79 */
78 80
79 81 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 82 }
81 83
82 84 // WATCHDOG
83 85
84 86 rtems_isr watchdog_isr( rtems_vector_number vector )
85 87 {
86 88 rtems_status_code status_code;
87 89
88 90 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
89 91
90 92 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
91 93
92 94 exit(0);
93 95 }
94 96
95 97 void watchdog_configure(void)
96 98 {
97 99 /** This function configure the watchdog.
98 100 *
99 101 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
100 102 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
101 103 *
102 104 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
103 105 *
104 106 */
105 107
106 108 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
107 109
108 110 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
109 111
110 112 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
111 113 }
112 114
113 115 void watchdog_stop(void)
114 116 {
115 117 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
116 118 timer_stop( TIMER_WATCHDOG );
117 119 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
118 120 }
119 121
120 122 void watchdog_reload(void)
121 123 {
122 124 /** This function reloads the watchdog timer counter with the timer reload value.
123 125 *
124 126 * @param void
125 127 *
126 128 * @return void
127 129 *
128 130 */
129 131
130 132 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
131 133 }
132 134
133 135 void watchdog_start(void)
134 136 {
135 137 /** This function starts the watchdog timer.
136 138 *
137 139 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
138 140 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
139 141 *
140 142 */
141 143
142 144 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
143 145
144 146 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
145 147 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
146 148 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
147 149 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
148 150
149 151 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
150 152
151 153 }
152 154
153 155 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
154 156 {
155 157 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
156 158
157 159 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
158 160
159 161 return 0;
160 162 }
161 163
162 164 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
163 165 {
164 166 /** This function sets the scaler reload register of the apbuart module
165 167 *
166 168 * @param regs is the address of the apbuart registers in memory
167 169 * @param value is the value that will be stored in the scaler register
168 170 *
169 171 * The value shall be set by the software to get data on the serial interface.
170 172 *
171 173 */
172 174
173 175 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
174 176
175 177 apbuart_regs->scaler = value;
176 178
177 179 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
178 180 }
179 181
180 182 //************
181 183 // RTEMS TASKS
182 184
183 185 rtems_task load_task(rtems_task_argument argument)
184 186 {
185 187 BOOT_PRINTF("in LOAD *** \n")
186 188
187 189 rtems_status_code status;
188 190 unsigned int i;
189 191 unsigned int j;
190 192 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
191 193 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
192 194
195 watchdog_period_id = RTEMS_ID_NONE;
196
193 197 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
194 198
195 199 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
196 200 if( status != RTEMS_SUCCESSFUL ) {
197 201 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
198 202 }
199 203
200 204 i = 0;
201 205 j = 0;
202 206
203 207 watchdog_configure();
204 208
205 209 watchdog_start();
206 210
207 211 set_sy_lfr_watchdog_enabled( true );
208 212
209 213 while(1){
210 214 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
211 215 watchdog_reload();
212 216 i = i + 1;
213 217 if ( i == WATCHDOG_LOOP_PRINTF )
214 218 {
215 219 i = 0;
216 220 j = j + 1;
217 221 PRINTF1("%d\n", j)
218 222 }
219 223 #ifdef DEBUG_WATCHDOG
220 224 if (j == WATCHDOG_LOOP_DEBUG )
221 225 {
222 226 status = rtems_task_delete(RTEMS_SELF);
223 227 }
224 228 #endif
225 229 }
226 230 }
227 231
228 232 rtems_task hous_task(rtems_task_argument argument)
229 233 {
230 234 rtems_status_code status;
231 235 rtems_status_code spare_status;
232 236 rtems_id queue_id;
233 237 rtems_rate_monotonic_period_status period_status;
234 238 bool isSynchronized;
235 239
240 queue_id = RTEMS_ID_NONE;
241 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
236 242 isSynchronized = false;
237 243
238 244 status = get_message_queue_id_send( &queue_id );
239 245 if (status != RTEMS_SUCCESSFUL)
240 246 {
241 247 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
242 248 }
243 249
244 250 BOOT_PRINTF("in HOUS ***\n");
245 251
246 252 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
247 253 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
248 254 if( status != RTEMS_SUCCESSFUL ) {
249 255 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
250 256 }
251 257 }
252 258
253 259 status = rtems_rate_monotonic_cancel(HK_id);
254 260 if( status != RTEMS_SUCCESSFUL ) {
255 261 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
256 262 }
257 263 else {
258 264 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
259 265 }
260 266
261 267 // startup phase
262 268 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
263 269 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
264 270 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
265 271 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
266 272 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
267 273 {
268 274 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
269 275 {
270 276 isSynchronized = true;
271 277 }
272 278 else
273 279 {
274 280 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
275 281
276 282 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
277 283 }
278 284 }
279 285 status = rtems_rate_monotonic_cancel(HK_id);
280 286 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
281 287
282 288 set_hk_lfr_reset_cause( POWER_ON );
283 289
284 290 while(1){ // launch the rate monotonic task
285 291 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
286 292 if ( status != RTEMS_SUCCESSFUL ) {
287 293 PRINTF1( "in HOUS *** ERR period: %d\n", status);
288 294 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
289 295 }
290 296 else {
291 297 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
292 298 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
293 299 increment_seq_counter( &sequenceCounterHK );
294 300
295 301 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
296 302 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
297 303 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
298 304 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
299 305 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
300 306 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
301 307
302 308 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
303 309
304 310 spacewire_read_statistics();
305 311
306 312 update_hk_with_grspw_stats();
307 313
308 314 set_hk_lfr_time_not_synchro();
309 315
310 316 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
311 317 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
312 318 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
313 319 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
314 320 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
315 321
316 322 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
317 323 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
318 324 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
319 325 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
320 326 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
321 327
322 328 hk_lfr_le_me_he_update();
323 329
324 330 housekeeping_packet.hk_lfr_sc_rw_f_flags = cp_rpw_sc_rw_f_flags;
325 331
326 332 // SEND PACKET
327 333 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
328 334 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
329 335 if (status != RTEMS_SUCCESSFUL) {
330 336 PRINTF1("in HOUS *** ERR send: %d\n", status)
331 337 }
332 338 }
333 339 }
334 340
335 341 PRINTF("in HOUS *** deleting task\n")
336 342
337 343 status = rtems_task_delete( RTEMS_SELF ); // should not return
338 344
339 345 return;
340 346 }
341 347
342 348 rtems_task avgv_task(rtems_task_argument argument)
343 349 {
344 350 #define MOVING_AVERAGE 16
345 351 rtems_status_code status;
346 352 unsigned int v[MOVING_AVERAGE];
347 353 unsigned int e1[MOVING_AVERAGE];
348 354 unsigned int e2[MOVING_AVERAGE];
349 355 float average_v;
350 356 float average_e1;
351 357 float average_e2;
352 358 unsigned char k;
353 359 unsigned char indexOfOldValue;
354 360
355 361 BOOT_PRINTF("in AVGV ***\n");
356 362
357 363 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
358 364 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
359 365 if( status != RTEMS_SUCCESSFUL ) {
360 366 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
361 367 }
362 368 }
363 369
364 370 status = rtems_rate_monotonic_cancel(AVGV_id);
365 371 if( status != RTEMS_SUCCESSFUL ) {
366 372 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
367 373 }
368 374 else {
369 375 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
370 376 }
371 377
372 378 // initialize values
373 379 k = 0;
374 380 indexOfOldValue = MOVING_AVERAGE - 1;
375 381 for (k = 0; k < MOVING_AVERAGE; k++)
376 382 {
377 383 v[k] = 0;
378 384 e1[k] = 0;
379 385 e2[k] = 0;
380 386 average_v = 0.;
381 387 average_e1 = 0.;
382 388 average_e2 = 0.;
383 389 }
384 390
385 391 k = 0;
386 392
387 393 while(1){ // launch the rate monotonic task
388 394 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
389 395 if ( status != RTEMS_SUCCESSFUL ) {
390 396 PRINTF1( "in AVGV *** ERR period: %d\n", status);
391 397 }
392 398 else {
393 399 // store new value in buffer
394 400 v[k] = waveform_picker_regs->v;
395 401 e1[k] = waveform_picker_regs->e1;
396 402 e2[k] = waveform_picker_regs->e2;
397 403 if (k == (MOVING_AVERAGE - 1))
398 404 {
399 405 indexOfOldValue = 0;
400 406 }
401 407 else
402 408 {
403 409 indexOfOldValue = k + 1;
404 410 }
405 411 average_v = average_v + v[k] - v[indexOfOldValue];
406 412 average_e1 = average_e1 + e1[k] - e1[indexOfOldValue];
407 413 average_e2 = average_e2 + e2[k] - e2[indexOfOldValue];
408 414 }
409 415 if (k == (MOVING_AVERAGE-1))
410 416 {
411 417 k = 0;
412 418 printf("tick\n");
413 419 }
414 420 else
415 421 {
416 422 k++;
417 423 }
418 424 }
419 425
420 426 PRINTF("in AVGV *** deleting task\n")
421 427
422 428 status = rtems_task_delete( RTEMS_SELF ); // should not return
423 429
424 430 return;
425 431 }
426 432
427 433 rtems_task dumb_task( rtems_task_argument unused )
428 434 {
429 435 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
430 436 *
431 437 * @param unused is the starting argument of the RTEMS task
432 438 *
433 439 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
434 440 *
435 441 */
436 442
437 443 unsigned int i;
438 444 unsigned int intEventOut;
439 445 unsigned int coarse_time = 0;
440 446 unsigned int fine_time = 0;
441 447 rtems_event_set event_out;
442 448
443 char *DumbMessages[DUMB_MESSAGE_NB] = {DUMB_MESSAGE_0, // RTEMS_EVENT_0
444 DUMB_MESSAGE_1, // RTEMS_EVENT_1
445 DUMB_MESSAGE_2, // RTEMS_EVENT_2
446 DUMB_MESSAGE_3, // RTEMS_EVENT_3
447 DUMB_MESSAGE_4, // RTEMS_EVENT_4
448 DUMB_MESSAGE_5, // RTEMS_EVENT_5
449 DUMB_MESSAGE_6, // RTEMS_EVENT_6
450 DUMB_MESSAGE_7, // RTEMS_EVENT_7
451 DUMB_MESSAGE_8, // RTEMS_EVENT_8
452 DUMB_MESSAGE_9, // RTEMS_EVENT_9
453 DUMB_MESSAGE_10, // RTEMS_EVENT_10
454 DUMB_MESSAGE_11, // RTEMS_EVENT_11
455 DUMB_MESSAGE_12, // RTEMS_EVENT_12
456 DUMB_MESSAGE_13, // RTEMS_EVENT_13
457 DUMB_MESSAGE_14 // RTEMS_EVENT_14
458 };
449 event_out = EVENT_SETS_NONE_PENDING;
459 450
460 451 BOOT_PRINTF("in DUMB *** \n")
461 452
462 453 while(1){
463 454 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
464 455 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
465 456 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
466 457 | RTEMS_EVENT_14,
467 458 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
468 459 intEventOut = (unsigned int) event_out;
469 460 for ( i=0; i<NB_RTEMS_EVENTS; i++)
470 461 {
471 462 if ( ((intEventOut >> i) & 1) != 0)
472 463 {
473 464 coarse_time = time_management_regs->coarse_time;
474 465 fine_time = time_management_regs->fine_time;
475 466 if (i==EVENT_12)
476 467 {
477 468 PRINTF1("%s\n", DUMB_MESSAGE_12)
478 469 }
479 470 if (i==EVENT_13)
480 471 {
481 472 PRINTF1("%s\n", DUMB_MESSAGE_13)
482 473 }
483 474 if (i==EVENT_14)
484 475 {
485 476 PRINTF1("%s\n", DUMB_MESSAGE_1)
486 477 }
487 478 }
488 479 }
489 480 }
490 481 }
491 482
492 483 //*****************************
493 484 // init housekeeping parameters
494 485
495 486 void init_housekeeping_parameters( void )
496 487 {
497 488 /** This function initialize the housekeeping_packet global variable with default values.
498 489 *
499 490 */
500 491
501 492 unsigned int i = 0;
502 493 unsigned char *parameters;
503 494 unsigned char sizeOfHK;
504 495
505 496 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
506 497
507 498 parameters = (unsigned char*) &housekeeping_packet;
508 499
509 500 for(i = 0; i< sizeOfHK; i++)
510 501 {
511 502 parameters[i] = INIT_CHAR;
512 503 }
513 504
514 505 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
515 506 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
516 507 housekeeping_packet.reserved = DEFAULT_RESERVED;
517 508 housekeeping_packet.userApplication = CCSDS_USER_APP;
518 509 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
519 510 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
520 511 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
521 512 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
522 513 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
523 514 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
524 515 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
525 516 housekeeping_packet.serviceType = TM_TYPE_HK;
526 517 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
527 518 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
528 519 housekeeping_packet.sid = SID_HK;
529 520
530 521 // init status word
531 522 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
532 523 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
533 524 // init software version
534 525 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
535 526 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
536 527 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
537 528 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
538 529 // init fpga version
539 530 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
540 531 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
541 532 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
542 533 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
543 534
544 535 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
545 536 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
546 537 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
547 538 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
548 539 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
549 540 }
550 541
551 542 void increment_seq_counter( unsigned short *packetSequenceControl )
552 543 {
553 544 /** This function increment the sequence counter passes in argument.
554 545 *
555 546 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
556 547 *
557 548 */
558 549
559 550 unsigned short segmentation_grouping_flag;
560 551 unsigned short sequence_cnt;
561 552
562 553 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
563 554 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
564 555
565 556 if ( sequence_cnt < SEQ_CNT_MAX)
566 557 {
567 558 sequence_cnt = sequence_cnt + 1;
568 559 }
569 560 else
570 561 {
571 562 sequence_cnt = 0;
572 563 }
573 564
574 565 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
575 566 }
576 567
577 568 void getTime( unsigned char *time)
578 569 {
579 570 /** This function write the current local time in the time buffer passed in argument.
580 571 *
581 572 */
582 573
583 574 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
584 575 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
585 576 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
586 577 time[3] = (unsigned char) (time_management_regs->coarse_time);
587 578 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
588 579 time[5] = (unsigned char) (time_management_regs->fine_time);
589 580 }
590 581
591 582 unsigned long long int getTimeAsUnsignedLongLongInt( )
592 583 {
593 584 /** This function write the current local time in the time buffer passed in argument.
594 585 *
595 586 */
596 587 unsigned long long int time;
597 588
598 589 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
599 590 + time_management_regs->fine_time;
600 591
601 592 return time;
602 593 }
603 594
604 595 void send_dumb_hk( void )
605 596 {
606 597 Packet_TM_LFR_HK_t dummy_hk_packet;
607 598 unsigned char *parameters;
608 599 unsigned int i;
609 600 rtems_id queue_id;
610 601
602 queue_id = RTEMS_ID_NONE;
603
611 604 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
612 605 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
613 606 dummy_hk_packet.reserved = DEFAULT_RESERVED;
614 607 dummy_hk_packet.userApplication = CCSDS_USER_APP;
615 608 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
616 609 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
617 610 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
618 611 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
619 612 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
620 613 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
621 614 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
622 615 dummy_hk_packet.serviceType = TM_TYPE_HK;
623 616 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
624 617 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
625 618 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
626 619 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
627 620 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
628 621 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
629 622 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
630 623 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
631 624 dummy_hk_packet.sid = SID_HK;
632 625
633 626 // init status word
634 627 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
635 628 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
636 629 // init software version
637 630 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
638 631 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
639 632 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
640 633 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
641 634 // init fpga version
642 635 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
643 636 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
644 637 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
645 638 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
646 639
647 640 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
648 641
649 642 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
650 643 {
651 644 parameters[i] = INT8_ALL_F;
652 645 }
653 646
654 647 get_message_queue_id_send( &queue_id );
655 648
656 649 rtems_message_queue_send( queue_id, &dummy_hk_packet,
657 650 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
658 651 }
659 652
660 653 void get_temperatures( unsigned char *temperatures )
661 654 {
662 655 unsigned char* temp_scm_ptr;
663 656 unsigned char* temp_pcb_ptr;
664 657 unsigned char* temp_fpga_ptr;
665 658
666 659 // SEL1 SEL0
667 660 // 0 0 => PCB
668 661 // 0 1 => FPGA
669 662 // 1 0 => SCM
670 663
671 664 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
672 665 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
673 666 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
674 667
675 668 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
676 669 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
677 670 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
678 671 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
679 672 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
680 673 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
681 674 }
682 675
683 676 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
684 677 {
685 678 unsigned char* v_ptr;
686 679 unsigned char* e1_ptr;
687 680 unsigned char* e2_ptr;
688 681
689 682 v_ptr = (unsigned char *) &waveform_picker_regs->v;
690 683 e1_ptr = (unsigned char *) &waveform_picker_regs->e1;
691 684 e2_ptr = (unsigned char *) &waveform_picker_regs->e2;
692 685
693 686 spacecraft_potential[ BYTE_0 ] = v_ptr[ BYTE_2 ];
694 687 spacecraft_potential[ BYTE_1 ] = v_ptr[ BYTE_3 ];
695 688 spacecraft_potential[ BYTE_2 ] = e1_ptr[ BYTE_2 ];
696 689 spacecraft_potential[ BYTE_3 ] = e1_ptr[ BYTE_3 ];
697 690 spacecraft_potential[ BYTE_4 ] = e2_ptr[ BYTE_2 ];
698 691 spacecraft_potential[ BYTE_5 ] = e2_ptr[ BYTE_3 ];
699 692 }
700 693
701 694 void get_cpu_load( unsigned char *resource_statistics )
702 695 {
703 696 unsigned char cpu_load;
704 697
705 698 cpu_load = lfr_rtems_cpu_usage_report();
706 699
707 700 // HK_LFR_CPU_LOAD
708 701 resource_statistics[0] = cpu_load;
709 702
710 703 // HK_LFR_CPU_LOAD_MAX
711 704 if (cpu_load > resource_statistics[1])
712 705 {
713 706 resource_statistics[1] = cpu_load;
714 707 }
715 708
716 709 // CPU_LOAD_AVE
717 710 resource_statistics[BYTE_2] = 0;
718 711
719 712 #ifndef PRINT_TASK_STATISTICS
720 713 rtems_cpu_usage_reset();
721 714 #endif
722 715
723 716 }
724 717
725 718 void set_hk_lfr_sc_potential_flag( bool state )
726 719 {
727 720 if (state == true)
728 721 {
729 722 housekeeping_packet.lfr_status_word[1] =
730 723 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
731 724 }
732 725 else
733 726 {
734 727 housekeeping_packet.lfr_status_word[1] =
735 728 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
736 729 }
737 730 }
738 731
739 732 void set_sy_lfr_pas_filter_enabled( bool state )
740 733 {
741 734 if (state == true)
742 735 {
743 736 housekeeping_packet.lfr_status_word[1] =
744 737 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0010 0000]
745 738 }
746 739 else
747 740 {
748 741 housekeeping_packet.lfr_status_word[1] =
749 742 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1101 1111]
750 743 }
751 744 }
752 745
753 746 void set_sy_lfr_watchdog_enabled( bool state )
754 747 {
755 748 if (state == true)
756 749 {
757 750 housekeeping_packet.lfr_status_word[1] =
758 751 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
759 752 }
760 753 else
761 754 {
762 755 housekeeping_packet.lfr_status_word[1] =
763 756 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
764 757 }
765 758 }
766 759
767 760 void set_hk_lfr_calib_enable( bool state )
768 761 {
769 762 if (state == true)
770 763 {
771 764 housekeeping_packet.lfr_status_word[1] =
772 765 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
773 766 }
774 767 else
775 768 {
776 769 housekeeping_packet.lfr_status_word[1] =
777 770 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
778 771 }
779 772 }
780 773
781 774 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
782 775 {
783 776 housekeeping_packet.lfr_status_word[1] =
784 777 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
785 778
786 779 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
787 780 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
788 781
789 782 }
790 783
791 784 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
792 785 {
793 786 int delta;
794 787
795 788 delta = 0;
796 789
797 790 if (newValue >= oldValue)
798 791 {
799 792 delta = newValue - oldValue;
800 793 }
801 794 else
802 795 {
803 796 delta = 255 - oldValue + newValue;
804 797 }
805 798
806 799 *counter = *counter + delta;
807 800 }
808 801
809 802 void hk_lfr_le_update( void )
810 803 {
811 804 static hk_lfr_le_t old_hk_lfr_le = {0};
812 805 hk_lfr_le_t new_hk_lfr_le;
813 806 unsigned int counter;
814 807
815 808 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * 256) + housekeeping_packet.hk_lfr_le_cnt[1];
816 809
817 810 // DPU
818 811 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
819 812 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
820 813 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
821 814 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
822 815 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
823 816 // TIMECODE
824 817 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
825 818 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
826 819 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
827 820 // TIME
828 821 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
829 822 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
830 823 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
831 824 //AHB
832 825 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
833 826 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
834 827 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
835 828
836 829 // update the le counter
837 830 // DPU
838 831 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
839 832 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
840 833 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
841 834 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
842 835 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
843 836 // TIMECODE
844 837 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
845 838 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
846 839 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
847 840 // TIME
848 841 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
849 842 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
850 843 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
851 844 // AHB
852 845 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
853 846
854 847 // DPU
855 848 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
856 849 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
857 850 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
858 851 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
859 852 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
860 853 // TIMECODE
861 854 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
862 855 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
863 856 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
864 857 // TIME
865 858 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
866 859 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
867 860 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
868 861 //AHB
869 862 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
870 863 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
871 864 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
872 865
873 866 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
874 867 // LE
875 868 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
876 869 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
877 870 }
878 871
879 872 void hk_lfr_me_update( void )
880 873 {
881 874 static hk_lfr_me_t old_hk_lfr_me = {0};
882 875 hk_lfr_me_t new_hk_lfr_me;
883 876 unsigned int counter;
884 877
885 878 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * 256) + housekeeping_packet.hk_lfr_me_cnt[1];
886 879
887 880 // get the current values
888 881 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
889 882 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
890 883 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
891 884 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
892 885
893 886 // update the me counter
894 887 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
895 888 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
896 889 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
897 890 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
898 891
899 892 // store the counters for the next time
900 893 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
901 894 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
902 895 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
903 896 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
904 897
905 898 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
906 899 // ME
907 900 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
908 901 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
909 902 }
910 903
911 904 void hk_lfr_le_me_he_update()
912 905 {
913 906
914 907 unsigned int hk_lfr_he_cnt;
915 908
916 909 hk_lfr_he_cnt = ((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256 + housekeeping_packet.hk_lfr_he_cnt[1];
917 910
918 911 //update the low severity error counter
919 912 hk_lfr_le_update( );
920 913
921 914 //update the medium severity error counter
922 915 hk_lfr_me_update();
923 916
924 917 //update the high severity error counter
925 918 hk_lfr_he_cnt = 0;
926 919
927 920 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
928 921 // HE
929 922 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
930 923 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
931 924
932 925 }
933 926
934 927 void set_hk_lfr_time_not_synchro()
935 928 {
936 929 static unsigned char synchroLost = 1;
937 930 int synchronizationBit;
938 931
939 932 // get the synchronization bit
940 933 synchronizationBit =
941 934 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
942 935
943 936 switch (synchronizationBit)
944 937 {
945 938 case 0:
946 939 if (synchroLost == 1)
947 940 {
948 941 synchroLost = 0;
949 942 }
950 943 break;
951 944 case 1:
952 945 if (synchroLost == 0 )
953 946 {
954 947 synchroLost = 1;
955 948 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
956 949 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
957 950 }
958 951 break;
959 952 default:
960 953 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
961 954 break;
962 955 }
963 956
964 957 }
965 958
966 959 void set_hk_lfr_ahb_correctable() // CRITICITY L
967 960 {
968 961 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
969 962 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
970 963 * detected errors in the cache, in the integer unit and in the floating point unit.
971 964 *
972 965 * @param void
973 966 *
974 967 * @return void
975 968 *
976 969 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
977 970 *
978 971 */
979 972
980 973 unsigned int ahb_correctable;
981 974 unsigned int instructionErrorCounter;
982 975 unsigned int dataErrorCounter;
983 976 unsigned int fprfErrorCounter;
984 977 unsigned int iurfErrorCounter;
985 978
979 instructionErrorCounter = 0;
980 dataErrorCounter = 0;
981 fprfErrorCounter = 0;
982 iurfErrorCounter = 0;
983
986 984 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
987 985 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
988 986
989 987 ahb_correctable = instructionErrorCounter
990 988 + dataErrorCounter
991 989 + fprfErrorCounter
992 990 + iurfErrorCounter
993 991 + housekeeping_packet.hk_lfr_ahb_correctable;
994 992
995 993 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
996 994
997 995 }
@@ -1,1611 +1,1631
1 1 /** Functions related to the SpaceWire interface.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle SpaceWire transmissions:
7 7 * - configuration of the SpaceWire link
8 8 * - SpaceWire related interruption requests processing
9 9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 10 * - reception of TeleCommands by a dedicated RTEMS task
11 11 *
12 12 */
13 13
14 14 #include "fsw_spacewire.h"
15 15
16 16 rtems_name semq_name;
17 17 rtems_id semq_id;
18 18
19 19 //*****************
20 20 // waveform headers
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF;
22 22 Header_TM_LFR_SCIENCE_SWF_t headerSWF;
23 23 Header_TM_LFR_SCIENCE_ASM_t headerASM;
24 24
25 25 unsigned char previousTimecodeCtr = 0;
26 26 unsigned int *grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
27 27
28 28 //***********
29 29 // RTEMS TASK
30 30 rtems_task spiq_task(rtems_task_argument unused)
31 31 {
32 32 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
33 33 *
34 34 * @param unused is the starting argument of the RTEMS task
35 35 *
36 36 */
37 37
38 38 rtems_event_set event_out;
39 39 rtems_status_code status;
40 40 int linkStatus;
41 41
42 event_out = EVENT_SETS_NONE_PENDING;
43 linkStatus = 0;
44
42 45 BOOT_PRINTF("in SPIQ *** \n")
43 46
44 47 while(true){
45 48 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
46 49 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
47 50
48 51 // [0] SUSPEND RECV AND SEND TASKS
49 52 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
50 53 if ( status != RTEMS_SUCCESSFUL ) {
51 54 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
52 55 }
53 56 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
54 57 if ( status != RTEMS_SUCCESSFUL ) {
55 58 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
56 59 }
57 60
58 61 // [1] CHECK THE LINK
59 62 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
60 63 if ( linkStatus != SPW_LINK_OK) {
61 64 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
62 65 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
63 66 }
64 67
65 68 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
66 69 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
67 70 if ( linkStatus != SPW_LINK_OK ) // [2.a] not in run state, reset the link
68 71 {
69 72 spacewire_read_statistics();
70 73 status = spacewire_several_connect_attemps( );
71 74 }
72 75 else // [2.b] in run state, start the link
73 76 {
74 77 status = spacewire_stop_and_start_link( fdSPW ); // start the link
75 78 if ( status != RTEMS_SUCCESSFUL)
76 79 {
77 80 PRINTF1("in SPIQ *** ERR spacewire_stop_and_start_link %d\n", status)
78 81 }
79 82 }
80 83
81 84 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
82 85 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
83 86 {
84 87 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
85 88 if ( status != RTEMS_SUCCESSFUL ) {
86 89 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
87 90 }
88 91 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
89 92 if ( status != RTEMS_SUCCESSFUL ) {
90 93 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
91 94 }
92 95 }
93 96 else // [3.b] the link is not in run state, go in STANDBY mode
94 97 {
95 98 status = enter_mode_standby();
96 99 if ( status != RTEMS_SUCCESSFUL )
97 100 {
98 101 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
99 102 }
100 103 {
101 104 updateLFRCurrentMode( LFR_MODE_STANDBY );
102 105 }
103 106 // wake the LINK task up to wait for the link recovery
104 107 status = rtems_event_send ( Task_id[TASKID_LINK], RTEMS_EVENT_0 );
105 108 status = rtems_task_suspend( RTEMS_SELF );
106 109 }
107 110 }
108 111 }
109 112
110 113 rtems_task recv_task( rtems_task_argument unused )
111 114 {
112 115 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
113 116 *
114 117 * @param unused is the starting argument of the RTEMS task
115 118 *
116 119 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
117 120 * 1. It reads the incoming data.
118 121 * 2. Launches the acceptance procedure.
119 122 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
120 123 *
121 124 */
122 125
123 126 int len;
124 127 ccsdsTelecommandPacket_t currentTC;
125 128 unsigned char computed_CRC[ BYTES_PER_CRC ];
126 129 unsigned char currentTC_LEN_RCV[ BYTES_PER_PKT_LEN ];
127 130 unsigned char destinationID;
128 131 unsigned int estimatedPacketLength;
129 132 unsigned int parserCode;
130 133 rtems_status_code status;
131 134 rtems_id queue_recv_id;
132 135 rtems_id queue_send_id;
133 136
137 memset( &currentTC, 0, sizeof(ccsdsTelecommandPacket_t) );
138 destinationID = 0;
139 queue_recv_id = RTEMS_ID_NONE;
140 queue_send_id = RTEMS_ID_NONE;
141
134 142 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
135 143
136 144 status = get_message_queue_id_recv( &queue_recv_id );
137 145 if (status != RTEMS_SUCCESSFUL)
138 146 {
139 147 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
140 148 }
141 149
142 150 status = get_message_queue_id_send( &queue_send_id );
143 151 if (status != RTEMS_SUCCESSFUL)
144 152 {
145 153 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
146 154 }
147 155
148 156 BOOT_PRINTF("in RECV *** \n")
149 157
150 158 while(1)
151 159 {
152 160 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
153 161 if (len == -1){ // error during the read call
154 162 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
155 163 }
156 164 else {
157 165 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
158 166 PRINTF("in RECV *** packet lenght too short\n")
159 167 }
160 168 else {
161 169 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - PROTID_RES_APP); // => -3 is for Prot ID, Reserved and User App bytes
162 170 //PRINTF1("incoming TC with Length (byte): %d\n", len - 3);
163 171 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> SHIFT_1_BYTE);
164 172 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
165 173 // CHECK THE TC
166 174 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
167 175 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
168 176 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
169 177 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
170 178 || (parserCode == WRONG_SRC_ID) )
171 179 { // send TM_LFR_TC_EXE_CORRUPTED
172 180 PRINTF1("TC corrupted received, with code: %d\n", parserCode);
173 181 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
174 182 &&
175 183 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
176 184 )
177 185 {
178 186 if ( parserCode == WRONG_SRC_ID )
179 187 {
180 188 destinationID = SID_TC_GROUND;
181 189 }
182 190 else
183 191 {
184 192 destinationID = currentTC.sourceID;
185 193 }
186 194 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
187 195 computed_CRC, currentTC_LEN_RCV,
188 196 destinationID );
189 197 }
190 198 }
191 199 else
192 200 { // send valid TC to the action launcher
193 201 status = rtems_message_queue_send( queue_recv_id, &currentTC,
194 202 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + PROTID_RES_APP);
195 203 }
196 204 }
197 205 }
198 206
199 207 update_queue_max_count( queue_recv_id, &hk_lfr_q_rv_fifo_size_max );
200 208
201 209 }
202 210 }
203 211
204 212 rtems_task send_task( rtems_task_argument argument)
205 213 {
206 214 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
207 215 *
208 216 * @param unused is the starting argument of the RTEMS task
209 217 *
210 218 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
211 219 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
212 220 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
213 221 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
214 222 * data it contains.
215 223 *
216 224 */
217 225
218 226 rtems_status_code status; // RTEMS status code
219 227 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
220 228 ring_node *incomingRingNodePtr;
221 229 int ring_node_address;
222 230 char *charPtr;
223 231 spw_ioctl_pkt_send *spw_ioctl_send;
224 232 size_t size; // size of the incoming TC packet
225 233 rtems_id queue_send_id;
226 234 unsigned int sid;
227 235 unsigned char sidAsUnsignedChar;
228 236 unsigned char type;
229 237
230 238 incomingRingNodePtr = NULL;
231 239 ring_node_address = 0;
232 240 charPtr = (char *) &ring_node_address;
241 size = 0;
242 queue_send_id = RTEMS_ID_NONE;
233 243 sid = 0;
234 244 sidAsUnsignedChar = 0;
235 245
236 246 init_header_cwf( &headerCWF );
237 247 init_header_swf( &headerSWF );
238 248 init_header_asm( &headerASM );
239 249
240 250 status = get_message_queue_id_send( &queue_send_id );
241 251 if (status != RTEMS_SUCCESSFUL)
242 252 {
243 253 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
244 254 }
245 255
246 256 BOOT_PRINTF("in SEND *** \n")
247 257
248 258 while(1)
249 259 {
250 260 status = rtems_message_queue_receive( queue_send_id, incomingData, &size,
251 261 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
252 262
253 263 if (status!=RTEMS_SUCCESSFUL)
254 264 {
255 265 PRINTF1("in SEND *** (1) ERR = %d\n", status)
256 266 }
257 267 else
258 268 {
259 269 if ( size == sizeof(ring_node*) )
260 270 {
261 271 charPtr[0] = incomingData[0];
262 272 charPtr[1] = incomingData[1];
263 273 charPtr[BYTE_2] = incomingData[BYTE_2];
264 274 charPtr[BYTE_3] = incomingData[BYTE_3];
265 275 incomingRingNodePtr = (ring_node*) ring_node_address;
266 276 sid = incomingRingNodePtr->sid;
267 277 if ( (sid==SID_NORM_CWF_LONG_F3)
268 278 || (sid==SID_BURST_CWF_F2 )
269 279 || (sid==SID_SBM1_CWF_F1 )
270 280 || (sid==SID_SBM2_CWF_F2 ))
271 281 {
272 282 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
273 283 }
274 284 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
275 285 {
276 286 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
277 287 }
278 288 else if ( (sid==SID_NORM_CWF_F3) )
279 289 {
280 290 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
281 291 }
282 292 else if (sid==SID_NORM_ASM_F0)
283 293 {
284 294 spw_send_asm_f0( incomingRingNodePtr, &headerASM );
285 295 }
286 296 else if (sid==SID_NORM_ASM_F1)
287 297 {
288 298 spw_send_asm_f1( incomingRingNodePtr, &headerASM );
289 299 }
290 300 else if (sid==SID_NORM_ASM_F2)
291 301 {
292 302 spw_send_asm_f2( incomingRingNodePtr, &headerASM );
293 303 }
294 304 else if ( sid==TM_CODE_K_DUMP )
295 305 {
296 306 spw_send_k_dump( incomingRingNodePtr );
297 307 }
298 308 else
299 309 {
300 310 PRINTF1("unexpected sid = %d\n", sid);
301 311 }
302 312 }
303 313 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
304 314 {
305 315 sidAsUnsignedChar = (unsigned char) incomingData[ PACKET_POS_PA_LFR_SID_PKT ];
306 316 sid = sidAsUnsignedChar;
307 317 type = (unsigned char) incomingData[ PACKET_POS_SERVICE_TYPE ];
308 318 if (type == TM_TYPE_LFR_SCIENCE) // this is a BP packet, all other types are handled differently
309 319 // SET THE SEQUENCE_CNT PARAMETER IN CASE OF BP0 OR BP1 PACKETS
310 320 {
311 321 increment_seq_counter_source_id( (unsigned char*) &incomingData[ PACKET_POS_SEQUENCE_CNT ], sid );
312 322 }
313 323
314 324 status = write( fdSPW, incomingData, size );
315 325 if (status == -1){
316 326 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
317 327 }
318 328 }
319 329 else // the incoming message is a spw_ioctl_pkt_send structure
320 330 {
321 331 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
322 332 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
323 333 if (status == -1){
324 334 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
325 335 }
326 336 }
327 337 }
328 338
329 339 update_queue_max_count( queue_send_id, &hk_lfr_q_sd_fifo_size_max );
330 340
331 341 }
332 342 }
333 343
334 344 rtems_task link_task( rtems_task_argument argument )
335 345 {
336 346 rtems_event_set event_out;
337 347 rtems_status_code status;
338 348 int linkStatus;
339 349
350 event_out = EVENT_SETS_NONE_PENDING;
351 linkStatus = 0;
352
340 353 BOOT_PRINTF("in LINK ***\n")
341 354
342 355 while(1)
343 356 {
344 357 // wait for an RTEMS_EVENT
345 358 rtems_event_receive( RTEMS_EVENT_0,
346 359 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
347 360 PRINTF("in LINK *** wait for the link\n")
348 361 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
349 362 while( linkStatus != SPW_LINK_OK) // wait for the link
350 363 {
351 364 status = rtems_task_wake_after( SPW_LINK_WAIT ); // monitor the link each 100ms
352 365 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
353 366 watchdog_reload();
354 367 }
355 368
356 369 spacewire_read_statistics();
357 370 status = spacewire_stop_and_start_link( fdSPW );
358 371
359 372 if (status != RTEMS_SUCCESSFUL)
360 373 {
361 374 PRINTF1("in LINK *** ERR link not started %d\n", status)
362 375 }
363 376 else
364 377 {
365 378 PRINTF("in LINK *** OK link started\n")
366 379 }
367 380
368 381 // restart the SPIQ task
369 382 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
370 383 if ( status != RTEMS_SUCCESSFUL ) {
371 384 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
372 385 }
373 386
374 387 // restart RECV and SEND
375 388 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
376 389 if ( status != RTEMS_SUCCESSFUL ) {
377 390 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
378 391 }
379 392 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
380 393 if ( status != RTEMS_SUCCESSFUL ) {
381 394 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
382 395 }
383 396 }
384 397 }
385 398
386 399 //****************
387 400 // OTHER FUNCTIONS
388 401 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
389 402 {
390 403 /** This function opens the SpaceWire link.
391 404 *
392 405 * @return a valid file descriptor in case of success, -1 in case of a failure
393 406 *
394 407 */
395 408 rtems_status_code status;
396 409
410 status = RTEMS_SUCCESSFUL;
411
397 412 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
398 413 if ( fdSPW < 0 ) {
399 414 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
400 415 }
401 416 else
402 417 {
403 418 status = RTEMS_SUCCESSFUL;
404 419 }
405 420
406 421 return status;
407 422 }
408 423
409 424 int spacewire_start_link( int fd )
410 425 {
411 426 rtems_status_code status;
412 427
413 428 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
414 429 // -1 default hardcoded driver timeout
415 430
416 431 return status;
417 432 }
418 433
419 434 int spacewire_stop_and_start_link( int fd )
420 435 {
421 436 rtems_status_code status;
422 437
423 438 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
424 439 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
425 440 // -1 default hardcoded driver timeout
426 441
427 442 return status;
428 443 }
429 444
430 445 int spacewire_configure_link( int fd )
431 446 {
432 447 /** This function configures the SpaceWire link.
433 448 *
434 449 * @return GR-RTEMS-DRIVER directive status codes:
435 450 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
436 451 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
437 452 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
438 453 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
439 454 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
440 455 * - 5 EIO - Error when writing to grswp hardware registers.
441 456 * - 2 ENOENT - No such file or directory
442 457 */
443 458
444 459 rtems_status_code status;
445 460
446 461 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
447 462 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
448 463 spw_ioctl_packetsize packetsize;
449 464
450 465 packetsize.rxsize = SPW_RXSIZE;
451 466 packetsize.txdsize = SPW_TXDSIZE;
452 467 packetsize.txhsize = SPW_TXHSIZE;
453 468
454 469 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
455 470 if (status!=RTEMS_SUCCESSFUL) {
456 471 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
457 472 }
458 473 //
459 474 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
460 475 if (status!=RTEMS_SUCCESSFUL) {
461 476 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
462 477 }
463 478 //
464 479 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
465 480 if (status!=RTEMS_SUCCESSFUL) {
466 481 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
467 482 }
468 483 //
469 484 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
470 485 if (status!=RTEMS_SUCCESSFUL) {
471 486 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
472 487 }
473 488 //
474 489 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
475 490 if (status!=RTEMS_SUCCESSFUL) {
476 491 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
477 492 }
478 493 //
479 494 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
480 495 if (status!=RTEMS_SUCCESSFUL) {
481 496 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
482 497 }
483 498 //
484 499 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, CONF_TCODE_CTRL); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
485 500 if (status!=RTEMS_SUCCESSFUL) {
486 501 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
487 502 }
488 503 //
489 504 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_PACKETSIZE, packetsize); // set rxsize, txdsize and txhsize
490 505 if (status!=RTEMS_SUCCESSFUL) {
491 506 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_PACKETSIZE,\n")
492 507 }
493 508
494 509 return status;
495 510 }
496 511
497 512 int spacewire_several_connect_attemps( void )
498 513 {
499 514 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
500 515 *
501 516 * @return RTEMS directive status code:
502 517 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
503 518 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
504 519 *
505 520 */
506 521
507 522 rtems_status_code status_spw;
508 523 rtems_status_code status;
509 524 int i;
510 525
526 status_spw = RTEMS_SUCCESSFUL;
527
511 528 i = 0;
512 529 while (i < SY_LFR_DPU_CONNECT_ATTEMPT)
513 530 {
514 531 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
515 532
516 533 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
517 534
518 535 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
519 536
520 537 status_spw = spacewire_stop_and_start_link( fdSPW );
521 538
522 539 if ( status_spw != RTEMS_SUCCESSFUL )
523 540 {
524 541 i = i + 1;
525 542 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw);
526 543 }
527 544 else
528 545 {
529 546 i = SY_LFR_DPU_CONNECT_ATTEMPT;
530 547 }
531 548 }
532 549
533 550 return status_spw;
534 551 }
535 552
536 553 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
537 554 {
538 555 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
539 556 *
540 557 * @param val is the value, 0 or 1, used to set the value of the NP bit.
541 558 * @param regAddr is the address of the GRSPW control register.
542 559 *
543 560 * NP is the bit 20 of the GRSPW control register.
544 561 *
545 562 */
546 563
547 564 unsigned int *spwptr = (unsigned int*) regAddr;
548 565
549 566 if (val == 1) {
550 567 *spwptr = *spwptr | SPW_BIT_NP; // [NP] set the No port force bit
551 568 }
552 569 if (val== 0) {
553 570 *spwptr = *spwptr & SPW_BIT_NP_MASK;
554 571 }
555 572 }
556 573
557 574 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
558 575 {
559 576 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
560 577 *
561 578 * @param val is the value, 0 or 1, used to set the value of the RE bit.
562 579 * @param regAddr is the address of the GRSPW control register.
563 580 *
564 581 * RE is the bit 16 of the GRSPW control register.
565 582 *
566 583 */
567 584
568 585 unsigned int *spwptr = (unsigned int*) regAddr;
569 586
570 587 if (val == 1)
571 588 {
572 589 *spwptr = *spwptr | SPW_BIT_RE; // [RE] set the RMAP Enable bit
573 590 }
574 591 if (val== 0)
575 592 {
576 593 *spwptr = *spwptr & SPW_BIT_RE_MASK;
577 594 }
578 595 }
579 596
580 597 void spacewire_read_statistics( void )
581 598 {
582 599 /** This function reads the SpaceWire statistics from the grspw RTEMS driver.
583 600 *
584 601 * @param void
585 602 *
586 603 * @return void
587 604 *
588 605 * Once they are read, the counters are stored in a global variable used during the building of the
589 606 * HK packets.
590 607 *
591 608 */
592 609
593 610 rtems_status_code status;
594 611 spw_stats current;
595 612
613 memset(&current, 0, sizeof(spw_stats));
614
596 615 spacewire_get_last_error();
597 616
598 617 // read the current statistics
599 618 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
600 619
601 620 // clear the counters
602 621 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_CLR_STATISTICS );
603 622
604 623 // typedef struct {
605 624 // unsigned int tx_link_err; // NOT IN HK
606 625 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
607 626 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
608 627 // unsigned int rx_eep_err;
609 628 // unsigned int rx_truncated;
610 629 // unsigned int parity_err;
611 630 // unsigned int escape_err;
612 631 // unsigned int credit_err;
613 632 // unsigned int write_sync_err;
614 633 // unsigned int disconnect_err;
615 634 // unsigned int early_ep;
616 635 // unsigned int invalid_address;
617 636 // unsigned int packets_sent;
618 637 // unsigned int packets_received;
619 638 // } spw_stats;
620 639
621 640 // rx_eep_err
622 641 grspw_stats.rx_eep_err = grspw_stats.rx_eep_err + current.rx_eep_err;
623 642 // rx_truncated
624 643 grspw_stats.rx_truncated = grspw_stats.rx_truncated + current.rx_truncated;
625 644 // parity_err
626 645 grspw_stats.parity_err = grspw_stats.parity_err + current.parity_err;
627 646 // escape_err
628 647 grspw_stats.escape_err = grspw_stats.escape_err + current.escape_err;
629 648 // credit_err
630 649 grspw_stats.credit_err = grspw_stats.credit_err + current.credit_err;
631 650 // write_sync_err
632 651 grspw_stats.write_sync_err = grspw_stats.write_sync_err + current.write_sync_err;
633 652 // disconnect_err
634 653 grspw_stats.disconnect_err = grspw_stats.disconnect_err + current.disconnect_err;
635 654 // early_ep
636 655 grspw_stats.early_ep = grspw_stats.early_ep + current.early_ep;
637 656 // invalid_address
638 657 grspw_stats.invalid_address = grspw_stats.invalid_address + current.invalid_address;
639 658 // packets_sent
640 659 grspw_stats.packets_sent = grspw_stats.packets_sent + current.packets_sent;
641 660 // packets_received
642 661 grspw_stats.packets_received= grspw_stats.packets_received + current.packets_received;
643 662
644 663 }
645 664
646 665 void spacewire_get_last_error( void )
647 666 {
648 static spw_stats previous;
667 static spw_stats previous = {0};
649 668 spw_stats current;
650 669 rtems_status_code status;
651 670
652 671 unsigned int hk_lfr_last_er_rid;
653 672 unsigned char hk_lfr_last_er_code;
654 673 int coarseTime;
655 674 int fineTime;
656 675 unsigned char update_hk_lfr_last_er;
657 676
677 memset(&current, 0, sizeof(spw_stats));
658 678 update_hk_lfr_last_er = 0;
659 679
660 680 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
661 681
662 682 // get current time
663 683 coarseTime = time_management_regs->coarse_time;
664 684 fineTime = time_management_regs->fine_time;
665 685
666 686 // typedef struct {
667 687 // unsigned int tx_link_err; // NOT IN HK
668 688 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
669 689 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
670 690 // unsigned int rx_eep_err;
671 691 // unsigned int rx_truncated;
672 692 // unsigned int parity_err;
673 693 // unsigned int escape_err;
674 694 // unsigned int credit_err;
675 695 // unsigned int write_sync_err;
676 696 // unsigned int disconnect_err;
677 697 // unsigned int early_ep;
678 698 // unsigned int invalid_address;
679 699 // unsigned int packets_sent;
680 700 // unsigned int packets_received;
681 701 // } spw_stats;
682 702
683 703 // tx_link_err *** no code associated to this field
684 704 // rx_rmap_header_crc_err *** LE *** in HK
685 705 if (previous.rx_rmap_header_crc_err != current.rx_rmap_header_crc_err)
686 706 {
687 707 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
688 708 hk_lfr_last_er_code = CODE_HEADER_CRC;
689 709 update_hk_lfr_last_er = 1;
690 710 }
691 711 // rx_rmap_data_crc_err *** LE *** NOT IN HK
692 712 if (previous.rx_rmap_data_crc_err != current.rx_rmap_data_crc_err)
693 713 {
694 714 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
695 715 hk_lfr_last_er_code = CODE_DATA_CRC;
696 716 update_hk_lfr_last_er = 1;
697 717 }
698 718 // rx_eep_err
699 719 if (previous.rx_eep_err != current.rx_eep_err)
700 720 {
701 721 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
702 722 hk_lfr_last_er_code = CODE_EEP;
703 723 update_hk_lfr_last_er = 1;
704 724 }
705 725 // rx_truncated
706 726 if (previous.rx_truncated != current.rx_truncated)
707 727 {
708 728 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
709 729 hk_lfr_last_er_code = CODE_RX_TOO_BIG;
710 730 update_hk_lfr_last_er = 1;
711 731 }
712 732 // parity_err
713 733 if (previous.parity_err != current.parity_err)
714 734 {
715 735 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
716 736 hk_lfr_last_er_code = CODE_PARITY;
717 737 update_hk_lfr_last_er = 1;
718 738 }
719 739 // escape_err
720 740 if (previous.parity_err != current.parity_err)
721 741 {
722 742 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
723 743 hk_lfr_last_er_code = CODE_ESCAPE;
724 744 update_hk_lfr_last_er = 1;
725 745 }
726 746 // credit_err
727 747 if (previous.credit_err != current.credit_err)
728 748 {
729 749 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
730 750 hk_lfr_last_er_code = CODE_CREDIT;
731 751 update_hk_lfr_last_er = 1;
732 752 }
733 753 // write_sync_err
734 754 if (previous.write_sync_err != current.write_sync_err)
735 755 {
736 756 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
737 757 hk_lfr_last_er_code = CODE_WRITE_SYNC;
738 758 update_hk_lfr_last_er = 1;
739 759 }
740 760 // disconnect_err
741 761 if (previous.disconnect_err != current.disconnect_err)
742 762 {
743 763 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
744 764 hk_lfr_last_er_code = CODE_DISCONNECT;
745 765 update_hk_lfr_last_er = 1;
746 766 }
747 767 // early_ep
748 768 if (previous.early_ep != current.early_ep)
749 769 {
750 770 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
751 771 hk_lfr_last_er_code = CODE_EARLY_EOP_EEP;
752 772 update_hk_lfr_last_er = 1;
753 773 }
754 774 // invalid_address
755 775 if (previous.invalid_address != current.invalid_address)
756 776 {
757 777 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
758 778 hk_lfr_last_er_code = CODE_INVALID_ADDRESS;
759 779 update_hk_lfr_last_er = 1;
760 780 }
761 781
762 782 // if a field has changed, update the hk_last_er fields
763 783 if (update_hk_lfr_last_er == 1)
764 784 {
765 785 update_hk_lfr_last_er_fields( hk_lfr_last_er_rid, hk_lfr_last_er_code );
766 786 }
767 787
768 788 previous = current;
769 789 }
770 790
771 791 void update_hk_lfr_last_er_fields(unsigned int rid, unsigned char code)
772 792 {
773 793 unsigned char *coarseTimePtr;
774 794 unsigned char *fineTimePtr;
775 795
776 796 coarseTimePtr = (unsigned char*) &time_management_regs->coarse_time;
777 797 fineTimePtr = (unsigned char*) &time_management_regs->fine_time;
778 798
779 799 housekeeping_packet.hk_lfr_last_er_rid[0] = (unsigned char) ((rid & BYTE0_MASK) >> SHIFT_1_BYTE );
780 800 housekeeping_packet.hk_lfr_last_er_rid[1] = (unsigned char) (rid & BYTE1_MASK);
781 801 housekeeping_packet.hk_lfr_last_er_code = code;
782 802 housekeeping_packet.hk_lfr_last_er_time[0] = coarseTimePtr[0];
783 803 housekeeping_packet.hk_lfr_last_er_time[1] = coarseTimePtr[1];
784 804 housekeeping_packet.hk_lfr_last_er_time[BYTE_2] = coarseTimePtr[BYTE_2];
785 805 housekeeping_packet.hk_lfr_last_er_time[BYTE_3] = coarseTimePtr[BYTE_3];
786 806 housekeeping_packet.hk_lfr_last_er_time[BYTE_4] = fineTimePtr[BYTE_2];
787 807 housekeeping_packet.hk_lfr_last_er_time[BYTE_5] = fineTimePtr[BYTE_3];
788 808 }
789 809
790 810 void update_hk_with_grspw_stats( void )
791 811 {
792 812 //****************************
793 813 // DPU_SPACEWIRE_IF_STATISTICS
794 814 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (grspw_stats.packets_received >> SHIFT_1_BYTE);
795 815 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (grspw_stats.packets_received);
796 816 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (grspw_stats.packets_sent >> SHIFT_1_BYTE);
797 817 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (grspw_stats.packets_sent);
798 818
799 819 //******************************************
800 820 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
801 821 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) grspw_stats.parity_err;
802 822 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) grspw_stats.disconnect_err;
803 823 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) grspw_stats.escape_err;
804 824 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) grspw_stats.credit_err;
805 825 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) grspw_stats.write_sync_err;
806 826
807 827 //*********************************************
808 828 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
809 829 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) grspw_stats.early_ep;
810 830 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) grspw_stats.invalid_address;
811 831 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) grspw_stats.rx_eep_err;
812 832 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) grspw_stats.rx_truncated;
813 833 }
814 834
815 835 void spacewire_update_hk_lfr_link_state( unsigned char *hk_lfr_status_word_0 )
816 836 {
817 837 unsigned int *statusRegisterPtr;
818 838 unsigned char linkState;
819 839
820 840 statusRegisterPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_STATUS_REGISTER);
821 841 linkState =
822 842 (unsigned char) ( ( (*statusRegisterPtr) >> SPW_LINK_STAT_POS) & STATUS_WORD_LINK_STATE_BITS); // [0000 0111]
823 843
824 844 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 & STATUS_WORD_LINK_STATE_MASK; // [1111 1000] set link state to 0
825 845
826 846 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 | linkState; // update hk_lfr_dpu_spw_link_state
827 847 }
828 848
829 849 void increase_unsigned_char_counter( unsigned char *counter )
830 850 {
831 851 // update the number of valid timecodes that have been received
832 852 if (*counter == UINT8_MAX)
833 853 {
834 854 *counter = 0;
835 855 }
836 856 else
837 857 {
838 858 *counter = *counter + 1;
839 859 }
840 860 }
841 861
842 862 unsigned int check_timecode_and_previous_timecode_coherency(unsigned char currentTimecodeCtr)
843 863 {
844 864 /** This function checks the coherency between the incoming timecode and the last valid timecode.
845 865 *
846 866 * @param currentTimecodeCtr is the incoming timecode
847 867 *
848 868 * @return returned codes::
849 869 * - LFR_DEFAULT
850 870 * - LFR_SUCCESSFUL
851 871 *
852 872 */
853 873
854 874 static unsigned char firstTickout = 1;
855 875 unsigned char ret;
856 876
857 877 ret = LFR_DEFAULT;
858 878
859 879 if (firstTickout == 0)
860 880 {
861 881 if (currentTimecodeCtr == 0)
862 882 {
863 883 if (previousTimecodeCtr == SPW_TIMECODE_MAX)
864 884 {
865 885 ret = LFR_SUCCESSFUL;
866 886 }
867 887 else
868 888 {
869 889 ret = LFR_DEFAULT;
870 890 }
871 891 }
872 892 else
873 893 {
874 894 if (currentTimecodeCtr == (previousTimecodeCtr +1))
875 895 {
876 896 ret = LFR_SUCCESSFUL;
877 897 }
878 898 else
879 899 {
880 900 ret = LFR_DEFAULT;
881 901 }
882 902 }
883 903 }
884 904 else
885 905 {
886 906 firstTickout = 0;
887 907 ret = LFR_SUCCESSFUL;
888 908 }
889 909
890 910 return ret;
891 911 }
892 912
893 913 unsigned int check_timecode_and_internal_time_coherency(unsigned char timecode, unsigned char internalTime)
894 914 {
895 915 unsigned int ret;
896 916
897 917 ret = LFR_DEFAULT;
898 918
899 919 if (timecode == internalTime)
900 920 {
901 921 ret = LFR_SUCCESSFUL;
902 922 }
903 923 else
904 924 {
905 925 ret = LFR_DEFAULT;
906 926 }
907 927
908 928 return ret;
909 929 }
910 930
911 931 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
912 932 {
913 933 // a tickout has been emitted, perform actions on the incoming timecode
914 934
915 935 unsigned char incomingTimecode;
916 936 unsigned char updateTime;
917 937 unsigned char internalTime;
918 938 rtems_status_code status;
919 939
920 940 incomingTimecode = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
921 941 updateTime = time_management_regs->coarse_time_load & TIMECODE_MASK;
922 942 internalTime = time_management_regs->coarse_time & TIMECODE_MASK;
923 943
924 944 housekeeping_packet.hk_lfr_dpu_spw_last_timc = incomingTimecode;
925 945
926 946 // update the number of tickout that have been generated
927 947 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt );
928 948
929 949 //**************************
930 950 // HK_LFR_TIMECODE_ERRONEOUS
931 951 // MISSING and INVALID are handled by the timecode_timer_routine service routine
932 952 if (check_timecode_and_previous_timecode_coherency( incomingTimecode ) == LFR_DEFAULT)
933 953 {
934 954 // this is unexpected but a tickout could have been raised despite of the timecode being erroneous
935 955 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_erroneous );
936 956 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_ERRONEOUS );
937 957 }
938 958
939 959 //************************
940 960 // HK_LFR_TIME_TIMECODE_IT
941 961 // check the coherency between the SpaceWire timecode and the Internal Time
942 962 if (check_timecode_and_internal_time_coherency( incomingTimecode, internalTime ) == LFR_DEFAULT)
943 963 {
944 964 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_it );
945 965 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_IT );
946 966 }
947 967
948 968 //********************
949 969 // HK_LFR_TIMECODE_CTR
950 970 // check the value of the timecode with respect to the last TC_LFR_UPDATE_TIME => SSS-CP-FS-370
951 971 if (oneTcLfrUpdateTimeReceived == 1)
952 972 {
953 973 if ( incomingTimecode != updateTime )
954 974 {
955 975 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_ctr );
956 976 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_CTR );
957 977 }
958 978 }
959 979
960 980 // launch the timecode timer to detect missing or invalid timecodes
961 981 previousTimecodeCtr = incomingTimecode; // update the previousTimecodeCtr value
962 982 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT, timecode_timer_routine, NULL );
963 983 if (status != RTEMS_SUCCESSFUL)
964 984 {
965 985 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_14 );
966 986 }
967 987 }
968 988
969 989 rtems_timer_service_routine timecode_timer_routine( rtems_id timer_id, void *user_data )
970 990 {
971 991 static unsigned char initStep = 1;
972 992
973 993 unsigned char currentTimecodeCtr;
974 994
975 995 currentTimecodeCtr = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
976 996
977 997 if (initStep == 1)
978 998 {
979 999 if (currentTimecodeCtr == previousTimecodeCtr)
980 1000 {
981 1001 //************************
982 1002 // HK_LFR_TIMECODE_MISSING
983 1003 // the timecode value has not changed, no valid timecode has been received, the timecode is MISSING
984 1004 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
985 1005 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
986 1006 }
987 1007 else if (currentTimecodeCtr == (previousTimecodeCtr+1))
988 1008 {
989 1009 // the timecode value has changed and the value is valid, this is unexpected because
990 1010 // the timer should not have fired, the timecode_irq_handler should have been raised
991 1011 }
992 1012 else
993 1013 {
994 1014 //************************
995 1015 // HK_LFR_TIMECODE_INVALID
996 1016 // the timecode value has changed and the value is not valid, no tickout has been generated
997 1017 // this is why the timer has fired
998 1018 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_invalid );
999 1019 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_INVALID );
1000 1020 }
1001 1021 }
1002 1022 else
1003 1023 {
1004 1024 initStep = 1;
1005 1025 //************************
1006 1026 // HK_LFR_TIMECODE_MISSING
1007 1027 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1008 1028 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1009 1029 }
1010 1030
1011 1031 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_13 );
1012 1032 }
1013 1033
1014 1034 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
1015 1035 {
1016 1036 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1017 1037 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1018 1038 header->reserved = DEFAULT_RESERVED;
1019 1039 header->userApplication = CCSDS_USER_APP;
1020 1040 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
1021 1041 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
1022 1042 header->packetLength[0] = INIT_CHAR;
1023 1043 header->packetLength[1] = INIT_CHAR;
1024 1044 // DATA FIELD HEADER
1025 1045 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1026 1046 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1027 1047 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1028 1048 header->destinationID = TM_DESTINATION_ID_GROUND;
1029 1049 header->time[BYTE_0] = INIT_CHAR;
1030 1050 header->time[BYTE_1] = INIT_CHAR;
1031 1051 header->time[BYTE_2] = INIT_CHAR;
1032 1052 header->time[BYTE_3] = INIT_CHAR;
1033 1053 header->time[BYTE_4] = INIT_CHAR;
1034 1054 header->time[BYTE_5] = INIT_CHAR;
1035 1055 // AUXILIARY DATA HEADER
1036 1056 header->sid = INIT_CHAR;
1037 1057 header->pa_bia_status_info = DEFAULT_HKBIA;
1038 1058 header->blkNr[0] = INIT_CHAR;
1039 1059 header->blkNr[1] = INIT_CHAR;
1040 1060 }
1041 1061
1042 1062 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
1043 1063 {
1044 1064 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1045 1065 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1046 1066 header->reserved = DEFAULT_RESERVED;
1047 1067 header->userApplication = CCSDS_USER_APP;
1048 1068 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1049 1069 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1050 1070 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1051 1071 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1052 1072 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1053 1073 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1054 1074 // DATA FIELD HEADER
1055 1075 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1056 1076 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1057 1077 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1058 1078 header->destinationID = TM_DESTINATION_ID_GROUND;
1059 1079 header->time[BYTE_0] = INIT_CHAR;
1060 1080 header->time[BYTE_1] = INIT_CHAR;
1061 1081 header->time[BYTE_2] = INIT_CHAR;
1062 1082 header->time[BYTE_3] = INIT_CHAR;
1063 1083 header->time[BYTE_4] = INIT_CHAR;
1064 1084 header->time[BYTE_5] = INIT_CHAR;
1065 1085 // AUXILIARY DATA HEADER
1066 1086 header->sid = INIT_CHAR;
1067 1087 header->pa_bia_status_info = DEFAULT_HKBIA;
1068 1088 header->pktCnt = PKTCNT_SWF; // PKT_CNT
1069 1089 header->pktNr = INIT_CHAR;
1070 1090 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1071 1091 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1072 1092 }
1073 1093
1074 1094 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
1075 1095 {
1076 1096 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1077 1097 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1078 1098 header->reserved = DEFAULT_RESERVED;
1079 1099 header->userApplication = CCSDS_USER_APP;
1080 1100 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1081 1101 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1082 1102 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1083 1103 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1084 1104 header->packetLength[0] = INIT_CHAR;
1085 1105 header->packetLength[1] = INIT_CHAR;
1086 1106 // DATA FIELD HEADER
1087 1107 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1088 1108 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1089 1109 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
1090 1110 header->destinationID = TM_DESTINATION_ID_GROUND;
1091 1111 header->time[BYTE_0] = INIT_CHAR;
1092 1112 header->time[BYTE_1] = INIT_CHAR;
1093 1113 header->time[BYTE_2] = INIT_CHAR;
1094 1114 header->time[BYTE_3] = INIT_CHAR;
1095 1115 header->time[BYTE_4] = INIT_CHAR;
1096 1116 header->time[BYTE_5] = INIT_CHAR;
1097 1117 // AUXILIARY DATA HEADER
1098 1118 header->sid = INIT_CHAR;
1099 1119 header->pa_bia_status_info = INIT_CHAR;
1100 1120 header->pa_lfr_pkt_cnt_asm = INIT_CHAR;
1101 1121 header->pa_lfr_pkt_nr_asm = INIT_CHAR;
1102 1122 header->pa_lfr_asm_blk_nr[0] = INIT_CHAR;
1103 1123 header->pa_lfr_asm_blk_nr[1] = INIT_CHAR;
1104 1124 }
1105 1125
1106 1126 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
1107 1127 Header_TM_LFR_SCIENCE_CWF_t *header )
1108 1128 {
1109 1129 /** This function sends CWF CCSDS packets (F2, F1 or F0).
1110 1130 *
1111 1131 * @param waveform points to the buffer containing the data that will be send.
1112 1132 * @param sid is the source identifier of the data that will be sent.
1113 1133 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1114 1134 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1115 1135 * contain information to setup the transmission of the data packets.
1116 1136 *
1117 1137 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1118 1138 *
1119 1139 */
1120 1140
1121 1141 unsigned int i;
1122 1142 int ret;
1123 1143 unsigned int coarseTime;
1124 1144 unsigned int fineTime;
1125 1145 rtems_status_code status;
1126 1146 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1127 1147 int *dataPtr;
1128 1148 unsigned char sid;
1129 1149
1130 1150 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1131 1151 spw_ioctl_send_CWF.options = 0;
1132 1152
1133 1153 ret = LFR_DEFAULT;
1134 1154 sid = (unsigned char) ring_node_to_send->sid;
1135 1155
1136 1156 coarseTime = ring_node_to_send->coarseTime;
1137 1157 fineTime = ring_node_to_send->fineTime;
1138 1158 dataPtr = (int*) ring_node_to_send->buffer_address;
1139 1159
1140 1160 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1141 1161 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1142 1162 header->pa_bia_status_info = pa_bia_status_info;
1143 1163 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1144 1164 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1145 1165 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1146 1166
1147 1167 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
1148 1168 {
1149 1169 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
1150 1170 spw_ioctl_send_CWF.hdr = (char*) header;
1151 1171 // BUILD THE DATA
1152 1172 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
1153 1173
1154 1174 // SET PACKET SEQUENCE CONTROL
1155 1175 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1156 1176
1157 1177 // SET SID
1158 1178 header->sid = sid;
1159 1179
1160 1180 // SET PACKET TIME
1161 1181 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
1162 1182 //
1163 1183 header->time[0] = header->acquisitionTime[0];
1164 1184 header->time[1] = header->acquisitionTime[1];
1165 1185 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1166 1186 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1167 1187 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1168 1188 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1169 1189
1170 1190 // SET PACKET ID
1171 1191 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
1172 1192 {
1173 1193 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> SHIFT_1_BYTE);
1174 1194 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
1175 1195 }
1176 1196 else
1177 1197 {
1178 1198 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1179 1199 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1180 1200 }
1181 1201
1182 1202 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1183 1203 if (status != RTEMS_SUCCESSFUL) {
1184 1204 ret = LFR_DEFAULT;
1185 1205 }
1186 1206 }
1187 1207
1188 1208 return ret;
1189 1209 }
1190 1210
1191 1211 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
1192 1212 Header_TM_LFR_SCIENCE_SWF_t *header )
1193 1213 {
1194 1214 /** This function sends SWF CCSDS packets (F2, F1 or F0).
1195 1215 *
1196 1216 * @param waveform points to the buffer containing the data that will be send.
1197 1217 * @param sid is the source identifier of the data that will be sent.
1198 1218 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
1199 1219 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1200 1220 * contain information to setup the transmission of the data packets.
1201 1221 *
1202 1222 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1203 1223 *
1204 1224 */
1205 1225
1206 1226 unsigned int i;
1207 1227 int ret;
1208 1228 unsigned int coarseTime;
1209 1229 unsigned int fineTime;
1210 1230 rtems_status_code status;
1211 1231 spw_ioctl_pkt_send spw_ioctl_send_SWF;
1212 1232 int *dataPtr;
1213 1233 unsigned char sid;
1214 1234
1215 1235 spw_ioctl_send_SWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_SWF;
1216 1236 spw_ioctl_send_SWF.options = 0;
1217 1237
1218 1238 ret = LFR_DEFAULT;
1219 1239
1220 1240 coarseTime = ring_node_to_send->coarseTime;
1221 1241 fineTime = ring_node_to_send->fineTime;
1222 1242 dataPtr = (int*) ring_node_to_send->buffer_address;
1223 1243 sid = ring_node_to_send->sid;
1224 1244
1225 1245 header->pa_bia_status_info = pa_bia_status_info;
1226 1246 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1227 1247
1228 1248 for (i=0; i<PKTCNT_SWF; i++) // send waveform
1229 1249 {
1230 1250 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
1231 1251 spw_ioctl_send_SWF.hdr = (char*) header;
1232 1252
1233 1253 // SET PACKET SEQUENCE CONTROL
1234 1254 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1235 1255
1236 1256 // SET PACKET LENGTH AND BLKNR
1237 1257 if (i == (PKTCNT_SWF-1))
1238 1258 {
1239 1259 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
1240 1260 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> SHIFT_1_BYTE);
1241 1261 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
1242 1262 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> SHIFT_1_BYTE);
1243 1263 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
1244 1264 }
1245 1265 else
1246 1266 {
1247 1267 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
1248 1268 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> SHIFT_1_BYTE);
1249 1269 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
1250 1270 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> SHIFT_1_BYTE);
1251 1271 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
1252 1272 }
1253 1273
1254 1274 // SET PACKET TIME
1255 1275 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
1256 1276 //
1257 1277 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1258 1278 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1259 1279 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1260 1280 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1261 1281 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1262 1282 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1263 1283
1264 1284 // SET SID
1265 1285 header->sid = sid;
1266 1286
1267 1287 // SET PKTNR
1268 1288 header->pktNr = i+1; // PKT_NR
1269 1289
1270 1290 // SEND PACKET
1271 1291 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
1272 1292 if (status != RTEMS_SUCCESSFUL) {
1273 1293 ret = LFR_DEFAULT;
1274 1294 }
1275 1295 }
1276 1296
1277 1297 return ret;
1278 1298 }
1279 1299
1280 1300 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
1281 1301 Header_TM_LFR_SCIENCE_CWF_t *header )
1282 1302 {
1283 1303 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
1284 1304 *
1285 1305 * @param waveform points to the buffer containing the data that will be send.
1286 1306 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1287 1307 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1288 1308 * contain information to setup the transmission of the data packets.
1289 1309 *
1290 1310 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
1291 1311 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
1292 1312 *
1293 1313 */
1294 1314
1295 1315 unsigned int i;
1296 1316 int ret;
1297 1317 unsigned int coarseTime;
1298 1318 unsigned int fineTime;
1299 1319 rtems_status_code status;
1300 1320 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1301 1321 char *dataPtr;
1302 1322 unsigned char sid;
1303 1323
1304 1324 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1305 1325 spw_ioctl_send_CWF.options = 0;
1306 1326
1307 1327 ret = LFR_DEFAULT;
1308 1328 sid = ring_node_to_send->sid;
1309 1329
1310 1330 coarseTime = ring_node_to_send->coarseTime;
1311 1331 fineTime = ring_node_to_send->fineTime;
1312 1332 dataPtr = (char*) ring_node_to_send->buffer_address;
1313 1333
1314 1334 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> SHIFT_1_BYTE);
1315 1335 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
1316 1336 header->pa_bia_status_info = pa_bia_status_info;
1317 1337 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1318 1338 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> SHIFT_1_BYTE);
1319 1339 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
1320 1340
1321 1341 //*********************
1322 1342 // SEND CWF3_light DATA
1323 1343 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
1324 1344 {
1325 1345 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1326 1346 spw_ioctl_send_CWF.hdr = (char*) header;
1327 1347 // BUILD THE DATA
1328 1348 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1329 1349
1330 1350 // SET PACKET SEQUENCE COUNTER
1331 1351 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1332 1352
1333 1353 // SET SID
1334 1354 header->sid = sid;
1335 1355
1336 1356 // SET PACKET TIME
1337 1357 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1338 1358 //
1339 1359 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1340 1360 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1341 1361 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1342 1362 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1343 1363 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1344 1364 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1345 1365
1346 1366 // SET PACKET ID
1347 1367 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1348 1368 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1349 1369
1350 1370 // SEND PACKET
1351 1371 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1352 1372 if (status != RTEMS_SUCCESSFUL) {
1353 1373 ret = LFR_DEFAULT;
1354 1374 }
1355 1375 }
1356 1376
1357 1377 return ret;
1358 1378 }
1359 1379
1360 1380 void spw_send_asm_f0( ring_node *ring_node_to_send,
1361 1381 Header_TM_LFR_SCIENCE_ASM_t *header )
1362 1382 {
1363 1383 unsigned int i;
1364 1384 unsigned int length = 0;
1365 1385 rtems_status_code status;
1366 1386 unsigned int sid;
1367 1387 float *spectral_matrix;
1368 1388 int coarseTime;
1369 1389 int fineTime;
1370 1390 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1371 1391
1372 1392 sid = ring_node_to_send->sid;
1373 1393 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1374 1394 coarseTime = ring_node_to_send->coarseTime;
1375 1395 fineTime = ring_node_to_send->fineTime;
1376 1396
1377 1397 header->pa_bia_status_info = pa_bia_status_info;
1378 1398 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1379 1399
1380 1400 for (i=0; i<PKTCNT_ASM; i++)
1381 1401 {
1382 1402 if ((i==0) || (i==1))
1383 1403 {
1384 1404 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_1;
1385 1405 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1386 1406 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1387 1407 ];
1388 1408 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_1;
1389 1409 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1390 1410 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1391 1411 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_1); // BLK_NR LSB
1392 1412 }
1393 1413 else
1394 1414 {
1395 1415 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_2;
1396 1416 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1397 1417 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1398 1418 ];
1399 1419 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_2;
1400 1420 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1401 1421 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1402 1422 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_2); // BLK_NR LSB
1403 1423 }
1404 1424
1405 1425 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1406 1426 spw_ioctl_send_ASM.hdr = (char *) header;
1407 1427 spw_ioctl_send_ASM.options = 0;
1408 1428
1409 1429 // (2) BUILD THE HEADER
1410 1430 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1411 1431 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1412 1432 header->packetLength[1] = (unsigned char) (length);
1413 1433 header->sid = (unsigned char) sid; // SID
1414 1434 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1415 1435 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1416 1436
1417 1437 // (3) SET PACKET TIME
1418 1438 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1419 1439 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1420 1440 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1421 1441 header->time[BYTE_3] = (unsigned char) (coarseTime);
1422 1442 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1423 1443 header->time[BYTE_5] = (unsigned char) (fineTime);
1424 1444 //
1425 1445 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1426 1446 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1427 1447 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1428 1448 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1429 1449 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1430 1450 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1431 1451
1432 1452 // (4) SEND PACKET
1433 1453 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1434 1454 if (status != RTEMS_SUCCESSFUL) {
1435 1455 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1436 1456 }
1437 1457 }
1438 1458 }
1439 1459
1440 1460 void spw_send_asm_f1( ring_node *ring_node_to_send,
1441 1461 Header_TM_LFR_SCIENCE_ASM_t *header )
1442 1462 {
1443 1463 unsigned int i;
1444 1464 unsigned int length = 0;
1445 1465 rtems_status_code status;
1446 1466 unsigned int sid;
1447 1467 float *spectral_matrix;
1448 1468 int coarseTime;
1449 1469 int fineTime;
1450 1470 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1451 1471
1452 1472 sid = ring_node_to_send->sid;
1453 1473 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1454 1474 coarseTime = ring_node_to_send->coarseTime;
1455 1475 fineTime = ring_node_to_send->fineTime;
1456 1476
1457 1477 header->pa_bia_status_info = pa_bia_status_info;
1458 1478 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1459 1479
1460 1480 for (i=0; i<PKTCNT_ASM; i++)
1461 1481 {
1462 1482 if ((i==0) || (i==1))
1463 1483 {
1464 1484 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_1;
1465 1485 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1466 1486 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1467 1487 ];
1468 1488 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_1;
1469 1489 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1470 1490 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1471 1491 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_1); // BLK_NR LSB
1472 1492 }
1473 1493 else
1474 1494 {
1475 1495 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_2;
1476 1496 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1477 1497 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1478 1498 ];
1479 1499 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_2;
1480 1500 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1481 1501 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1482 1502 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_2); // BLK_NR LSB
1483 1503 }
1484 1504
1485 1505 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1486 1506 spw_ioctl_send_ASM.hdr = (char *) header;
1487 1507 spw_ioctl_send_ASM.options = 0;
1488 1508
1489 1509 // (2) BUILD THE HEADER
1490 1510 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1491 1511 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1492 1512 header->packetLength[1] = (unsigned char) (length);
1493 1513 header->sid = (unsigned char) sid; // SID
1494 1514 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1495 1515 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1496 1516
1497 1517 // (3) SET PACKET TIME
1498 1518 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1499 1519 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1500 1520 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1501 1521 header->time[BYTE_3] = (unsigned char) (coarseTime);
1502 1522 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1503 1523 header->time[BYTE_5] = (unsigned char) (fineTime);
1504 1524 //
1505 1525 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1506 1526 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1507 1527 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1508 1528 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1509 1529 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1510 1530 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1511 1531
1512 1532 // (4) SEND PACKET
1513 1533 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1514 1534 if (status != RTEMS_SUCCESSFUL) {
1515 1535 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1516 1536 }
1517 1537 }
1518 1538 }
1519 1539
1520 1540 void spw_send_asm_f2( ring_node *ring_node_to_send,
1521 1541 Header_TM_LFR_SCIENCE_ASM_t *header )
1522 1542 {
1523 1543 unsigned int i;
1524 1544 unsigned int length = 0;
1525 1545 rtems_status_code status;
1526 1546 unsigned int sid;
1527 1547 float *spectral_matrix;
1528 1548 int coarseTime;
1529 1549 int fineTime;
1530 1550 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1531 1551
1532 1552 sid = ring_node_to_send->sid;
1533 1553 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1534 1554 coarseTime = ring_node_to_send->coarseTime;
1535 1555 fineTime = ring_node_to_send->fineTime;
1536 1556
1537 1557 header->pa_bia_status_info = pa_bia_status_info;
1538 1558 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1539 1559
1540 1560 for (i=0; i<PKTCNT_ASM; i++)
1541 1561 {
1542 1562
1543 1563 spw_ioctl_send_ASM.dlen = DLEN_ASM_F2_PKT;
1544 1564 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1545 1565 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM )
1546 1566 ];
1547 1567 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1548 1568 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3;
1549 1569 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1550 1570 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1551 1571
1552 1572 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1553 1573 spw_ioctl_send_ASM.hdr = (char *) header;
1554 1574 spw_ioctl_send_ASM.options = 0;
1555 1575
1556 1576 // (2) BUILD THE HEADER
1557 1577 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1558 1578 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1559 1579 header->packetLength[1] = (unsigned char) (length);
1560 1580 header->sid = (unsigned char) sid; // SID
1561 1581 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1562 1582 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1563 1583
1564 1584 // (3) SET PACKET TIME
1565 1585 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1566 1586 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1567 1587 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1568 1588 header->time[BYTE_3] = (unsigned char) (coarseTime);
1569 1589 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1570 1590 header->time[BYTE_5] = (unsigned char) (fineTime);
1571 1591 //
1572 1592 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1573 1593 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1574 1594 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1575 1595 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1576 1596 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1577 1597 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1578 1598
1579 1599 // (4) SEND PACKET
1580 1600 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1581 1601 if (status != RTEMS_SUCCESSFUL) {
1582 1602 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1583 1603 }
1584 1604 }
1585 1605 }
1586 1606
1587 1607 void spw_send_k_dump( ring_node *ring_node_to_send )
1588 1608 {
1589 1609 rtems_status_code status;
1590 1610 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump;
1591 1611 unsigned int packetLength;
1592 1612 unsigned int size;
1593 1613
1594 1614 PRINTF("spw_send_k_dump\n")
1595 1615
1596 1616 kcoefficients_dump = (Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *) ring_node_to_send->buffer_address;
1597 1617
1598 1618 packetLength = (kcoefficients_dump->packetLength[0] * CONST_256) + kcoefficients_dump->packetLength[1];
1599 1619
1600 1620 size = packetLength + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
1601 1621
1602 1622 PRINTF2("packetLength %d, size %d\n", packetLength, size )
1603 1623
1604 1624 status = write( fdSPW, (char *) ring_node_to_send->buffer_address, size );
1605 1625
1606 1626 if (status == -1){
1607 1627 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
1608 1628 }
1609 1629
1610 1630 ring_node_to_send->status = INIT_CHAR;
1611 1631 }
@@ -1,116 +1,118
1 1 /*
2 2 * CPU Usage Reporter
3 3 *
4 4 * COPYRIGHT (c) 1989-2009
5 5 * On-Line Applications Research Corporation (OAR).
6 6 *
7 7 * The license and distribution terms for this file may be
8 8 * found in the file LICENSE in this distribution or at
9 9 * http://www.rtems.com/license/LICENSE.
10 10 *
11 11 * $Id$
12 12 */
13 13
14 14 #include "lfr_cpu_usage_report.h"
15 15
16 16 unsigned char lfr_rtems_cpu_usage_report( void )
17 17 {
18 18 uint32_t api_index;
19 19 Thread_Control *the_thread;
20 20 Objects_Information *information;
21 21 uint32_t ival;
22 22 uint32_t fval;
23 23 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
24 24 Timestamp_Control uptime;
25 25 Timestamp_Control total;
26 26 Timestamp_Control ran;
27 27 #else
28 28 uint32_t total_units = 0;
29 29 #endif
30 30
31 31 unsigned char cpu_load;
32
33 ival = 0;
32 34 cpu_load = 0;
33 35
34 36 /*
35 37 * When not using nanosecond CPU usage resolution, we have to count
36 38 * the number of "ticks" we gave credit for to give the user a rough
37 39 * guideline as to what each number means proportionally.
38 40 */
39 41 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
40 42 _TOD_Get_uptime( &uptime );
41 43 _Timestamp_Subtract( &CPU_usage_Uptime_at_last_reset, &uptime, &total );
42 44 #else
43 45 for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
44 46 if ( !_Objects_Information_table[ api_index ] ) { }
45 47 else
46 48 {
47 49 information = _Objects_Information_table[ api_index ][ 1 ];
48 50 if ( information != NULL )
49 51 {
50 52 for ( i=1 ; i <= information->maximum ; i++ ) {
51 53 the_thread = (Thread_Control *)information->local_table[ i ];
52 54
53 55 if ( the_thread != NULL ) {
54 56 total_units += the_thread->cpu_time_used; }
55 57 }
56 58 }
57 59 }
58 60 }
59 61 #endif
60 62
61 63 for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ )
62 64 {
63 65 if ( !_Objects_Information_table[ api_index ] ) { }
64 66 else
65 67 {
66 68 information = _Objects_Information_table[ api_index ][ 1 ];
67 69 if ( information != NULL )
68 70 {
69 71 the_thread = (Thread_Control *)information->local_table[ 1 ];
70 72
71 73 if ( the_thread == NULL ) { }
72 74 else
73 75 {
74 76 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
75 77 /*
76 78 * If this is the currently executing thread, account for time
77 79 * since the last context switch.
78 80 */
79 81 ran = the_thread->cpu_time_used;
80 82 if ( _Thread_Executing->Object.id == the_thread->Object.id )
81 83 {
82 84 Timestamp_Control used;
83 85 _Timestamp_Subtract(
84 86 &_Thread_Time_of_last_context_switch, &uptime, &used
85 87 );
86 88 _Timestamp_Add_to( &ran, &used );
87 89 }
88 90 _Timestamp_Divide( &ran, &total, &ival, &fval );
89 91
90 92 #else
91 93 if (total_units != 0)
92 94 {
93 95 uint64_t ival_64;
94 96
95 97 ival_64 = the_thread->cpu_time_used;
96 98 ival_64 *= CONST_100000;
97 99 ival = ival_64 / total_units;
98 100 }
99 101 else
100 102 {
101 103 ival = 0;
102 104 }
103 105
104 106 fval = ival % CONST_1000;
105 107 ival /= CONST_1000;
106 108 #endif
107 109 }
108 110 }
109 111 }
110 112 }
111 113 cpu_load = (unsigned char) (CONST_100 - ival);
112 114
113 115 return cpu_load;
114 116 }
115 117
116 118
@@ -1,414 +1,424
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf0_prc0.h"
11 11 #include "fsw_processing.h"
12 12
13 13 nb_sm_before_bp_asm_f0 nb_sm_before_f0;
14 14
15 15 //***
16 16 // F0
17 17 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ];
18 18 ring_node_asm asm_ring_burst_sbm_f0 [ NB_RING_NODES_ASM_BURST_SBM_F0 ];
19 19
20 20 ring_node ring_to_send_asm_f0 [ NB_RING_NODES_ASM_F0 ];
21 21 int buffer_asm_f0 [ NB_RING_NODES_ASM_F0 * TOTAL_SIZE_SM ];
22 22
23 23 float asm_f0_patched_norm [ TOTAL_SIZE_SM ];
24 24 float asm_f0_patched_burst_sbm [ TOTAL_SIZE_SM ];
25 25 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
26 26
27 27 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0];
28 28 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ];
29 29
30 30 float k_coeff_intercalib_f0_norm[ NB_BINS_COMPRESSED_SM_F0 * NB_K_COEFF_PER_BIN ]; // 11 * 32 = 352
31 31 float k_coeff_intercalib_f0_sbm[ NB_BINS_COMPRESSED_SM_SBM_F0 * NB_K_COEFF_PER_BIN ]; // 22 * 32 = 704
32 32
33 33 //************
34 34 // RTEMS TASKS
35 35
36 36 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
37 37 {
38 38 int i;
39 39
40 40 rtems_event_set event_out;
41 41 rtems_status_code status;
42 42 rtems_id queue_id_prc0;
43 43 asm_msg msgForPRC;
44 44 ring_node *nodeForAveraging;
45 45 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0_F1];
46 46 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
47 47 ring_node_asm *current_ring_node_asm_norm_f0;
48 48
49 49 unsigned int nb_norm_bp1;
50 50 unsigned int nb_norm_bp2;
51 51 unsigned int nb_norm_asm;
52 52 unsigned int nb_sbm_bp1;
53 53 unsigned int nb_sbm_bp2;
54 54
55 55 nb_norm_bp1 = 0;
56 56 nb_norm_bp2 = 0;
57 57 nb_norm_asm = 0;
58 58 nb_sbm_bp1 = 0;
59 59 nb_sbm_bp2 = 0;
60 event_out = EVENT_SETS_NONE_PENDING;
61 queue_id_prc0 = RTEMS_ID_NONE;
60 62
61 63 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
62 64 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
63 65 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
64 66 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
65 67 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
66 68
67 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
69 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode);
68 70
69 71 status = get_message_queue_id_prc0( &queue_id_prc0 );
70 72 if (status != RTEMS_SUCCESSFUL)
71 73 {
72 74 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
73 75 }
74 76
75 77 while(1){
76 78 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
77 79
78 80 //****************************************
79 81 // initialize the mesage for the MATR task
80 82 msgForPRC.norm = current_ring_node_asm_norm_f0;
81 83 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f0;
82 84 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC0 task
83 85 //
84 86 //****************************************
85 87
86 88 nodeForAveraging = getRingNodeForAveraging( 0 );
87 89
88 90 ring_node_tab[NB_SM_BEFORE_AVF0_F1-1] = nodeForAveraging;
89 91 for ( i = 1; i < (NB_SM_BEFORE_AVF0_F1); i++ )
90 92 {
91 93 nodeForAveraging = nodeForAveraging->previous;
92 94 ring_node_tab[NB_SM_BEFORE_AVF0_F1-i] = nodeForAveraging;
93 95 }
94 96
95 97 // compute the average and store it in the averaged_sm_f1 buffer
96 98 SM_average( current_ring_node_asm_norm_f0->matrix,
97 99 current_ring_node_asm_burst_sbm_f0->matrix,
98 100 ring_node_tab,
99 101 nb_norm_bp1, nb_sbm_bp1,
100 102 &msgForPRC, 0 ); // 0 => frequency channel 0
101 103
102 104 // update nb_average
103 105 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0_F1;
104 106 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0_F1;
105 107 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0_F1;
106 108 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0_F1;
107 109 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0_F1;
108 110
109 111 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
110 112 {
111 113 nb_sbm_bp1 = 0;
112 114 // set another ring for the ASM storage
113 115 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
114 116 if ( lfrCurrentMode == LFR_MODE_BURST )
115 117 {
116 118 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F0;
117 119 }
118 120 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
119 121 {
120 122 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F0;
121 123 }
122 124 }
123 125
124 126 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
125 127 {
126 128 nb_sbm_bp2 = 0;
127 129 if ( lfrCurrentMode == LFR_MODE_BURST )
128 130 {
129 131 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F0;
130 132 }
131 133 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
132 134 {
133 135 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F0;
134 136 }
135 137 }
136 138
137 139 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
138 140 {
139 141 nb_norm_bp1 = 0;
140 142 // set another ring for the ASM storage
141 143 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
142 144 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
143 145 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
144 146 {
145 147 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F0;
146 148 }
147 149 }
148 150
149 151 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
150 152 {
151 153 nb_norm_bp2 = 0;
152 154 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
153 155 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
154 156 {
155 157 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F0;
156 158 }
157 159 }
158 160
159 161 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
160 162 {
161 163 nb_norm_asm = 0;
162 164 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
163 165 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
164 166 {
165 167 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F0;
166 168 }
167 169 }
168 170
169 171 //*************************
170 172 // send the message to PRC
171 173 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
172 174 {
173 175 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC0);
174 176 }
175 177
176 178 if (status != RTEMS_SUCCESSFUL) {
177 179 PRINTF1("in AVF0 *** Error sending message to PRC, code %d\n", status)
178 180 }
179 181 }
180 182 }
181 183
182 184 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
183 185 {
184 186 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
185 187 size_t size; // size of the incoming TC packet
186 188 asm_msg *incomingMsg;
187 189 //
188 190 unsigned char sid;
189 191 rtems_status_code status;
190 192 rtems_id queue_id;
191 193 rtems_id queue_id_q_p0;
192 194 bp_packet_with_spare packet_norm_bp1;
193 195 bp_packet packet_norm_bp2;
194 196 bp_packet packet_sbm_bp1;
195 197 bp_packet packet_sbm_bp2;
196 198 ring_node *current_ring_node_to_send_asm_f0;
197 199 float nbSMInASMNORM;
198 200 float nbSMInASMSBM;
199 201
202 size = 0;
203 queue_id = RTEMS_ID_NONE;
204 queue_id_q_p0 = RTEMS_ID_NONE;
205 memset( &packet_norm_bp1, 0, sizeof(bp_packet_with_spare) );
206 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
207 memset( &packet_sbm_bp1, 0, sizeof(bp_packet) );
208 memset( &packet_sbm_bp2, 0, sizeof(bp_packet) );
209
200 210 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
201 211 init_ring( ring_to_send_asm_f0, NB_RING_NODES_ASM_F0, (volatile int*) buffer_asm_f0, TOTAL_SIZE_SM );
202 212 current_ring_node_to_send_asm_f0 = ring_to_send_asm_f0;
203 213
204 214 //*************
205 215 // NORM headers
206 216 BP_init_header_with_spare( &packet_norm_bp1,
207 217 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
208 218 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
209 219 BP_init_header( &packet_norm_bp2,
210 220 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
211 221 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
212 222
213 223 //****************************
214 224 // BURST SBM1 and SBM2 headers
215 225 if ( lfrRequestedMode == LFR_MODE_BURST )
216 226 {
217 227 BP_init_header( &packet_sbm_bp1,
218 228 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
219 229 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
220 230 BP_init_header( &packet_sbm_bp2,
221 231 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
222 232 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
223 233 }
224 234 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
225 235 {
226 236 BP_init_header( &packet_sbm_bp1,
227 237 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
228 238 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
229 239 BP_init_header( &packet_sbm_bp2,
230 240 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
231 241 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
232 242 }
233 243 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
234 244 {
235 245 BP_init_header( &packet_sbm_bp1,
236 246 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
237 247 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
238 248 BP_init_header( &packet_sbm_bp2,
239 249 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
240 250 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
241 251 }
242 252 else
243 253 {
244 254 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
245 255 }
246 256
247 257 status = get_message_queue_id_send( &queue_id );
248 258 if (status != RTEMS_SUCCESSFUL)
249 259 {
250 260 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
251 261 }
252 262 status = get_message_queue_id_prc0( &queue_id_q_p0);
253 263 if (status != RTEMS_SUCCESSFUL)
254 264 {
255 265 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
256 266 }
257 267
258 268 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
259 269
260 270 while(1){
261 271 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
262 272 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
263 273
264 274 incomingMsg = (asm_msg*) incomingData;
265 275
266 276 ASM_patch( incomingMsg->norm->matrix, asm_f0_patched_norm );
267 277 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f0_patched_burst_sbm );
268 278
269 279 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
270 280 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
271 281
272 282 //****************
273 283 //****************
274 284 // BURST SBM1 SBM2
275 285 //****************
276 286 //****************
277 287 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F0 ) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F0 ) )
278 288 {
279 289 sid = getSID( incomingMsg->event );
280 290 // 1) compress the matrix for Basic Parameters calculation
281 291 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_burst_sbm, compressed_sm_sbm_f0,
282 292 nbSMInASMSBM,
283 293 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
284 294 ASM_F0_INDICE_START, CHANNELF0);
285 295 // 2) compute the BP1 set
286 296 BP1_set( compressed_sm_sbm_f0, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp1.data );
287 297 // 3) send the BP1 set
288 298 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
289 299 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
290 300 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
291 301 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
292 302 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id,
293 303 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
294 304 sid);
295 305 // 4) compute the BP2 set if needed
296 306 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F0) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F0) )
297 307 {
298 308 // 1) compute the BP2 set
299 309 BP2_set( compressed_sm_sbm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp2.data );
300 310 // 2) send the BP2 set
301 311 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
302 312 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
303 313 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
304 314 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
305 315 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id,
306 316 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
307 317 sid);
308 318 }
309 319 }
310 320
311 321 //*****
312 322 //*****
313 323 // NORM
314 324 //*****
315 325 //*****
316 326 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
317 327 {
318 328 // 1) compress the matrix for Basic Parameters calculation
319 329 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_norm, compressed_sm_norm_f0,
320 330 nbSMInASMNORM,
321 331 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
322 332 ASM_F0_INDICE_START, CHANNELF0 );
323 333 // 2) compute the BP1 set
324 334 BP1_set( compressed_sm_norm_f0, k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp1.data );
325 335 // 3) send the BP1 set
326 336 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
327 337 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
328 338 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
329 339 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
330 340 BP_send( (char *) &packet_norm_bp1, queue_id,
331 341 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
332 342 SID_NORM_BP1_F0 );
333 343 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
334 344 {
335 345 // 1) compute the BP2 set using the same ASM as the one used for BP1
336 346 BP2_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp2.data );
337 347 // 2) send the BP2 set
338 348 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
339 349 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
340 350 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
341 351 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
342 352 BP_send( (char *) &packet_norm_bp2, queue_id,
343 353 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
344 354 SID_NORM_BP2_F0);
345 355 }
346 356 }
347 357
348 358 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
349 359 {
350 360 // 1) reorganize the ASM and divide
351 361 ASM_reorganize_and_divide( asm_f0_patched_norm,
352 362 (float*) current_ring_node_to_send_asm_f0->buffer_address,
353 363 nbSMInASMNORM );
354 364 current_ring_node_to_send_asm_f0->coarseTime = incomingMsg->coarseTimeNORM;
355 365 current_ring_node_to_send_asm_f0->fineTime = incomingMsg->fineTimeNORM;
356 366 current_ring_node_to_send_asm_f0->sid = SID_NORM_ASM_F0;
357 367
358 368 // 3) send the spectral matrix packets
359 369 status = rtems_message_queue_send( queue_id, &current_ring_node_to_send_asm_f0, sizeof( ring_node* ) );
360 370
361 371 // change asm ring node
362 372 current_ring_node_to_send_asm_f0 = current_ring_node_to_send_asm_f0->next;
363 373 }
364 374
365 375 update_queue_max_count( queue_id_q_p0, &hk_lfr_q_p0_fifo_size_max );
366 376
367 377 }
368 378 }
369 379
370 380 //**********
371 381 // FUNCTIONS
372 382
373 383 void reset_nb_sm_f0( unsigned char lfrMode )
374 384 {
375 385 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * NB_SM_PER_S_F0;
376 386 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * NB_SM_PER_S_F0;
377 387 nb_sm_before_f0.norm_asm =
378 388 ( (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256) + parameter_dump_packet.sy_lfr_n_asm_p[1]) * NB_SM_PER_S_F0;
379 389 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * NB_SM_PER_S1_BP_P0; // 0.25 s per digit
380 390 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * NB_SM_PER_S_F0;
381 391 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * NB_SM_PER_S_F0;
382 392 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * NB_SM_PER_S_F0;
383 393 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * NB_SM_PER_S_F0;
384 394 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * NB_SM_PER_S_F0;
385 395
386 396 if (lfrMode == LFR_MODE_SBM1)
387 397 {
388 398 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
389 399 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
390 400 }
391 401 else if (lfrMode == LFR_MODE_SBM2)
392 402 {
393 403 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
394 404 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
395 405 }
396 406 else if (lfrMode == LFR_MODE_BURST)
397 407 {
398 408 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
399 409 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
400 410 }
401 411 else
402 412 {
403 413 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
404 414 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
405 415 }
406 416 }
407 417
408 418 void init_k_coefficients_prc0( void )
409 419 {
410 420 init_k_coefficients( k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0 );
411 421
412 422 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f0_norm, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_F0);
413 423 }
414 424
@@ -1,398 +1,409
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf1_prc1.h"
11 11
12 12 nb_sm_before_bp_asm_f1 nb_sm_before_f1;
13 13
14 14 extern ring_node sm_ring_f1[ ];
15 15
16 16 //***
17 17 // F1
18 18 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ];
19 19 ring_node_asm asm_ring_burst_sbm_f1 [ NB_RING_NODES_ASM_BURST_SBM_F1 ];
20 20
21 21 ring_node ring_to_send_asm_f1 [ NB_RING_NODES_ASM_F1 ];
22 22 int buffer_asm_f1 [ NB_RING_NODES_ASM_F1 * TOTAL_SIZE_SM ];
23 23
24 24 float asm_f1_patched_norm [ TOTAL_SIZE_SM ];
25 25 float asm_f1_patched_burst_sbm [ TOTAL_SIZE_SM ];
26 26 float asm_f1_reorganized [ TOTAL_SIZE_SM ];
27 27
28 28 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1];
29 29 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ];
30 30
31 31 float k_coeff_intercalib_f1_norm[ NB_BINS_COMPRESSED_SM_F1 * NB_K_COEFF_PER_BIN ]; // 13 * 32 = 416
32 32 float k_coeff_intercalib_f1_sbm[ NB_BINS_COMPRESSED_SM_SBM_F1 * NB_K_COEFF_PER_BIN ]; // 26 * 32 = 832
33 33
34 34 //************
35 35 // RTEMS TASKS
36 36
37 37 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
38 38 {
39 39 int i;
40 40
41 41 rtems_event_set event_out;
42 42 rtems_status_code status;
43 43 rtems_id queue_id_prc1;
44 44 asm_msg msgForPRC;
45 45 ring_node *nodeForAveraging;
46 46 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0_F1];
47 47 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
48 48 ring_node_asm *current_ring_node_asm_norm_f1;
49 49
50 50 unsigned int nb_norm_bp1;
51 51 unsigned int nb_norm_bp2;
52 52 unsigned int nb_norm_asm;
53 53 unsigned int nb_sbm_bp1;
54 54 unsigned int nb_sbm_bp2;
55 55
56 event_out = EVENT_SETS_NONE_PENDING;
57 queue_id_prc1 = RTEMS_ID_NONE;
58
56 59 nb_norm_bp1 = 0;
57 60 nb_norm_bp2 = 0;
58 61 nb_norm_asm = 0;
59 62 nb_sbm_bp1 = 0;
60 63 nb_sbm_bp2 = 0;
61 64
62 65 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
63 66 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
64 67 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
65 68 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
66 69 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
67 70
68 71 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
69 72
70 73 status = get_message_queue_id_prc1( &queue_id_prc1 );
71 74 if (status != RTEMS_SUCCESSFUL)
72 75 {
73 76 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
74 77 }
75 78
76 79 while(1){
77 80 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
78 81
79 82 //****************************************
80 83 // initialize the mesage for the MATR task
81 84 msgForPRC.norm = current_ring_node_asm_norm_f1;
82 85 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f1;
83 86 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC1 task
84 87 //
85 88 //****************************************
86 89
87 90 nodeForAveraging = getRingNodeForAveraging( 1 );
88 91
89 92 ring_node_tab[NB_SM_BEFORE_AVF0_F1-1] = nodeForAveraging;
90 93 for ( i = 1; i < (NB_SM_BEFORE_AVF0_F1); i++ )
91 94 {
92 95 nodeForAveraging = nodeForAveraging->previous;
93 96 ring_node_tab[NB_SM_BEFORE_AVF0_F1-i] = nodeForAveraging;
94 97 }
95 98
96 99 // compute the average and store it in the averaged_sm_f1 buffer
97 100 SM_average( current_ring_node_asm_norm_f1->matrix,
98 101 current_ring_node_asm_burst_sbm_f1->matrix,
99 102 ring_node_tab,
100 103 nb_norm_bp1, nb_sbm_bp1,
101 104 &msgForPRC, 1 ); // 1 => frequency channel 1
102 105
103 106 // update nb_average
104 107 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0_F1;
105 108 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0_F1;
106 109 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0_F1;
107 110 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0_F1;
108 111 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0_F1;
109 112
110 113 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
111 114 {
112 115 nb_sbm_bp1 = 0;
113 116 // set another ring for the ASM storage
114 117 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
115 118 if ( lfrCurrentMode == LFR_MODE_BURST )
116 119 {
117 120 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F1;
118 121 }
119 122 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
120 123 {
121 124 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F1;
122 125 }
123 126 }
124 127
125 128 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
126 129 {
127 130 nb_sbm_bp2 = 0;
128 131 if ( lfrCurrentMode == LFR_MODE_BURST )
129 132 {
130 133 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F1;
131 134 }
132 135 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
133 136 {
134 137 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F1;
135 138 }
136 139 }
137 140
138 141 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
139 142 {
140 143 nb_norm_bp1 = 0;
141 144 // set another ring for the ASM storage
142 145 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
143 146 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
144 147 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
145 148 {
146 149 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F1;
147 150 }
148 151 }
149 152
150 153 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
151 154 {
152 155 nb_norm_bp2 = 0;
153 156 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
154 157 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
155 158 {
156 159 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F1;
157 160 }
158 161 }
159 162
160 163 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
161 164 {
162 165 nb_norm_asm = 0;
163 166 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
164 167 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
165 168 {
166 169 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F1;
167 170 }
168 171 }
169 172
170 173 //*************************
171 174 // send the message to PRC
172 175 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
173 176 {
174 177 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC1);
175 178 }
176 179
177 180 if (status != RTEMS_SUCCESSFUL) {
178 181 PRINTF1("in AVF1 *** Error sending message to PRC1, code %d\n", status)
179 182 }
180 183 }
181 184 }
182 185
183 186 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
184 187 {
185 188 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
186 189 size_t size; // size of the incoming TC packet
187 190 asm_msg *incomingMsg;
188 191 //
189 192 unsigned char sid;
190 193 rtems_status_code status;
191 194 rtems_id queue_id_send;
192 195 rtems_id queue_id_q_p1;
193 196 bp_packet_with_spare packet_norm_bp1;
194 197 bp_packet packet_norm_bp2;
195 198 bp_packet packet_sbm_bp1;
196 199 bp_packet packet_sbm_bp2;
197 200 ring_node *current_ring_node_to_send_asm_f1;
198 201 float nbSMInASMNORM;
199 202 float nbSMInASMSBM;
200 203
204 size = 0;
205 queue_id_send = RTEMS_ID_NONE;
206 queue_id_q_p1 = RTEMS_ID_NONE;
207 memset( &packet_norm_bp1, 0, sizeof(bp_packet_with_spare) );
208 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
209 memset( &packet_sbm_bp1, 0, sizeof(bp_packet) );
210 memset( &packet_sbm_bp2, 0, sizeof(bp_packet) );
211
201 212 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
202 213 init_ring( ring_to_send_asm_f1, NB_RING_NODES_ASM_F1, (volatile int*) buffer_asm_f1, TOTAL_SIZE_SM );
203 214 current_ring_node_to_send_asm_f1 = ring_to_send_asm_f1;
204 215
205 216 //*************
206 217 // NORM headers
207 218 BP_init_header_with_spare( &packet_norm_bp1,
208 219 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
209 220 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
210 221 BP_init_header( &packet_norm_bp2,
211 222 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
212 223 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
213 224
214 225 //***********************
215 226 // BURST and SBM2 headers
216 227 if ( lfrRequestedMode == LFR_MODE_BURST )
217 228 {
218 229 BP_init_header( &packet_sbm_bp1,
219 230 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
220 231 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
221 232 BP_init_header( &packet_sbm_bp2,
222 233 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
223 234 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
224 235 }
225 236 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
226 237 {
227 238 BP_init_header( &packet_sbm_bp1,
228 239 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
229 240 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
230 241 BP_init_header( &packet_sbm_bp2,
231 242 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
232 243 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
233 244 }
234 245 else
235 246 {
236 247 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
237 248 }
238 249
239 250 status = get_message_queue_id_send( &queue_id_send );
240 251 if (status != RTEMS_SUCCESSFUL)
241 252 {
242 253 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
243 254 }
244 255 status = get_message_queue_id_prc1( &queue_id_q_p1);
245 256 if (status != RTEMS_SUCCESSFUL)
246 257 {
247 258 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
248 259 }
249 260
250 261 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
251 262
252 263 while(1){
253 264 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
254 265 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
255 266
256 267 incomingMsg = (asm_msg*) incomingData;
257 268
258 269 ASM_patch( incomingMsg->norm->matrix, asm_f1_patched_norm );
259 270 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f1_patched_burst_sbm );
260 271
261 272 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
262 273 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
263 274
264 275 //***********
265 276 //***********
266 277 // BURST SBM2
267 278 //***********
268 279 //***********
269 280 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F1) )
270 281 {
271 282 sid = getSID( incomingMsg->event );
272 283 // 1) compress the matrix for Basic Parameters calculation
273 284 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_burst_sbm, compressed_sm_sbm_f1,
274 285 nbSMInASMSBM,
275 286 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
276 287 ASM_F1_INDICE_START, CHANNELF1);
277 288 // 2) compute the BP1 set
278 289 BP1_set( compressed_sm_sbm_f1, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp1.data );
279 290 // 3) send the BP1 set
280 291 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
281 292 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
282 293 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
283 294 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
284 295 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id_send,
285 296 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA,
286 297 sid );
287 298 // 4) compute the BP2 set if needed
288 299 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F1) )
289 300 {
290 301 // 1) compute the BP2 set
291 302 BP2_set( compressed_sm_sbm_f1, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp2.data );
292 303 // 2) send the BP2 set
293 304 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
294 305 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
295 306 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
296 307 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
297 308 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id_send,
298 309 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA,
299 310 sid );
300 311 }
301 312 }
302 313
303 314 //*****
304 315 //*****
305 316 // NORM
306 317 //*****
307 318 //*****
308 319 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
309 320 {
310 321 // 1) compress the matrix for Basic Parameters calculation
311 322 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_norm, compressed_sm_norm_f1,
312 323 nbSMInASMNORM,
313 324 NB_BINS_COMPRESSED_SM_F1, NB_BINS_TO_AVERAGE_ASM_F1,
314 325 ASM_F1_INDICE_START, CHANNELF1 );
315 326 // 2) compute the BP1 set
316 327 BP1_set( compressed_sm_norm_f1, k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp1.data );
317 328 // 3) send the BP1 set
318 329 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
319 330 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
320 331 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
321 332 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
322 333 BP_send( (char *) &packet_norm_bp1, queue_id_send,
323 334 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA,
324 335 SID_NORM_BP1_F1 );
325 336 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
326 337 {
327 338 // 1) compute the BP2 set
328 339 BP2_set( compressed_sm_norm_f1, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp2.data );
329 340 // 2) send the BP2 set
330 341 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
331 342 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
332 343 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
333 344 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
334 345 BP_send( (char *) &packet_norm_bp2, queue_id_send,
335 346 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA,
336 347 SID_NORM_BP2_F1 );
337 348 }
338 349 }
339 350
340 351 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
341 352 {
342 353 // 1) reorganize the ASM and divide
343 354 ASM_reorganize_and_divide( asm_f1_patched_norm,
344 355 (float*) current_ring_node_to_send_asm_f1->buffer_address,
345 356 nbSMInASMNORM );
346 357 current_ring_node_to_send_asm_f1->coarseTime = incomingMsg->coarseTimeNORM;
347 358 current_ring_node_to_send_asm_f1->fineTime = incomingMsg->fineTimeNORM;
348 359 current_ring_node_to_send_asm_f1->sid = SID_NORM_ASM_F1;
349 360
350 361 // 3) send the spectral matrix packets
351 362 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f1, sizeof( ring_node* ) );
352 363
353 364 // change asm ring node
354 365 current_ring_node_to_send_asm_f1 = current_ring_node_to_send_asm_f1->next;
355 366 }
356 367
357 368 update_queue_max_count( queue_id_q_p1, &hk_lfr_q_p1_fifo_size_max );
358 369
359 370 }
360 371 }
361 372
362 373 //**********
363 374 // FUNCTIONS
364 375
365 376 void reset_nb_sm_f1( unsigned char lfrMode )
366 377 {
367 378 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * NB_SM_PER_S_F1;
368 379 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * NB_SM_PER_S_F1;
369 380 nb_sm_before_f1.norm_asm =
370 381 ( (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256) + parameter_dump_packet.sy_lfr_n_asm_p[1]) * NB_SM_PER_S_F1;
371 382 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * NB_SM_PER_S_F1;
372 383 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * NB_SM_PER_S_F1;
373 384 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * NB_SM_PER_S_F1;
374 385 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * NB_SM_PER_S_F1;
375 386
376 387 if (lfrMode == LFR_MODE_SBM2)
377 388 {
378 389 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
379 390 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
380 391 }
381 392 else if (lfrMode == LFR_MODE_BURST)
382 393 {
383 394 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
384 395 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
385 396 }
386 397 else
387 398 {
388 399 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
389 400 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
390 401 }
391 402 }
392 403
393 404 void init_k_coefficients_prc1( void )
394 405 {
395 406 init_k_coefficients( k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1 );
396 407
397 408 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f1_norm, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_F1);
398 409 }
@@ -1,326 +1,334
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf2_prc2.h"
11 11
12 12 nb_sm_before_bp_asm_f2 nb_sm_before_f2;
13 13
14 14 extern ring_node sm_ring_f2[ ];
15 15
16 16 //***
17 17 // F2
18 18 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ];
19 19
20 20 ring_node ring_to_send_asm_f2 [ NB_RING_NODES_ASM_F2 ];
21 21 int buffer_asm_f2 [ NB_RING_NODES_ASM_F2 * TOTAL_SIZE_SM ];
22 22
23 23 float asm_f2_patched_norm [ TOTAL_SIZE_SM ];
24 24 float asm_f2_reorganized [ TOTAL_SIZE_SM ];
25 25
26 26 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2];
27 27
28 28 float k_coeff_intercalib_f2[ NB_BINS_COMPRESSED_SM_F2 * NB_K_COEFF_PER_BIN ]; // 12 * 32 = 384
29 29
30 30 //************
31 31 // RTEMS TASKS
32 32
33 33 //***
34 34 // F2
35 35 rtems_task avf2_task( rtems_task_argument argument )
36 36 {
37 37 rtems_event_set event_out;
38 38 rtems_status_code status;
39 39 rtems_id queue_id_prc2;
40 40 asm_msg msgForPRC;
41 41 ring_node *nodeForAveraging;
42 42 ring_node_asm *current_ring_node_asm_norm_f2;
43 43
44 44 unsigned int nb_norm_bp1;
45 45 unsigned int nb_norm_bp2;
46 46 unsigned int nb_norm_asm;
47 47
48 event_out = EVENT_SETS_NONE_PENDING;
49 queue_id_prc2 = RTEMS_ID_NONE;
48 50 nb_norm_bp1 = 0;
49 51 nb_norm_bp2 = 0;
50 52 nb_norm_asm = 0;
51 53
52 54 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
53 55 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
54 56 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
55 57
56 58 BOOT_PRINTF("in AVF2 ***\n")
57 59
58 60 status = get_message_queue_id_prc2( &queue_id_prc2 );
59 61 if (status != RTEMS_SUCCESSFUL)
60 62 {
61 63 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
62 64 }
63 65
64 66 while(1){
65 67 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
66 68
67 69 //****************************************
68 70 // initialize the mesage for the MATR task
69 71 msgForPRC.norm = current_ring_node_asm_norm_f2;
70 72 msgForPRC.burst_sbm = NULL;
71 73 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC2 task
72 74 //
73 75 //****************************************
74 76
75 77 nodeForAveraging = getRingNodeForAveraging( CHANNELF2 );
76 78
77 79 // compute the average and store it in the averaged_sm_f2 buffer
78 80 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
79 81 nodeForAveraging,
80 82 nb_norm_bp1,
81 83 &msgForPRC );
82 84
83 85 // update nb_average
84 86 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
85 87 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
86 88 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
87 89
88 90 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
89 91 {
90 92 nb_norm_bp1 = 0;
91 93 // set another ring for the ASM storage
92 94 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
93 95 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
94 96 || (lfrCurrentMode == LFR_MODE_SBM2) )
95 97 {
96 98 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F2;
97 99 }
98 100 }
99 101
100 102 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
101 103 {
102 104 nb_norm_bp2 = 0;
103 105 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
104 106 || (lfrCurrentMode == LFR_MODE_SBM2) )
105 107 {
106 108 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F2;
107 109 }
108 110 }
109 111
110 112 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
111 113 {
112 114 nb_norm_asm = 0;
113 115 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
114 116 || (lfrCurrentMode == LFR_MODE_SBM2) )
115 117 {
116 118 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F2;
117 119 }
118 120 }
119 121
120 122 //*************************
121 123 // send the message to PRC2
122 124 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
123 125 {
124 126 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC2);
125 127 }
126 128
127 129 if (status != RTEMS_SUCCESSFUL) {
128 130 PRINTF1("in AVF2 *** Error sending message to PRC2, code %d\n", status)
129 131 }
130 132 }
131 133 }
132 134
133 135 rtems_task prc2_task( rtems_task_argument argument )
134 136 {
135 137 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
136 138 size_t size; // size of the incoming TC packet
137 139 asm_msg *incomingMsg;
138 140 //
139 141 rtems_status_code status;
140 142 rtems_id queue_id_send;
141 143 rtems_id queue_id_q_p2;
142 144 bp_packet packet_norm_bp1;
143 145 bp_packet packet_norm_bp2;
144 146 ring_node *current_ring_node_to_send_asm_f2;
145 147 float nbSMInASMNORM;
146 148
147 149 unsigned long long int localTime;
148 150
151 size = 0;
152 queue_id_send = RTEMS_ID_NONE;
153 queue_id_q_p2 = RTEMS_ID_NONE;
154 memset( &packet_norm_bp1, 0, sizeof(bp_packet) );
155 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
156
149 157 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
150 158 init_ring( ring_to_send_asm_f2, NB_RING_NODES_ASM_F2, (volatile int*) buffer_asm_f2, TOTAL_SIZE_SM );
151 159 current_ring_node_to_send_asm_f2 = ring_to_send_asm_f2;
152 160
153 161 //*************
154 162 // NORM headers
155 163 BP_init_header( &packet_norm_bp1,
156 164 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
157 165 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
158 166 BP_init_header( &packet_norm_bp2,
159 167 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
160 168 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
161 169
162 170 status = get_message_queue_id_send( &queue_id_send );
163 171 if (status != RTEMS_SUCCESSFUL)
164 172 {
165 173 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
166 174 }
167 175 status = get_message_queue_id_prc2( &queue_id_q_p2);
168 176 if (status != RTEMS_SUCCESSFUL)
169 177 {
170 178 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
171 179 }
172 180
173 181 BOOT_PRINTF("in PRC2 ***\n")
174 182
175 183 while(1){
176 184 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
177 185 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF2
178 186
179 187 incomingMsg = (asm_msg*) incomingData;
180 188
181 189 ASM_patch( incomingMsg->norm->matrix, asm_f2_patched_norm );
182 190
183 191 localTime = getTimeAsUnsignedLongLongInt( );
184 192
185 193 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
186 194
187 195 //*****
188 196 //*****
189 197 // NORM
190 198 //*****
191 199 //*****
192 200 // 1) compress the matrix for Basic Parameters calculation
193 201 ASM_compress_reorganize_and_divide_mask( asm_f2_patched_norm, compressed_sm_norm_f2,
194 202 nbSMInASMNORM,
195 203 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
196 204 ASM_F2_INDICE_START, CHANNELF2 );
197 205 // BP1_F2
198 206 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
199 207 {
200 208 // 1) compute the BP1 set
201 209 BP1_set( compressed_sm_norm_f2, k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp1.data );
202 210 // 2) send the BP1 set
203 211 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
204 212 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
205 213 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
206 214 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
207 215 BP_send( (char *) &packet_norm_bp1, queue_id_send,
208 216 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
209 217 SID_NORM_BP1_F2 );
210 218 }
211 219 // BP2_F2
212 220 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
213 221 {
214 222 // 1) compute the BP2 set
215 223 BP2_set( compressed_sm_norm_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp2.data );
216 224 // 2) send the BP2 set
217 225 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
218 226 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
219 227 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
220 228 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
221 229 BP_send( (char *) &packet_norm_bp2, queue_id_send,
222 230 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
223 231 SID_NORM_BP2_F2 );
224 232 }
225 233
226 234 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
227 235 {
228 236 // 1) reorganize the ASM and divide
229 237 ASM_reorganize_and_divide( asm_f2_patched_norm,
230 238 (float*) current_ring_node_to_send_asm_f2->buffer_address,
231 239 nb_sm_before_f2.norm_bp1 );
232 240 current_ring_node_to_send_asm_f2->coarseTime = incomingMsg->coarseTimeNORM;
233 241 current_ring_node_to_send_asm_f2->fineTime = incomingMsg->fineTimeNORM;
234 242 current_ring_node_to_send_asm_f2->sid = SID_NORM_ASM_F2;
235 243
236 244 // 3) send the spectral matrix packets
237 245 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f2, sizeof( ring_node* ) );
238 246
239 247 // change asm ring node
240 248 current_ring_node_to_send_asm_f2 = current_ring_node_to_send_asm_f2->next;
241 249 }
242 250
243 251 update_queue_max_count( queue_id_q_p2, &hk_lfr_q_p2_fifo_size_max );
244 252
245 253 }
246 254 }
247 255
248 256 //**********
249 257 // FUNCTIONS
250 258
251 259 void reset_nb_sm_f2( void )
252 260 {
253 261 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
254 262 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
255 263 nb_sm_before_f2.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_asm_p[1];
256 264 }
257 265
258 266 void SM_average_f2( float *averaged_spec_mat_f2,
259 267 ring_node *ring_node,
260 268 unsigned int nbAverageNormF2,
261 269 asm_msg *msgForMATR )
262 270 {
263 271 float sum;
264 272 unsigned int i;
265 273 unsigned char keepMatrix;
266 274
267 275 // test acquisitionTime validity
268 276 keepMatrix = acquisitionTimeIsValid( ring_node->coarseTime, ring_node->fineTime, CHANNELF2 );
269 277
270 278 for(i=0; i<TOTAL_SIZE_SM; i++)
271 279 {
272 280 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
273 281 if ( (nbAverageNormF2 == 0) ) // average initialization
274 282 {
275 283 if (keepMatrix == 1) // keep the matrix and add it to the average
276 284 {
277 285 averaged_spec_mat_f2[ i ] = sum;
278 286 }
279 287 else // drop the matrix and initialize the average
280 288 {
281 289 averaged_spec_mat_f2[ i ] = INIT_FLOAT;
282 290 }
283 291 msgForMATR->coarseTimeNORM = ring_node->coarseTime;
284 292 msgForMATR->fineTimeNORM = ring_node->fineTime;
285 293 }
286 294 else
287 295 {
288 296 if (keepMatrix == 1) // keep the matrix and add it to the average
289 297 {
290 298 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
291 299 }
292 300 else
293 301 {
294 302 // nothing to do, the matrix is not valid
295 303 }
296 304 }
297 305 }
298 306
299 307 if (keepMatrix == 1)
300 308 {
301 309 if ( (nbAverageNormF2 == 0) )
302 310 {
303 311 msgForMATR->numberOfSMInASMNORM = 1;
304 312 }
305 313 else
306 314 {
307 315 msgForMATR->numberOfSMInASMNORM++;
308 316 }
309 317 }
310 318 else
311 319 {
312 320 if ( (nbAverageNormF2 == 0) )
313 321 {
314 322 msgForMATR->numberOfSMInASMNORM = 0;
315 323 }
316 324 else
317 325 {
318 326 // nothing to do
319 327 }
320 328 }
321 329 }
322 330
323 331 void init_k_coefficients_prc2( void )
324 332 {
325 333 init_k_coefficients( k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2);
326 334 }
@@ -1,800 +1,802
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "fsw_processing.h"
11 11 #include "fsw_processing_globals.c"
12 12 #include "fsw_init.h"
13 13
14 14 unsigned int nb_sm_f0;
15 15 unsigned int nb_sm_f0_aux_f1;
16 16 unsigned int nb_sm_f1;
17 17 unsigned int nb_sm_f0_aux_f2;
18 18
19 19 typedef enum restartState_t
20 20 {
21 21 WAIT_FOR_F2,
22 22 WAIT_FOR_F1,
23 23 WAIT_FOR_F0
24 24 } restartState;
25 25
26 26 //************************
27 27 // spectral matrices rings
28 28 ring_node sm_ring_f0[ NB_RING_NODES_SM_F0 ];
29 29 ring_node sm_ring_f1[ NB_RING_NODES_SM_F1 ];
30 30 ring_node sm_ring_f2[ NB_RING_NODES_SM_F2 ];
31 31 ring_node *current_ring_node_sm_f0;
32 32 ring_node *current_ring_node_sm_f1;
33 33 ring_node *current_ring_node_sm_f2;
34 34 ring_node *ring_node_for_averaging_sm_f0;
35 35 ring_node *ring_node_for_averaging_sm_f1;
36 36 ring_node *ring_node_for_averaging_sm_f2;
37 37
38 38 //
39 39 ring_node * getRingNodeForAveraging( unsigned char frequencyChannel)
40 40 {
41 41 ring_node *node;
42 42
43 43 node = NULL;
44 44 switch ( frequencyChannel ) {
45 45 case CHANNELF0:
46 46 node = ring_node_for_averaging_sm_f0;
47 47 break;
48 48 case CHANNELF1:
49 49 node = ring_node_for_averaging_sm_f1;
50 50 break;
51 51 case CHANNELF2:
52 52 node = ring_node_for_averaging_sm_f2;
53 53 break;
54 54 default:
55 55 break;
56 56 }
57 57
58 58 return node;
59 59 }
60 60
61 61 //***********************************************************
62 62 // Interrupt Service Routine for spectral matrices processing
63 63
64 64 void spectral_matrices_isr_f0( int statusReg )
65 65 {
66 66 unsigned char status;
67 67 rtems_status_code status_code;
68 68 ring_node *full_ring_node;
69 69
70 70 status = (unsigned char) (statusReg & BITS_STATUS_F0); // [0011] get the status_ready_matrix_f0_x bits
71 71
72 72 switch(status)
73 73 {
74 74 case 0:
75 75 break;
76 76 case BIT_READY_0_1:
77 77 // UNEXPECTED VALUE
78 78 spectral_matrix_regs->status = BIT_READY_0_1; // [0011]
79 79 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
80 80 break;
81 81 case BIT_READY_0:
82 82 full_ring_node = current_ring_node_sm_f0->previous;
83 83 full_ring_node->coarseTime = spectral_matrix_regs->f0_0_coarse_time;
84 84 full_ring_node->fineTime = spectral_matrix_regs->f0_0_fine_time;
85 85 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
86 86 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
87 87 // if there are enough ring nodes ready, wake up an AVFx task
88 88 nb_sm_f0 = nb_sm_f0 + 1;
89 89 if (nb_sm_f0 == NB_SM_BEFORE_AVF0_F1)
90 90 {
91 91 ring_node_for_averaging_sm_f0 = full_ring_node;
92 92 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
93 93 {
94 94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
95 95 }
96 96 nb_sm_f0 = 0;
97 97 }
98 98 spectral_matrix_regs->status = BIT_READY_0; // [0000 0001]
99 99 break;
100 100 case BIT_READY_1:
101 101 full_ring_node = current_ring_node_sm_f0->previous;
102 102 full_ring_node->coarseTime = spectral_matrix_regs->f0_1_coarse_time;
103 103 full_ring_node->fineTime = spectral_matrix_regs->f0_1_fine_time;
104 104 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
105 105 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
106 106 // if there are enough ring nodes ready, wake up an AVFx task
107 107 nb_sm_f0 = nb_sm_f0 + 1;
108 108 if (nb_sm_f0 == NB_SM_BEFORE_AVF0_F1)
109 109 {
110 110 ring_node_for_averaging_sm_f0 = full_ring_node;
111 111 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
112 112 {
113 113 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
114 114 }
115 115 nb_sm_f0 = 0;
116 116 }
117 117 spectral_matrix_regs->status = BIT_READY_1; // [0000 0010]
118 118 break;
119 119 default:
120 120 break;
121 121 }
122 122 }
123 123
124 124 void spectral_matrices_isr_f1( int statusReg )
125 125 {
126 126 rtems_status_code status_code;
127 127 unsigned char status;
128 128 ring_node *full_ring_node;
129 129
130 130 status = (unsigned char) ((statusReg & BITS_STATUS_F1) >> SHIFT_2_BITS); // [1100] get the status_ready_matrix_f1_x bits
131 131
132 132 switch(status)
133 133 {
134 134 case 0:
135 135 break;
136 136 case BIT_READY_0_1:
137 137 // UNEXPECTED VALUE
138 138 spectral_matrix_regs->status = BITS_STATUS_F1; // [1100]
139 139 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
140 140 break;
141 141 case BIT_READY_0:
142 142 full_ring_node = current_ring_node_sm_f1->previous;
143 143 full_ring_node->coarseTime = spectral_matrix_regs->f1_0_coarse_time;
144 144 full_ring_node->fineTime = spectral_matrix_regs->f1_0_fine_time;
145 145 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
146 146 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
147 147 // if there are enough ring nodes ready, wake up an AVFx task
148 148 nb_sm_f1 = nb_sm_f1 + 1;
149 149 if (nb_sm_f1 == NB_SM_BEFORE_AVF0_F1)
150 150 {
151 151 ring_node_for_averaging_sm_f1 = full_ring_node;
152 152 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
153 153 {
154 154 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
155 155 }
156 156 nb_sm_f1 = 0;
157 157 }
158 158 spectral_matrix_regs->status = BIT_STATUS_F1_0; // [0000 0100]
159 159 break;
160 160 case BIT_READY_1:
161 161 full_ring_node = current_ring_node_sm_f1->previous;
162 162 full_ring_node->coarseTime = spectral_matrix_regs->f1_1_coarse_time;
163 163 full_ring_node->fineTime = spectral_matrix_regs->f1_1_fine_time;
164 164 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
165 165 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
166 166 // if there are enough ring nodes ready, wake up an AVFx task
167 167 nb_sm_f1 = nb_sm_f1 + 1;
168 168 if (nb_sm_f1 == NB_SM_BEFORE_AVF0_F1)
169 169 {
170 170 ring_node_for_averaging_sm_f1 = full_ring_node;
171 171 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
172 172 {
173 173 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
174 174 }
175 175 nb_sm_f1 = 0;
176 176 }
177 177 spectral_matrix_regs->status = BIT_STATUS_F1_1; // [1000 0000]
178 178 break;
179 179 default:
180 180 break;
181 181 }
182 182 }
183 183
184 184 void spectral_matrices_isr_f2( int statusReg )
185 185 {
186 186 unsigned char status;
187 187 rtems_status_code status_code;
188 188
189 189 status = (unsigned char) ((statusReg & BITS_STATUS_F2) >> SHIFT_4_BITS); // [0011 0000] get the status_ready_matrix_f2_x bits
190 190
191 191 switch(status)
192 192 {
193 193 case 0:
194 194 break;
195 195 case BIT_READY_0_1:
196 196 // UNEXPECTED VALUE
197 197 spectral_matrix_regs->status = BITS_STATUS_F2; // [0011 0000]
198 198 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
199 199 break;
200 200 case BIT_READY_0:
201 201 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
202 202 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
203 203 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_0_coarse_time;
204 204 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_0_fine_time;
205 205 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
206 206 spectral_matrix_regs->status = BIT_STATUS_F2_0; // [0001 0000]
207 207 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
208 208 {
209 209 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
210 210 }
211 211 break;
212 212 case BIT_READY_1:
213 213 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
214 214 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
215 215 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_1_coarse_time;
216 216 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_1_fine_time;
217 217 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
218 218 spectral_matrix_regs->status = BIT_STATUS_F2_1; // [0010 0000]
219 219 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
220 220 {
221 221 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
222 222 }
223 223 break;
224 224 default:
225 225 break;
226 226 }
227 227 }
228 228
229 229 void spectral_matrix_isr_error_handler( int statusReg )
230 230 {
231 231 // STATUS REGISTER
232 232 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
233 233 // 10 9 8
234 234 // buffer_full ** [bad_component_err] ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
235 235 // 7 6 5 4 3 2 1 0
236 236 // [bad_component_err] not defined in the last version of the VHDL code
237 237
238 238 rtems_status_code status_code;
239 239
240 240 //***************************************************
241 241 // the ASM status register is copied in the HK packet
242 242 housekeeping_packet.hk_lfr_vhdl_aa_sm = (unsigned char) ((statusReg & BITS_HK_AA_SM) >> SHIFT_7_BITS); // [0111 1000 0000]
243 243
244 244 if (statusReg & BITS_SM_ERR) // [0111 1100 0000]
245 245 {
246 246 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
247 247 }
248 248
249 249 spectral_matrix_regs->status = spectral_matrix_regs->status & BITS_SM_ERR;
250 250
251 251 }
252 252
253 253 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
254 254 {
255 255 // STATUS REGISTER
256 256 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
257 257 // 10 9 8
258 258 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
259 259 // 7 6 5 4 3 2 1 0
260 260
261 261 int statusReg;
262 262
263 263 static restartState state = WAIT_FOR_F2;
264 264
265 265 statusReg = spectral_matrix_regs->status;
266 266
267 267 if (thisIsAnASMRestart == 0)
268 268 { // this is not a restart sequence, process incoming matrices normally
269 269 spectral_matrices_isr_f0( statusReg );
270 270
271 271 spectral_matrices_isr_f1( statusReg );
272 272
273 273 spectral_matrices_isr_f2( statusReg );
274 274 }
275 275 else
276 276 { // a restart sequence has to be launched
277 277 switch (state) {
278 278 case WAIT_FOR_F2:
279 279 if ((statusReg & BITS_STATUS_F2) != INIT_CHAR) // [0011 0000] check the status_ready_matrix_f2_x bits
280 280 {
281 281 state = WAIT_FOR_F1;
282 282 }
283 283 break;
284 284 case WAIT_FOR_F1:
285 285 if ((statusReg & BITS_STATUS_F1) != INIT_CHAR) // [0000 1100] check the status_ready_matrix_f1_x bits
286 286 {
287 287 state = WAIT_FOR_F0;
288 288 }
289 289 break;
290 290 case WAIT_FOR_F0:
291 291 if ((statusReg & BITS_STATUS_F0) != INIT_CHAR) // [0000 0011] check the status_ready_matrix_f0_x bits
292 292 {
293 293 state = WAIT_FOR_F2;
294 294 thisIsAnASMRestart = 0;
295 295 }
296 296 break;
297 297 default:
298 298 break;
299 299 }
300 300 reset_sm_status();
301 301 }
302 302
303 303 spectral_matrix_isr_error_handler( statusReg );
304 304
305 305 }
306 306
307 307 //******************
308 308 // Spectral Matrices
309 309
310 310 void reset_nb_sm( void )
311 311 {
312 312 nb_sm_f0 = 0;
313 313 nb_sm_f0_aux_f1 = 0;
314 314 nb_sm_f0_aux_f2 = 0;
315 315
316 316 nb_sm_f1 = 0;
317 317 }
318 318
319 319 void SM_init_rings( void )
320 320 {
321 321 init_ring( sm_ring_f0, NB_RING_NODES_SM_F0, sm_f0, TOTAL_SIZE_SM );
322 322 init_ring( sm_ring_f1, NB_RING_NODES_SM_F1, sm_f1, TOTAL_SIZE_SM );
323 323 init_ring( sm_ring_f2, NB_RING_NODES_SM_F2, sm_f2, TOTAL_SIZE_SM );
324 324
325 325 DEBUG_PRINTF1("sm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
326 326 DEBUG_PRINTF1("sm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
327 327 DEBUG_PRINTF1("sm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
328 328 DEBUG_PRINTF1("sm_f0 @%x\n", (unsigned int) sm_f0)
329 329 DEBUG_PRINTF1("sm_f1 @%x\n", (unsigned int) sm_f1)
330 330 DEBUG_PRINTF1("sm_f2 @%x\n", (unsigned int) sm_f2)
331 331 }
332 332
333 333 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
334 334 {
335 335 unsigned char i;
336 336
337 337 ring[ nbNodes - 1 ].next
338 338 = (ring_node_asm*) &ring[ 0 ];
339 339
340 340 for(i=0; i<nbNodes-1; i++)
341 341 {
342 342 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
343 343 }
344 344 }
345 345
346 346 void SM_reset_current_ring_nodes( void )
347 347 {
348 348 current_ring_node_sm_f0 = sm_ring_f0[0].next;
349 349 current_ring_node_sm_f1 = sm_ring_f1[0].next;
350 350 current_ring_node_sm_f2 = sm_ring_f2[0].next;
351 351
352 352 ring_node_for_averaging_sm_f0 = NULL;
353 353 ring_node_for_averaging_sm_f1 = NULL;
354 354 ring_node_for_averaging_sm_f2 = NULL;
355 355 }
356 356
357 357 //*****************
358 358 // Basic Parameters
359 359
360 360 void BP_init_header( bp_packet *packet,
361 361 unsigned int apid, unsigned char sid,
362 362 unsigned int packetLength, unsigned char blkNr )
363 363 {
364 364 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
365 365 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
366 366 packet->reserved = INIT_CHAR;
367 367 packet->userApplication = CCSDS_USER_APP;
368 368 packet->packetID[0] = (unsigned char) (apid >> SHIFT_1_BYTE);
369 369 packet->packetID[1] = (unsigned char) (apid);
370 370 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
371 371 packet->packetSequenceControl[1] = INIT_CHAR;
372 372 packet->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
373 373 packet->packetLength[1] = (unsigned char) (packetLength);
374 374 // DATA FIELD HEADER
375 375 packet->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
376 376 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
377 377 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
378 378 packet->destinationID = TM_DESTINATION_ID_GROUND;
379 379 packet->time[BYTE_0] = INIT_CHAR;
380 380 packet->time[BYTE_1] = INIT_CHAR;
381 381 packet->time[BYTE_2] = INIT_CHAR;
382 382 packet->time[BYTE_3] = INIT_CHAR;
383 383 packet->time[BYTE_4] = INIT_CHAR;
384 384 packet->time[BYTE_5] = INIT_CHAR;
385 385 // AUXILIARY DATA HEADER
386 386 packet->sid = sid;
387 387 packet->pa_bia_status_info = INIT_CHAR;
388 388 packet->sy_lfr_common_parameters_spare = INIT_CHAR;
389 389 packet->sy_lfr_common_parameters = INIT_CHAR;
390 390 packet->acquisitionTime[BYTE_0] = INIT_CHAR;
391 391 packet->acquisitionTime[BYTE_1] = INIT_CHAR;
392 392 packet->acquisitionTime[BYTE_2] = INIT_CHAR;
393 393 packet->acquisitionTime[BYTE_3] = INIT_CHAR;
394 394 packet->acquisitionTime[BYTE_4] = INIT_CHAR;
395 395 packet->acquisitionTime[BYTE_5] = INIT_CHAR;
396 396 packet->pa_lfr_bp_blk_nr[0] = INIT_CHAR; // BLK_NR MSB
397 397 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
398 398 }
399 399
400 400 void BP_init_header_with_spare( bp_packet_with_spare *packet,
401 401 unsigned int apid, unsigned char sid,
402 402 unsigned int packetLength , unsigned char blkNr)
403 403 {
404 404 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
405 405 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
406 406 packet->reserved = INIT_CHAR;
407 407 packet->userApplication = CCSDS_USER_APP;
408 408 packet->packetID[0] = (unsigned char) (apid >> SHIFT_1_BYTE);
409 409 packet->packetID[1] = (unsigned char) (apid);
410 410 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
411 411 packet->packetSequenceControl[1] = INIT_CHAR;
412 412 packet->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
413 413 packet->packetLength[1] = (unsigned char) (packetLength);
414 414 // DATA FIELD HEADER
415 415 packet->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
416 416 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
417 417 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
418 418 packet->destinationID = TM_DESTINATION_ID_GROUND;
419 419 // AUXILIARY DATA HEADER
420 420 packet->sid = sid;
421 421 packet->pa_bia_status_info = INIT_CHAR;
422 422 packet->sy_lfr_common_parameters_spare = INIT_CHAR;
423 423 packet->sy_lfr_common_parameters = INIT_CHAR;
424 424 packet->time[BYTE_0] = INIT_CHAR;
425 425 packet->time[BYTE_1] = INIT_CHAR;
426 426 packet->time[BYTE_2] = INIT_CHAR;
427 427 packet->time[BYTE_3] = INIT_CHAR;
428 428 packet->time[BYTE_4] = INIT_CHAR;
429 429 packet->time[BYTE_5] = INIT_CHAR;
430 430 packet->source_data_spare = INIT_CHAR;
431 431 packet->pa_lfr_bp_blk_nr[0] = INIT_CHAR; // BLK_NR MSB
432 432 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
433 433 }
434 434
435 435 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
436 436 {
437 437 rtems_status_code status;
438 438
439 439 // SEND PACKET
440 440 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
441 441 if (status != RTEMS_SUCCESSFUL)
442 442 {
443 443 PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
444 444 }
445 445 }
446 446
447 447 void BP_send_s1_s2(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
448 448 {
449 449 /** This function is used to send the BP paquets when needed.
450 450 *
451 451 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
452 452 *
453 453 * @return void
454 454 *
455 455 * SBM1 and SBM2 paquets are sent depending on the type of the LFR mode transition.
456 456 * BURST paquets are sent everytime.
457 457 *
458 458 */
459 459
460 460 rtems_status_code status;
461 461
462 462 // SEND PACKET
463 463 // before lastValidTransitionDate, the data are drops even if they are ready
464 464 // this guarantees that no SBM packets will be received before the requested enter mode time
465 465 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
466 466 {
467 467 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
468 468 if (status != RTEMS_SUCCESSFUL)
469 469 {
470 470 PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
471 471 }
472 472 }
473 473 }
474 474
475 475 //******************
476 476 // general functions
477 477
478 478 void reset_sm_status( void )
479 479 {
480 480 // error
481 481 // 10 --------------- 9 ---------------- 8 ---------------- 7 ---------
482 482 // input_fif0_write_2 input_fifo_write_1 input_fifo_write_0 buffer_full
483 483 // ---------- 5 -- 4 -- 3 -- 2 -- 1 -- 0 --
484 484 // ready bits f2_1 f2_0 f1_1 f1_1 f0_1 f0_0
485 485
486 486 spectral_matrix_regs->status = BITS_STATUS_REG; // [0111 1111 1111]
487 487 }
488 488
489 489 void reset_spectral_matrix_regs( void )
490 490 {
491 491 /** This function resets the spectral matrices module registers.
492 492 *
493 493 * The registers affected by this function are located at the following offset addresses:
494 494 *
495 495 * - 0x00 config
496 496 * - 0x04 status
497 497 * - 0x08 matrixF0_Address0
498 498 * - 0x10 matrixFO_Address1
499 499 * - 0x14 matrixF1_Address
500 500 * - 0x18 matrixF2_Address
501 501 *
502 502 */
503 503
504 504 set_sm_irq_onError( 0 );
505 505
506 506 set_sm_irq_onNewMatrix( 0 );
507 507
508 508 reset_sm_status();
509 509
510 510 // F1
511 511 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
512 512 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
513 513 // F2
514 514 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
515 515 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
516 516 // F3
517 517 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
518 518 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
519 519
520 520 spectral_matrix_regs->matrix_length = DEFAULT_MATRIX_LENGTH; // 25 * 128 / 16 = 200 = 0xc8
521 521 }
522 522
523 523 void set_time( unsigned char *time, unsigned char * timeInBuffer )
524 524 {
525 525 time[BYTE_0] = timeInBuffer[BYTE_0];
526 526 time[BYTE_1] = timeInBuffer[BYTE_1];
527 527 time[BYTE_2] = timeInBuffer[BYTE_2];
528 528 time[BYTE_3] = timeInBuffer[BYTE_3];
529 529 time[BYTE_4] = timeInBuffer[BYTE_6];
530 530 time[BYTE_5] = timeInBuffer[BYTE_7];
531 531 }
532 532
533 533 unsigned long long int get_acquisition_time( unsigned char *timePtr )
534 534 {
535 535 unsigned long long int acquisitionTimeAslong;
536 536 acquisitionTimeAslong = INIT_CHAR;
537 537 acquisitionTimeAslong =
538 538 ( (unsigned long long int) (timePtr[BYTE_0] & SYNC_BIT_MASK) << SHIFT_5_BYTES ) // [0111 1111] mask the synchronization bit
539 539 + ( (unsigned long long int) timePtr[BYTE_1] << SHIFT_4_BYTES )
540 540 + ( (unsigned long long int) timePtr[BYTE_2] << SHIFT_3_BYTES )
541 541 + ( (unsigned long long int) timePtr[BYTE_3] << SHIFT_2_BYTES )
542 542 + ( (unsigned long long int) timePtr[BYTE_6] << SHIFT_1_BYTE )
543 543 + ( (unsigned long long int) timePtr[BYTE_7] );
544 544 return acquisitionTimeAslong;
545 545 }
546 546
547 547 unsigned char getSID( rtems_event_set event )
548 548 {
549 549 unsigned char sid;
550 550
551 551 rtems_event_set eventSetBURST;
552 552 rtems_event_set eventSetSBM;
553 553
554 sid = 0;
555
554 556 //******
555 557 // BURST
556 558 eventSetBURST = RTEMS_EVENT_BURST_BP1_F0
557 559 | RTEMS_EVENT_BURST_BP1_F1
558 560 | RTEMS_EVENT_BURST_BP2_F0
559 561 | RTEMS_EVENT_BURST_BP2_F1;
560 562
561 563 //****
562 564 // SBM
563 565 eventSetSBM = RTEMS_EVENT_SBM_BP1_F0
564 566 | RTEMS_EVENT_SBM_BP1_F1
565 567 | RTEMS_EVENT_SBM_BP2_F0
566 568 | RTEMS_EVENT_SBM_BP2_F1;
567 569
568 570 if (event & eventSetBURST)
569 571 {
570 572 sid = SID_BURST_BP1_F0;
571 573 }
572 574 else if (event & eventSetSBM)
573 575 {
574 576 sid = SID_SBM1_BP1_F0;
575 577 }
576 578 else
577 579 {
578 580 sid = 0;
579 581 }
580 582
581 583 return sid;
582 584 }
583 585
584 586 void extractReImVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
585 587 {
586 588 unsigned int i;
587 589 float re;
588 590 float im;
589 591
590 592 for (i=0; i<NB_BINS_PER_SM; i++){
591 593 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + (i * SM_BYTES_PER_VAL) ];
592 594 im = inputASM[ (asmComponent*NB_BINS_PER_SM) + (i * SM_BYTES_PER_VAL) + 1];
593 595 outputASM[ ( asmComponent *NB_BINS_PER_SM) + i] = re;
594 596 outputASM[ ((asmComponent+1)*NB_BINS_PER_SM) + i] = im;
595 597 }
596 598 }
597 599
598 600 void copyReVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
599 601 {
600 602 unsigned int i;
601 603 float re;
602 604
603 605 for (i=0; i<NB_BINS_PER_SM; i++){
604 606 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + i];
605 607 outputASM[ (asmComponent*NB_BINS_PER_SM) + i] = re;
606 608 }
607 609 }
608 610
609 611 void ASM_patch( float *inputASM, float *outputASM )
610 612 {
611 613 extractReImVectors( inputASM, outputASM, ASM_COMP_B1B2); // b1b2
612 614 extractReImVectors( inputASM, outputASM, ASM_COMP_B1B3 ); // b1b3
613 615 extractReImVectors( inputASM, outputASM, ASM_COMP_B1E1 ); // b1e1
614 616 extractReImVectors( inputASM, outputASM, ASM_COMP_B1E2 ); // b1e2
615 617 extractReImVectors( inputASM, outputASM, ASM_COMP_B2B3 ); // b2b3
616 618 extractReImVectors( inputASM, outputASM, ASM_COMP_B2E1 ); // b2e1
617 619 extractReImVectors( inputASM, outputASM, ASM_COMP_B2E2 ); // b2e2
618 620 extractReImVectors( inputASM, outputASM, ASM_COMP_B3E1 ); // b3e1
619 621 extractReImVectors( inputASM, outputASM, ASM_COMP_B3E2 ); // b3e2
620 622 extractReImVectors( inputASM, outputASM, ASM_COMP_E1E2 ); // e1e2
621 623
622 624 copyReVectors(inputASM, outputASM, ASM_COMP_B1B1 ); // b1b1
623 625 copyReVectors(inputASM, outputASM, ASM_COMP_B2B2 ); // b2b2
624 626 copyReVectors(inputASM, outputASM, ASM_COMP_B3B3); // b3b3
625 627 copyReVectors(inputASM, outputASM, ASM_COMP_E1E1); // e1e1
626 628 copyReVectors(inputASM, outputASM, ASM_COMP_E2E2); // e2e2
627 629 }
628 630
629 631 void ASM_compress_reorganize_and_divide_mask(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
630 632 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage,
631 633 unsigned char ASMIndexStart,
632 634 unsigned char channel )
633 635 {
634 636 //*************
635 637 // input format
636 638 // component0[0 .. 127] component1[0 .. 127] .. component24[0 .. 127]
637 639 //**************
638 640 // output format
639 641 // matr0[0 .. 24] matr1[0 .. 24] .. matr127[0 .. 24]
640 642 //************
641 643 // compression
642 644 // matr0[0 .. 24] matr1[0 .. 24] .. matr11[0 .. 24] => f0 NORM
643 645 // matr0[0 .. 24] matr1[0 .. 24] .. matr22[0 .. 24] => f0 BURST, SBM
644 646
645 647 int frequencyBin;
646 648 int asmComponent;
647 649 int offsetASM;
648 650 int offsetCompressed;
649 651 int offsetFBin;
650 652 int fBinMask;
651 653 int k;
652 654
653 655 // BUILD DATA
654 656 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
655 657 {
656 658 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
657 659 {
658 660 offsetCompressed = // NO TIME OFFSET
659 661 (frequencyBin * NB_VALUES_PER_SM)
660 662 + asmComponent;
661 663 offsetASM = // NO TIME OFFSET
662 664 (asmComponent * NB_BINS_PER_SM)
663 665 + ASMIndexStart
664 666 + (frequencyBin * nbBinsToAverage);
665 667 offsetFBin = ASMIndexStart
666 668 + (frequencyBin * nbBinsToAverage);
667 669 compressed_spec_mat[ offsetCompressed ] = 0;
668 670 for ( k = 0; k < nbBinsToAverage; k++ )
669 671 {
670 672 fBinMask = getFBinMask( offsetFBin + k, channel );
671 673 compressed_spec_mat[offsetCompressed ] = compressed_spec_mat[ offsetCompressed ]
672 674 + (averaged_spec_mat[ offsetASM + k ] * fBinMask);
673 675 }
674 676 if (divider != 0)
675 677 {
676 678 compressed_spec_mat[ offsetCompressed ] = compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
677 679 }
678 680 else
679 681 {
680 682 compressed_spec_mat[ offsetCompressed ] = INIT_FLOAT;
681 683 }
682 684 }
683 685 }
684 686
685 687 }
686 688
687 689 int getFBinMask( int index, unsigned char channel )
688 690 {
689 691 unsigned int indexInChar;
690 692 unsigned int indexInTheChar;
691 693 int fbin;
692 694 unsigned char *sy_lfr_fbins_fx_word1;
693 695
694 696 sy_lfr_fbins_fx_word1 = parameter_dump_packet.sy_lfr_fbins.fx.f0_word1;
695 697
696 698 switch(channel)
697 699 {
698 700 case CHANNELF0:
699 701 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f0;
700 702 break;
701 703 case CHANNELF1:
702 704 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f1;
703 705 break;
704 706 case CHANNELF2:
705 707 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f2;
706 708 break;
707 709 default:
708 710 PRINTF("ERR *** in getFBinMask, wrong frequency channel")
709 711 }
710 712
711 713 indexInChar = index >> SHIFT_3_BITS;
712 714 indexInTheChar = index - (indexInChar * BITS_PER_BYTE);
713 715
714 716 fbin = (int) ((sy_lfr_fbins_fx_word1[ BYTES_PER_MASK - 1 - indexInChar] >> indexInTheChar) & 1);
715 717
716 718 return fbin;
717 719 }
718 720
719 721 unsigned char acquisitionTimeIsValid( unsigned int coarseTime, unsigned int fineTime, unsigned char channel)
720 722 {
721 723 u_int64_t acquisitionTime;
722 724 u_int64_t timecodeReference;
723 725 u_int64_t offsetInFineTime;
724 726 u_int64_t shiftInFineTime;
725 727 u_int64_t tBadInFineTime;
726 728 u_int64_t acquisitionTimeRangeMin;
727 729 u_int64_t acquisitionTimeRangeMax;
728 730 unsigned char pasFilteringIsEnabled;
729 731 unsigned char ret;
730 732
731 733 pasFilteringIsEnabled = (filterPar.spare_sy_lfr_pas_filter_enabled & 1); // [0000 0001]
732 734 ret = 1;
733 735
734 736 // compute acquisition time from caoarseTime and fineTime
735 737 acquisitionTime = ( ((u_int64_t)coarseTime) << SHIFT_2_BYTES )
736 738 + (u_int64_t) fineTime;
737 739
738 740 // compute the timecode reference
739 741 timecodeReference = (u_int64_t) ( (floor( ((double) coarseTime) / ((double) filterPar.sy_lfr_pas_filter_modulus) )
740 742 * ((double) filterPar.sy_lfr_pas_filter_modulus)) * CONST_65536 );
741 743
742 744 // compute the acquitionTime range
743 745 offsetInFineTime = ((double) filterPar.sy_lfr_pas_filter_offset) * CONST_65536;
744 746 shiftInFineTime = ((double) filterPar.sy_lfr_pas_filter_shift) * CONST_65536;
745 747 tBadInFineTime = ((double) filterPar.sy_lfr_pas_filter_tbad) * CONST_65536;
746 748
747 749 acquisitionTimeRangeMin =
748 750 timecodeReference
749 751 + offsetInFineTime
750 752 + shiftInFineTime
751 753 - acquisitionDurations[channel];
752 754 acquisitionTimeRangeMax =
753 755 timecodeReference
754 756 + offsetInFineTime
755 757 + shiftInFineTime
756 758 + tBadInFineTime;
757 759
758 760 if ( (acquisitionTime >= acquisitionTimeRangeMin)
759 761 && (acquisitionTime <= acquisitionTimeRangeMax)
760 762 && (pasFilteringIsEnabled == 1) )
761 763 {
762 764 ret = 0; // the acquisition time is INSIDE the range, the matrix shall be ignored
763 765 }
764 766 else
765 767 {
766 768 ret = 1; // the acquisition time is OUTSIDE the range, the matrix can be used for the averaging
767 769 }
768 770
769 771 // printf("coarseTime = %x, fineTime = %x\n",
770 772 // coarseTime,
771 773 // fineTime);
772 774
773 775 // printf("[ret = %d] *** acquisitionTime = %f, Reference = %f",
774 776 // ret,
775 777 // acquisitionTime / 65536.,
776 778 // timecodeReference / 65536.);
777 779
778 780 // printf(", Min = %f, Max = %f\n",
779 781 // acquisitionTimeRangeMin / 65536.,
780 782 // acquisitionTimeRangeMax / 65536.);
781 783
782 784 return ret;
783 785 }
784 786
785 787 void init_kcoeff_sbm_from_kcoeff_norm(float *input_kcoeff, float *output_kcoeff, unsigned char nb_bins_norm)
786 788 {
787 789 unsigned char bin;
788 790 unsigned char kcoeff;
789 791
790 792 for (bin=0; bin<nb_bins_norm; bin++)
791 793 {
792 794 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
793 795 {
794 796 output_kcoeff[ ( ( bin * NB_K_COEFF_PER_BIN ) + kcoeff ) * SBM_COEFF_PER_NORM_COEFF ]
795 797 = input_kcoeff[ (bin*NB_K_COEFF_PER_BIN) + kcoeff ];
796 798 output_kcoeff[ ( ( bin * NB_K_COEFF_PER_BIN ) + kcoeff ) * SBM_COEFF_PER_NORM_COEFF + 1 ]
797 799 = input_kcoeff[ (bin*NB_K_COEFF_PER_BIN) + kcoeff ];
798 800 }
799 801 }
800 802 }
@@ -1,475 +1,481
1 1 /** Functions related to TeleCommand acceptance.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands parsing.\n
7 7 *
8 8 */
9 9
10 10 #include "tc_acceptance.h"
11 11 #include <stdio.h>
12 12
13 13 unsigned int lookUpTableForCRC[CONST_256];
14 14
15 15 //**********************
16 16 // GENERAL USE FUNCTIONS
17 17 unsigned int Crc_opt( unsigned char D, unsigned int Chk)
18 18 {
19 19 /** This function generate the CRC for one byte and returns the value of the new syndrome.
20 20 *
21 21 * @param D is the current byte of data.
22 22 * @param Chk is the current syndrom value.
23 23 *
24 24 * @return the value of the new syndrome on two bytes.
25 25 *
26 26 */
27 27
28 28 return(((Chk << SHIFT_1_BYTE) & BYTE0_MASK)^lookUpTableForCRC [(((Chk >> SHIFT_1_BYTE)^D) & BYTE1_MASK)]);
29 29 }
30 30
31 31 void initLookUpTableForCRC( void )
32 32 {
33 33 /** This function is used to initiates the look-up table for fast CRC computation.
34 34 *
35 35 * The global table lookUpTableForCRC[256] is initiated.
36 36 *
37 37 */
38 38
39 39 unsigned int i;
40 40 unsigned int tmp;
41 41
42 42 for (i=0; i<CONST_256; i++)
43 43 {
44 44 tmp = 0;
45 45 if((i & BIT_0) != 0) {
46 46 tmp = tmp ^ CONST_CRC_0;
47 47 }
48 48 if((i & BIT_1) != 0) {
49 49 tmp = tmp ^ CONST_CRC_1;
50 50 }
51 51 if((i & BIT_2) != 0) {
52 52 tmp = tmp ^ CONST_CRC_2;
53 53 }
54 54 if((i & BIT_3) != 0) {
55 55 tmp = tmp ^ CONST_CRC_3;
56 56 }
57 57 if((i & BIT_4) != 0) {
58 58 tmp = tmp ^ CONST_CRC_4;
59 59 }
60 60 if((i & BIT_5) != 0) {
61 61 tmp = tmp ^ CONST_CRC_5;
62 62 }
63 63 if((i & BIT_6) != 0) {
64 64 tmp = tmp ^ CONST_CRC_6;
65 65 }
66 66 if((i & BIT_7) != 0) {
67 67 tmp = tmp ^ CONST_CRC_7;
68 68 }
69 69 lookUpTableForCRC[i] = tmp;
70 70 }
71 71 }
72 72
73 73 void GetCRCAsTwoBytes(unsigned char* data, unsigned char* crcAsTwoBytes, unsigned int sizeOfData)
74 74 {
75 75 /** This function calculates a two bytes Cyclic Redundancy Code.
76 76 *
77 77 * @param data points to a buffer containing the data on which to compute the CRC.
78 78 * @param crcAsTwoBytes points points to a two bytes buffer in which the CRC is stored.
79 79 * @param sizeOfData is the number of bytes of *data* used to compute the CRC.
80 80 *
81 81 * The specification of the Cyclic Redundancy Code is described in the following document: ECSS-E-70-41-A.
82 82 *
83 83 */
84 84
85 85 unsigned int Chk;
86 86 int j;
87 87 Chk = CRC_RESET; // reset the syndrom to all ones
88 88 for (j=0; j<sizeOfData; j++) {
89 89 Chk = Crc_opt(data[j], Chk);
90 90 }
91 91 crcAsTwoBytes[0] = (unsigned char) (Chk >> SHIFT_1_BYTE);
92 92 crcAsTwoBytes[1] = (unsigned char) (Chk & BYTE1_MASK);
93 93 }
94 94
95 95 //*********************
96 96 // ACCEPTANCE FUNCTIONS
97 97 int tc_parser(ccsdsTelecommandPacket_t * TCPacket, unsigned int estimatedPacketLength, unsigned char *computed_CRC)
98 98 {
99 99 /** This function parses TeleCommands.
100 100 *
101 101 * @param TC points to the TeleCommand that will be parsed.
102 102 * @param estimatedPacketLength is the PACKET_LENGTH field calculated from the effective length of the received packet.
103 103 *
104 104 * @return Status code of the parsing.
105 105 *
106 106 * The parsing checks:
107 107 * - process id
108 108 * - category
109 109 * - length: a global check is performed and a per subtype check also
110 110 * - type
111 111 * - subtype
112 112 * - crc
113 113 *
114 114 */
115 115
116 116 int status;
117 117 int status_crc;
118 118 unsigned char pid;
119 119 unsigned char category;
120 120 unsigned int packetLength;
121 121 unsigned char packetType;
122 122 unsigned char packetSubtype;
123 123 unsigned char sid;
124 124
125 125 status = CCSDS_TM_VALID;
126 126
127 127 // APID check *** APID on 2 bytes
128 128 pid = ((TCPacket->packetID[0] & BITS_PID_0) << SHIFT_4_BITS)
129 129 + ( (TCPacket->packetID[1] >> SHIFT_4_BITS) & BITS_PID_1 ); // PID = 11 *** 7 bits xxxxx210 7654xxxx
130 130 category = (TCPacket->packetID[1] & BITS_CAT); // PACKET_CATEGORY = 12 *** 4 bits xxxxxxxx xxxx3210
131 131 packetLength = (TCPacket->packetLength[0] * CONST_256) + TCPacket->packetLength[1];
132 132 packetType = TCPacket->serviceType;
133 133 packetSubtype = TCPacket->serviceSubType;
134 134 sid = TCPacket->sourceID;
135 135
136 136 if ( pid != CCSDS_PROCESS_ID ) // CHECK THE PROCESS ID
137 137 {
138 138 status = ILLEGAL_APID;
139 139 }
140 140 if (status == CCSDS_TM_VALID) // CHECK THE CATEGORY
141 141 {
142 142 if ( category != CCSDS_PACKET_CATEGORY )
143 143 {
144 144 status = ILLEGAL_APID;
145 145 }
146 146 }
147 147 if (status == CCSDS_TM_VALID) // CHECK THE PACKET_LENGTH FIELD AND THE ESTIMATED PACKET_LENGTH COMPLIANCE
148 148 {
149 149 if (packetLength != estimatedPacketLength ) {
150 150 status = WRONG_LEN_PKT;
151 151 }
152 152 }
153 153 if (status == CCSDS_TM_VALID) // CHECK THAT THE PACKET DOES NOT EXCEED THE MAX SIZE
154 154 {
155 155 if ( packetLength > CCSDS_TC_PKT_MAX_SIZE ) {
156 156 status = WRONG_LEN_PKT;
157 157 }
158 158 }
159 159 if (status == CCSDS_TM_VALID) // CHECK THE TYPE
160 160 {
161 161 status = tc_check_type( packetType );
162 162 }
163 163 if (status == CCSDS_TM_VALID) // CHECK THE SUBTYPE
164 164 {
165 165 status = tc_check_type_subtype( packetType, packetSubtype );
166 166 }
167 167 if (status == CCSDS_TM_VALID) // CHECK THE SID
168 168 {
169 169 status = tc_check_sid( sid );
170 170 }
171 171 if (status == CCSDS_TM_VALID) // CHECK THE SUBTYPE AND LENGTH COMPLIANCE
172 172 {
173 173 status = tc_check_length( packetSubtype, packetLength );
174 174 }
175 175 status_crc = tc_check_crc( TCPacket, estimatedPacketLength, computed_CRC );
176 176 if (status == CCSDS_TM_VALID ) // CHECK CRC
177 177 {
178 178 status = status_crc;
179 179 }
180 180
181 181 return status;
182 182 }
183 183
184 184 int tc_check_type( unsigned char packetType )
185 185 {
186 186 /** This function checks that the type of a TeleCommand is valid.
187 187 *
188 188 * @param packetType is the type to check.
189 189 *
190 190 * @return Status code CCSDS_TM_VALID or ILL_TYPE.
191 191 *
192 192 */
193 193
194 194 int status;
195 195
196 status = ILL_TYPE;
197
196 198 if ( (packetType == TC_TYPE_GEN) || (packetType == TC_TYPE_TIME))
197 199 {
198 200 status = CCSDS_TM_VALID;
199 201 }
200 202 else
201 203 {
202 204 status = ILL_TYPE;
203 205 }
204 206
205 207 return status;
206 208 }
207 209
208 210 int tc_check_type_subtype( unsigned char packetType, unsigned char packetSubType )
209 211 {
210 212 /** This function checks that the subtype of a TeleCommand is valid and coherent with the type.
211 213 *
212 214 * @param packetType is the type of the TC.
213 215 * @param packetSubType is the subtype to check.
214 216 *
215 217 * @return Status code CCSDS_TM_VALID or ILL_SUBTYPE.
216 218 *
217 219 */
218 220
219 221 int status;
220 222
221 223 switch(packetType)
222 224 {
223 225 case TC_TYPE_GEN:
224 226 if ( (packetSubType == TC_SUBTYPE_RESET)
225 227 || (packetSubType == TC_SUBTYPE_LOAD_COMM)
226 228 || (packetSubType == TC_SUBTYPE_LOAD_NORM) || (packetSubType == TC_SUBTYPE_LOAD_BURST)
227 229 || (packetSubType == TC_SUBTYPE_LOAD_SBM1) || (packetSubType == TC_SUBTYPE_LOAD_SBM2)
228 230 || (packetSubType == TC_SUBTYPE_DUMP)
229 231 || (packetSubType == TC_SUBTYPE_ENTER)
230 232 || (packetSubType == TC_SUBTYPE_UPDT_INFO)
231 233 || (packetSubType == TC_SUBTYPE_EN_CAL) || (packetSubType == TC_SUBTYPE_DIS_CAL)
232 234 || (packetSubType == TC_SUBTYPE_LOAD_K) || (packetSubType == TC_SUBTYPE_DUMP_K)
233 235 || (packetSubType == TC_SUBTYPE_LOAD_FBINS)
234 236 || (packetSubType == TC_SUBTYPE_LOAD_FILTER_PAR))
235 237 {
236 238 status = CCSDS_TM_VALID;
237 239 }
238 240 else
239 241 {
240 242 status = ILL_SUBTYPE;
241 243 }
242 244 break;
243 245
244 246 case TC_TYPE_TIME:
245 247 if (packetSubType == TC_SUBTYPE_UPDT_TIME)
246 248 {
247 249 status = CCSDS_TM_VALID;
248 250 }
249 251 else
250 252 {
251 253 status = ILL_SUBTYPE;
252 254 }
253 255 break;
254 256
255 257 default:
256 258 status = ILL_SUBTYPE;
257 259 break;
258 260 }
259 261
260 262 return status;
261 263 }
262 264
263 265 int tc_check_sid( unsigned char sid )
264 266 {
265 267 /** This function checks that the sid of a TeleCommand is valid.
266 268 *
267 269 * @param sid is the sid to check.
268 270 *
269 271 * @return Status code CCSDS_TM_VALID or CORRUPTED.
270 272 *
271 273 */
272 274
273 275 int status;
274 276
277 status = WRONG_SRC_ID;
278
275 279 if ( (sid == SID_TC_MISSION_TIMELINE) || (sid == SID_TC_TC_SEQUENCES) || (sid == SID_TC_RECOVERY_ACTION_CMD)
276 280 || (sid == SID_TC_BACKUP_MISSION_TIMELINE)
277 281 || (sid == SID_TC_DIRECT_CMD) || (sid == SID_TC_SPARE_GRD_SRC1) || (sid == SID_TC_SPARE_GRD_SRC2)
278 282 || (sid == SID_TC_OBCP) || (sid == SID_TC_SYSTEM_CONTROL) || (sid == SID_TC_AOCS)
279 283 || (sid == SID_TC_RPW_INTERNAL))
280 284 {
281 285 status = CCSDS_TM_VALID;
282 286 }
283 287 else
284 288 {
285 289 status = WRONG_SRC_ID;
286 290 }
287 291
288 292 return status;
289 293 }
290 294
291 295 int tc_check_length( unsigned char packetSubType, unsigned int length )
292 296 {
293 297 /** This function checks that the subtype and the length are compliant.
294 298 *
295 299 * @param packetSubType is the subtype to check.
296 300 * @param length is the length to check.
297 301 *
298 302 * @return Status code CCSDS_TM_VALID or ILL_TYPE.
299 303 *
300 304 */
301 305
302 306 int status;
303 307
304 308 status = LFR_SUCCESSFUL;
305 309
306 310 switch(packetSubType)
307 311 {
308 312 case TC_SUBTYPE_RESET:
309 313 if (length!=(TC_LEN_RESET-CCSDS_TC_TM_PACKET_OFFSET)) {
310 314 status = WRONG_LEN_PKT;
311 315 }
312 316 else {
313 317 status = CCSDS_TM_VALID;
314 318 }
315 319 break;
316 320 case TC_SUBTYPE_LOAD_COMM:
317 321 if (length!=(TC_LEN_LOAD_COMM-CCSDS_TC_TM_PACKET_OFFSET)) {
318 322 status = WRONG_LEN_PKT;
319 323 }
320 324 else {
321 325 status = CCSDS_TM_VALID;
322 326 }
323 327 break;
324 328 case TC_SUBTYPE_LOAD_NORM:
325 329 if (length!=(TC_LEN_LOAD_NORM-CCSDS_TC_TM_PACKET_OFFSET)) {
326 330 status = WRONG_LEN_PKT;
327 331 }
328 332 else {
329 333 status = CCSDS_TM_VALID;
330 334 }
331 335 break;
332 336 case TC_SUBTYPE_LOAD_BURST:
333 337 if (length!=(TC_LEN_LOAD_BURST-CCSDS_TC_TM_PACKET_OFFSET)) {
334 338 status = WRONG_LEN_PKT;
335 339 }
336 340 else {
337 341 status = CCSDS_TM_VALID;
338 342 }
339 343 break;
340 344 case TC_SUBTYPE_LOAD_SBM1:
341 345 if (length!=(TC_LEN_LOAD_SBM1-CCSDS_TC_TM_PACKET_OFFSET)) {
342 346 status = WRONG_LEN_PKT;
343 347 }
344 348 else {
345 349 status = CCSDS_TM_VALID;
346 350 }
347 351 break;
348 352 case TC_SUBTYPE_LOAD_SBM2:
349 353 if (length!=(TC_LEN_LOAD_SBM2-CCSDS_TC_TM_PACKET_OFFSET)) {
350 354 status = WRONG_LEN_PKT;
351 355 }
352 356 else {
353 357 status = CCSDS_TM_VALID;
354 358 }
355 359 break;
356 360 case TC_SUBTYPE_DUMP:
357 361 if (length!=(TC_LEN_DUMP-CCSDS_TC_TM_PACKET_OFFSET)) {
358 362 status = WRONG_LEN_PKT;
359 363 }
360 364 else {
361 365 status = CCSDS_TM_VALID;
362 366 }
363 367 break;
364 368 case TC_SUBTYPE_ENTER:
365 369 if (length!=(TC_LEN_ENTER-CCSDS_TC_TM_PACKET_OFFSET)) {
366 370 status = WRONG_LEN_PKT;
367 371 }
368 372 else {
369 373 status = CCSDS_TM_VALID;
370 374 }
371 375 break;
372 376 case TC_SUBTYPE_UPDT_INFO:
373 377 if (length!=(TC_LEN_UPDT_INFO-CCSDS_TC_TM_PACKET_OFFSET)) {
374 378 status = WRONG_LEN_PKT;
375 379 }
376 380 else {
377 381 status = CCSDS_TM_VALID;
378 382 }
379 383 break;
380 384 case TC_SUBTYPE_EN_CAL:
381 385 if (length!=(TC_LEN_EN_CAL-CCSDS_TC_TM_PACKET_OFFSET)) {
382 386 status = WRONG_LEN_PKT;
383 387 }
384 388 else {
385 389 status = CCSDS_TM_VALID;
386 390 }
387 391 break;
388 392 case TC_SUBTYPE_DIS_CAL:
389 393 if (length!=(TC_LEN_DIS_CAL-CCSDS_TC_TM_PACKET_OFFSET)) {
390 394 status = WRONG_LEN_PKT;
391 395 }
392 396 else {
393 397 status = CCSDS_TM_VALID;
394 398 }
395 399 break;
396 400 case TC_SUBTYPE_LOAD_K:
397 401 if (length!=(TC_LEN_LOAD_K-CCSDS_TC_TM_PACKET_OFFSET)) {
398 402 status = WRONG_LEN_PKT;
399 403 }
400 404 else {
401 405 status = CCSDS_TM_VALID;
402 406 }
403 407 break;
404 408 case TC_SUBTYPE_DUMP_K:
405 409 if (length!=(TC_LEN_DUMP_K-CCSDS_TC_TM_PACKET_OFFSET)) {
406 410 status = WRONG_LEN_PKT;
407 411 }
408 412 else {
409 413 status = CCSDS_TM_VALID;
410 414 }
411 415 break;
412 416 case TC_SUBTYPE_LOAD_FBINS:
413 417 if (length!=(TC_LEN_LOAD_FBINS-CCSDS_TC_TM_PACKET_OFFSET)) {
414 418 status = WRONG_LEN_PKT;
415 419 }
416 420 else {
417 421 status = CCSDS_TM_VALID;
418 422 }
419 423 break;
420 424 case TC_SUBTYPE_LOAD_FILTER_PAR:
421 425 if (length!=(TC_LEN_LOAD_FILTER_PAR-CCSDS_TC_TM_PACKET_OFFSET)) {
422 426 status = WRONG_LEN_PKT;
423 427 }
424 428 else {
425 429 status = CCSDS_TM_VALID;
426 430 }
427 431 break;
428 432 case TC_SUBTYPE_UPDT_TIME:
429 433 if (length!=(TC_LEN_UPDT_TIME-CCSDS_TC_TM_PACKET_OFFSET)) {
430 434 status = WRONG_LEN_PKT;
431 435 }
432 436 else {
433 437 status = CCSDS_TM_VALID;
434 438 }
435 439 break;
436 440 default: // if the subtype is not a legal value, return ILL_SUBTYPE
437 441 status = ILL_SUBTYPE;
438 442 break ;
439 443 }
440 444
441 445 return status;
442 446 }
443 447
444 448 int tc_check_crc( ccsdsTelecommandPacket_t * TCPacket, unsigned int length, unsigned char *computed_CRC )
445 449 {
446 450 /** This function checks the CRC validity of the corresponding TeleCommand packet.
447 451 *
448 452 * @param TCPacket points to the TeleCommand packet to check.
449 453 * @param length is the length of the TC packet.
450 454 *
451 455 * @return Status code CCSDS_TM_VALID or INCOR_CHECKSUM.
452 456 *
453 457 */
454 458
455 459 int status;
456 460 unsigned char * CCSDSContent;
457 461
462 status = INCOR_CHECKSUM;
463
458 464 CCSDSContent = (unsigned char*) TCPacket->packetID;
459 465 GetCRCAsTwoBytes(CCSDSContent, computed_CRC, length + CCSDS_TC_TM_PACKET_OFFSET - BYTES_PER_CRC); // 2 CRC bytes removed from the calculation of the CRC
460 466
461 467 if (computed_CRC[0] != CCSDSContent[length + CCSDS_TC_TM_PACKET_OFFSET - BYTES_PER_CRC]) {
462 468 status = INCOR_CHECKSUM;
463 469 }
464 470 else if (computed_CRC[1] != CCSDSContent[length + CCSDS_TC_TM_PACKET_OFFSET -1]) {
465 471 status = INCOR_CHECKSUM;
466 472 }
467 473 else {
468 474 status = CCSDS_TM_VALID;
469 475 }
470 476
471 477 return status;
472 478 }
473 479
474 480
475 481
@@ -1,1654 +1,1661
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14 #include "math.h"
15 15
16 16 //***********
17 17 // RTEMS TASK
18 18
19 19 rtems_task actn_task( rtems_task_argument unused )
20 20 {
21 21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 22 *
23 23 * @param unused is the starting argument of the RTEMS task
24 24 *
25 25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 26 * on the incoming TeleCommand.
27 27 *
28 28 */
29 29
30 30 int result;
31 31 rtems_status_code status; // RTEMS status code
32 32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
33 33 size_t size; // size of the incoming TC packet
34 34 unsigned char subtype; // subtype of the current TC packet
35 35 unsigned char time[BYTES_PER_TIME];
36 36 rtems_id queue_rcv_id;
37 37 rtems_id queue_snd_id;
38 38
39 memset(&TC, 0, sizeof(ccsdsTelecommandPacket_t));
40 size = 0;
41 queue_rcv_id = RTEMS_ID_NONE;
42 queue_snd_id = RTEMS_ID_NONE;
43
39 44 status = get_message_queue_id_recv( &queue_rcv_id );
40 45 if (status != RTEMS_SUCCESSFUL)
41 46 {
42 47 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
43 48 }
44 49
45 50 status = get_message_queue_id_send( &queue_snd_id );
46 51 if (status != RTEMS_SUCCESSFUL)
47 52 {
48 53 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
49 54 }
50 55
51 56 result = LFR_SUCCESSFUL;
52 57 subtype = 0; // subtype of the current TC packet
53 58
54 59 BOOT_PRINTF("in ACTN *** \n");
55 60
56 61 while(1)
57 62 {
58 63 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
59 64 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
60 65 getTime( time ); // set time to the current time
61 66 if (status!=RTEMS_SUCCESSFUL)
62 67 {
63 68 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
64 69 }
65 70 else
66 71 {
67 72 subtype = TC.serviceSubType;
68 73 switch(subtype)
69 74 {
70 75 case TC_SUBTYPE_RESET:
71 76 result = action_reset( &TC, queue_snd_id, time );
72 77 close_action( &TC, result, queue_snd_id );
73 78 break;
74 79 case TC_SUBTYPE_LOAD_COMM:
75 80 result = action_load_common_par( &TC );
76 81 close_action( &TC, result, queue_snd_id );
77 82 break;
78 83 case TC_SUBTYPE_LOAD_NORM:
79 84 result = action_load_normal_par( &TC, queue_snd_id, time );
80 85 close_action( &TC, result, queue_snd_id );
81 86 break;
82 87 case TC_SUBTYPE_LOAD_BURST:
83 88 result = action_load_burst_par( &TC, queue_snd_id, time );
84 89 close_action( &TC, result, queue_snd_id );
85 90 break;
86 91 case TC_SUBTYPE_LOAD_SBM1:
87 92 result = action_load_sbm1_par( &TC, queue_snd_id, time );
88 93 close_action( &TC, result, queue_snd_id );
89 94 break;
90 95 case TC_SUBTYPE_LOAD_SBM2:
91 96 result = action_load_sbm2_par( &TC, queue_snd_id, time );
92 97 close_action( &TC, result, queue_snd_id );
93 98 break;
94 99 case TC_SUBTYPE_DUMP:
95 100 result = action_dump_par( &TC, queue_snd_id );
96 101 close_action( &TC, result, queue_snd_id );
97 102 break;
98 103 case TC_SUBTYPE_ENTER:
99 104 result = action_enter_mode( &TC, queue_snd_id );
100 105 close_action( &TC, result, queue_snd_id );
101 106 break;
102 107 case TC_SUBTYPE_UPDT_INFO:
103 108 result = action_update_info( &TC, queue_snd_id );
104 109 close_action( &TC, result, queue_snd_id );
105 110 break;
106 111 case TC_SUBTYPE_EN_CAL:
107 112 result = action_enable_calibration( &TC, queue_snd_id, time );
108 113 close_action( &TC, result, queue_snd_id );
109 114 break;
110 115 case TC_SUBTYPE_DIS_CAL:
111 116 result = action_disable_calibration( &TC, queue_snd_id, time );
112 117 close_action( &TC, result, queue_snd_id );
113 118 break;
114 119 case TC_SUBTYPE_LOAD_K:
115 120 result = action_load_kcoefficients( &TC, queue_snd_id, time );
116 121 close_action( &TC, result, queue_snd_id );
117 122 break;
118 123 case TC_SUBTYPE_DUMP_K:
119 124 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
120 125 close_action( &TC, result, queue_snd_id );
121 126 break;
122 127 case TC_SUBTYPE_LOAD_FBINS:
123 128 result = action_load_fbins_mask( &TC, queue_snd_id, time );
124 129 close_action( &TC, result, queue_snd_id );
125 130 break;
126 131 case TC_SUBTYPE_LOAD_FILTER_PAR:
127 132 result = action_load_filter_par( &TC, queue_snd_id, time );
128 133 close_action( &TC, result, queue_snd_id );
129 134 break;
130 135 case TC_SUBTYPE_UPDT_TIME:
131 136 result = action_update_time( &TC );
132 137 close_action( &TC, result, queue_snd_id );
133 138 break;
134 139 default:
135 140 break;
136 141 }
137 142 }
138 143 }
139 144 }
140 145
141 146 //***********
142 147 // TC ACTIONS
143 148
144 149 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
145 150 {
146 151 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
147 152 *
148 153 * @param TC points to the TeleCommand packet that is being processed
149 154 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
150 155 *
151 156 */
152 157
153 158 PRINTF("this is the end!!!\n");
154 159 exit(0);
155 160
156 161 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
157 162
158 163 return LFR_DEFAULT;
159 164 }
160 165
161 166 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
162 167 {
163 168 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
164 169 *
165 170 * @param TC points to the TeleCommand packet that is being processed
166 171 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
167 172 *
168 173 */
169 174
170 175 rtems_status_code status;
171 176 unsigned char requestedMode;
172 177 unsigned int *transitionCoarseTime_ptr;
173 178 unsigned int transitionCoarseTime;
174 179 unsigned char * bytePosPtr;
175 180
176 181 bytePosPtr = (unsigned char *) &TC->packetID;
177 182
178 183 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
179 184 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
180 185 transitionCoarseTime = (*transitionCoarseTime_ptr) & COARSE_TIME_MASK;
181 186
182 187 status = check_mode_value( requestedMode );
183 188
184 189 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
185 190 {
186 191 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
187 192 }
188 193
189 194 else // the mode value is valid, check the transition
190 195 {
191 196 status = check_mode_transition(requestedMode);
192 197 if (status != LFR_SUCCESSFUL)
193 198 {
194 199 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
195 200 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
196 201 }
197 202 }
198 203
199 204 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
200 205 {
201 206 status = check_transition_date( transitionCoarseTime );
202 207 if (status != LFR_SUCCESSFUL)
203 208 {
204 209 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n");
205 210 send_tm_lfr_tc_exe_not_executable(TC, queue_id );
206 211 }
207 212 }
208 213
209 214 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
210 215 {
211 216 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
212 217
213 218 switch(requestedMode)
214 219 {
215 220 case LFR_MODE_STANDBY:
216 221 status = enter_mode_standby();
217 222 break;
218 223 case LFR_MODE_NORMAL:
219 224 status = enter_mode_normal( transitionCoarseTime );
220 225 break;
221 226 case LFR_MODE_BURST:
222 227 status = enter_mode_burst( transitionCoarseTime );
223 228 break;
224 229 case LFR_MODE_SBM1:
225 230 status = enter_mode_sbm1( transitionCoarseTime );
226 231 break;
227 232 case LFR_MODE_SBM2:
228 233 status = enter_mode_sbm2( transitionCoarseTime );
229 234 break;
230 235 default:
231 236 break;
232 237 }
233 238
234 239 if (status != RTEMS_SUCCESSFUL)
235 240 {
236 241 status = LFR_EXE_ERROR;
237 242 }
238 243 }
239 244
240 245 return status;
241 246 }
242 247
243 248 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
244 249 {
245 250 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
246 251 *
247 252 * @param TC points to the TeleCommand packet that is being processed
248 253 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
249 254 *
250 255 * @return LFR directive status code:
251 256 * - LFR_DEFAULT
252 257 * - LFR_SUCCESSFUL
253 258 *
254 259 */
255 260
256 261 unsigned int val;
257 262 int result;
258 263 unsigned int status;
259 264 unsigned char mode;
260 265 unsigned char * bytePosPtr;
261 266
262 267 bytePosPtr = (unsigned char *) &TC->packetID;
263 268
264 269 // check LFR mode
265 270 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & BITS_LFR_MODE) >> SHIFT_LFR_MODE;
266 271 status = check_update_info_hk_lfr_mode( mode );
267 272 if (status == LFR_SUCCESSFUL) // check TDS mode
268 273 {
269 274 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_TDS_MODE) >> SHIFT_TDS_MODE;
270 275 status = check_update_info_hk_tds_mode( mode );
271 276 }
272 277 if (status == LFR_SUCCESSFUL) // check THR mode
273 278 {
274 279 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_THR_MODE);
275 280 status = check_update_info_hk_thr_mode( mode );
276 281 }
277 282 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
278 283 {
279 284 val = (housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * CONST_256)
280 285 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
281 286 val++;
282 287 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
283 288 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
284 289 }
285 290
286 291 // pa_bia_status_info
287 292 // => pa_bia_mode_mux_set 3 bits
288 293 // => pa_bia_mode_hv_enabled 1 bit
289 294 // => pa_bia_mode_bias1_enabled 1 bit
290 295 // => pa_bia_mode_bias2_enabled 1 bit
291 296 // => pa_bia_mode_bias3_enabled 1 bit
292 297 // => pa_bia_on_off (cp_dpu_bias_on_off)
293 298 pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & BITS_BIA; // [1111 1110]
294 299 pa_bia_status_info = pa_bia_status_info
295 300 | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 1);
296 301
297 302 // REACTION_WHEELS_FREQUENCY, copy the incoming parameters in the local variable (to be copied in HK packets)
298 303
299 304 cp_rpw_sc_rw_f_flags = bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW_F_FLAGS ];
300 305 getReactionWheelsFrequencies( TC );
301 306 build_sy_lfr_rw_masks();
302 307
303 308 // once the masks are built, they have to be merged with the fbins_mask
304 309 merge_fbins_masks();
305 310
306 311 result = status;
307 312
308 313 return result;
309 314 }
310 315
311 316 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
312 317 {
313 318 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
314 319 *
315 320 * @param TC points to the TeleCommand packet that is being processed
316 321 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
317 322 *
318 323 */
319 324
320 325 int result;
321 326
322 327 result = LFR_DEFAULT;
323 328
324 329 setCalibration( true );
325 330
326 331 result = LFR_SUCCESSFUL;
327 332
328 333 return result;
329 334 }
330 335
331 336 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
332 337 {
333 338 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
334 339 *
335 340 * @param TC points to the TeleCommand packet that is being processed
336 341 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
337 342 *
338 343 */
339 344
340 345 int result;
341 346
342 347 result = LFR_DEFAULT;
343 348
344 349 setCalibration( false );
345 350
346 351 result = LFR_SUCCESSFUL;
347 352
348 353 return result;
349 354 }
350 355
351 356 int action_update_time(ccsdsTelecommandPacket_t *TC)
352 357 {
353 358 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
354 359 *
355 360 * @param TC points to the TeleCommand packet that is being processed
356 361 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
357 362 *
358 363 * @return LFR_SUCCESSFUL
359 364 *
360 365 */
361 366
362 367 unsigned int val;
363 368
364 369 time_management_regs->coarse_time_load = (TC->dataAndCRC[BYTE_0] << SHIFT_3_BYTES)
365 370 + (TC->dataAndCRC[BYTE_1] << SHIFT_2_BYTES)
366 371 + (TC->dataAndCRC[BYTE_2] << SHIFT_1_BYTE)
367 372 + TC->dataAndCRC[BYTE_3];
368 373
369 374 val = (housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * CONST_256)
370 375 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
371 376 val++;
372 377 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
373 378 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
374 379
375 380 oneTcLfrUpdateTimeReceived = 1;
376 381
377 382 return LFR_SUCCESSFUL;
378 383 }
379 384
380 385 //*******************
381 386 // ENTERING THE MODES
382 387 int check_mode_value( unsigned char requestedMode )
383 388 {
384 389 int status;
385 390
391 status = LFR_DEFAULT;
392
386 393 if ( (requestedMode != LFR_MODE_STANDBY)
387 394 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
388 395 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
389 396 {
390 397 status = LFR_DEFAULT;
391 398 }
392 399 else
393 400 {
394 401 status = LFR_SUCCESSFUL;
395 402 }
396 403
397 404 return status;
398 405 }
399 406
400 407 int check_mode_transition( unsigned char requestedMode )
401 408 {
402 409 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
403 410 *
404 411 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
405 412 *
406 413 * @return LFR directive status codes:
407 414 * - LFR_SUCCESSFUL - the transition is authorized
408 415 * - LFR_DEFAULT - the transition is not authorized
409 416 *
410 417 */
411 418
412 419 int status;
413 420
414 421 switch (requestedMode)
415 422 {
416 423 case LFR_MODE_STANDBY:
417 424 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
418 425 status = LFR_DEFAULT;
419 426 }
420 427 else
421 428 {
422 429 status = LFR_SUCCESSFUL;
423 430 }
424 431 break;
425 432 case LFR_MODE_NORMAL:
426 433 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
427 434 status = LFR_DEFAULT;
428 435 }
429 436 else {
430 437 status = LFR_SUCCESSFUL;
431 438 }
432 439 break;
433 440 case LFR_MODE_BURST:
434 441 if ( lfrCurrentMode == LFR_MODE_BURST ) {
435 442 status = LFR_DEFAULT;
436 443 }
437 444 else {
438 445 status = LFR_SUCCESSFUL;
439 446 }
440 447 break;
441 448 case LFR_MODE_SBM1:
442 449 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
443 450 status = LFR_DEFAULT;
444 451 }
445 452 else {
446 453 status = LFR_SUCCESSFUL;
447 454 }
448 455 break;
449 456 case LFR_MODE_SBM2:
450 457 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
451 458 status = LFR_DEFAULT;
452 459 }
453 460 else {
454 461 status = LFR_SUCCESSFUL;
455 462 }
456 463 break;
457 464 default:
458 465 status = LFR_DEFAULT;
459 466 break;
460 467 }
461 468
462 469 return status;
463 470 }
464 471
465 472 void update_last_valid_transition_date( unsigned int transitionCoarseTime )
466 473 {
467 474 if (transitionCoarseTime == 0)
468 475 {
469 476 lastValidEnterModeTime = time_management_regs->coarse_time + 1;
470 477 PRINTF1("lastValidEnterModeTime = 0x%x (transitionCoarseTime = 0 => coarse_time+1)\n", lastValidEnterModeTime);
471 478 }
472 479 else
473 480 {
474 481 lastValidEnterModeTime = transitionCoarseTime;
475 482 PRINTF1("lastValidEnterModeTime = 0x%x\n", transitionCoarseTime);
476 483 }
477 484 }
478 485
479 486 int check_transition_date( unsigned int transitionCoarseTime )
480 487 {
481 488 int status;
482 489 unsigned int localCoarseTime;
483 490 unsigned int deltaCoarseTime;
484 491
485 492 status = LFR_SUCCESSFUL;
486 493
487 494 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
488 495 {
489 496 status = LFR_SUCCESSFUL;
490 497 }
491 498 else
492 499 {
493 500 localCoarseTime = time_management_regs->coarse_time & COARSE_TIME_MASK;
494 501
495 502 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime);
496 503
497 504 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
498 505 {
499 506 status = LFR_DEFAULT;
500 507 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n");
501 508 }
502 509
503 510 if (status == LFR_SUCCESSFUL)
504 511 {
505 512 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
506 513 if ( deltaCoarseTime > MAX_DELTA_COARSE_TIME ) // SSS-CP-EQS-323
507 514 {
508 515 status = LFR_DEFAULT;
509 516 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
510 517 }
511 518 }
512 519 }
513 520
514 521 return status;
515 522 }
516 523
517 524 int restart_asm_activities( unsigned char lfrRequestedMode )
518 525 {
519 526 rtems_status_code status;
520 527
521 528 status = stop_spectral_matrices();
522 529
523 530 thisIsAnASMRestart = 1;
524 531
525 532 status = restart_asm_tasks( lfrRequestedMode );
526 533
527 534 launch_spectral_matrix();
528 535
529 536 return status;
530 537 }
531 538
532 539 int stop_spectral_matrices( void )
533 540 {
534 541 /** This function stops and restarts the current mode average spectral matrices activities.
535 542 *
536 543 * @return RTEMS directive status codes:
537 544 * - RTEMS_SUCCESSFUL - task restarted successfully
538 545 * - RTEMS_INVALID_ID - task id invalid
539 546 * - RTEMS_ALREADY_SUSPENDED - task already suspended
540 547 *
541 548 */
542 549
543 550 rtems_status_code status;
544 551
545 552 status = RTEMS_SUCCESSFUL;
546 553
547 554 // (1) mask interruptions
548 555 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // mask spectral matrix interrupt
549 556
550 557 // (2) reset spectral matrices registers
551 558 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
552 559 reset_sm_status();
553 560
554 561 // (3) clear interruptions
555 562 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
556 563
557 564 // suspend several tasks
558 565 if (lfrCurrentMode != LFR_MODE_STANDBY) {
559 566 status = suspend_asm_tasks();
560 567 }
561 568
562 569 if (status != RTEMS_SUCCESSFUL)
563 570 {
564 571 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
565 572 }
566 573
567 574 return status;
568 575 }
569 576
570 577 int stop_current_mode( void )
571 578 {
572 579 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
573 580 *
574 581 * @return RTEMS directive status codes:
575 582 * - RTEMS_SUCCESSFUL - task restarted successfully
576 583 * - RTEMS_INVALID_ID - task id invalid
577 584 * - RTEMS_ALREADY_SUSPENDED - task already suspended
578 585 *
579 586 */
580 587
581 588 rtems_status_code status;
582 589
583 590 status = RTEMS_SUCCESSFUL;
584 591
585 592 // (1) mask interruptions
586 593 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
587 594 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
588 595
589 596 // (2) reset waveform picker registers
590 597 reset_wfp_burst_enable(); // reset burst and enable bits
591 598 reset_wfp_status(); // reset all the status bits
592 599
593 600 // (3) reset spectral matrices registers
594 601 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
595 602 reset_sm_status();
596 603
597 604 // reset lfr VHDL module
598 605 reset_lfr();
599 606
600 607 reset_extractSWF(); // reset the extractSWF flag to false
601 608
602 609 // (4) clear interruptions
603 610 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
604 611 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
605 612
606 613 // suspend several tasks
607 614 if (lfrCurrentMode != LFR_MODE_STANDBY) {
608 615 status = suspend_science_tasks();
609 616 }
610 617
611 618 if (status != RTEMS_SUCCESSFUL)
612 619 {
613 620 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
614 621 }
615 622
616 623 return status;
617 624 }
618 625
619 626 int enter_mode_standby( void )
620 627 {
621 628 /** This function is used to put LFR in the STANDBY mode.
622 629 *
623 630 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
624 631 *
625 632 * @return RTEMS directive status codes:
626 633 * - RTEMS_SUCCESSFUL - task restarted successfully
627 634 * - RTEMS_INVALID_ID - task id invalid
628 635 * - RTEMS_INCORRECT_STATE - task never started
629 636 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
630 637 *
631 638 * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
632 639 * is immediate.
633 640 *
634 641 */
635 642
636 643 int status;
637 644
638 645 status = stop_current_mode(); // STOP THE CURRENT MODE
639 646
640 647 #ifdef PRINT_TASK_STATISTICS
641 648 rtems_cpu_usage_report();
642 649 #endif
643 650
644 651 #ifdef PRINT_STACK_REPORT
645 652 PRINTF("stack report selected\n")
646 653 rtems_stack_checker_report_usage();
647 654 #endif
648 655
649 656 return status;
650 657 }
651 658
652 659 int enter_mode_normal( unsigned int transitionCoarseTime )
653 660 {
654 661 /** This function is used to start the NORMAL mode.
655 662 *
656 663 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
657 664 *
658 665 * @return RTEMS directive status codes:
659 666 * - RTEMS_SUCCESSFUL - task restarted successfully
660 667 * - RTEMS_INVALID_ID - task id invalid
661 668 * - RTEMS_INCORRECT_STATE - task never started
662 669 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
663 670 *
664 671 * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
665 672 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
666 673 *
667 674 */
668 675
669 676 int status;
670 677
671 678 #ifdef PRINT_TASK_STATISTICS
672 679 rtems_cpu_usage_reset();
673 680 #endif
674 681
675 682 status = RTEMS_UNSATISFIED;
676 683
677 684 switch( lfrCurrentMode )
678 685 {
679 686 case LFR_MODE_STANDBY:
680 687 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
681 688 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
682 689 {
683 690 launch_spectral_matrix( );
684 691 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
685 692 }
686 693 break;
687 694 case LFR_MODE_BURST:
688 695 status = stop_current_mode(); // stop the current mode
689 696 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
690 697 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
691 698 {
692 699 launch_spectral_matrix( );
693 700 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
694 701 }
695 702 break;
696 703 case LFR_MODE_SBM1:
697 704 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
698 705 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
699 706 update_last_valid_transition_date( transitionCoarseTime );
700 707 break;
701 708 case LFR_MODE_SBM2:
702 709 status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
703 710 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
704 711 update_last_valid_transition_date( transitionCoarseTime );
705 712 break;
706 713 default:
707 714 break;
708 715 }
709 716
710 717 if (status != RTEMS_SUCCESSFUL)
711 718 {
712 719 PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
713 720 status = RTEMS_UNSATISFIED;
714 721 }
715 722
716 723 return status;
717 724 }
718 725
719 726 int enter_mode_burst( unsigned int transitionCoarseTime )
720 727 {
721 728 /** This function is used to start the BURST mode.
722 729 *
723 730 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
724 731 *
725 732 * @return RTEMS directive status codes:
726 733 * - RTEMS_SUCCESSFUL - task restarted successfully
727 734 * - RTEMS_INVALID_ID - task id invalid
728 735 * - RTEMS_INCORRECT_STATE - task never started
729 736 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
730 737 *
731 738 * The way the BURST mode is started does not depend on the LFR current mode.
732 739 *
733 740 */
734 741
735 742
736 743 int status;
737 744
738 745 #ifdef PRINT_TASK_STATISTICS
739 746 rtems_cpu_usage_reset();
740 747 #endif
741 748
742 749 status = stop_current_mode(); // stop the current mode
743 750 status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
744 751 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
745 752 {
746 753 launch_spectral_matrix( );
747 754 launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
748 755 }
749 756
750 757 if (status != RTEMS_SUCCESSFUL)
751 758 {
752 759 PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
753 760 status = RTEMS_UNSATISFIED;
754 761 }
755 762
756 763 return status;
757 764 }
758 765
759 766 int enter_mode_sbm1( unsigned int transitionCoarseTime )
760 767 {
761 768 /** This function is used to start the SBM1 mode.
762 769 *
763 770 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
764 771 *
765 772 * @return RTEMS directive status codes:
766 773 * - RTEMS_SUCCESSFUL - task restarted successfully
767 774 * - RTEMS_INVALID_ID - task id invalid
768 775 * - RTEMS_INCORRECT_STATE - task never started
769 776 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
770 777 *
771 778 * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
772 779 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
773 780 * cases, the acquisition is completely restarted.
774 781 *
775 782 */
776 783
777 784 int status;
778 785
779 786 #ifdef PRINT_TASK_STATISTICS
780 787 rtems_cpu_usage_reset();
781 788 #endif
782 789
783 790 status = RTEMS_UNSATISFIED;
784 791
785 792 switch( lfrCurrentMode )
786 793 {
787 794 case LFR_MODE_STANDBY:
788 795 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
789 796 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
790 797 {
791 798 launch_spectral_matrix( );
792 799 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
793 800 }
794 801 break;
795 802 case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
796 803 status = restart_asm_activities( LFR_MODE_SBM1 );
797 804 status = LFR_SUCCESSFUL;
798 805 update_last_valid_transition_date( transitionCoarseTime );
799 806 break;
800 807 case LFR_MODE_BURST:
801 808 status = stop_current_mode(); // stop the current mode
802 809 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
803 810 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
804 811 {
805 812 launch_spectral_matrix( );
806 813 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
807 814 }
808 815 break;
809 816 case LFR_MODE_SBM2:
810 817 status = restart_asm_activities( LFR_MODE_SBM1 );
811 818 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
812 819 update_last_valid_transition_date( transitionCoarseTime );
813 820 break;
814 821 default:
815 822 break;
816 823 }
817 824
818 825 if (status != RTEMS_SUCCESSFUL)
819 826 {
820 827 PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status);
821 828 status = RTEMS_UNSATISFIED;
822 829 }
823 830
824 831 return status;
825 832 }
826 833
827 834 int enter_mode_sbm2( unsigned int transitionCoarseTime )
828 835 {
829 836 /** This function is used to start the SBM2 mode.
830 837 *
831 838 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
832 839 *
833 840 * @return RTEMS directive status codes:
834 841 * - RTEMS_SUCCESSFUL - task restarted successfully
835 842 * - RTEMS_INVALID_ID - task id invalid
836 843 * - RTEMS_INCORRECT_STATE - task never started
837 844 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
838 845 *
839 846 * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
840 847 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
841 848 * cases, the acquisition is completely restarted.
842 849 *
843 850 */
844 851
845 852 int status;
846 853
847 854 #ifdef PRINT_TASK_STATISTICS
848 855 rtems_cpu_usage_reset();
849 856 #endif
850 857
851 858 status = RTEMS_UNSATISFIED;
852 859
853 860 switch( lfrCurrentMode )
854 861 {
855 862 case LFR_MODE_STANDBY:
856 863 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
857 864 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
858 865 {
859 866 launch_spectral_matrix( );
860 867 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
861 868 }
862 869 break;
863 870 case LFR_MODE_NORMAL:
864 871 status = restart_asm_activities( LFR_MODE_SBM2 );
865 872 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
866 873 update_last_valid_transition_date( transitionCoarseTime );
867 874 break;
868 875 case LFR_MODE_BURST:
869 876 status = stop_current_mode(); // stop the current mode
870 877 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
871 878 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
872 879 {
873 880 launch_spectral_matrix( );
874 881 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
875 882 }
876 883 break;
877 884 case LFR_MODE_SBM1:
878 885 status = restart_asm_activities( LFR_MODE_SBM2 );
879 886 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
880 887 update_last_valid_transition_date( transitionCoarseTime );
881 888 break;
882 889 default:
883 890 break;
884 891 }
885 892
886 893 if (status != RTEMS_SUCCESSFUL)
887 894 {
888 895 PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
889 896 status = RTEMS_UNSATISFIED;
890 897 }
891 898
892 899 return status;
893 900 }
894 901
895 902 int restart_science_tasks( unsigned char lfrRequestedMode )
896 903 {
897 904 /** This function is used to restart all science tasks.
898 905 *
899 906 * @return RTEMS directive status codes:
900 907 * - RTEMS_SUCCESSFUL - task restarted successfully
901 908 * - RTEMS_INVALID_ID - task id invalid
902 909 * - RTEMS_INCORRECT_STATE - task never started
903 910 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
904 911 *
905 912 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
906 913 *
907 914 */
908 915
909 916 rtems_status_code status[NB_SCIENCE_TASKS];
910 917 rtems_status_code ret;
911 918
912 919 ret = RTEMS_SUCCESSFUL;
913 920
914 921 status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
915 922 if (status[STATUS_0] != RTEMS_SUCCESSFUL)
916 923 {
917 924 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
918 925 }
919 926
920 927 status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
921 928 if (status[STATUS_1] != RTEMS_SUCCESSFUL)
922 929 {
923 930 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
924 931 }
925 932
926 933 status[STATUS_2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
927 934 if (status[STATUS_2] != RTEMS_SUCCESSFUL)
928 935 {
929 936 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[STATUS_2])
930 937 }
931 938
932 939 status[STATUS_3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
933 940 if (status[STATUS_3] != RTEMS_SUCCESSFUL)
934 941 {
935 942 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[STATUS_3])
936 943 }
937 944
938 945 status[STATUS_4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
939 946 if (status[STATUS_4] != RTEMS_SUCCESSFUL)
940 947 {
941 948 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[STATUS_4])
942 949 }
943 950
944 951 status[STATUS_5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
945 952 if (status[STATUS_5] != RTEMS_SUCCESSFUL)
946 953 {
947 954 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[STATUS_5])
948 955 }
949 956
950 957 status[STATUS_6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
951 958 if (status[STATUS_6] != RTEMS_SUCCESSFUL)
952 959 {
953 960 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_6])
954 961 }
955 962
956 963 status[STATUS_7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
957 964 if (status[STATUS_7] != RTEMS_SUCCESSFUL)
958 965 {
959 966 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_7])
960 967 }
961 968
962 969 status[STATUS_8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
963 970 if (status[STATUS_8] != RTEMS_SUCCESSFUL)
964 971 {
965 972 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_8])
966 973 }
967 974
968 975 status[STATUS_9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
969 976 if (status[STATUS_9] != RTEMS_SUCCESSFUL)
970 977 {
971 978 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_9])
972 979 }
973 980
974 981 if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
975 982 (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
976 983 (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) ||
977 984 (status[STATUS_6] != RTEMS_SUCCESSFUL) || (status[STATUS_7] != RTEMS_SUCCESSFUL) ||
978 985 (status[STATUS_8] != RTEMS_SUCCESSFUL) || (status[STATUS_9] != RTEMS_SUCCESSFUL) )
979 986 {
980 987 ret = RTEMS_UNSATISFIED;
981 988 }
982 989
983 990 return ret;
984 991 }
985 992
986 993 int restart_asm_tasks( unsigned char lfrRequestedMode )
987 994 {
988 995 /** This function is used to restart average spectral matrices tasks.
989 996 *
990 997 * @return RTEMS directive status codes:
991 998 * - RTEMS_SUCCESSFUL - task restarted successfully
992 999 * - RTEMS_INVALID_ID - task id invalid
993 1000 * - RTEMS_INCORRECT_STATE - task never started
994 1001 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
995 1002 *
996 1003 * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
997 1004 *
998 1005 */
999 1006
1000 1007 rtems_status_code status[NB_ASM_TASKS];
1001 1008 rtems_status_code ret;
1002 1009
1003 1010 ret = RTEMS_SUCCESSFUL;
1004 1011
1005 1012 status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
1006 1013 if (status[STATUS_0] != RTEMS_SUCCESSFUL)
1007 1014 {
1008 1015 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0])
1009 1016 }
1010 1017
1011 1018 status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
1012 1019 if (status[STATUS_1] != RTEMS_SUCCESSFUL)
1013 1020 {
1014 1021 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1])
1015 1022 }
1016 1023
1017 1024 status[STATUS_2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
1018 1025 if (status[STATUS_2] != RTEMS_SUCCESSFUL)
1019 1026 {
1020 1027 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_2])
1021 1028 }
1022 1029
1023 1030 status[STATUS_3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
1024 1031 if (status[STATUS_3] != RTEMS_SUCCESSFUL)
1025 1032 {
1026 1033 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_3])
1027 1034 }
1028 1035
1029 1036 status[STATUS_4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
1030 1037 if (status[STATUS_4] != RTEMS_SUCCESSFUL)
1031 1038 {
1032 1039 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_4])
1033 1040 }
1034 1041
1035 1042 status[STATUS_5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
1036 1043 if (status[STATUS_5] != RTEMS_SUCCESSFUL)
1037 1044 {
1038 1045 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_5])
1039 1046 }
1040 1047
1041 1048 if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) ||
1042 1049 (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) ||
1043 1050 (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) )
1044 1051 {
1045 1052 ret = RTEMS_UNSATISFIED;
1046 1053 }
1047 1054
1048 1055 return ret;
1049 1056 }
1050 1057
1051 1058 int suspend_science_tasks( void )
1052 1059 {
1053 1060 /** This function suspends the science tasks.
1054 1061 *
1055 1062 * @return RTEMS directive status codes:
1056 1063 * - RTEMS_SUCCESSFUL - task restarted successfully
1057 1064 * - RTEMS_INVALID_ID - task id invalid
1058 1065 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1059 1066 *
1060 1067 */
1061 1068
1062 1069 rtems_status_code status;
1063 1070
1064 1071 PRINTF("in suspend_science_tasks\n")
1065 1072
1066 1073 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1067 1074 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1068 1075 {
1069 1076 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1070 1077 }
1071 1078 else
1072 1079 {
1073 1080 status = RTEMS_SUCCESSFUL;
1074 1081 }
1075 1082 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1076 1083 {
1077 1084 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1078 1085 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1079 1086 {
1080 1087 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1081 1088 }
1082 1089 else
1083 1090 {
1084 1091 status = RTEMS_SUCCESSFUL;
1085 1092 }
1086 1093 }
1087 1094 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1088 1095 {
1089 1096 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1090 1097 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1091 1098 {
1092 1099 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1093 1100 }
1094 1101 else
1095 1102 {
1096 1103 status = RTEMS_SUCCESSFUL;
1097 1104 }
1098 1105 }
1099 1106 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1100 1107 {
1101 1108 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1102 1109 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1103 1110 {
1104 1111 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1105 1112 }
1106 1113 else
1107 1114 {
1108 1115 status = RTEMS_SUCCESSFUL;
1109 1116 }
1110 1117 }
1111 1118 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1112 1119 {
1113 1120 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1114 1121 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1115 1122 {
1116 1123 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1117 1124 }
1118 1125 else
1119 1126 {
1120 1127 status = RTEMS_SUCCESSFUL;
1121 1128 }
1122 1129 }
1123 1130 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1124 1131 {
1125 1132 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1126 1133 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1127 1134 {
1128 1135 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1129 1136 }
1130 1137 else
1131 1138 {
1132 1139 status = RTEMS_SUCCESSFUL;
1133 1140 }
1134 1141 }
1135 1142 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
1136 1143 {
1137 1144 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
1138 1145 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1139 1146 {
1140 1147 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
1141 1148 }
1142 1149 else
1143 1150 {
1144 1151 status = RTEMS_SUCCESSFUL;
1145 1152 }
1146 1153 }
1147 1154 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
1148 1155 {
1149 1156 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
1150 1157 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1151 1158 {
1152 1159 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
1153 1160 }
1154 1161 else
1155 1162 {
1156 1163 status = RTEMS_SUCCESSFUL;
1157 1164 }
1158 1165 }
1159 1166 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
1160 1167 {
1161 1168 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
1162 1169 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1163 1170 {
1164 1171 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
1165 1172 }
1166 1173 else
1167 1174 {
1168 1175 status = RTEMS_SUCCESSFUL;
1169 1176 }
1170 1177 }
1171 1178 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
1172 1179 {
1173 1180 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
1174 1181 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1175 1182 {
1176 1183 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
1177 1184 }
1178 1185 else
1179 1186 {
1180 1187 status = RTEMS_SUCCESSFUL;
1181 1188 }
1182 1189 }
1183 1190
1184 1191 return status;
1185 1192 }
1186 1193
1187 1194 int suspend_asm_tasks( void )
1188 1195 {
1189 1196 /** This function suspends the science tasks.
1190 1197 *
1191 1198 * @return RTEMS directive status codes:
1192 1199 * - RTEMS_SUCCESSFUL - task restarted successfully
1193 1200 * - RTEMS_INVALID_ID - task id invalid
1194 1201 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1195 1202 *
1196 1203 */
1197 1204
1198 1205 rtems_status_code status;
1199 1206
1200 1207 PRINTF("in suspend_science_tasks\n")
1201 1208
1202 1209 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1203 1210 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1204 1211 {
1205 1212 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1206 1213 }
1207 1214 else
1208 1215 {
1209 1216 status = RTEMS_SUCCESSFUL;
1210 1217 }
1211 1218
1212 1219 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1213 1220 {
1214 1221 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1215 1222 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1216 1223 {
1217 1224 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1218 1225 }
1219 1226 else
1220 1227 {
1221 1228 status = RTEMS_SUCCESSFUL;
1222 1229 }
1223 1230 }
1224 1231
1225 1232 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1226 1233 {
1227 1234 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1228 1235 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1229 1236 {
1230 1237 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1231 1238 }
1232 1239 else
1233 1240 {
1234 1241 status = RTEMS_SUCCESSFUL;
1235 1242 }
1236 1243 }
1237 1244
1238 1245 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1239 1246 {
1240 1247 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1241 1248 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1242 1249 {
1243 1250 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1244 1251 }
1245 1252 else
1246 1253 {
1247 1254 status = RTEMS_SUCCESSFUL;
1248 1255 }
1249 1256 }
1250 1257
1251 1258 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1252 1259 {
1253 1260 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1254 1261 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1255 1262 {
1256 1263 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1257 1264 }
1258 1265 else
1259 1266 {
1260 1267 status = RTEMS_SUCCESSFUL;
1261 1268 }
1262 1269 }
1263 1270
1264 1271 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1265 1272 {
1266 1273 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1267 1274 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1268 1275 {
1269 1276 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1270 1277 }
1271 1278 else
1272 1279 {
1273 1280 status = RTEMS_SUCCESSFUL;
1274 1281 }
1275 1282 }
1276 1283
1277 1284 return status;
1278 1285 }
1279 1286
1280 1287 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
1281 1288 {
1282 1289
1283 1290 WFP_reset_current_ring_nodes();
1284 1291
1285 1292 reset_waveform_picker_regs();
1286 1293
1287 1294 set_wfp_burst_enable_register( mode );
1288 1295
1289 1296 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
1290 1297 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
1291 1298
1292 1299 if (transitionCoarseTime == 0)
1293 1300 {
1294 1301 // instant transition means transition on the next valid date
1295 1302 // this is mandatory to have a good snapshot period and a good correction of the snapshot period
1296 1303 waveform_picker_regs->start_date = time_management_regs->coarse_time + 1;
1297 1304 }
1298 1305 else
1299 1306 {
1300 1307 waveform_picker_regs->start_date = transitionCoarseTime;
1301 1308 }
1302 1309
1303 1310 update_last_valid_transition_date(waveform_picker_regs->start_date);
1304 1311
1305 1312 }
1306 1313
1307 1314 void launch_spectral_matrix( void )
1308 1315 {
1309 1316 SM_reset_current_ring_nodes();
1310 1317
1311 1318 reset_spectral_matrix_regs();
1312 1319
1313 1320 reset_nb_sm();
1314 1321
1315 1322 set_sm_irq_onNewMatrix( 1 );
1316 1323
1317 1324 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
1318 1325 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
1319 1326
1320 1327 }
1321 1328
1322 1329 void set_sm_irq_onNewMatrix( unsigned char value )
1323 1330 {
1324 1331 if (value == 1)
1325 1332 {
1326 1333 spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_NEW_MATRIX;
1327 1334 }
1328 1335 else
1329 1336 {
1330 1337 spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_NEW_MATRIX; // 1110
1331 1338 }
1332 1339 }
1333 1340
1334 1341 void set_sm_irq_onError( unsigned char value )
1335 1342 {
1336 1343 if (value == 1)
1337 1344 {
1338 1345 spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_ERROR;
1339 1346 }
1340 1347 else
1341 1348 {
1342 1349 spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_ERROR; // 1101
1343 1350 }
1344 1351 }
1345 1352
1346 1353 //*****************************
1347 1354 // CONFIGURE CALIBRATION SIGNAL
1348 1355 void setCalibrationPrescaler( unsigned int prescaler )
1349 1356 {
1350 1357 // prescaling of the master clock (25 MHz)
1351 1358 // master clock is divided by 2^prescaler
1352 1359 time_management_regs->calPrescaler = prescaler;
1353 1360 }
1354 1361
1355 1362 void setCalibrationDivisor( unsigned int divisionFactor )
1356 1363 {
1357 1364 // division of the prescaled clock by the division factor
1358 1365 time_management_regs->calDivisor = divisionFactor;
1359 1366 }
1360 1367
1361 1368 void setCalibrationData( void )
1362 1369 {
1363 1370 /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
1364 1371 *
1365 1372 * @param void
1366 1373 *
1367 1374 * @return void
1368 1375 *
1369 1376 */
1370 1377
1371 1378 unsigned int k;
1372 1379 unsigned short data;
1373 1380 float val;
1374 1381 float Ts;
1375 1382
1376 1383 time_management_regs->calDataPtr = INIT_CHAR;
1377 1384
1378 1385 // build the signal for the SCM calibration
1379 1386 for (k = 0; k < CAL_NB_PTS; k++)
1380 1387 {
1381 1388 val = sin( 2 * pi * CAL_F0 * k * Ts )
1382 1389 + sin( 2 * pi * CAL_F1 * k * Ts );
1383 1390 data = (unsigned short) ((val * CAL_SCALE_FACTOR) + CONST_2048);
1384 1391 time_management_regs->calData = data & CAL_DATA_MASK;
1385 1392 }
1386 1393 }
1387 1394
1388 1395 void setCalibrationDataInterleaved( void )
1389 1396 {
1390 1397 /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal
1391 1398 *
1392 1399 * @param void
1393 1400 *
1394 1401 * @return void
1395 1402 *
1396 1403 * In interleaved mode, one can store more values than in normal mode.
1397 1404 * The data are stored in bunch of 18 bits, 12 bits from one sample and 6 bits from another sample.
1398 1405 * T store 3 values, one need two write operations.
1399 1406 * s1 [ b11 b10 b9 b8 b7 b6 ] s0 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
1400 1407 * s1 [ b5 b4 b3 b2 b1 b0 ] s2 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ]
1401 1408 *
1402 1409 */
1403 1410
1404 1411 unsigned int k;
1405 1412 float val;
1406 1413 float Ts;
1407 1414 unsigned short data[CAL_NB_PTS_INTER];
1408 1415 unsigned char *dataPtr;
1409 1416
1410 1417 Ts = 1. / CAL_FS_INTER;
1411 1418
1412 1419 time_management_regs->calDataPtr = INIT_CHAR;
1413 1420
1414 1421 // build the signal for the SCM calibration
1415 1422 for (k=0; k<CAL_NB_PTS_INTER; k++)
1416 1423 {
1417 1424 val = sin( 2 * pi * CAL_F0 * k * Ts )
1418 1425 + sin( 2 * pi * CAL_F1 * k * Ts );
1419 1426 data[k] = (unsigned short) ((val * CONST_512) + CONST_2048);
1420 1427 }
1421 1428
1422 1429 // write the signal in interleaved mode
1423 1430 for (k=0; k < STEPS_FOR_STORAGE_INTER; k++)
1424 1431 {
1425 1432 dataPtr = (unsigned char*) &data[ (k * BYTES_FOR_2_SAMPLES) + 2 ];
1426 1433 time_management_regs->calData = ( data[ k * BYTES_FOR_2_SAMPLES ] & CAL_DATA_MASK )
1427 1434 + ( (dataPtr[0] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
1428 1435 time_management_regs->calData = ( data[(k * BYTES_FOR_2_SAMPLES) + 1] & CAL_DATA_MASK )
1429 1436 + ( (dataPtr[1] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER);
1430 1437 }
1431 1438 }
1432 1439
1433 1440 void setCalibrationReload( bool state)
1434 1441 {
1435 1442 if (state == true)
1436 1443 {
1437 1444 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_RELOAD; // [0001 0000]
1438 1445 }
1439 1446 else
1440 1447 {
1441 1448 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_RELOAD; // [1110 1111]
1442 1449 }
1443 1450 }
1444 1451
1445 1452 void setCalibrationEnable( bool state )
1446 1453 {
1447 1454 // this bit drives the multiplexer
1448 1455 if (state == true)
1449 1456 {
1450 1457 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_ENABLE; // [0100 0000]
1451 1458 }
1452 1459 else
1453 1460 {
1454 1461 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_ENABLE; // [1011 1111]
1455 1462 }
1456 1463 }
1457 1464
1458 1465 void setCalibrationInterleaved( bool state )
1459 1466 {
1460 1467 // this bit drives the multiplexer
1461 1468 if (state == true)
1462 1469 {
1463 1470 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_SET_INTERLEAVED; // [0010 0000]
1464 1471 }
1465 1472 else
1466 1473 {
1467 1474 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_SET_INTERLEAVED; // [1101 1111]
1468 1475 }
1469 1476 }
1470 1477
1471 1478 void setCalibration( bool state )
1472 1479 {
1473 1480 if (state == true)
1474 1481 {
1475 1482 setCalibrationEnable( true );
1476 1483 setCalibrationReload( false );
1477 1484 set_hk_lfr_calib_enable( true );
1478 1485 }
1479 1486 else
1480 1487 {
1481 1488 setCalibrationEnable( false );
1482 1489 setCalibrationReload( true );
1483 1490 set_hk_lfr_calib_enable( false );
1484 1491 }
1485 1492 }
1486 1493
1487 1494 void configureCalibration( bool interleaved )
1488 1495 {
1489 1496 setCalibration( false );
1490 1497 if ( interleaved == true )
1491 1498 {
1492 1499 setCalibrationInterleaved( true );
1493 1500 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1494 1501 setCalibrationDivisor( CAL_F_DIVISOR_INTER ); // => 240 384
1495 1502 setCalibrationDataInterleaved();
1496 1503 }
1497 1504 else
1498 1505 {
1499 1506 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1500 1507 setCalibrationDivisor( CAL_F_DIVISOR ); // => 160 256 (39 - 1)
1501 1508 setCalibrationData();
1502 1509 }
1503 1510 }
1504 1511
1505 1512 //****************
1506 1513 // CLOSING ACTIONS
1507 1514 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1508 1515 {
1509 1516 /** This function is used to update the HK packets statistics after a successful TC execution.
1510 1517 *
1511 1518 * @param TC points to the TC being processed
1512 1519 * @param time is the time used to date the TC execution
1513 1520 *
1514 1521 */
1515 1522
1516 1523 unsigned int val;
1517 1524
1518 1525 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1519 1526 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1520 1527 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = INIT_CHAR;
1521 1528 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1522 1529 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = INIT_CHAR;
1523 1530 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1524 1531 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_0] = time[BYTE_0];
1525 1532 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_1] = time[BYTE_1];
1526 1533 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_2] = time[BYTE_2];
1527 1534 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_3] = time[BYTE_3];
1528 1535 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_4] = time[BYTE_4];
1529 1536 housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_5] = time[BYTE_5];
1530 1537
1531 1538 val = (housekeeping_packet.hk_lfr_exe_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1532 1539 val++;
1533 1540 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
1534 1541 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1535 1542 }
1536 1543
1537 1544 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1538 1545 {
1539 1546 /** This function is used to update the HK packets statistics after a TC rejection.
1540 1547 *
1541 1548 * @param TC points to the TC being processed
1542 1549 * @param time is the time used to date the TC rejection
1543 1550 *
1544 1551 */
1545 1552
1546 1553 unsigned int val;
1547 1554
1548 1555 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1549 1556 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1550 1557 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = INIT_CHAR;
1551 1558 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1552 1559 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = INIT_CHAR;
1553 1560 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1554 1561 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_0] = time[BYTE_0];
1555 1562 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_1] = time[BYTE_1];
1556 1563 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_2] = time[BYTE_2];
1557 1564 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_3] = time[BYTE_3];
1558 1565 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_4] = time[BYTE_4];
1559 1566 housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_5] = time[BYTE_5];
1560 1567
1561 1568 val = (housekeeping_packet.hk_lfr_rej_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1562 1569 val++;
1563 1570 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE);
1564 1571 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1565 1572 }
1566 1573
1567 1574 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1568 1575 {
1569 1576 /** This function is the last step of the TC execution workflow.
1570 1577 *
1571 1578 * @param TC points to the TC being processed
1572 1579 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1573 1580 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1574 1581 * @param time is the time used to date the TC execution
1575 1582 *
1576 1583 */
1577 1584
1578 1585 unsigned char requestedMode;
1579 1586
1580 1587 if (result == LFR_SUCCESSFUL)
1581 1588 {
1582 1589 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1583 1590 &
1584 1591 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1585 1592 )
1586 1593 {
1587 1594 send_tm_lfr_tc_exe_success( TC, queue_id );
1588 1595 }
1589 1596 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1590 1597 {
1591 1598 //**********************************
1592 1599 // UPDATE THE LFRMODE LOCAL VARIABLE
1593 1600 requestedMode = TC->dataAndCRC[1];
1594 1601 updateLFRCurrentMode( requestedMode );
1595 1602 }
1596 1603 }
1597 1604 else if (result == LFR_EXE_ERROR)
1598 1605 {
1599 1606 send_tm_lfr_tc_exe_error( TC, queue_id );
1600 1607 }
1601 1608 }
1602 1609
1603 1610 //***************************
1604 1611 // Interrupt Service Routines
1605 1612 rtems_isr commutation_isr1( rtems_vector_number vector )
1606 1613 {
1607 1614 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1608 1615 PRINTF("In commutation_isr1 *** Error sending event to DUMB\n")
1609 1616 }
1610 1617 }
1611 1618
1612 1619 rtems_isr commutation_isr2( rtems_vector_number vector )
1613 1620 {
1614 1621 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1615 1622 PRINTF("In commutation_isr2 *** Error sending event to DUMB\n")
1616 1623 }
1617 1624 }
1618 1625
1619 1626 //****************
1620 1627 // OTHER FUNCTIONS
1621 1628 void updateLFRCurrentMode( unsigned char requestedMode )
1622 1629 {
1623 1630 /** This function updates the value of the global variable lfrCurrentMode.
1624 1631 *
1625 1632 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1626 1633 *
1627 1634 */
1628 1635
1629 1636 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1630 1637 housekeeping_packet.lfr_status_word[0] = (housekeeping_packet.lfr_status_word[0] & STATUS_WORD_LFR_MODE_MASK)
1631 1638 + (unsigned char) ( requestedMode << STATUS_WORD_LFR_MODE_SHIFT );
1632 1639 lfrCurrentMode = requestedMode;
1633 1640 }
1634 1641
1635 1642 void set_lfr_soft_reset( unsigned char value )
1636 1643 {
1637 1644 if (value == 1)
1638 1645 {
1639 1646 time_management_regs->ctrl = time_management_regs->ctrl | BIT_SOFT_RESET; // [0100]
1640 1647 }
1641 1648 else
1642 1649 {
1643 1650 time_management_regs->ctrl = time_management_regs->ctrl & MASK_SOFT_RESET; // [1011]
1644 1651 }
1645 1652 }
1646 1653
1647 1654 void reset_lfr( void )
1648 1655 {
1649 1656 set_lfr_soft_reset( 1 );
1650 1657
1651 1658 set_lfr_soft_reset( 0 );
1652 1659
1653 1660 set_hk_lfr_sc_potential_flag( true );
1654 1661 }
@@ -1,1650 +1,1657
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
18 18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
19 19 ring_node kcoefficient_node_1;
20 20 ring_node kcoefficient_node_2;
21 21
22 22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 23 {
24 24 /** This function updates the LFR registers with the incoming common parameters.
25 25 *
26 26 * @param TC points to the TeleCommand packet that is being processed
27 27 *
28 28 *
29 29 */
30 30
31 31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 33 set_wfp_data_shaping( );
34 34 return LFR_SUCCESSFUL;
35 35 }
36 36
37 37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 38 {
39 39 /** This function updates the LFR registers with the incoming normal parameters.
40 40 *
41 41 * @param TC points to the TeleCommand packet that is being processed
42 42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 43 *
44 44 */
45 45
46 46 int result;
47 47 int flag;
48 48 rtems_status_code status;
49 49
50 50 flag = LFR_SUCCESSFUL;
51 51
52 52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 55 flag = LFR_DEFAULT;
56 56 }
57 57
58 58 // CHECK THE PARAMETERS SET CONSISTENCY
59 59 if (flag == LFR_SUCCESSFUL)
60 60 {
61 61 flag = check_normal_par_consistency( TC, queue_id );
62 62 }
63 63
64 64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_l( TC );
68 68 result = set_sy_lfr_n_swf_p( TC );
69 69 result = set_sy_lfr_n_bp_p0( TC );
70 70 result = set_sy_lfr_n_bp_p1( TC );
71 71 result = set_sy_lfr_n_asm_p( TC );
72 72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 73 }
74 74
75 75 return flag;
76 76 }
77 77
78 78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 79 {
80 80 /** This function updates the LFR registers with the incoming burst parameters.
81 81 *
82 82 * @param TC points to the TeleCommand packet that is being processed
83 83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 84 *
85 85 */
86 86
87 87 int flag;
88 88 rtems_status_code status;
89 89 unsigned char sy_lfr_b_bp_p0;
90 90 unsigned char sy_lfr_b_bp_p1;
91 91 float aux;
92 92
93 93 flag = LFR_SUCCESSFUL;
94 94
95 95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 97 flag = LFR_DEFAULT;
98 98 }
99 99
100 100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102 102
103 103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 104 if (flag == LFR_SUCCESSFUL)
105 105 {
106 106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 107 {
108 108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
109 109 flag = WRONG_APP_DATA;
110 110 }
111 111 }
112 112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 113 if (flag == LFR_SUCCESSFUL)
114 114 {
115 115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 116 {
117 117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
118 118 flag = WRONG_APP_DATA;
119 119 }
120 120 }
121 121 //****************************************************************
122 122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 123 if (flag == LFR_SUCCESSFUL)
124 124 {
125 125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 128 if (aux > FLOAT_EQUAL_ZERO)
129 129 {
130 130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
131 131 flag = LFR_DEFAULT;
132 132 }
133 133 }
134 134
135 135 // SET THE PARAMETERS
136 136 if (flag == LFR_SUCCESSFUL)
137 137 {
138 138 flag = set_sy_lfr_b_bp_p0( TC );
139 139 flag = set_sy_lfr_b_bp_p1( TC );
140 140 }
141 141
142 142 return flag;
143 143 }
144 144
145 145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 146 {
147 147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 148 *
149 149 * @param TC points to the TeleCommand packet that is being processed
150 150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 151 *
152 152 */
153 153
154 154 int flag;
155 155 rtems_status_code status;
156 156 unsigned char sy_lfr_s1_bp_p0;
157 157 unsigned char sy_lfr_s1_bp_p1;
158 158 float aux;
159 159
160 160 flag = LFR_SUCCESSFUL;
161 161
162 162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 164 flag = LFR_DEFAULT;
165 165 }
166 166
167 167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169 169
170 170 // sy_lfr_s1_bp_p0
171 171 if (flag == LFR_SUCCESSFUL)
172 172 {
173 173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 174 {
175 175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
176 176 flag = WRONG_APP_DATA;
177 177 }
178 178 }
179 179 // sy_lfr_s1_bp_p1
180 180 if (flag == LFR_SUCCESSFUL)
181 181 {
182 182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 183 {
184 184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
185 185 flag = WRONG_APP_DATA;
186 186 }
187 187 }
188 188 //******************************************************************
189 189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 190 if (flag == LFR_SUCCESSFUL)
191 191 {
192 192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
193 193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
194 194 if (aux > FLOAT_EQUAL_ZERO)
195 195 {
196 196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
197 197 flag = LFR_DEFAULT;
198 198 }
199 199 }
200 200
201 201 // SET THE PARAMETERS
202 202 if (flag == LFR_SUCCESSFUL)
203 203 {
204 204 flag = set_sy_lfr_s1_bp_p0( TC );
205 205 flag = set_sy_lfr_s1_bp_p1( TC );
206 206 }
207 207
208 208 return flag;
209 209 }
210 210
211 211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
212 212 {
213 213 /** This function updates the LFR registers with the incoming sbm2 parameters.
214 214 *
215 215 * @param TC points to the TeleCommand packet that is being processed
216 216 * @param queue_id is the id of the queue which handles TM related to this execution step
217 217 *
218 218 */
219 219
220 220 int flag;
221 221 rtems_status_code status;
222 222 unsigned char sy_lfr_s2_bp_p0;
223 223 unsigned char sy_lfr_s2_bp_p1;
224 224 float aux;
225 225
226 226 flag = LFR_SUCCESSFUL;
227 227
228 228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
229 229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
230 230 flag = LFR_DEFAULT;
231 231 }
232 232
233 233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
234 234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
235 235
236 236 // sy_lfr_s2_bp_p0
237 237 if (flag == LFR_SUCCESSFUL)
238 238 {
239 239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
240 240 {
241 241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
242 242 flag = WRONG_APP_DATA;
243 243 }
244 244 }
245 245 // sy_lfr_s2_bp_p1
246 246 if (flag == LFR_SUCCESSFUL)
247 247 {
248 248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
249 249 {
250 250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
251 251 flag = WRONG_APP_DATA;
252 252 }
253 253 }
254 254 //******************************************************************
255 255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
256 256 if (flag == LFR_SUCCESSFUL)
257 257 {
258 258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
259 259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
260 260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
261 261 if (aux > FLOAT_EQUAL_ZERO)
262 262 {
263 263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
264 264 flag = LFR_DEFAULT;
265 265 }
266 266 }
267 267
268 268 // SET THE PARAMETERS
269 269 if (flag == LFR_SUCCESSFUL)
270 270 {
271 271 flag = set_sy_lfr_s2_bp_p0( TC );
272 272 flag = set_sy_lfr_s2_bp_p1( TC );
273 273 }
274 274
275 275 return flag;
276 276 }
277 277
278 278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 279 {
280 280 /** This function updates the LFR registers with the incoming sbm2 parameters.
281 281 *
282 282 * @param TC points to the TeleCommand packet that is being processed
283 283 * @param queue_id is the id of the queue which handles TM related to this execution step
284 284 *
285 285 */
286 286
287 287 int flag;
288 288
289 289 flag = LFR_DEFAULT;
290 290
291 291 flag = set_sy_lfr_kcoeff( TC, queue_id );
292 292
293 293 return flag;
294 294 }
295 295
296 296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
297 297 {
298 298 /** This function updates the LFR registers with the incoming sbm2 parameters.
299 299 *
300 300 * @param TC points to the TeleCommand packet that is being processed
301 301 * @param queue_id is the id of the queue which handles TM related to this execution step
302 302 *
303 303 */
304 304
305 305 int flag;
306 306
307 307 flag = LFR_DEFAULT;
308 308
309 309 flag = set_sy_lfr_fbins( TC );
310 310
311 311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
312 312 merge_fbins_masks();
313 313
314 314 return flag;
315 315 }
316 316
317 317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
318 318 {
319 319 /** This function updates the LFR registers with the incoming sbm2 parameters.
320 320 *
321 321 * @param TC points to the TeleCommand packet that is being processed
322 322 * @param queue_id is the id of the queue which handles TM related to this execution step
323 323 *
324 324 */
325 325
326 326 int flag;
327 327
328 328 flag = LFR_DEFAULT;
329 329
330 330 flag = check_sy_lfr_filter_parameters( TC, queue_id );
331 331
332 332 if (flag == LFR_SUCCESSFUL)
333 333 {
334 334 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
335 335 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
336 336 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
337 337 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
338 338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
339 339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
340 340 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
341 341 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
342 342 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
343 343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
344 344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
345 345 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
346 346 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
347 347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
348 348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
349 349
350 350 //****************************
351 351 // store PAS filter parameters
352 352 // sy_lfr_pas_filter_enabled
353 353 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
354 354 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
355 355 // sy_lfr_pas_filter_modulus
356 356 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
357 357 // sy_lfr_pas_filter_tbad
358 358 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
359 359 parameter_dump_packet.sy_lfr_pas_filter_tbad );
360 360 // sy_lfr_pas_filter_offset
361 361 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
362 362 // sy_lfr_pas_filter_shift
363 363 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
364 364 parameter_dump_packet.sy_lfr_pas_filter_shift );
365 365
366 366 //****************************************************
367 367 // store the parameter sy_lfr_sc_rw_delta_f as a float
368 368 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
369 369 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
370 370 }
371 371
372 372 return flag;
373 373 }
374 374
375 375 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
376 376 {
377 377 /** This function updates the LFR registers with the incoming sbm2 parameters.
378 378 *
379 379 * @param TC points to the TeleCommand packet that is being processed
380 380 * @param queue_id is the id of the queue which handles TM related to this execution step
381 381 *
382 382 */
383 383
384 384 unsigned int address;
385 385 rtems_status_code status;
386 386 unsigned int freq;
387 387 unsigned int bin;
388 388 unsigned int coeff;
389 389 unsigned char *kCoeffPtr;
390 390 unsigned char *kCoeffDumpPtr;
391 391
392 392 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
393 393 // F0 => 11 bins
394 394 // F1 => 13 bins
395 395 // F2 => 12 bins
396 396 // 36 bins to dump in two packets (30 bins max per packet)
397 397
398 398 //*********
399 399 // PACKET 1
400 400 // 11 F0 bins, 13 F1 bins and 6 F2 bins
401 401 kcoefficients_dump_1.destinationID = TC->sourceID;
402 402 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
403 403 for( freq = 0;
404 404 freq < NB_BINS_COMPRESSED_SM_F0;
405 405 freq++ )
406 406 {
407 407 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
408 408 bin = freq;
409 409 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
410 410 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
411 411 {
412 412 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
413 413 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
414 414 ]; // 2 for the kcoeff_frequency
415 415 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
416 416 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
417 417 }
418 418 }
419 419 for( freq = NB_BINS_COMPRESSED_SM_F0;
420 420 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
421 421 freq++ )
422 422 {
423 423 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
424 424 bin = freq - NB_BINS_COMPRESSED_SM_F0;
425 425 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
426 426 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
427 427 {
428 428 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
429 429 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
430 430 ]; // 2 for the kcoeff_frequency
431 431 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
432 432 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
433 433 }
434 434 }
435 435 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
436 436 freq < KCOEFF_BLK_NR_PKT1 ;
437 437 freq++ )
438 438 {
439 439 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
440 440 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
441 441 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
442 442 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
443 443 {
444 444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
445 445 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
446 446 ]; // 2 for the kcoeff_frequency
447 447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
448 448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
449 449 }
450 450 }
451 451 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
452 452 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
453 453 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
454 454 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
455 455 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
456 456 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
457 457 // SEND DATA
458 458 kcoefficient_node_1.status = 1;
459 459 address = (unsigned int) &kcoefficient_node_1;
460 460 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
461 461 if (status != RTEMS_SUCCESSFUL) {
462 462 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
463 463 }
464 464
465 465 //********
466 466 // PACKET 2
467 467 // 6 F2 bins
468 468 kcoefficients_dump_2.destinationID = TC->sourceID;
469 469 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
470 470 for( freq = 0;
471 471 freq < KCOEFF_BLK_NR_PKT2;
472 472 freq++ )
473 473 {
474 474 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
475 475 bin = freq + KCOEFF_BLK_NR_PKT2;
476 476 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
477 477 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
478 478 {
479 479 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
480 480 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
481 481 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
482 482 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
483 483 }
484 484 }
485 485 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
486 486 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
487 487 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
488 488 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
489 489 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
490 490 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
491 491 // SEND DATA
492 492 kcoefficient_node_2.status = 1;
493 493 address = (unsigned int) &kcoefficient_node_2;
494 494 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
495 495 if (status != RTEMS_SUCCESSFUL) {
496 496 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
497 497 }
498 498
499 499 return status;
500 500 }
501 501
502 502 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
503 503 {
504 504 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
505 505 *
506 506 * @param queue_id is the id of the queue which handles TM related to this execution step.
507 507 *
508 508 * @return RTEMS directive status codes:
509 509 * - RTEMS_SUCCESSFUL - message sent successfully
510 510 * - RTEMS_INVALID_ID - invalid queue id
511 511 * - RTEMS_INVALID_SIZE - invalid message size
512 512 * - RTEMS_INVALID_ADDRESS - buffer is NULL
513 513 * - RTEMS_UNSATISFIED - out of message buffers
514 514 * - RTEMS_TOO_MANY - queue s limit has been reached
515 515 *
516 516 */
517 517
518 518 int status;
519 519
520 520 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
521 521 parameter_dump_packet.destinationID = TC->sourceID;
522 522
523 523 // UPDATE TIME
524 524 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
525 525 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
526 526 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
527 527 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
528 528 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
529 529 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
530 530 // SEND DATA
531 531 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
532 532 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
533 533 if (status != RTEMS_SUCCESSFUL) {
534 534 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
535 535 }
536 536
537 537 return status;
538 538 }
539 539
540 540 //***********************
541 541 // NORMAL MODE PARAMETERS
542 542
543 543 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
544 544 {
545 545 unsigned char msb;
546 546 unsigned char lsb;
547 547 int flag;
548 548 float aux;
549 549 rtems_status_code status;
550 550
551 551 unsigned int sy_lfr_n_swf_l;
552 552 unsigned int sy_lfr_n_swf_p;
553 553 unsigned int sy_lfr_n_asm_p;
554 554 unsigned char sy_lfr_n_bp_p0;
555 555 unsigned char sy_lfr_n_bp_p1;
556 556 unsigned char sy_lfr_n_cwf_long_f3;
557 557
558 558 flag = LFR_SUCCESSFUL;
559 559
560 560 //***************
561 561 // get parameters
562 562 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
563 563 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
564 564 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
565 565
566 566 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
567 567 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
568 568 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
569 569
570 570 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
571 571 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
572 572 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
573 573
574 574 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
575 575
576 576 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
577 577
578 578 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
579 579
580 580 //******************
581 581 // check consistency
582 582 // sy_lfr_n_swf_l
583 583 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
584 584 {
585 585 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
586 586 flag = WRONG_APP_DATA;
587 587 }
588 588 // sy_lfr_n_swf_p
589 589 if (flag == LFR_SUCCESSFUL)
590 590 {
591 591 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
592 592 {
593 593 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
594 594 flag = WRONG_APP_DATA;
595 595 }
596 596 }
597 597 // sy_lfr_n_bp_p0
598 598 if (flag == LFR_SUCCESSFUL)
599 599 {
600 600 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
601 601 {
602 602 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
603 603 flag = WRONG_APP_DATA;
604 604 }
605 605 }
606 606 // sy_lfr_n_asm_p
607 607 if (flag == LFR_SUCCESSFUL)
608 608 {
609 609 if (sy_lfr_n_asm_p == 0)
610 610 {
611 611 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
612 612 flag = WRONG_APP_DATA;
613 613 }
614 614 }
615 615 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
616 616 if (flag == LFR_SUCCESSFUL)
617 617 {
618 618 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
619 619 if (aux > FLOAT_EQUAL_ZERO)
620 620 {
621 621 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
622 622 flag = WRONG_APP_DATA;
623 623 }
624 624 }
625 625 // sy_lfr_n_bp_p1
626 626 if (flag == LFR_SUCCESSFUL)
627 627 {
628 628 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
629 629 {
630 630 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
631 631 flag = WRONG_APP_DATA;
632 632 }
633 633 }
634 634 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
635 635 if (flag == LFR_SUCCESSFUL)
636 636 {
637 637 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
638 638 if (aux > FLOAT_EQUAL_ZERO)
639 639 {
640 640 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
641 641 flag = LFR_DEFAULT;
642 642 }
643 643 }
644 644 // sy_lfr_n_cwf_long_f3
645 645
646 646 return flag;
647 647 }
648 648
649 649 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
650 650 {
651 651 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
652 652 *
653 653 * @param TC points to the TeleCommand packet that is being processed
654 654 * @param queue_id is the id of the queue which handles TM related to this execution step
655 655 *
656 656 */
657 657
658 658 int result;
659 659
660 660 result = LFR_SUCCESSFUL;
661 661
662 662 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
663 663 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
664 664
665 665 return result;
666 666 }
667 667
668 668 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
669 669 {
670 670 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
671 671 *
672 672 * @param TC points to the TeleCommand packet that is being processed
673 673 * @param queue_id is the id of the queue which handles TM related to this execution step
674 674 *
675 675 */
676 676
677 677 int result;
678 678
679 679 result = LFR_SUCCESSFUL;
680 680
681 681 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
682 682 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
683 683
684 684 return result;
685 685 }
686 686
687 687 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
688 688 {
689 689 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
690 690 *
691 691 * @param TC points to the TeleCommand packet that is being processed
692 692 * @param queue_id is the id of the queue which handles TM related to this execution step
693 693 *
694 694 */
695 695
696 696 int result;
697 697
698 698 result = LFR_SUCCESSFUL;
699 699
700 700 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
701 701 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
702 702
703 703 return result;
704 704 }
705 705
706 706 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
707 707 {
708 708 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
709 709 *
710 710 * @param TC points to the TeleCommand packet that is being processed
711 711 * @param queue_id is the id of the queue which handles TM related to this execution step
712 712 *
713 713 */
714 714
715 715 int status;
716 716
717 717 status = LFR_SUCCESSFUL;
718 718
719 719 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
720 720
721 721 return status;
722 722 }
723 723
724 724 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
725 725 {
726 726 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
727 727 *
728 728 * @param TC points to the TeleCommand packet that is being processed
729 729 * @param queue_id is the id of the queue which handles TM related to this execution step
730 730 *
731 731 */
732 732
733 733 int status;
734 734
735 735 status = LFR_SUCCESSFUL;
736 736
737 737 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
738 738
739 739 return status;
740 740 }
741 741
742 742 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
743 743 {
744 744 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
745 745 *
746 746 * @param TC points to the TeleCommand packet that is being processed
747 747 * @param queue_id is the id of the queue which handles TM related to this execution step
748 748 *
749 749 */
750 750
751 751 int status;
752 752
753 753 status = LFR_SUCCESSFUL;
754 754
755 755 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
756 756
757 757 return status;
758 758 }
759 759
760 760 //**********************
761 761 // BURST MODE PARAMETERS
762 762 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
763 763 {
764 764 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
765 765 *
766 766 * @param TC points to the TeleCommand packet that is being processed
767 767 * @param queue_id is the id of the queue which handles TM related to this execution step
768 768 *
769 769 */
770 770
771 771 int status;
772 772
773 773 status = LFR_SUCCESSFUL;
774 774
775 775 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
776 776
777 777 return status;
778 778 }
779 779
780 780 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
781 781 {
782 782 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
783 783 *
784 784 * @param TC points to the TeleCommand packet that is being processed
785 785 * @param queue_id is the id of the queue which handles TM related to this execution step
786 786 *
787 787 */
788 788
789 789 int status;
790 790
791 791 status = LFR_SUCCESSFUL;
792 792
793 793 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
794 794
795 795 return status;
796 796 }
797 797
798 798 //*********************
799 799 // SBM1 MODE PARAMETERS
800 800 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
801 801 {
802 802 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
803 803 *
804 804 * @param TC points to the TeleCommand packet that is being processed
805 805 * @param queue_id is the id of the queue which handles TM related to this execution step
806 806 *
807 807 */
808 808
809 809 int status;
810 810
811 811 status = LFR_SUCCESSFUL;
812 812
813 813 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
814 814
815 815 return status;
816 816 }
817 817
818 818 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
819 819 {
820 820 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
821 821 *
822 822 * @param TC points to the TeleCommand packet that is being processed
823 823 * @param queue_id is the id of the queue which handles TM related to this execution step
824 824 *
825 825 */
826 826
827 827 int status;
828 828
829 829 status = LFR_SUCCESSFUL;
830 830
831 831 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
832 832
833 833 return status;
834 834 }
835 835
836 836 //*********************
837 837 // SBM2 MODE PARAMETERS
838 838 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
839 839 {
840 840 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
841 841 *
842 842 * @param TC points to the TeleCommand packet that is being processed
843 843 * @param queue_id is the id of the queue which handles TM related to this execution step
844 844 *
845 845 */
846 846
847 847 int status;
848 848
849 849 status = LFR_SUCCESSFUL;
850 850
851 851 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
852 852
853 853 return status;
854 854 }
855 855
856 856 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
857 857 {
858 858 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
859 859 *
860 860 * @param TC points to the TeleCommand packet that is being processed
861 861 * @param queue_id is the id of the queue which handles TM related to this execution step
862 862 *
863 863 */
864 864
865 865 int status;
866 866
867 867 status = LFR_SUCCESSFUL;
868 868
869 869 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
870 870
871 871 return status;
872 872 }
873 873
874 874 //*******************
875 875 // TC_LFR_UPDATE_INFO
876 876 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
877 877 {
878 878 unsigned int status;
879 879
880 status = LFR_DEFAULT;
881
880 882 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
881 883 || (mode == LFR_MODE_BURST)
882 884 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
883 885 {
884 886 status = LFR_SUCCESSFUL;
885 887 }
886 888 else
887 889 {
888 890 status = LFR_DEFAULT;
889 891 }
890 892
891 893 return status;
892 894 }
893 895
894 896 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
895 897 {
896 898 unsigned int status;
897 899
900 status = LFR_DEFAULT;
901
898 902 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
899 903 || (mode == TDS_MODE_BURST)
900 904 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
901 905 || (mode == TDS_MODE_LFM))
902 906 {
903 907 status = LFR_SUCCESSFUL;
904 908 }
905 909 else
906 910 {
907 911 status = LFR_DEFAULT;
908 912 }
909 913
910 914 return status;
911 915 }
912 916
913 917 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
914 918 {
915 919 unsigned int status;
916 920
921 status = LFR_DEFAULT;
922
917 923 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
918 924 || (mode == THR_MODE_BURST))
919 925 {
920 926 status = LFR_SUCCESSFUL;
921 927 }
922 928 else
923 929 {
924 930 status = LFR_DEFAULT;
925 931 }
926 932
927 933 return status;
928 934 }
929 935
930 936 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
931 937 {
932 938 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
933 939 *
934 940 * @param TC points to the TeleCommand packet that is being processed
935 941 *
936 942 */
937 943
938 944 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
939 945
940 946 bytePosPtr = (unsigned char *) &TC->packetID;
941 947
942 948 // cp_rpw_sc_rw1_f1
943 949 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f1,
944 950 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
945 951
946 952 // cp_rpw_sc_rw1_f2
947 953 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f2,
948 954 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
949 955
950 956 // cp_rpw_sc_rw2_f1
951 957 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f1,
952 958 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
953 959
954 960 // cp_rpw_sc_rw2_f2
955 961 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f2,
956 962 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
957 963
958 964 // cp_rpw_sc_rw3_f1
959 965 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f1,
960 966 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
961 967
962 968 // cp_rpw_sc_rw3_f2
963 969 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f2,
964 970 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
965 971
966 972 // cp_rpw_sc_rw4_f1
967 973 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f1,
968 974 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
969 975
970 976 // cp_rpw_sc_rw4_f2
971 977 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f2,
972 978 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
973 979 }
974 980
975 981 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag )
976 982 {
977 983 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
978 984 *
979 985 * @param fbins_mask
980 986 * @param rw_f is the reaction wheel frequency to filter
981 987 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
982 988 * @param flag [true] filtering enabled [false] filtering disabled
983 989 *
984 990 * @return void
985 991 *
986 992 */
987 993
988 994 float f_RW_min;
989 995 float f_RW_MAX;
990 996 float fi_min;
991 997 float fi_MAX;
992 998 float fi;
993 999 float deltaBelow;
994 1000 float deltaAbove;
995 1001 int binBelow;
996 1002 int binAbove;
997 1003 int closestBin;
998 1004 unsigned int whichByte;
999 1005 int selectedByte;
1000 1006 int bin;
1001 1007 int binToRemove[NB_BINS_TO_REMOVE];
1002 1008 int k;
1003 1009
1010 closestBin = 0;
1004 1011 whichByte = 0;
1005 1012 bin = 0;
1006 1013
1007 1014 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1008 1015 {
1009 1016 binToRemove[k] = -1;
1010 1017 }
1011 1018
1012 1019 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
1013 1020 f_RW_min = rw_f - (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1014 1021 f_RW_MAX = rw_f + (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1015 1022
1016 1023 // compute the index of the frequency bin immediately below rw_f
1017 1024 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1018 1025 deltaBelow = rw_f - binBelow * deltaFreq;
1019 1026
1020 1027 // compute the index of the frequency bin immediately above rw_f
1021 1028 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1022 1029 deltaAbove = binAbove * deltaFreq - rw_f;
1023 1030
1024 1031 // search the closest bin
1025 1032 if (deltaAbove > deltaBelow)
1026 1033 {
1027 1034 closestBin = binBelow;
1028 1035 }
1029 1036 else
1030 1037 {
1031 1038 closestBin = binAbove;
1032 1039 }
1033 1040
1034 1041 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1035 1042 fi = closestBin * deltaFreq;
1036 1043 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1037 1044 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1038 1045
1039 1046 //**************************************************************************************
1040 1047 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1041 1048 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1042 1049 //**************************************************************************************
1043 1050
1044 1051 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1045 1052 // => remove f_(i), f_(i-1) and f_(i+1)
1046 1053 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1047 1054 {
1048 1055 binToRemove[0] = (closestBin - 1) - 1;
1049 1056 binToRemove[1] = (closestBin) - 1;
1050 1057 binToRemove[2] = (closestBin + 1) - 1;
1051 1058 }
1052 1059 // 2. ELSE
1053 1060 // => remove the two f_(i) which are around f_RW
1054 1061 else
1055 1062 {
1056 1063 binToRemove[0] = (binBelow) - 1;
1057 1064 binToRemove[1] = (binAbove) - 1;
1058 1065 binToRemove[2] = (-1);
1059 1066 }
1060 1067
1061 1068 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1062 1069 {
1063 1070 bin = binToRemove[k];
1064 1071 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1065 1072 {
1066 1073 if (flag == 1)
1067 1074 {
1068 1075 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1069 1076 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1070 1077 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1071 1078 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1072 1079 }
1073 1080 }
1074 1081 }
1075 1082 }
1076 1083
1077 1084 void build_sy_lfr_rw_mask( unsigned int channel )
1078 1085 {
1079 1086 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1080 1087 unsigned char *maskPtr;
1081 1088 double deltaF;
1082 1089 unsigned k;
1083 1090
1084 1091 k = 0;
1085 1092
1086 1093 maskPtr = NULL;
1087 1094 deltaF = DELTAF_F2;
1088 1095
1089 1096 switch (channel)
1090 1097 {
1091 1098 case CHANNELF0:
1092 1099 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f0_word1;
1093 1100 deltaF = DELTAF_F0;
1094 1101 break;
1095 1102 case CHANNELF1:
1096 1103 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f1_word1;
1097 1104 deltaF = DELTAF_F1;
1098 1105 break;
1099 1106 case CHANNELF2:
1100 1107 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f2_word1;
1101 1108 deltaF = DELTAF_F2;
1102 1109 break;
1103 1110 default:
1104 1111 break;
1105 1112 }
1106 1113
1107 1114 for (k = 0; k < BYTES_PER_MASK; k++)
1108 1115 {
1109 1116 local_rw_fbins_mask[k] = INT8_ALL_F;
1110 1117 }
1111 1118
1112 1119 // RW1 F1
1113 1120 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F1) >> SHIFT_7_BITS ); // [1000 0000]
1114 1121
1115 1122 // RW1 F2
1116 1123 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F2) >> SHIFT_6_BITS ); // [0100 0000]
1117 1124
1118 1125 // RW2 F1
1119 1126 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F1) >> SHIFT_5_BITS ); // [0010 0000]
1120 1127
1121 1128 // RW2 F2
1122 1129 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F2) >> SHIFT_4_BITS ); // [0001 0000]
1123 1130
1124 1131 // RW3 F1
1125 1132 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F1) >> SHIFT_3_BITS ); // [0000 1000]
1126 1133
1127 1134 // RW3 F2
1128 1135 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F2) >> SHIFT_2_BITS ); // [0000 0100]
1129 1136
1130 1137 // RW4 F1
1131 1138 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F1) >> 1 ); // [0000 0010]
1132 1139
1133 1140 // RW4 F2
1134 1141 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F2) ); // [0000 0001]
1135 1142
1136 1143 // update the value of the fbins related to reaction wheels frequency filtering
1137 1144 if (maskPtr != NULL)
1138 1145 {
1139 1146 for (k = 0; k < BYTES_PER_MASK; k++)
1140 1147 {
1141 1148 maskPtr[k] = local_rw_fbins_mask[k];
1142 1149 }
1143 1150 }
1144 1151 }
1145 1152
1146 1153 void build_sy_lfr_rw_masks( void )
1147 1154 {
1148 1155 build_sy_lfr_rw_mask( CHANNELF0 );
1149 1156 build_sy_lfr_rw_mask( CHANNELF1 );
1150 1157 build_sy_lfr_rw_mask( CHANNELF2 );
1151 1158 }
1152 1159
1153 1160 void merge_fbins_masks( void )
1154 1161 {
1155 1162 unsigned char k;
1156 1163
1157 1164 unsigned char *fbins_f0;
1158 1165 unsigned char *fbins_f1;
1159 1166 unsigned char *fbins_f2;
1160 1167 unsigned char *rw_mask_f0;
1161 1168 unsigned char *rw_mask_f1;
1162 1169 unsigned char *rw_mask_f2;
1163 1170
1164 1171 fbins_f0 = parameter_dump_packet.sy_lfr_fbins.fx.f0_word1;
1165 1172 fbins_f1 = parameter_dump_packet.sy_lfr_fbins.fx.f1_word1;
1166 1173 fbins_f2 = parameter_dump_packet.sy_lfr_fbins.fx.f2_word1;
1167 1174 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask.fx.f0_word1;
1168 1175 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask.fx.f1_word1;
1169 1176 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask.fx.f2_word1;
1170 1177
1171 1178 for( k=0; k < BYTES_PER_MASK; k++ )
1172 1179 {
1173 1180 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1174 1181 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1175 1182 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1176 1183 }
1177 1184 }
1178 1185
1179 1186 //***********
1180 1187 // FBINS MASK
1181 1188
1182 1189 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1183 1190 {
1184 1191 int status;
1185 1192 unsigned int k;
1186 1193 unsigned char *fbins_mask_dump;
1187 1194 unsigned char *fbins_mask_TC;
1188 1195
1189 1196 status = LFR_SUCCESSFUL;
1190 1197
1191 1198 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins.raw;
1192 1199 fbins_mask_TC = TC->dataAndCRC;
1193 1200
1194 1201 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1195 1202 {
1196 1203 fbins_mask_dump[k] = fbins_mask_TC[k];
1197 1204 }
1198 1205
1199 1206 return status;
1200 1207 }
1201 1208
1202 1209 //***************************
1203 1210 // TC_LFR_LOAD_PAS_FILTER_PAR
1204 1211
1205 1212 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1206 1213 {
1207 1214 int flag;
1208 1215 rtems_status_code status;
1209 1216
1210 1217 unsigned char sy_lfr_pas_filter_enabled;
1211 1218 unsigned char sy_lfr_pas_filter_modulus;
1212 1219 float sy_lfr_pas_filter_tbad;
1213 1220 unsigned char sy_lfr_pas_filter_offset;
1214 1221 float sy_lfr_pas_filter_shift;
1215 1222 float sy_lfr_sc_rw_delta_f;
1216 1223 char *parPtr;
1217 1224
1218 1225 flag = LFR_SUCCESSFUL;
1219 1226 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1220 1227 sy_lfr_pas_filter_shift = INIT_FLOAT;
1221 1228 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1222 1229 parPtr = NULL;
1223 1230
1224 1231 //***************
1225 1232 // get parameters
1226 1233 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1227 1234 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1228 1235 copyFloatByChar(
1229 1236 (unsigned char*) &sy_lfr_pas_filter_tbad,
1230 1237 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1231 1238 );
1232 1239 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1233 1240 copyFloatByChar(
1234 1241 (unsigned char*) &sy_lfr_pas_filter_shift,
1235 1242 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1236 1243 );
1237 1244 copyFloatByChar(
1238 1245 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1239 1246 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1240 1247 );
1241 1248
1242 1249 //******************
1243 1250 // CHECK CONSISTENCY
1244 1251
1245 1252 //**************************
1246 1253 // sy_lfr_pas_filter_enabled
1247 1254 // nothing to check, value is 0 or 1
1248 1255
1249 1256 //**************************
1250 1257 // sy_lfr_pas_filter_modulus
1251 1258 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1252 1259 {
1253 1260 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1254 1261 flag = WRONG_APP_DATA;
1255 1262 }
1256 1263
1257 1264 //***********************
1258 1265 // sy_lfr_pas_filter_tbad
1259 1266 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1260 1267 {
1261 1268 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1262 1269 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1263 1270 flag = WRONG_APP_DATA;
1264 1271 }
1265 1272
1266 1273 //*************************
1267 1274 // sy_lfr_pas_filter_offset
1268 1275 if (flag == LFR_SUCCESSFUL)
1269 1276 {
1270 1277 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1271 1278 {
1272 1279 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1273 1280 flag = WRONG_APP_DATA;
1274 1281 }
1275 1282 }
1276 1283
1277 1284 //************************
1278 1285 // sy_lfr_pas_filter_shift
1279 1286 if (flag == LFR_SUCCESSFUL)
1280 1287 {
1281 1288 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1282 1289 {
1283 1290 parPtr = (char*) &sy_lfr_pas_filter_shift;
1284 1291 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1285 1292 flag = WRONG_APP_DATA;
1286 1293 }
1287 1294 }
1288 1295
1289 1296 //*************************************
1290 1297 // check global coherency of the values
1291 1298 if (flag == LFR_SUCCESSFUL)
1292 1299 {
1293 1300 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1294 1301 {
1295 1302 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1296 1303 flag = WRONG_APP_DATA;
1297 1304 }
1298 1305 }
1299 1306
1300 1307 //*********************
1301 1308 // sy_lfr_sc_rw_delta_f
1302 1309 // nothing to check, no default value in the ICD
1303 1310
1304 1311 return flag;
1305 1312 }
1306 1313
1307 1314 //**************
1308 1315 // KCOEFFICIENTS
1309 1316 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1310 1317 {
1311 1318 unsigned int kcoeff;
1312 1319 unsigned short sy_lfr_kcoeff_frequency;
1313 1320 unsigned short bin;
1314 1321 unsigned short *freqPtr;
1315 1322 float *kcoeffPtr_norm;
1316 1323 float *kcoeffPtr_sbm;
1317 1324 int status;
1318 1325 unsigned char *kcoeffLoadPtr;
1319 1326 unsigned char *kcoeffNormPtr;
1320 1327 unsigned char *kcoeffSbmPtr_a;
1321 1328 unsigned char *kcoeffSbmPtr_b;
1322 1329
1323 1330 status = LFR_SUCCESSFUL;
1324 1331
1325 1332 kcoeffPtr_norm = NULL;
1326 1333 kcoeffPtr_sbm = NULL;
1327 1334 bin = 0;
1328 1335
1329 1336 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
1330 1337 sy_lfr_kcoeff_frequency = *freqPtr;
1331 1338
1332 1339 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1333 1340 {
1334 1341 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1335 1342 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1336 1343 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1337 1344 status = LFR_DEFAULT;
1338 1345 }
1339 1346 else
1340 1347 {
1341 1348 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1342 1349 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1343 1350 {
1344 1351 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1345 1352 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1346 1353 bin = sy_lfr_kcoeff_frequency;
1347 1354 }
1348 1355 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1349 1356 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1350 1357 {
1351 1358 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1352 1359 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1353 1360 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1354 1361 }
1355 1362 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1356 1363 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1357 1364 {
1358 1365 kcoeffPtr_norm = k_coeff_intercalib_f2;
1359 1366 kcoeffPtr_sbm = NULL;
1360 1367 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1361 1368 }
1362 1369 }
1363 1370
1364 1371 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1365 1372 {
1366 1373 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1367 1374 {
1368 1375 // destination
1369 1376 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1370 1377 // source
1371 1378 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1372 1379 // copy source to destination
1373 1380 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1374 1381 }
1375 1382 }
1376 1383
1377 1384 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1378 1385 {
1379 1386 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1380 1387 {
1381 1388 // destination
1382 1389 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1383 1390 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1384 1391 // source
1385 1392 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1386 1393 // copy source to destination
1387 1394 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1388 1395 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1389 1396 }
1390 1397 }
1391 1398
1392 1399 // print_k_coeff();
1393 1400
1394 1401 return status;
1395 1402 }
1396 1403
1397 1404 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1398 1405 {
1399 1406 destination[BYTE_0] = source[BYTE_0];
1400 1407 destination[BYTE_1] = source[BYTE_1];
1401 1408 destination[BYTE_2] = source[BYTE_2];
1402 1409 destination[BYTE_3] = source[BYTE_3];
1403 1410 }
1404 1411
1405 1412 void floatToChar( float value, unsigned char* ptr)
1406 1413 {
1407 1414 unsigned char* valuePtr;
1408 1415
1409 1416 valuePtr = (unsigned char*) &value;
1410 1417 ptr[BYTE_0] = valuePtr[BYTE_0];
1411 1418 ptr[BYTE_1] = valuePtr[BYTE_1];
1412 1419 ptr[BYTE_2] = valuePtr[BYTE_2];
1413 1420 ptr[BYTE_3] = valuePtr[BYTE_3];
1414 1421 }
1415 1422
1416 1423 //**********
1417 1424 // init dump
1418 1425
1419 1426 void init_parameter_dump( void )
1420 1427 {
1421 1428 /** This function initialize the parameter_dump_packet global variable with default values.
1422 1429 *
1423 1430 */
1424 1431
1425 1432 unsigned int k;
1426 1433
1427 1434 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1428 1435 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1429 1436 parameter_dump_packet.reserved = CCSDS_RESERVED;
1430 1437 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1431 1438 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1432 1439 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1433 1440 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1434 1441 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1435 1442 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1436 1443 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1437 1444 // DATA FIELD HEADER
1438 1445 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1439 1446 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1440 1447 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1441 1448 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1442 1449 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1443 1450 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1444 1451 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1445 1452 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1446 1453 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1447 1454 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1448 1455 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1449 1456
1450 1457 //******************
1451 1458 // COMMON PARAMETERS
1452 1459 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1453 1460 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1454 1461
1455 1462 //******************
1456 1463 // NORMAL PARAMETERS
1457 1464 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1458 1465 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1459 1466 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1460 1467 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1461 1468 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1462 1469 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1463 1470 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1464 1471 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1465 1472 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1466 1473
1467 1474 //*****************
1468 1475 // BURST PARAMETERS
1469 1476 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1470 1477 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1471 1478
1472 1479 //****************
1473 1480 // SBM1 PARAMETERS
1474 1481 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1475 1482 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1476 1483
1477 1484 //****************
1478 1485 // SBM2 PARAMETERS
1479 1486 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1480 1487 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1481 1488
1482 1489 //************
1483 1490 // FBINS MASKS
1484 1491 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1485 1492 {
1486 1493 parameter_dump_packet.sy_lfr_fbins.raw[k] = INT8_ALL_F;
1487 1494 }
1488 1495
1489 1496 // PAS FILTER PARAMETERS
1490 1497 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1491 1498 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1492 1499 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1493 1500 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1494 1501 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1495 1502 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1496 1503 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1497 1504
1498 1505 // LFR_RW_MASK
1499 1506 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1500 1507 {
1501 1508 parameter_dump_packet.sy_lfr_rw_mask.raw[k] = INT8_ALL_F;
1502 1509 }
1503 1510
1504 1511 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1505 1512 merge_fbins_masks();
1506 1513 }
1507 1514
1508 1515 void init_kcoefficients_dump( void )
1509 1516 {
1510 1517 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1511 1518 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1512 1519
1513 1520 kcoefficient_node_1.previous = NULL;
1514 1521 kcoefficient_node_1.next = NULL;
1515 1522 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1516 1523 kcoefficient_node_1.coarseTime = INIT_CHAR;
1517 1524 kcoefficient_node_1.fineTime = INIT_CHAR;
1518 1525 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1519 1526 kcoefficient_node_1.status = INIT_CHAR;
1520 1527
1521 1528 kcoefficient_node_2.previous = NULL;
1522 1529 kcoefficient_node_2.next = NULL;
1523 1530 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1524 1531 kcoefficient_node_2.coarseTime = INIT_CHAR;
1525 1532 kcoefficient_node_2.fineTime = INIT_CHAR;
1526 1533 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1527 1534 kcoefficient_node_2.status = INIT_CHAR;
1528 1535 }
1529 1536
1530 1537 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1531 1538 {
1532 1539 unsigned int k;
1533 1540 unsigned int packetLength;
1534 1541
1535 1542 packetLength =
1536 1543 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1537 1544
1538 1545 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1539 1546 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1540 1547 kcoefficients_dump->reserved = CCSDS_RESERVED;
1541 1548 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1542 1549 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1543 1550 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1544 1551 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1545 1552 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1546 1553 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1547 1554 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1548 1555 // DATA FIELD HEADER
1549 1556 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1550 1557 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1551 1558 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1552 1559 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1553 1560 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1554 1561 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1555 1562 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1556 1563 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1557 1564 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1558 1565 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1559 1566 kcoefficients_dump->sid = SID_K_DUMP;
1560 1567
1561 1568 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1562 1569 kcoefficients_dump->pkt_nr = PKTNR_1;
1563 1570 kcoefficients_dump->blk_nr = blk_nr;
1564 1571
1565 1572 //******************
1566 1573 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1567 1574 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1568 1575 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1569 1576 {
1570 1577 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1571 1578 }
1572 1579 }
1573 1580
1574 1581 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1575 1582 {
1576 1583 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1577 1584 *
1578 1585 * @param packet_sequence_control points to the packet sequence control which will be incremented
1579 1586 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1580 1587 *
1581 1588 * If the destination ID is not known, a dedicated counter is incremented.
1582 1589 *
1583 1590 */
1584 1591
1585 1592 unsigned short sequence_cnt;
1586 1593 unsigned short segmentation_grouping_flag;
1587 1594 unsigned short new_packet_sequence_control;
1588 1595 unsigned char i;
1589 1596
1590 1597 switch (destination_id)
1591 1598 {
1592 1599 case SID_TC_GROUND:
1593 1600 i = GROUND;
1594 1601 break;
1595 1602 case SID_TC_MISSION_TIMELINE:
1596 1603 i = MISSION_TIMELINE;
1597 1604 break;
1598 1605 case SID_TC_TC_SEQUENCES:
1599 1606 i = TC_SEQUENCES;
1600 1607 break;
1601 1608 case SID_TC_RECOVERY_ACTION_CMD:
1602 1609 i = RECOVERY_ACTION_CMD;
1603 1610 break;
1604 1611 case SID_TC_BACKUP_MISSION_TIMELINE:
1605 1612 i = BACKUP_MISSION_TIMELINE;
1606 1613 break;
1607 1614 case SID_TC_DIRECT_CMD:
1608 1615 i = DIRECT_CMD;
1609 1616 break;
1610 1617 case SID_TC_SPARE_GRD_SRC1:
1611 1618 i = SPARE_GRD_SRC1;
1612 1619 break;
1613 1620 case SID_TC_SPARE_GRD_SRC2:
1614 1621 i = SPARE_GRD_SRC2;
1615 1622 break;
1616 1623 case SID_TC_OBCP:
1617 1624 i = OBCP;
1618 1625 break;
1619 1626 case SID_TC_SYSTEM_CONTROL:
1620 1627 i = SYSTEM_CONTROL;
1621 1628 break;
1622 1629 case SID_TC_AOCS:
1623 1630 i = AOCS;
1624 1631 break;
1625 1632 case SID_TC_RPW_INTERNAL:
1626 1633 i = RPW_INTERNAL;
1627 1634 break;
1628 1635 default:
1629 1636 i = GROUND;
1630 1637 break;
1631 1638 }
1632 1639
1633 1640 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1634 1641 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1635 1642
1636 1643 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1637 1644
1638 1645 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1639 1646 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1640 1647
1641 1648 // increment the sequence counter
1642 1649 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1643 1650 {
1644 1651 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1645 1652 }
1646 1653 else
1647 1654 {
1648 1655 sequenceCounters_TM_DUMP[ i ] = 0;
1649 1656 }
1650 1657 }
@@ -1,1319 +1,1343
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //***************
13 13 // waveform rings
14 14 // F0
15 15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
16 16 ring_node *current_ring_node_f0;
17 17 ring_node *ring_node_to_send_swf_f0;
18 18 // F1
19 19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
20 20 ring_node *current_ring_node_f1;
21 21 ring_node *ring_node_to_send_swf_f1;
22 22 ring_node *ring_node_to_send_cwf_f1;
23 23 // F2
24 24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
25 25 ring_node *current_ring_node_f2;
26 26 ring_node *ring_node_to_send_swf_f2;
27 27 ring_node *ring_node_to_send_cwf_f2;
28 28 // F3
29 29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
30 30 ring_node *current_ring_node_f3;
31 31 ring_node *ring_node_to_send_cwf_f3;
32 32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ];
33 33
34 34 bool extractSWF1 = false;
35 35 bool extractSWF2 = false;
36 36 bool swf0_ready_flag_f1 = false;
37 37 bool swf0_ready_flag_f2 = false;
38 38 bool swf1_ready = false;
39 39 bool swf2_ready = false;
40 40
41 41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
42 42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
43 43 ring_node ring_node_swf1_extracted;
44 44 ring_node ring_node_swf2_extracted;
45 45
46 46 typedef enum resynchro_state_t
47 47 {
48 48 MEASURE,
49 49 CORRECTION
50 50 } resynchro_state;
51 51
52 52 //*********************
53 53 // Interrupt SubRoutine
54 54
55 55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
56 56 {
57 57 ring_node *node;
58 58
59 59 node = NULL;
60 60 switch ( frequencyChannel ) {
61 61 case CHANNELF1:
62 62 node = ring_node_to_send_cwf_f1;
63 63 break;
64 64 case CHANNELF2:
65 65 node = ring_node_to_send_cwf_f2;
66 66 break;
67 67 case CHANNELF3:
68 68 node = ring_node_to_send_cwf_f3;
69 69 break;
70 70 default:
71 71 break;
72 72 }
73 73
74 74 return node;
75 75 }
76 76
77 77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
78 78 {
79 79 ring_node *node;
80 80
81 81 node = NULL;
82 82 switch ( frequencyChannel ) {
83 83 case CHANNELF0:
84 84 node = ring_node_to_send_swf_f0;
85 85 break;
86 86 case CHANNELF1:
87 87 node = ring_node_to_send_swf_f1;
88 88 break;
89 89 case CHANNELF2:
90 90 node = ring_node_to_send_swf_f2;
91 91 break;
92 92 default:
93 93 break;
94 94 }
95 95
96 96 return node;
97 97 }
98 98
99 99 void reset_extractSWF( void )
100 100 {
101 101 extractSWF1 = false;
102 102 extractSWF2 = false;
103 103 swf0_ready_flag_f1 = false;
104 104 swf0_ready_flag_f2 = false;
105 105 swf1_ready = false;
106 106 swf2_ready = false;
107 107 }
108 108
109 109 inline void waveforms_isr_f3( void )
110 110 {
111 111 rtems_status_code spare_status;
112 112
113 113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
114 114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
115 115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
116 116 //***
117 117 // F3
118 118 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F3) != INIT_CHAR ) { // [1100 0000] check the f3 full bits
119 119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
120 120 current_ring_node_f3 = current_ring_node_f3->next;
121 121 if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_0) == BIT_WFP_BUF_F3_0){ // [0100 0000] f3 buffer 0 is full
122 122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
123 123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
124 124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
125 125 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_0; // [1000 1000 0100 0000]
126 126 }
127 127 else if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_1) == BIT_WFP_BUF_F3_1){ // [1000 0000] f3 buffer 1 is full
128 128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
129 129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
130 130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
131 131 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_1; // [1000 1000 1000 0000]
132 132 }
133 133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
134 134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
135 135 }
136 136 }
137 137 }
138 138 }
139 139
140 140 inline void waveforms_isr_burst( void )
141 141 {
142 142 unsigned char status;
143 143 rtems_status_code spare_status;
144 144
145 145 status = (waveform_picker_regs->status & BITS_WFP_STATUS_F2) >> SHIFT_WFP_STATUS_F2; // [0011 0000] get the status bits for f2
146 146
147 147 switch(status)
148 148 {
149 149 case BIT_WFP_BUFFER_0:
150 150 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
151 151 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
152 152 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
153 153 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
154 154 current_ring_node_f2 = current_ring_node_f2->next;
155 155 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
156 156 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
157 157 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
158 158 }
159 159 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
160 160 break;
161 161 case BIT_WFP_BUFFER_1:
162 162 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
163 163 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
164 164 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
165 165 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
166 166 current_ring_node_f2 = current_ring_node_f2->next;
167 167 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
168 168 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
169 169 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
170 170 }
171 171 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
172 172 break;
173 173 default:
174 174 break;
175 175 }
176 176 }
177 177
178 178 inline void waveform_isr_normal_sbm1_sbm2( void )
179 179 {
180 180 rtems_status_code status;
181 181
182 182 //***
183 183 // F0
184 184 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F0) != INIT_CHAR ) // [0000 0011] check the f0 full bits
185 185 {
186 186 swf0_ready_flag_f1 = true;
187 187 swf0_ready_flag_f2 = true;
188 188 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
189 189 current_ring_node_f0 = current_ring_node_f0->next;
190 190 if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_0) == BIT_WFP_BUFFER_0)
191 191 {
192 192
193 193 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
194 194 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
195 195 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
196 196 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_0; // [0001 0001 0000 0001]
197 197 }
198 198 else if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_1) == BIT_WFP_BUFFER_1)
199 199 {
200 200 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
201 201 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
202 202 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
203 203 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_1; // [0001 0001 0000 0010]
204 204 }
205 205 // send an event to the WFRM task for resynchro activities
206 206 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
207 207 }
208 208
209 209 //***
210 210 // F1
211 211 if ( (waveform_picker_regs->status & 0x0c) != INIT_CHAR ) { // [0000 1100] check the f1 full bits
212 212 // (1) change the receiving buffer for the waveform picker
213 213 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
214 214 current_ring_node_f1 = current_ring_node_f1->next;
215 215 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_0) == BIT_WFP_BUF_F1_0)
216 216 {
217 217 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
218 218 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
219 219 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
220 220 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_0; // [0010 0010 0000 0100] f1 bits = 0
221 221 }
222 222 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_1) == BIT_WFP_BUF_F1_1)
223 223 {
224 224 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
225 225 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
226 226 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
227 227 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_1; // [0010 0010 0000 1000] f1 bits = 0
228 228 }
229 229 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
230 230 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
231 231 }
232 232
233 233 //***
234 234 // F2
235 235 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F2) != INIT_CHAR ) { // [0011 0000] check the f2 full bit
236 236 // (1) change the receiving buffer for the waveform picker
237 237 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
238 238 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
239 239 current_ring_node_f2 = current_ring_node_f2->next;
240 240 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_0) == BIT_WFP_BUF_F2_0)
241 241 {
242 242 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
243 243 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
244 244 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
245 245 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
246 246 }
247 247 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_1) == BIT_WFP_BUF_F2_1)
248 248 {
249 249 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
250 250 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
251 251 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
252 252 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
253 253 }
254 254 // (2) send an event for the waveforms transmission
255 255 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
256 256 }
257 257 }
258 258
259 259 rtems_isr waveforms_isr( rtems_vector_number vector )
260 260 {
261 261 /** This is the interrupt sub routine called by the waveform picker core.
262 262 *
263 263 * This ISR launch different actions depending mainly on two pieces of information:
264 264 * 1. the values read in the registers of the waveform picker.
265 265 * 2. the current LFR mode.
266 266 *
267 267 */
268 268
269 269 // STATUS
270 270 // new error error buffer full
271 271 // 15 14 13 12 11 10 9 8
272 272 // f3 f2 f1 f0 f3 f2 f1 f0
273 273 //
274 274 // ready buffer
275 275 // 7 6 5 4 3 2 1 0
276 276 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
277 277
278 278 rtems_status_code spare_status;
279 279
280 280 waveforms_isr_f3();
281 281
282 282 //*************************************************
283 283 // copy the status bits in the housekeeping packets
284 284 housekeeping_packet.hk_lfr_vhdl_iir_cal =
285 285 (unsigned char) ((waveform_picker_regs->status & BYTE0_MASK) >> SHIFT_1_BYTE);
286 286
287 287 if ( (waveform_picker_regs->status & BYTE0_MASK) != INIT_CHAR) // [1111 1111 0000 0000] check the error bits
288 288 {
289 289 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
290 290 }
291 291
292 292 switch(lfrCurrentMode)
293 293 {
294 294 //********
295 295 // STANDBY
296 296 case LFR_MODE_STANDBY:
297 297 break;
298 298 //**************************
299 299 // LFR NORMAL, SBM1 and SBM2
300 300 case LFR_MODE_NORMAL:
301 301 case LFR_MODE_SBM1:
302 302 case LFR_MODE_SBM2:
303 303 waveform_isr_normal_sbm1_sbm2();
304 304 break;
305 305 //******
306 306 // BURST
307 307 case LFR_MODE_BURST:
308 308 waveforms_isr_burst();
309 309 break;
310 310 //********
311 311 // DEFAULT
312 312 default:
313 313 break;
314 314 }
315 315 }
316 316
317 317 //************
318 318 // RTEMS TASKS
319 319
320 320 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
321 321 {
322 322 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
323 323 *
324 324 * @param unused is the starting argument of the RTEMS task
325 325 *
326 326 * The following data packets are sent by this task:
327 327 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
328 328 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
329 329 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
330 330 *
331 331 */
332 332
333 333 rtems_event_set event_out;
334 334 rtems_id queue_id;
335 335 rtems_status_code status;
336 336 ring_node *ring_node_swf1_extracted_ptr;
337 337 ring_node *ring_node_swf2_extracted_ptr;
338 338
339 event_out = EVENT_SETS_NONE_PENDING;
340 queue_id = RTEMS_ID_NONE;
341
339 342 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
340 343 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
341 344
342 345 status = get_message_queue_id_send( &queue_id );
343 346 if (status != RTEMS_SUCCESSFUL)
344 347 {
345 348 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
346 349 }
347 350
348 351 BOOT_PRINTF("in WFRM ***\n");
349 352
350 353 while(1){
351 354 // wait for an RTEMS_EVENT
352 355 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
353 356 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
354 357
355 358 if (event_out == RTEMS_EVENT_MODE_NORMAL)
356 359 {
357 360 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
358 361 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
359 362 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
360 363 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
361 364 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
362 365 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
363 366 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
364 367 }
365 368 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
366 369 {
367 370 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
368 371 }
369 372 }
370 373 }
371 374
372 375 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
373 376 {
374 377 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
375 378 *
376 379 * @param unused is the starting argument of the RTEMS task
377 380 *
378 381 * The following data packet is sent by this task:
379 382 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
380 383 *
381 384 */
382 385
383 386 rtems_event_set event_out;
384 387 rtems_id queue_id;
385 388 rtems_status_code status;
386 389 ring_node ring_node_cwf3_light;
387 390 ring_node *ring_node_to_send_cwf;
388 391
392 event_out = EVENT_SETS_NONE_PENDING;
393 queue_id = RTEMS_ID_NONE;
394
389 395 status = get_message_queue_id_send( &queue_id );
390 396 if (status != RTEMS_SUCCESSFUL)
391 397 {
392 398 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
393 399 }
394 400
395 401 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
396 402
397 403 // init the ring_node_cwf3_light structure
398 404 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
399 405 ring_node_cwf3_light.coarseTime = INIT_CHAR;
400 406 ring_node_cwf3_light.fineTime = INIT_CHAR;
401 407 ring_node_cwf3_light.next = NULL;
402 408 ring_node_cwf3_light.previous = NULL;
403 409 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
404 410 ring_node_cwf3_light.status = INIT_CHAR;
405 411
406 412 BOOT_PRINTF("in CWF3 ***\n");
407 413
408 414 while(1){
409 415 // wait for an RTEMS_EVENT
410 416 rtems_event_receive( RTEMS_EVENT_0,
411 417 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
412 418 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
413 419 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
414 420 {
415 421 ring_node_to_send_cwf = getRingNodeToSendCWF( CHANNELF3 );
416 422 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & BIT_CWF_LONG_F3) == BIT_CWF_LONG_F3)
417 423 {
418 424 PRINTF("send CWF_LONG_F3\n");
419 425 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
420 426 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
421 427 }
422 428 else
423 429 {
424 430 PRINTF("send CWF_F3 (light)\n");
425 431 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
426 432 }
427 433
428 434 }
429 435 else
430 436 {
431 437 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
432 438 }
433 439 }
434 440 }
435 441
436 442 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
437 443 {
438 444 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
439 445 *
440 446 * @param unused is the starting argument of the RTEMS task
441 447 *
442 448 * The following data packet is sent by this function:
443 449 * - TM_LFR_SCIENCE_BURST_CWF_F2
444 450 * - TM_LFR_SCIENCE_SBM2_CWF_F2
445 451 *
446 452 */
447 453
448 454 rtems_event_set event_out;
449 455 rtems_id queue_id;
450 456 rtems_status_code status;
451 457 ring_node *ring_node_to_send;
452 458 unsigned long long int acquisitionTimeF0_asLong;
453 459
460 event_out = EVENT_SETS_NONE_PENDING;
461 queue_id = RTEMS_ID_NONE;
462
454 463 acquisitionTimeF0_asLong = INIT_CHAR;
455 464
456 465 status = get_message_queue_id_send( &queue_id );
457 466 if (status != RTEMS_SUCCESSFUL)
458 467 {
459 468 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
460 469 }
461 470
462 471 BOOT_PRINTF("in CWF2 ***\n");
463 472
464 473 while(1){
465 474 // wait for an RTEMS_EVENT// send the snapshot when built
466 475 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
467 476 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
468 477 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
469 478 ring_node_to_send = getRingNodeToSendCWF( CHANNELF2 );
470 479 if (event_out == RTEMS_EVENT_MODE_BURST)
471 480 { // data are sent whatever the transition time
472 481 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
473 482 }
474 483 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
475 484 {
476 485 if ( lfrCurrentMode == LFR_MODE_SBM2 )
477 486 {
478 487 // data are sent depending on the transition time
479 488 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
480 489 {
481 490 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
482 491 }
483 492 }
484 493 // launch snapshot extraction if needed
485 494 if (extractSWF2 == true)
486 495 {
487 496 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
488 497 // extract the snapshot
489 498 build_snapshot_from_ring( ring_node_to_send_swf_f2, CHANNELF2, acquisitionTimeF0_asLong,
490 499 &ring_node_swf2_extracted, swf2_extracted );
491 500 extractSWF2 = false;
492 501 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
493 502 }
494 503 if (swf0_ready_flag_f2 == true)
495 504 {
496 505 extractSWF2 = true;
497 506 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
498 507 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
499 508 swf0_ready_flag_f2 = false;
500 509 }
501 510 }
502 511 }
503 512 }
504 513
505 514 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
506 515 {
507 516 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
508 517 *
509 518 * @param unused is the starting argument of the RTEMS task
510 519 *
511 520 * The following data packet is sent by this function:
512 521 * - TM_LFR_SCIENCE_SBM1_CWF_F1
513 522 *
514 523 */
515 524
516 525 rtems_event_set event_out;
517 526 rtems_id queue_id;
518 527 rtems_status_code status;
519 528
520 529 ring_node *ring_node_to_send_cwf;
521 530
531 event_out = EVENT_SETS_NONE_PENDING;
532 queue_id = RTEMS_ID_NONE;
533
522 534 status = get_message_queue_id_send( &queue_id );
523 535 if (status != RTEMS_SUCCESSFUL)
524 536 {
525 537 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
526 538 }
527 539
528 540 BOOT_PRINTF("in CWF1 ***\n");
529 541
530 542 while(1){
531 543 // wait for an RTEMS_EVENT
532 544 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
533 545 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
534 546 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
535 547 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
536 548 if (lfrCurrentMode == LFR_MODE_SBM1)
537 549 {
538 550 // data are sent depending on the transition time
539 551 if ( time_management_regs->coarse_time >= lastValidEnterModeTime )
540 552 {
541 553 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
542 554 }
543 555 }
544 556 // launch snapshot extraction if needed
545 557 if (extractSWF1 == true)
546 558 {
547 559 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
548 560 // launch the snapshot extraction
549 561 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
550 562 extractSWF1 = false;
551 563 }
552 564 if (swf0_ready_flag_f1 == true)
553 565 {
554 566 extractSWF1 = true;
555 567 swf0_ready_flag_f1 = false; // this step shall be executed only one time
556 568 }
557 569 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
558 570 {
559 571 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
560 572 swf1_ready = false;
561 573 swf2_ready = false;
562 574 }
563 575 }
564 576 }
565 577
566 578 rtems_task swbd_task(rtems_task_argument argument)
567 579 {
568 580 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
569 581 *
570 582 * @param unused is the starting argument of the RTEMS task
571 583 *
572 584 */
573 585
574 586 rtems_event_set event_out;
575 587 unsigned long long int acquisitionTimeF0_asLong;
576 588
589 event_out = EVENT_SETS_NONE_PENDING;
577 590 acquisitionTimeF0_asLong = INIT_CHAR;
578 591
579 592 BOOT_PRINTF("in SWBD ***\n")
580 593
581 594 while(1){
582 595 // wait for an RTEMS_EVENT
583 596 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
584 597 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
585 598 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
586 599 {
587 600 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
588 601 build_snapshot_from_ring( ring_node_to_send_swf_f1, CHANNELF1, acquisitionTimeF0_asLong,
589 602 &ring_node_swf1_extracted, swf1_extracted );
590 603 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
591 604 }
592 605 else
593 606 {
594 607 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
595 608 }
596 609 }
597 610 }
598 611
599 612 //******************
600 613 // general functions
601 614
602 615 void WFP_init_rings( void )
603 616 {
604 617 // F0 RING
605 618 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
606 619 // F1 RING
607 620 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
608 621 // F2 RING
609 622 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
610 623 // F3 RING
611 624 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
612 625
613 626 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
614 627 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
615 628
616 629 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
617 630 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
618 631 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
619 632 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
620 633 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
621 634 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
622 635 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
623 636 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
624 637
625 638 }
626 639
627 640 void WFP_reset_current_ring_nodes( void )
628 641 {
629 642 current_ring_node_f0 = waveform_ring_f0[0].next;
630 643 current_ring_node_f1 = waveform_ring_f1[0].next;
631 644 current_ring_node_f2 = waveform_ring_f2[0].next;
632 645 current_ring_node_f3 = waveform_ring_f3[0].next;
633 646
634 647 ring_node_to_send_swf_f0 = waveform_ring_f0;
635 648 ring_node_to_send_swf_f1 = waveform_ring_f1;
636 649 ring_node_to_send_swf_f2 = waveform_ring_f2;
637 650
638 651 ring_node_to_send_cwf_f1 = waveform_ring_f1;
639 652 ring_node_to_send_cwf_f2 = waveform_ring_f2;
640 653 ring_node_to_send_cwf_f3 = waveform_ring_f3;
641 654 }
642 655
643 656 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
644 657 {
645 658 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
646 659 *
647 660 * @param waveform points to the buffer containing the data that will be send.
648 661 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
649 662 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
650 663 * contain information to setup the transmission of the data packets.
651 664 *
652 665 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
653 666 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
654 667 *
655 668 */
656 669
657 670 unsigned int i;
658 671 unsigned int j;
659 672 int ret;
660 673 rtems_status_code status;
661 674
662 675 char *sample;
663 676 int *dataPtr;
664 677
665 678 ret = LFR_DEFAULT;
666 679
667 680 dataPtr = (int*) ring_node_to_send->buffer_address;
668 681
669 682 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
670 683 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
671 684
672 685 //**********************
673 686 // BUILD CWF3_light DATA
674 687 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
675 688 {
676 689 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
677 690 for (j=0; j < CWF_BLK_SIZE; j++)
678 691 {
679 692 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + j] = sample[ j ];
680 693 }
681 694 }
682 695
683 696 // SEND PACKET
684 697 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
685 698 if (status != RTEMS_SUCCESSFUL) {
686 699 ret = LFR_DEFAULT;
687 700 }
688 701
689 702 return ret;
690 703 }
691 704
692 705 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
693 706 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
694 707 {
695 708 unsigned long long int acquisitionTimeAsLong;
696 709 unsigned char localAcquisitionTime[BYTES_PER_TIME];
697 710 double deltaT;
698 711
699 712 deltaT = INIT_FLOAT;
700 713
701 714 localAcquisitionTime[BYTE_0] = (unsigned char) ( coarseTime >> SHIFT_3_BYTES );
702 715 localAcquisitionTime[BYTE_1] = (unsigned char) ( coarseTime >> SHIFT_2_BYTES );
703 716 localAcquisitionTime[BYTE_2] = (unsigned char) ( coarseTime >> SHIFT_1_BYTE );
704 717 localAcquisitionTime[BYTE_3] = (unsigned char) ( coarseTime );
705 718 localAcquisitionTime[BYTE_4] = (unsigned char) ( fineTime >> SHIFT_1_BYTE );
706 719 localAcquisitionTime[BYTE_5] = (unsigned char) ( fineTime );
707 720
708 721 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[BYTE_0] << SHIFT_5_BYTES )
709 722 + ( (unsigned long long int) localAcquisitionTime[BYTE_1] << SHIFT_4_BYTES )
710 723 + ( (unsigned long long int) localAcquisitionTime[BYTE_2] << SHIFT_3_BYTES )
711 724 + ( (unsigned long long int) localAcquisitionTime[BYTE_3] << SHIFT_2_BYTES )
712 725 + ( (unsigned long long int) localAcquisitionTime[BYTE_4] << SHIFT_1_BYTE )
713 726 + ( (unsigned long long int) localAcquisitionTime[BYTE_5] );
714 727
715 728 switch( sid )
716 729 {
717 730 case SID_NORM_SWF_F0:
718 731 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T0_IN_FINETIME ;
719 732 break;
720 733
721 734 case SID_NORM_SWF_F1:
722 735 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T1_IN_FINETIME ;
723 736 break;
724 737
725 738 case SID_NORM_SWF_F2:
726 739 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T2_IN_FINETIME ;
727 740 break;
728 741
729 742 case SID_SBM1_CWF_F1:
730 743 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T1_IN_FINETIME ;
731 744 break;
732 745
733 746 case SID_SBM2_CWF_F2:
734 747 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
735 748 break;
736 749
737 750 case SID_BURST_CWF_F2:
738 751 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
739 752 break;
740 753
741 754 case SID_NORM_CWF_F3:
742 755 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * T3_IN_FINETIME ;
743 756 break;
744 757
745 758 case SID_NORM_CWF_LONG_F3:
746 759 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T3_IN_FINETIME ;
747 760 break;
748 761
749 762 default:
750 763 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
751 764 deltaT = 0.;
752 765 break;
753 766 }
754 767
755 768 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
756 769 //
757 770 acquisitionTime[BYTE_0] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_5_BYTES);
758 771 acquisitionTime[BYTE_1] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_4_BYTES);
759 772 acquisitionTime[BYTE_2] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_3_BYTES);
760 773 acquisitionTime[BYTE_3] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_2_BYTES);
761 774 acquisitionTime[BYTE_4] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_1_BYTE );
762 775 acquisitionTime[BYTE_5] = (unsigned char) (acquisitionTimeAsLong );
763 776
764 777 }
765 778
766 779 void build_snapshot_from_ring( ring_node *ring_node_to_send,
767 780 unsigned char frequencyChannel,
768 781 unsigned long long int acquisitionTimeF0_asLong,
769 782 ring_node *ring_node_swf_extracted,
770 783 int *swf_extracted)
771 784 {
772 785 unsigned int i;
773 786 unsigned int node;
774 787 unsigned long long int centerTime_asLong;
775 788 unsigned long long int acquisitionTime_asLong;
776 789 unsigned long long int bufferAcquisitionTime_asLong;
777 790 unsigned char *ptr1;
778 791 unsigned char *ptr2;
779 792 unsigned char *timeCharPtr;
780 793 unsigned char nb_ring_nodes;
781 794 unsigned long long int frequency_asLong;
782 795 unsigned long long int nbTicksPerSample_asLong;
783 796 unsigned long long int nbSamplesPart1_asLong;
784 797 unsigned long long int sampleOffset_asLong;
785 798
786 799 unsigned int deltaT_F0;
787 800 unsigned int deltaT_F1;
788 801 unsigned long long int deltaT_F2;
789 802
790 803 deltaT_F0 = DELTAT_F0;
791 804 deltaT_F1 = DELTAF_F1;
792 805 deltaT_F2 = DELTAF_F2;
793 806 sampleOffset_asLong = INIT_CHAR;
794 807
795 808 // (1) get the f0 acquisition time => the value is passed in argument
796 809
797 810 // (2) compute the central reference time
798 811 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
812 acquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
813 bufferAcquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
814 nbTicksPerSample_asLong = TICKS_PER_T2; //set to default value (Don_Initialisation_P2)
799 815
800 816 // (3) compute the acquisition time of the current snapshot
801 817 switch(frequencyChannel)
802 818 {
803 819 case CHANNELF1: // 1 is for F1 = 4096 Hz
804 820 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
805 821 nb_ring_nodes = NB_RING_NODES_F1;
806 822 frequency_asLong = FREQ_F1;
807 823 nbTicksPerSample_asLong = TICKS_PER_T1; // 65536 / 4096;
808 824 break;
809 825 case CHANNELF2: // 2 is for F2 = 256 Hz
810 826 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
811 827 nb_ring_nodes = NB_RING_NODES_F2;
812 828 frequency_asLong = FREQ_F2;
813 829 nbTicksPerSample_asLong = TICKS_PER_T2; // 65536 / 256;
814 830 break;
815 831 default:
816 832 acquisitionTime_asLong = centerTime_asLong;
817 833 nb_ring_nodes = 0;
818 834 frequency_asLong = FREQ_F2;
819 835 nbTicksPerSample_asLong = TICKS_PER_T2;
820 836 break;
821 837 }
822 838
823 839 //*****************************************************************************
824 840 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
825 841 node = 0;
826 842 while ( node < nb_ring_nodes)
827 843 {
828 844 //PRINTF1("%d ... ", node);
829 845 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
830 846 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
831 847 {
832 848 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
833 849 node = nb_ring_nodes;
834 850 }
835 851 else
836 852 {
837 853 node = node + 1;
838 854 ring_node_to_send = ring_node_to_send->previous;
839 855 }
840 856 }
841 857
842 858 // (5) compute the number of samples to take in the current buffer
843 859 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> SHIFT_2_BYTES;
844 860 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
845 861 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
846 862
847 863 // (6) compute the final acquisition time
848 864 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
849 865 (sampleOffset_asLong * nbTicksPerSample_asLong);
850 866
851 867 // (7) copy the acquisition time at the beginning of the extrated snapshot
852 868 ptr1 = (unsigned char*) &acquisitionTime_asLong;
853 869 // fine time
854 870 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
855 871 ptr2[BYTE_2] = ptr1[ BYTE_4 + OFFSET_2_BYTES ];
856 872 ptr2[BYTE_3] = ptr1[ BYTE_5 + OFFSET_2_BYTES ];
857 873 // coarse time
858 874 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
859 875 ptr2[BYTE_0] = ptr1[ BYTE_0 + OFFSET_2_BYTES ];
860 876 ptr2[BYTE_1] = ptr1[ BYTE_1 + OFFSET_2_BYTES ];
861 877 ptr2[BYTE_2] = ptr1[ BYTE_2 + OFFSET_2_BYTES ];
862 878 ptr2[BYTE_3] = ptr1[ BYTE_3 + OFFSET_2_BYTES ];
863 879
864 880 // re set the synchronization bit
865 881 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
866 882 ptr2[0] = ptr2[0] | (timeCharPtr[0] & SYNC_BIT); // [1000 0000]
867 883
868 884 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
869 885 {
870 886 nbSamplesPart1_asLong = 0;
871 887 }
872 888 // copy the part 1 of the snapshot in the extracted buffer
873 889 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
874 890 {
875 891 swf_extracted[i] =
876 892 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
877 893 }
878 894 // copy the part 2 of the snapshot in the extracted buffer
879 895 ring_node_to_send = ring_node_to_send->next;
880 896 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
881 897 {
882 898 swf_extracted[i] =
883 899 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
884 900 }
885 901 }
886 902
887 903 double computeCorrection( unsigned char *timePtr )
888 904 {
889 905 unsigned long long int acquisitionTime;
890 906 unsigned long long int centerTime;
891 907 unsigned long long int previousTick;
892 908 unsigned long long int nextTick;
893 909 unsigned long long int deltaPreviousTick;
894 910 unsigned long long int deltaNextTick;
895 911 double deltaPrevious_ms;
896 912 double deltaNext_ms;
897 913 double correctionInF2;
898 914
915 correctionInF2 = 0; //set to default value (Don_Initialisation_P2)
916
899 917 // get acquisition time in fine time ticks
900 918 acquisitionTime = get_acquisition_time( timePtr );
901 919
902 920 // compute center time
903 921 centerTime = acquisitionTime + DELTAT_F0; // (2048. / 24576. / 2.) * 65536. = 2730.667;
904 922 previousTick = centerTime - (centerTime & INT16_ALL_F);
905 923 nextTick = previousTick + TICKS_PER_S;
906 924
907 925 deltaPreviousTick = centerTime - previousTick;
908 926 deltaNextTick = nextTick - centerTime;
909 927
910 928 deltaPrevious_ms = (((double) deltaPreviousTick) / TICKS_PER_S) * MS_PER_S;
911 929 deltaNext_ms = (((double) deltaNextTick) / TICKS_PER_S) * MS_PER_S;
912 930
913 931 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
914 932
915 933 // which tick is the closest?
916 934 if (deltaPreviousTick > deltaNextTick)
917 935 {
918 936 // the snapshot center is just before the second => increase delta_snapshot
919 937 correctionInF2 = + (deltaNext_ms * FREQ_F2 / MS_PER_S );
920 938 }
921 939 else
922 940 {
923 941 // the snapshot center is just after the second => decrease delta_snapshot
924 942 correctionInF2 = - (deltaPrevious_ms * FREQ_F2 / MS_PER_S );
925 943 }
926 944
927 945 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
928 946
929 947 return correctionInF2;
930 948 }
931 949
932 950 void applyCorrection( double correction )
933 951 {
934 952 int correctionInt;
935 953
954 correctionInt = 0;
955
936 956 if (correction >= 0.)
937 957 {
938 958 if ( (ONE_TICK_CORR_INTERVAL_0_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_0_MAX) )
939 959 {
940 960 correctionInt = ONE_TICK_CORR;
941 961 }
942 962 else
943 963 {
944 964 correctionInt = CORR_MULT * floor(correction);
945 965 }
946 966 }
947 967 else
948 968 {
949 969 if ( (ONE_TICK_CORR_INTERVAL_1_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_1_MAX) )
950 970 {
951 971 correctionInt = -ONE_TICK_CORR;
952 972 }
953 973 else
954 974 {
955 975 correctionInt = CORR_MULT * ceil(correction);
956 976 }
957 977 }
958 978 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
959 979 }
960 980
961 981 void snapshot_resynchronization( unsigned char *timePtr )
962 982 {
963 983 /** This function compute a correction to apply on delta_snapshot.
964 984 *
965 985 *
966 986 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
967 987 *
968 988 * @return void
969 989 *
970 990 */
971 991
972 992 static double correction = INIT_FLOAT;
973 993 static resynchro_state state = MEASURE;
974 994 static unsigned int nbSnapshots = 0;
975 995
976 996 int correctionInt;
977 997
978 998 correctionInt = 0;
979 999
980 1000 switch (state)
981 1001 {
982 1002
983 1003 case MEASURE:
984 1004 // ********
985 1005 PRINTF1("MEASURE === %d\n", nbSnapshots);
986 1006 state = CORRECTION;
987 1007 correction = computeCorrection( timePtr );
988 1008 PRINTF1("MEASURE === correction = %.2f\n", correction );
989 1009 applyCorrection( correction );
990 1010 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
991 1011 //****
992 1012 break;
993 1013
994 1014 case CORRECTION:
995 1015 //************
996 1016 PRINTF1("CORRECTION === %d\n", nbSnapshots);
997 1017 state = MEASURE;
998 1018 computeCorrection( timePtr );
999 1019 set_wfp_delta_snapshot();
1000 1020 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1001 1021 //****
1002 1022 break;
1003 1023
1004 1024 default:
1005 1025 break;
1006 1026
1007 1027 }
1008 1028
1009 1029 nbSnapshots++;
1010 1030 }
1011 1031
1012 1032 //**************
1013 1033 // wfp registers
1014 1034 void reset_wfp_burst_enable( void )
1015 1035 {
1016 1036 /** This function resets the waveform picker burst_enable register.
1017 1037 *
1018 1038 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1019 1039 *
1020 1040 */
1021 1041
1022 1042 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1023 1043 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & RST_BITS_RUN_BURST_EN;
1024 1044 }
1025 1045
1026 1046 void reset_wfp_status( void )
1027 1047 {
1028 1048 /** This function resets the waveform picker status register.
1029 1049 *
1030 1050 * All status bits are set to 0 [new_err full_err full].
1031 1051 *
1032 1052 */
1033 1053
1034 1054 waveform_picker_regs->status = INT16_ALL_F;
1035 1055 }
1036 1056
1037 1057 void reset_wfp_buffer_addresses( void )
1038 1058 {
1039 1059 // F0
1040 1060 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1041 1061 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1042 1062 // F1
1043 1063 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1044 1064 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1045 1065 // F2
1046 1066 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1047 1067 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1048 1068 // F3
1049 1069 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1050 1070 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1051 1071 }
1052 1072
1053 1073 void reset_waveform_picker_regs( void )
1054 1074 {
1055 1075 /** This function resets the waveform picker module registers.
1056 1076 *
1057 1077 * The registers affected by this function are located at the following offset addresses:
1058 1078 * - 0x00 data_shaping
1059 1079 * - 0x04 run_burst_enable
1060 1080 * - 0x08 addr_data_f0
1061 1081 * - 0x0C addr_data_f1
1062 1082 * - 0x10 addr_data_f2
1063 1083 * - 0x14 addr_data_f3
1064 1084 * - 0x18 status
1065 1085 * - 0x1C delta_snapshot
1066 1086 * - 0x20 delta_f0
1067 1087 * - 0x24 delta_f0_2
1068 1088 * - 0x28 delta_f1 (obsolet parameter)
1069 1089 * - 0x2c delta_f2
1070 1090 * - 0x30 nb_data_by_buffer
1071 1091 * - 0x34 nb_snapshot_param
1072 1092 * - 0x38 start_date
1073 1093 * - 0x3c nb_word_in_buffer
1074 1094 *
1075 1095 */
1076 1096
1077 1097 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1078 1098
1079 1099 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1080 1100
1081 1101 reset_wfp_buffer_addresses();
1082 1102
1083 1103 reset_wfp_status(); // 0x18
1084 1104
1085 1105 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1086 1106
1087 1107 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1088 1108
1089 1109 //the parameter delta_f1 [0x28] is not used anymore
1090 1110
1091 1111 set_wfp_delta_f2(); // 0x2c
1092 1112
1093 1113 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1094 1114 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1095 1115 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1096 1116 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1097 1117 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1098 1118 // 2688 = 8 * 336
1099 1119 waveform_picker_regs->nb_data_by_buffer = DFLT_WFP_NB_DATA_BY_BUFFER; // 0x30 *** 2688 - 1 => nb samples -1
1100 1120 waveform_picker_regs->snapshot_param = DFLT_WFP_SNAPSHOT_PARAM; // 0x34 *** 2688 => nb samples
1101 1121 waveform_picker_regs->start_date = COARSE_TIME_MASK;
1102 1122 //
1103 1123 // coarse time and fine time registers are not initialized, they are volatile
1104 1124 //
1105 1125 waveform_picker_regs->buffer_length = DFLT_WFP_BUFFER_LENGTH; // buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1106 1126 }
1107 1127
1108 1128 void set_wfp_data_shaping( void )
1109 1129 {
1110 1130 /** This function sets the data_shaping register of the waveform picker module.
1111 1131 *
1112 1132 * The value is read from one field of the parameter_dump_packet structure:\n
1113 1133 * bw_sp0_sp1_r0_r1
1114 1134 *
1115 1135 */
1116 1136
1117 1137 unsigned char data_shaping;
1118 1138
1119 1139 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1120 1140 // waveform picker : [R1 R0 SP1 SP0 BW]
1121 1141
1122 1142 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1123 1143
1124 1144 waveform_picker_regs->data_shaping =
1125 1145 ( (data_shaping & BIT_5) >> SHIFT_5_BITS ) // BW
1126 1146 + ( (data_shaping & BIT_4) >> SHIFT_3_BITS ) // SP0
1127 1147 + ( (data_shaping & BIT_3) >> 1 ) // SP1
1128 1148 + ( (data_shaping & BIT_2) << 1 ) // R0
1129 1149 + ( (data_shaping & BIT_1) << SHIFT_3_BITS ) // R1
1130 1150 + ( (data_shaping & BIT_0) << SHIFT_5_BITS ); // R2
1131 1151 }
1132 1152
1133 1153 void set_wfp_burst_enable_register( unsigned char mode )
1134 1154 {
1135 1155 /** This function sets the waveform picker burst_enable register depending on the mode.
1136 1156 *
1137 1157 * @param mode is the LFR mode to launch.
1138 1158 *
1139 1159 * The burst bits shall be before the enable bits.
1140 1160 *
1141 1161 */
1142 1162
1143 1163 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1144 1164 // the burst bits shall be set first, before the enable bits
1145 1165 switch(mode) {
1146 1166 case LFR_MODE_NORMAL:
1147 1167 case LFR_MODE_SBM1:
1148 1168 case LFR_MODE_SBM2:
1149 1169 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_SBM2; // [0110 0000] enable f2 and f1 burst
1150 1170 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1151 1171 break;
1152 1172 case LFR_MODE_BURST:
1153 1173 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_BURST; // [0100 0000] f2 burst enabled
1154 1174 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 and f2
1155 1175 break;
1156 1176 default:
1157 1177 waveform_picker_regs->run_burst_enable = INIT_CHAR; // [0000 0000] no burst enabled, no waveform enabled
1158 1178 break;
1159 1179 }
1160 1180 }
1161 1181
1162 1182 void set_wfp_delta_snapshot( void )
1163 1183 {
1164 1184 /** This function sets the delta_snapshot register of the waveform picker module.
1165 1185 *
1166 1186 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1167 1187 * - sy_lfr_n_swf_p[0]
1168 1188 * - sy_lfr_n_swf_p[1]
1169 1189 *
1170 1190 */
1171 1191
1172 1192 unsigned int delta_snapshot;
1173 1193 unsigned int delta_snapshot_in_T2;
1174 1194
1175 1195 delta_snapshot = (parameter_dump_packet.sy_lfr_n_swf_p[0] * CONST_256)
1176 1196 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1177 1197
1178 1198 delta_snapshot_in_T2 = delta_snapshot * FREQ_F2;
1179 1199 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1180 1200 }
1181 1201
1182 1202 void set_wfp_delta_f0_f0_2( void )
1183 1203 {
1184 1204 unsigned int delta_snapshot;
1185 1205 unsigned int nb_samples_per_snapshot;
1186 1206 float delta_f0_in_float;
1187 1207
1188 1208 delta_snapshot = waveform_picker_regs->delta_snapshot;
1189 1209 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1190 1210 delta_f0_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F0) ) * FREQ_F2;
1191 1211
1192 1212 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1193 1213 waveform_picker_regs->delta_f0_2 = DFLT_WFP_DELTA_F0_2; // 48 = 11 0000, max 7 bits
1194 1214 }
1195 1215
1196 1216 void set_wfp_delta_f1( void )
1197 1217 {
1198 1218 /** Sets the value of the delta_f1 parameter
1199 1219 *
1200 1220 * @param void
1201 1221 *
1202 1222 * @return void
1203 1223 *
1204 1224 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1205 1225 *
1206 1226 */
1207 1227
1208 1228 unsigned int delta_snapshot;
1209 1229 unsigned int nb_samples_per_snapshot;
1210 1230 float delta_f1_in_float;
1211 1231
1212 1232 delta_snapshot = waveform_picker_regs->delta_snapshot;
1213 1233 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1214 1234 delta_f1_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F1) ) * FREQ_F2;
1215 1235
1216 1236 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1217 1237 }
1218 1238
1219 1239 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1220 1240 {
1221 1241 /** Sets the value of the delta_f2 parameter
1222 1242 *
1223 1243 * @param void
1224 1244 *
1225 1245 * @return void
1226 1246 *
1227 1247 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1228 1248 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1229 1249 *
1230 1250 */
1231 1251
1232 1252 unsigned int delta_snapshot;
1233 1253 unsigned int nb_samples_per_snapshot;
1234 1254
1235 1255 delta_snapshot = waveform_picker_regs->delta_snapshot;
1236 1256 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1237 1257
1238 1258 waveform_picker_regs->delta_f2 = delta_snapshot - (nb_samples_per_snapshot / 2) - 1;
1239 1259 }
1240 1260
1241 1261 //*****************
1242 1262 // local parameters
1243 1263
1244 1264 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1245 1265 {
1246 1266 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1247 1267 *
1248 1268 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1249 1269 * @param sid is the source identifier of the packet being updated.
1250 1270 *
1251 1271 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1252 1272 * The sequence counters shall wrap around from 2^14 to zero.
1253 1273 * The sequence counter shall start at zero at startup.
1254 1274 *
1255 1275 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1256 1276 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1257 1277 *
1258 1278 */
1259 1279
1260 1280 unsigned short *sequence_cnt;
1261 1281 unsigned short segmentation_grouping_flag;
1262 1282 unsigned short new_packet_sequence_control;
1263 1283 rtems_mode initial_mode_set;
1264 1284 rtems_mode current_mode_set;
1265 1285 rtems_status_code status;
1266 1286
1287 initial_mode_set = RTEMS_DEFAULT_MODES;
1288 current_mode_set = RTEMS_DEFAULT_MODES;
1289 sequence_cnt = NULL;
1290
1267 1291 //******************************************
1268 1292 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1269 1293 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1270 1294
1271 1295 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1272 1296 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1273 1297 || (sid == SID_BURST_CWF_F2)
1274 1298 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1275 1299 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1276 1300 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1277 1301 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1278 1302 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1279 1303 {
1280 1304 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1281 1305 }
1282 1306 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1283 1307 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1284 1308 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1285 1309 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1286 1310 {
1287 1311 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1288 1312 }
1289 1313 else
1290 1314 {
1291 1315 sequence_cnt = (unsigned short *) NULL;
1292 1316 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1293 1317 }
1294 1318
1295 1319 if (sequence_cnt != NULL)
1296 1320 {
1297 1321 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1298 1322 *sequence_cnt = (*sequence_cnt) & SEQ_CNT_MASK;
1299 1323
1300 1324 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1301 1325
1302 1326 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1303 1327 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1304 1328
1305 1329 // increment the sequence counter
1306 1330 if ( *sequence_cnt < SEQ_CNT_MAX)
1307 1331 {
1308 1332 *sequence_cnt = *sequence_cnt + 1;
1309 1333 }
1310 1334 else
1311 1335 {
1312 1336 *sequence_cnt = 0;
1313 1337 }
1314 1338 }
1315 1339
1316 1340 //*************************************
1317 1341 // RESTORE THE MODE OF THE CALLING TASK
1318 1342 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1319 1343 }
General Comments 0
You need to be logged in to leave comments. Login now