##// END OF EJS Templates
3.2.0.6...
paul -
r356:626aadb9cfa4 R3++ draft
parent child
Show More
@@ -1,107 +1,107
1 1 cmake_minimum_required (VERSION 2.6)
2 2 project (fsw)
3 3
4 4 include(sparc-rtems)
5 5 include(cppcheck)
6 6
7 7 include_directories("../header"
8 8 "../header/lfr_common_headers"
9 9 "../header/processing"
10 10 "../LFR_basic-parameters"
11 11 "../src")
12 12
13 13 set(SOURCES wf_handler.c
14 14 tc_handler.c
15 15 fsw_misc.c
16 16 fsw_init.c
17 17 fsw_globals.c
18 18 fsw_spacewire.c
19 19 tc_load_dump_parameters.c
20 20 tm_lfr_tc_exe.c
21 21 tc_acceptance.c
22 22 processing/fsw_processing.c
23 23 processing/avf0_prc0.c
24 24 processing/avf1_prc1.c
25 25 processing/avf2_prc2.c
26 26 lfr_cpu_usage_report.c
27 27 ${LFR_BP_SRC}
28 28 ../header/wf_handler.h
29 29 ../header/tc_handler.h
30 30 ../header/grlib_regs.h
31 31 ../header/fsw_misc.h
32 32 ../header/fsw_init.h
33 33 ../header/fsw_spacewire.h
34 34 ../header/tc_load_dump_parameters.h
35 35 ../header/tm_lfr_tc_exe.h
36 36 ../header/tc_acceptance.h
37 37 ../header/processing/fsw_processing.h
38 38 ../header/processing/avf0_prc0.h
39 39 ../header/processing/avf1_prc1.h
40 40 ../header/processing/avf2_prc2.h
41 41 ../header/fsw_params_wf_handler.h
42 42 ../header/lfr_cpu_usage_report.h
43 43 ../header/lfr_common_headers/ccsds_types.h
44 44 ../header/lfr_common_headers/fsw_params.h
45 45 ../header/lfr_common_headers/fsw_params_nb_bytes.h
46 46 ../header/lfr_common_headers/fsw_params_processing.h
47 47 ../header/lfr_common_headers/tm_byte_positions.h
48 48 ../LFR_basic-parameters/basic_parameters.h
49 49 ../LFR_basic-parameters/basic_parameters_params.h
50 50 ../header/GscMemoryLPP.hpp
51 51 )
52 52
53 53
54 54 option(FSW_verbose "Enable verbose LFR" OFF)
55 55 option(FSW_boot_messages "Enable LFR boot messages" OFF)
56 56 option(FSW_debug_messages "Enable LFR debug messages" OFF)
57 57 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
58 58 option(FSW_stack_report "Enable LFR stack report" OFF)
59 59 option(FSW_vhdl_dev "?" OFF)
60 60 option(FSW_lpp_dpu_destid "Set to debug at LPP" ON)
61 61 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
62 62 option(FSW_debug_tch "?" OFF)
63 63
64 64 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
65 65 set(SW_VERSION_N2 "2" CACHE STRING "Choose N2 FSW Version." FORCE)
66 66 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
67 set(SW_VERSION_N4 "5" CACHE STRING "Choose N4 FSW Version." FORCE)
67 set(SW_VERSION_N4 "6" CACHE STRING "Choose N4 FSW Version." FORCE)
68 68
69 69 if(FSW_verbose)
70 70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
71 71 endif()
72 72 if(FSW_boot_messages)
73 73 add_definitions(-DBOOT_MESSAGES)
74 74 endif()
75 75 if(FSW_debug_messages)
76 76 add_definitions(-DDEBUG_MESSAGES)
77 77 endif()
78 78 if(FSW_cpu_usage_report)
79 79 add_definitions(-DPRINT_TASK_STATISTICS)
80 80 endif()
81 81 if(FSW_stack_report)
82 82 add_definitions(-DPRINT_STACK_REPORT)
83 83 endif()
84 84 if(FSW_vhdl_dev)
85 85 add_definitions(-DVHDL_DEV)
86 86 endif()
87 87 if(FSW_lpp_dpu_destid)
88 88 add_definitions(-DLPP_DPU_DESTID)
89 89 endif()
90 90 if(FSW_debug_watchdog)
91 91 add_definitions(-DDEBUG_WATCHDOG)
92 92 endif()
93 93 if(FSW_debug_tch)
94 94 add_definitions(-DDEBUG_TCH)
95 95 endif()
96 96
97 97 add_definitions(-DMSB_FIRST_TCH)
98 98
99 99 add_definitions(-DSWVERSION=-1-0)
100 100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
101 101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
102 102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
103 103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
104 104
105 105 add_executable(fsw ${SOURCES})
106 106 add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE)
107 107
@@ -1,2068 +1,2068
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1 = {0};
18 18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2 = {0};
19 19 ring_node kcoefficient_node_1 = {0};
20 20 ring_node kcoefficient_node_2 = {0};
21 21
22 22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 23 {
24 24 /** This function updates the LFR registers with the incoming common parameters.
25 25 *
26 26 * @param TC points to the TeleCommand packet that is being processed
27 27 *
28 28 *
29 29 */
30 30
31 31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 33 set_wfp_data_shaping( );
34 34 return LFR_SUCCESSFUL;
35 35 }
36 36
37 37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 38 {
39 39 /** This function updates the LFR registers with the incoming normal parameters.
40 40 *
41 41 * @param TC points to the TeleCommand packet that is being processed
42 42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 43 *
44 44 */
45 45
46 46 int result;
47 47 int flag;
48 48 rtems_status_code status;
49 49
50 50 flag = LFR_SUCCESSFUL;
51 51
52 52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 55 flag = LFR_DEFAULT;
56 56 }
57 57
58 58 // CHECK THE PARAMETERS SET CONSISTENCY
59 59 if (flag == LFR_SUCCESSFUL)
60 60 {
61 61 flag = check_normal_par_consistency( TC, queue_id );
62 62 }
63 63
64 64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_l( TC );
68 68 result = set_sy_lfr_n_swf_p( TC );
69 69 result = set_sy_lfr_n_bp_p0( TC );
70 70 result = set_sy_lfr_n_bp_p1( TC );
71 71 result = set_sy_lfr_n_asm_p( TC );
72 72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 73 }
74 74
75 75 return flag;
76 76 }
77 77
78 78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 79 {
80 80 /** This function updates the LFR registers with the incoming burst parameters.
81 81 *
82 82 * @param TC points to the TeleCommand packet that is being processed
83 83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 84 *
85 85 */
86 86
87 87 int flag;
88 88 rtems_status_code status;
89 89 unsigned char sy_lfr_b_bp_p0;
90 90 unsigned char sy_lfr_b_bp_p1;
91 91 float aux;
92 92
93 93 flag = LFR_SUCCESSFUL;
94 94
95 95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 97 flag = LFR_DEFAULT;
98 98 }
99 99
100 100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102 102
103 103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 104 if (flag == LFR_SUCCESSFUL)
105 105 {
106 106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 107 {
108 108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
109 109 flag = WRONG_APP_DATA;
110 110 }
111 111 }
112 112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 113 if (flag == LFR_SUCCESSFUL)
114 114 {
115 115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 116 {
117 117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
118 118 flag = WRONG_APP_DATA;
119 119 }
120 120 }
121 121 //****************************************************************
122 122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 123 if (flag == LFR_SUCCESSFUL)
124 124 {
125 125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 128 if (aux > FLOAT_EQUAL_ZERO)
129 129 {
130 130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
131 131 flag = LFR_DEFAULT;
132 132 }
133 133 }
134 134
135 135 // SET THE PARAMETERS
136 136 if (flag == LFR_SUCCESSFUL)
137 137 {
138 138 flag = set_sy_lfr_b_bp_p0( TC );
139 139 flag = set_sy_lfr_b_bp_p1( TC );
140 140 }
141 141
142 142 return flag;
143 143 }
144 144
145 145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 146 {
147 147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 148 *
149 149 * @param TC points to the TeleCommand packet that is being processed
150 150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 151 *
152 152 */
153 153
154 154 int flag;
155 155 rtems_status_code status;
156 156 unsigned char sy_lfr_s1_bp_p0;
157 157 unsigned char sy_lfr_s1_bp_p1;
158 158 float aux;
159 159
160 160 flag = LFR_SUCCESSFUL;
161 161
162 162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 164 flag = LFR_DEFAULT;
165 165 }
166 166
167 167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169 169
170 170 // sy_lfr_s1_bp_p0
171 171 if (flag == LFR_SUCCESSFUL)
172 172 {
173 173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 174 {
175 175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
176 176 flag = WRONG_APP_DATA;
177 177 }
178 178 }
179 179 // sy_lfr_s1_bp_p1
180 180 if (flag == LFR_SUCCESSFUL)
181 181 {
182 182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 183 {
184 184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
185 185 flag = WRONG_APP_DATA;
186 186 }
187 187 }
188 188 //******************************************************************
189 189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 190 if (flag == LFR_SUCCESSFUL)
191 191 {
192 192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
193 193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
194 194 if (aux > FLOAT_EQUAL_ZERO)
195 195 {
196 196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
197 197 flag = LFR_DEFAULT;
198 198 }
199 199 }
200 200
201 201 // SET THE PARAMETERS
202 202 if (flag == LFR_SUCCESSFUL)
203 203 {
204 204 flag = set_sy_lfr_s1_bp_p0( TC );
205 205 flag = set_sy_lfr_s1_bp_p1( TC );
206 206 }
207 207
208 208 return flag;
209 209 }
210 210
211 211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
212 212 {
213 213 /** This function updates the LFR registers with the incoming sbm2 parameters.
214 214 *
215 215 * @param TC points to the TeleCommand packet that is being processed
216 216 * @param queue_id is the id of the queue which handles TM related to this execution step
217 217 *
218 218 */
219 219
220 220 int flag;
221 221 rtems_status_code status;
222 222 unsigned char sy_lfr_s2_bp_p0;
223 223 unsigned char sy_lfr_s2_bp_p1;
224 224 float aux;
225 225
226 226 flag = LFR_SUCCESSFUL;
227 227
228 228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
229 229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
230 230 flag = LFR_DEFAULT;
231 231 }
232 232
233 233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
234 234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
235 235
236 236 // sy_lfr_s2_bp_p0
237 237 if (flag == LFR_SUCCESSFUL)
238 238 {
239 239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
240 240 {
241 241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
242 242 flag = WRONG_APP_DATA;
243 243 }
244 244 }
245 245 // sy_lfr_s2_bp_p1
246 246 if (flag == LFR_SUCCESSFUL)
247 247 {
248 248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
249 249 {
250 250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
251 251 flag = WRONG_APP_DATA;
252 252 }
253 253 }
254 254 //******************************************************************
255 255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
256 256 if (flag == LFR_SUCCESSFUL)
257 257 {
258 258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
259 259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
260 260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
261 261 if (aux > FLOAT_EQUAL_ZERO)
262 262 {
263 263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
264 264 flag = LFR_DEFAULT;
265 265 }
266 266 }
267 267
268 268 // SET THE PARAMETERS
269 269 if (flag == LFR_SUCCESSFUL)
270 270 {
271 271 flag = set_sy_lfr_s2_bp_p0( TC );
272 272 flag = set_sy_lfr_s2_bp_p1( TC );
273 273 }
274 274
275 275 return flag;
276 276 }
277 277
278 278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 279 {
280 280 /** This function updates the LFR registers with the incoming sbm2 parameters.
281 281 *
282 282 * @param TC points to the TeleCommand packet that is being processed
283 283 * @param queue_id is the id of the queue which handles TM related to this execution step
284 284 *
285 285 */
286 286
287 287 int flag;
288 288
289 289 flag = LFR_DEFAULT;
290 290
291 291 flag = set_sy_lfr_kcoeff( TC, queue_id );
292 292
293 293 return flag;
294 294 }
295 295
296 296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
297 297 {
298 298 /** This function updates the LFR registers with the incoming sbm2 parameters.
299 299 *
300 300 * @param TC points to the TeleCommand packet that is being processed
301 301 * @param queue_id is the id of the queue which handles TM related to this execution step
302 302 *
303 303 */
304 304
305 305 int flag;
306 306
307 307 flag = LFR_DEFAULT;
308 308
309 309 flag = set_sy_lfr_fbins( TC );
310 310
311 311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
312 312 merge_fbins_masks();
313 313
314 314 return flag;
315 315 }
316 316
317 317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
318 318 {
319 319 /** This function updates the LFR registers with the incoming sbm2 parameters.
320 320 *
321 321 * @param TC points to the TeleCommand packet that is being processed
322 322 * @param queue_id is the id of the queue which handles TM related to this execution step
323 323 *
324 324 */
325 325
326 326 int flag;
327 327 unsigned char k;
328 328
329 329 flag = LFR_DEFAULT;
330 330 k = INIT_CHAR;
331 331
332 332 flag = check_sy_lfr_filter_parameters( TC, queue_id );
333 333
334 334 if (flag == LFR_SUCCESSFUL)
335 335 {
336 336 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
337 337 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
338 338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
339 339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
340 340 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
341 341 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
342 342 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
343 343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
344 344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
345 345 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
346 346 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
347 347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
348 348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
349 349 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
350 350 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
351 351
352 352 //****************************
353 353 // store PAS filter parameters
354 354
355 355 // sy_lfr_pas_filter_enabled
356 356 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
357 357 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
358 358
359 359 // sy_lfr_pas_filter_modulus
360 360 filterPar.modulus_in_finetime = ((uint64_t) parameter_dump_packet.sy_lfr_pas_filter_modulus) * CONST_65536;
361 361
362 362 // sy_lfr_pas_filter_tbad
363 363 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
364 364 parameter_dump_packet.sy_lfr_pas_filter_tbad );
365 365 filterPar.tbad_in_finetime = (uint64_t) (filterPar.sy_lfr_pas_filter_tbad * CONST_65536);
366 366
367 367 // sy_lfr_pas_filter_offset
368 368 filterPar.offset_in_finetime = ((uint64_t) parameter_dump_packet.sy_lfr_pas_filter_offset) * CONST_65536;
369 369
370 370 // sy_lfr_pas_filter_shift
371 371 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
372 372 parameter_dump_packet.sy_lfr_pas_filter_shift );
373 373 filterPar.shift_in_finetime = (uint64_t) (filterPar.sy_lfr_pas_filter_shift * CONST_65536);
374 374
375 375 //****************************************************
376 376 // store the parameter sy_lfr_sc_rw_delta_f as a float
377 377 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
378 378 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
379 379
380 380 // copy rw.._k.. from the incoming TC to the local parameter_dump_packet
381 381 for (k = 0; k < NB_RW_K_COEFFS * NB_BYTES_PER_RW_K_COEFF; k++)
382 382 {
383 383 parameter_dump_packet.sy_lfr_rw1_k1[k] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_RW1_K1 + k ];
384 384 }
385 385
386 386 //***********************************************
387 387 // store the parameter sy_lfr_rw.._k.. as a float
388 388 // rw1_k
389 389 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k1, parameter_dump_packet.sy_lfr_rw1_k1 );
390 390 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k2, parameter_dump_packet.sy_lfr_rw1_k2 );
391 391 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k3, parameter_dump_packet.sy_lfr_rw1_k3 );
392 392 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k4, parameter_dump_packet.sy_lfr_rw1_k4 );
393 393 // rw2_k
394 394 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k1, parameter_dump_packet.sy_lfr_rw2_k1 );
395 395 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k2, parameter_dump_packet.sy_lfr_rw2_k2 );
396 396 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k3, parameter_dump_packet.sy_lfr_rw2_k3 );
397 397 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k4, parameter_dump_packet.sy_lfr_rw2_k4 );
398 398 // rw3_k
399 399 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k1, parameter_dump_packet.sy_lfr_rw3_k1 );
400 400 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k2, parameter_dump_packet.sy_lfr_rw3_k2 );
401 401 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k3, parameter_dump_packet.sy_lfr_rw3_k3 );
402 402 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k4, parameter_dump_packet.sy_lfr_rw3_k4 );
403 403 // rw4_k
404 404 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k1, parameter_dump_packet.sy_lfr_rw4_k1 );
405 405 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k2, parameter_dump_packet.sy_lfr_rw4_k2 );
406 406 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k3, parameter_dump_packet.sy_lfr_rw4_k3 );
407 407 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k4, parameter_dump_packet.sy_lfr_rw4_k4 );
408 408
409 409 }
410 410
411 411 return flag;
412 412 }
413 413
414 414 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
415 415 {
416 416 /** This function updates the LFR registers with the incoming sbm2 parameters.
417 417 *
418 418 * @param TC points to the TeleCommand packet that is being processed
419 419 * @param queue_id is the id of the queue which handles TM related to this execution step
420 420 *
421 421 */
422 422
423 423 unsigned int address;
424 424 rtems_status_code status;
425 425 unsigned int freq;
426 426 unsigned int bin;
427 427 unsigned int coeff;
428 428 unsigned char *kCoeffPtr;
429 429 unsigned char *kCoeffDumpPtr;
430 430
431 431 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
432 432 // F0 => 11 bins
433 433 // F1 => 13 bins
434 434 // F2 => 12 bins
435 435 // 36 bins to dump in two packets (30 bins max per packet)
436 436
437 437 //*********
438 438 // PACKET 1
439 439 // 11 F0 bins, 13 F1 bins and 6 F2 bins
440 440 kcoefficients_dump_1.destinationID = TC->sourceID;
441 441 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
442 442 for( freq = 0;
443 443 freq < NB_BINS_COMPRESSED_SM_F0;
444 444 freq++ )
445 445 {
446 446 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
447 447 bin = freq;
448 448 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
449 449 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
450 450 {
451 451 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
452 452 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
453 453 ]; // 2 for the kcoeff_frequency
454 454 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
455 455 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
456 456 }
457 457 }
458 458 for( freq = NB_BINS_COMPRESSED_SM_F0;
459 459 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
460 460 freq++ )
461 461 {
462 462 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
463 463 bin = freq - NB_BINS_COMPRESSED_SM_F0;
464 464 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
465 465 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
466 466 {
467 467 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
468 468 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
469 469 ]; // 2 for the kcoeff_frequency
470 470 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
471 471 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
472 472 }
473 473 }
474 474 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
475 475 freq < KCOEFF_BLK_NR_PKT1 ;
476 476 freq++ )
477 477 {
478 478 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
479 479 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
480 480 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
481 481 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
482 482 {
483 483 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
484 484 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
485 485 ]; // 2 for the kcoeff_frequency
486 486 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
487 487 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
488 488 }
489 489 }
490 490 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
491 491 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
492 492 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
493 493 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
494 494 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
495 495 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
496 496 // SEND DATA
497 497 kcoefficient_node_1.status = 1;
498 498 address = (unsigned int) &kcoefficient_node_1;
499 499 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
500 500 if (status != RTEMS_SUCCESSFUL) {
501 501 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
502 502 }
503 503
504 504 //********
505 505 // PACKET 2
506 506 // 6 F2 bins
507 507 kcoefficients_dump_2.destinationID = TC->sourceID;
508 508 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
509 509 for( freq = 0;
510 510 freq < KCOEFF_BLK_NR_PKT2;
511 511 freq++ )
512 512 {
513 513 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
514 514 bin = freq + KCOEFF_BLK_NR_PKT2;
515 515 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
516 516 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
517 517 {
518 518 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
519 519 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
520 520 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
521 521 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
522 522 }
523 523 }
524 524 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
525 525 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
526 526 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
527 527 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
528 528 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
529 529 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
530 530 // SEND DATA
531 531 kcoefficient_node_2.status = 1;
532 532 address = (unsigned int) &kcoefficient_node_2;
533 533 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
534 534 if (status != RTEMS_SUCCESSFUL) {
535 535 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
536 536 }
537 537
538 538 return status;
539 539 }
540 540
541 541 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
542 542 {
543 543 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
544 544 *
545 545 * @param queue_id is the id of the queue which handles TM related to this execution step.
546 546 *
547 547 * @return RTEMS directive status codes:
548 548 * - RTEMS_SUCCESSFUL - message sent successfully
549 549 * - RTEMS_INVALID_ID - invalid queue id
550 550 * - RTEMS_INVALID_SIZE - invalid message size
551 551 * - RTEMS_INVALID_ADDRESS - buffer is NULL
552 552 * - RTEMS_UNSATISFIED - out of message buffers
553 553 * - RTEMS_TOO_MANY - queue s limit has been reached
554 554 *
555 555 */
556 556
557 557 int status;
558 558
559 559 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
560 560 parameter_dump_packet.destinationID = TC->sourceID;
561 561
562 562 // UPDATE TIME
563 563 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
564 564 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
565 565 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
566 566 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
567 567 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
568 568 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
569 569 // SEND DATA
570 570 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
571 571 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
572 572 if (status != RTEMS_SUCCESSFUL) {
573 573 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
574 574 }
575 575
576 576 return status;
577 577 }
578 578
579 579 //***********************
580 580 // NORMAL MODE PARAMETERS
581 581
582 582 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
583 583 {
584 584 unsigned char msb;
585 585 unsigned char lsb;
586 586 int flag;
587 587 float aux;
588 588 rtems_status_code status;
589 589
590 590 unsigned int sy_lfr_n_swf_l;
591 591 unsigned int sy_lfr_n_swf_p;
592 592 unsigned int sy_lfr_n_asm_p;
593 593 unsigned char sy_lfr_n_bp_p0;
594 594 unsigned char sy_lfr_n_bp_p1;
595 595 unsigned char sy_lfr_n_cwf_long_f3;
596 596
597 597 flag = LFR_SUCCESSFUL;
598 598
599 599 //***************
600 600 // get parameters
601 601 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
602 602 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
603 603 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
604 604
605 605 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
606 606 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
607 607 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
608 608
609 609 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
610 610 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
611 611 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
612 612
613 613 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
614 614
615 615 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
616 616
617 617 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
618 618
619 619 //******************
620 620 // check consistency
621 621 // sy_lfr_n_swf_l
622 622 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
623 623 {
624 624 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
625 625 flag = WRONG_APP_DATA;
626 626 }
627 627 // sy_lfr_n_swf_p
628 628 if (flag == LFR_SUCCESSFUL)
629 629 {
630 630 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
631 631 {
632 632 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
633 633 flag = WRONG_APP_DATA;
634 634 }
635 635 }
636 636 // sy_lfr_n_bp_p0
637 637 if (flag == LFR_SUCCESSFUL)
638 638 {
639 639 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
640 640 {
641 641 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
642 642 flag = WRONG_APP_DATA;
643 643 }
644 644 }
645 645 // sy_lfr_n_asm_p
646 646 if (flag == LFR_SUCCESSFUL)
647 647 {
648 648 if (sy_lfr_n_asm_p == 0)
649 649 {
650 650 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
651 651 flag = WRONG_APP_DATA;
652 652 }
653 653 }
654 654 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
655 655 if (flag == LFR_SUCCESSFUL)
656 656 {
657 657 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
658 658 if (aux > FLOAT_EQUAL_ZERO)
659 659 {
660 660 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
661 661 flag = WRONG_APP_DATA;
662 662 }
663 663 }
664 664 // sy_lfr_n_bp_p1
665 665 if (flag == LFR_SUCCESSFUL)
666 666 {
667 667 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
668 668 {
669 669 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
670 670 flag = WRONG_APP_DATA;
671 671 }
672 672 }
673 673 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
674 674 if (flag == LFR_SUCCESSFUL)
675 675 {
676 676 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
677 677 if (aux > FLOAT_EQUAL_ZERO)
678 678 {
679 679 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
680 680 flag = LFR_DEFAULT;
681 681 }
682 682 }
683 683 // sy_lfr_n_cwf_long_f3
684 684
685 685 return flag;
686 686 }
687 687
688 688 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
689 689 {
690 690 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
691 691 *
692 692 * @param TC points to the TeleCommand packet that is being processed
693 693 * @param queue_id is the id of the queue which handles TM related to this execution step
694 694 *
695 695 */
696 696
697 697 int result;
698 698
699 699 result = LFR_SUCCESSFUL;
700 700
701 701 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
702 702 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
703 703
704 704 return result;
705 705 }
706 706
707 707 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
708 708 {
709 709 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
710 710 *
711 711 * @param TC points to the TeleCommand packet that is being processed
712 712 * @param queue_id is the id of the queue which handles TM related to this execution step
713 713 *
714 714 */
715 715
716 716 int result;
717 717
718 718 result = LFR_SUCCESSFUL;
719 719
720 720 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
721 721 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
722 722
723 723 return result;
724 724 }
725 725
726 726 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
727 727 {
728 728 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
729 729 *
730 730 * @param TC points to the TeleCommand packet that is being processed
731 731 * @param queue_id is the id of the queue which handles TM related to this execution step
732 732 *
733 733 */
734 734
735 735 int result;
736 736
737 737 result = LFR_SUCCESSFUL;
738 738
739 739 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
740 740 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
741 741
742 742 return result;
743 743 }
744 744
745 745 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
746 746 {
747 747 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
748 748 *
749 749 * @param TC points to the TeleCommand packet that is being processed
750 750 * @param queue_id is the id of the queue which handles TM related to this execution step
751 751 *
752 752 */
753 753
754 754 int status;
755 755
756 756 status = LFR_SUCCESSFUL;
757 757
758 758 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
759 759
760 760 return status;
761 761 }
762 762
763 763 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
764 764 {
765 765 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
766 766 *
767 767 * @param TC points to the TeleCommand packet that is being processed
768 768 * @param queue_id is the id of the queue which handles TM related to this execution step
769 769 *
770 770 */
771 771
772 772 int status;
773 773
774 774 status = LFR_SUCCESSFUL;
775 775
776 776 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
777 777
778 778 return status;
779 779 }
780 780
781 781 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
782 782 {
783 783 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
784 784 *
785 785 * @param TC points to the TeleCommand packet that is being processed
786 786 * @param queue_id is the id of the queue which handles TM related to this execution step
787 787 *
788 788 */
789 789
790 790 int status;
791 791
792 792 status = LFR_SUCCESSFUL;
793 793
794 794 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
795 795
796 796 return status;
797 797 }
798 798
799 799 //**********************
800 800 // BURST MODE PARAMETERS
801 801
802 802 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
803 803 {
804 804 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
805 805 *
806 806 * @param TC points to the TeleCommand packet that is being processed
807 807 * @param queue_id is the id of the queue which handles TM related to this execution step
808 808 *
809 809 */
810 810
811 811 int status;
812 812
813 813 status = LFR_SUCCESSFUL;
814 814
815 815 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
816 816
817 817 return status;
818 818 }
819 819
820 820 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
821 821 {
822 822 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
823 823 *
824 824 * @param TC points to the TeleCommand packet that is being processed
825 825 * @param queue_id is the id of the queue which handles TM related to this execution step
826 826 *
827 827 */
828 828
829 829 int status;
830 830
831 831 status = LFR_SUCCESSFUL;
832 832
833 833 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
834 834
835 835 return status;
836 836 }
837 837
838 838 //*********************
839 839 // SBM1 MODE PARAMETERS
840 840
841 841 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
842 842 {
843 843 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
844 844 *
845 845 * @param TC points to the TeleCommand packet that is being processed
846 846 * @param queue_id is the id of the queue which handles TM related to this execution step
847 847 *
848 848 */
849 849
850 850 int status;
851 851
852 852 status = LFR_SUCCESSFUL;
853 853
854 854 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
855 855
856 856 return status;
857 857 }
858 858
859 859 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
860 860 {
861 861 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
862 862 *
863 863 * @param TC points to the TeleCommand packet that is being processed
864 864 * @param queue_id is the id of the queue which handles TM related to this execution step
865 865 *
866 866 */
867 867
868 868 int status;
869 869
870 870 status = LFR_SUCCESSFUL;
871 871
872 872 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
873 873
874 874 return status;
875 875 }
876 876
877 877 //*********************
878 878 // SBM2 MODE PARAMETERS
879 879
880 880 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
881 881 {
882 882 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
883 883 *
884 884 * @param TC points to the TeleCommand packet that is being processed
885 885 * @param queue_id is the id of the queue which handles TM related to this execution step
886 886 *
887 887 */
888 888
889 889 int status;
890 890
891 891 status = LFR_SUCCESSFUL;
892 892
893 893 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
894 894
895 895 return status;
896 896 }
897 897
898 898 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
899 899 {
900 900 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
901 901 *
902 902 * @param TC points to the TeleCommand packet that is being processed
903 903 * @param queue_id is the id of the queue which handles TM related to this execution step
904 904 *
905 905 */
906 906
907 907 int status;
908 908
909 909 status = LFR_SUCCESSFUL;
910 910
911 911 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
912 912
913 913 return status;
914 914 }
915 915
916 916 //*******************
917 917 // TC_LFR_UPDATE_INFO
918 918
919 919 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
920 920 {
921 921 unsigned int status;
922 922
923 923 status = LFR_DEFAULT;
924 924
925 925 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
926 926 || (mode == LFR_MODE_BURST)
927 927 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
928 928 {
929 929 status = LFR_SUCCESSFUL;
930 930 }
931 931 else
932 932 {
933 933 status = LFR_DEFAULT;
934 934 }
935 935
936 936 return status;
937 937 }
938 938
939 939 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
940 940 {
941 941 unsigned int status;
942 942
943 943 status = LFR_DEFAULT;
944 944
945 945 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
946 946 || (mode == TDS_MODE_BURST)
947 947 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
948 948 || (mode == TDS_MODE_LFM))
949 949 {
950 950 status = LFR_SUCCESSFUL;
951 951 }
952 952 else
953 953 {
954 954 status = LFR_DEFAULT;
955 955 }
956 956
957 957 return status;
958 958 }
959 959
960 960 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
961 961 {
962 962 unsigned int status;
963 963
964 964 status = LFR_DEFAULT;
965 965
966 966 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
967 967 || (mode == THR_MODE_BURST))
968 968 {
969 969 status = LFR_SUCCESSFUL;
970 970 }
971 971 else
972 972 {
973 973 status = LFR_DEFAULT;
974 974 }
975 975
976 976 return status;
977 977 }
978 978
979 979 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value )
980 980 {
981 981 unsigned char flag;
982 982 unsigned char flagPosInByte;
983 983 unsigned char newFlag;
984 984 unsigned char flagMask;
985 985
986 986 // if the frequency value is not a number, the flag is set to 0 and the frequency RWx_Fy is not filtered
987 987 if (isnan(value))
988 988 {
989 989 flag = FLAG_NAN;
990 990 }
991 991 else
992 992 {
993 993 flag = FLAG_IAN;
994 994 }
995 995
996 996 switch(wheel)
997 997 {
998 998 case WHEEL_1:
999 999 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
1000 1000 flagMask = ~(1 << flagPosInByte);
1001 1001 newFlag = flag << flagPosInByte;
1002 1002 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
1003 1003 break;
1004 1004 case WHEEL_2:
1005 1005 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
1006 1006 flagMask = ~(1 << flagPosInByte);
1007 1007 newFlag = flag << flagPosInByte;
1008 1008 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
1009 1009 break;
1010 1010 case WHEEL_3:
1011 1011 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
1012 1012 flagMask = ~(1 << flagPosInByte);
1013 1013 newFlag = flag << flagPosInByte;
1014 1014 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1015 1015 break;
1016 1016 case WHEEL_4:
1017 1017 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
1018 1018 flagMask = ~(1 << flagPosInByte);
1019 1019 newFlag = flag << flagPosInByte;
1020 1020 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1021 1021 break;
1022 1022 default:
1023 1023 break;
1024 1024 }
1025 1025 }
1026 1026
1027 1027 void set_hk_lfr_sc_rw_f_flags( void )
1028 1028 {
1029 1029 // RW1
1030 1030 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_1, rw_f.cp_rpw_sc_rw1_f1 );
1031 1031 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_2, rw_f.cp_rpw_sc_rw1_f2 );
1032 1032 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_3, rw_f.cp_rpw_sc_rw1_f3 );
1033 1033 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_4, rw_f.cp_rpw_sc_rw1_f4 );
1034 1034
1035 1035 // RW2
1036 1036 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_1, rw_f.cp_rpw_sc_rw2_f1 );
1037 1037 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_2, rw_f.cp_rpw_sc_rw2_f2 );
1038 1038 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_3, rw_f.cp_rpw_sc_rw2_f3 );
1039 1039 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_4, rw_f.cp_rpw_sc_rw2_f4 );
1040 1040
1041 1041 // RW3
1042 1042 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_1, rw_f.cp_rpw_sc_rw3_f1 );
1043 1043 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_2, rw_f.cp_rpw_sc_rw3_f2 );
1044 1044 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_3, rw_f.cp_rpw_sc_rw3_f3 );
1045 1045 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_4, rw_f.cp_rpw_sc_rw3_f4 );
1046 1046
1047 1047 // RW4
1048 1048 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_1, rw_f.cp_rpw_sc_rw4_f1 );
1049 1049 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_2, rw_f.cp_rpw_sc_rw4_f2 );
1050 1050 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_3, rw_f.cp_rpw_sc_rw4_f3 );
1051 1051 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_4, rw_f.cp_rpw_sc_rw4_f4 );
1052 1052 }
1053 1053
1054 1054 int check_sy_lfr_rw_f( ccsdsTelecommandPacket_t *TC, int offset, int* pos, float* value )
1055 1055 {
1056 1056 float rw_k;
1057 1057 int ret;
1058 1058
1059 1059 ret = LFR_SUCCESSFUL;
1060 1060 rw_k = INIT_FLOAT;
1061 1061
1062 1062 copyFloatByChar( (unsigned char*) &rw_k, (unsigned char*) &TC->packetID[ offset ] );
1063 1063
1064 1064 *pos = offset;
1065 1065 *value = rw_k;
1066 1066
1067 1067 if (rw_k < MIN_SY_LFR_RW_F)
1068 1068 {
1069 1069 ret = WRONG_APP_DATA;
1070 1070 }
1071 1071
1072 1072 return ret;
1073 1073 }
1074 1074
1075 1075 int check_all_sy_lfr_rw_f( ccsdsTelecommandPacket_t *TC, int *pos, float*value )
1076 1076 {
1077 1077 int ret;
1078 1078
1079 1079 ret = LFR_SUCCESSFUL;
1080 1080
1081 1081 //****
1082 1082 //****
1083 1083 // RW1
1084 1084 ret = check_sy_lfr_rw_f( TC, BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1, pos, value ); // F1
1085 1085 if (ret == LFR_SUCCESSFUL) // F2
1086 1086 {
1087 1087 ret = check_sy_lfr_rw_f( TC, BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2, pos, value );
1088 1088 }
1089 1089 if (ret == LFR_SUCCESSFUL) // F3
1090 1090 {
1091 1091 ret = check_sy_lfr_rw_f( TC, BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F3, pos, value );
1092 1092 }
1093 1093 if (ret == LFR_SUCCESSFUL) // F4
1094 1094 {
1095 1095 ret = check_sy_lfr_rw_f( TC, BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F4, pos, value );
1096 1096 }
1097 1097
1098 1098 //****
1099 1099 //****
1100 1100 // RW2
1101 1101 if (ret == LFR_SUCCESSFUL) // F1
1102 1102 {
1103 1103 ret = check_sy_lfr_rw_f( TC, BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1, pos, value );
1104 1104 }
1105 1105 if (ret == LFR_SUCCESSFUL) // F2
1106 1106 {
1107 1107 ret = check_sy_lfr_rw_f( TC, BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2, pos, value );
1108 1108 }
1109 1109 if (ret == LFR_SUCCESSFUL) // F3
1110 1110 {
1111 1111 ret = check_sy_lfr_rw_f( TC, BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F3, pos, value );
1112 1112 }
1113 1113 if (ret == LFR_SUCCESSFUL) // F4
1114 1114 {
1115 1115 ret = check_sy_lfr_rw_f( TC, BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F4, pos, value );
1116 1116 }
1117 1117
1118 1118 //****
1119 1119 //****
1120 1120 // RW3
1121 1121 if (ret == LFR_SUCCESSFUL) // F1
1122 1122 {
1123 1123 ret = check_sy_lfr_rw_f( TC, BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1, pos, value );
1124 1124 }
1125 1125 if (ret == LFR_SUCCESSFUL) // F2
1126 1126 {
1127 1127 ret = check_sy_lfr_rw_f( TC, BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2, pos, value );
1128 1128 }
1129 1129 if (ret == LFR_SUCCESSFUL) // F3
1130 1130 {
1131 1131 ret = check_sy_lfr_rw_f( TC, BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F3, pos, value );
1132 1132 }
1133 1133 if (ret == LFR_SUCCESSFUL) // F4
1134 1134 {
1135 1135 ret = check_sy_lfr_rw_f( TC, BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F4, pos, value );
1136 1136 }
1137 1137
1138 1138 //****
1139 1139 //****
1140 1140 // RW4
1141 1141 if (ret == LFR_SUCCESSFUL) // F1
1142 1142 {
1143 1143 ret = check_sy_lfr_rw_f( TC, BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1, pos, value );
1144 1144 }
1145 1145 if (ret == LFR_SUCCESSFUL) // F2
1146 1146 {
1147 1147 ret = check_sy_lfr_rw_f( TC, BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2, pos, value );
1148 1148 }
1149 1149 if (ret == LFR_SUCCESSFUL) // F3
1150 1150 {
1151 1151 ret = check_sy_lfr_rw_f( TC, BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F3, pos, value );
1152 1152 }
1153 1153 if (ret == LFR_SUCCESSFUL) // F4
1154 1154 {
1155 1155 ret = check_sy_lfr_rw_f( TC, BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F4, pos, value );
1156 1156 }
1157 1157
1158 1158 return ret;
1159 1159 }
1160 1160
1161 1161 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
1162 1162 {
1163 1163 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
1164 1164 *
1165 1165 * @param TC points to the TeleCommand packet that is being processed
1166 1166 *
1167 1167 */
1168 1168
1169 1169 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
1170 1170
1171 1171 bytePosPtr = (unsigned char *) &TC->packetID;
1172 1172
1173 1173 // rw1_f
1174 1174 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
1175 1175 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
1176 1176 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F3 ] );
1177 1177 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F4 ] );
1178 1178
1179 1179 // rw2_f
1180 1180 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
1181 1181 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
1182 1182 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F3 ] );
1183 1183 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F4 ] );
1184 1184
1185 1185 // rw3_f
1186 1186 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
1187 1187 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
1188 1188 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F3 ] );
1189 1189 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F4 ] );
1190 1190
1191 1191 // rw4_f
1192 1192 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
1193 1193 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
1194 1194 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F3 ] );
1195 1195 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F4 ] );
1196 1196
1197 1197 // test each reaction wheel frequency value. NaN means that the frequency is not filtered
1198 1198
1199 1199 }
1200 1200
1201 1201 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float sy_lfr_rw_k )
1202 1202 {
1203 1203 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
1204 1204 *
1205 1205 * @param fbins_mask
1206 1206 * @param rw_f is the reaction wheel frequency to filter
1207 1207 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
1208 1208 * @param flag [true] filtering enabled [false] filtering disabled
1209 1209 *
1210 1210 * @return void
1211 1211 *
1212 1212 */
1213 1213
1214 1214 float f_RW_min;
1215 1215 float f_RW_MAX;
1216 1216 float fi_min;
1217 1217 float fi_MAX;
1218 1218 float fi;
1219 1219 float deltaBelow;
1220 1220 float deltaAbove;
1221 1221 float freqToFilterOut;
1222 1222 int binBelow;
1223 1223 int binAbove;
1224 1224 int closestBin;
1225 1225 unsigned int whichByte;
1226 1226 int selectedByte;
1227 1227 int bin;
1228 1228 int binToRemove[NB_BINS_TO_REMOVE];
1229 1229 int k;
1230 1230 bool filteringSet;
1231 1231
1232 1232 closestBin = 0;
1233 1233 whichByte = 0;
1234 1234 bin = 0;
1235 1235 filteringSet = false;
1236 1236
1237 1237 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1238 1238 {
1239 1239 binToRemove[k] = -1;
1240 1240 }
1241 1241
1242 1242 if (!isnan(rw_f))
1243 1243 {
1244 1244 // compute the frequency range to filter [ rw_f - delta_f; rw_f + delta_f ]
1245 1245 f_RW_min = rw_f - ((filterPar.sy_lfr_sc_rw_delta_f) * sy_lfr_rw_k);
1246 1246 f_RW_MAX = rw_f + ((filterPar.sy_lfr_sc_rw_delta_f) * sy_lfr_rw_k);
1247 1247
1248 1248 freqToFilterOut = f_RW_min;
1249 1249 while ( filteringSet == false )
1250 1250 {
1251 1251 // compute the index of the frequency bin immediately below rw_f
1252 1252 binBelow = (int) ( floor( ((double) freqToFilterOut) / ((double) deltaFreq)) );
1253 1253 deltaBelow = freqToFilterOut - binBelow * deltaFreq;
1254 1254
1255 1255 // compute the index of the frequency bin immediately above rw_f
1256 1256 binAbove = (int) ( ceil( ((double) freqToFilterOut) / ((double) deltaFreq)) );
1257 1257 deltaAbove = binAbove * deltaFreq - freqToFilterOut;
1258 1258
1259 1259 // search the closest bin
1260 1260 if (deltaAbove > deltaBelow)
1261 1261 {
1262 1262 closestBin = binBelow;
1263 1263 }
1264 1264 else
1265 1265 {
1266 1266 closestBin = binAbove;
1267 1267 }
1268 1268
1269 1269 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1270 1270 fi = closestBin * deltaFreq;
1271 1271 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1272 1272 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1273 1273
1274 1274 //**************************************************************************************
1275 1275 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1276 1276 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1277 1277 //**************************************************************************************
1278 1278
1279 1279 // 1. IF freqToFilterOut is included in [ fi_min; fi_MAX ]
1280 1280 // => remove f_(i), f_(i-1) and f_(i+1)
1281 1281 if ( ( freqToFilterOut > fi_min ) && ( freqToFilterOut < fi_MAX ) )
1282 1282 {
1283 1283 binToRemove[0] = (closestBin - 1) - 1;
1284 1284 binToRemove[1] = (closestBin) - 1;
1285 1285 binToRemove[2] = (closestBin + 1) - 1;
1286 1286 }
1287 1287 // 2. ELSE
1288 1288 // => remove the two f_(i) which are around f_RW
1289 1289 else
1290 1290 {
1291 1291 binToRemove[0] = (binBelow) - 1;
1292 1292 binToRemove[1] = (binAbove) - 1;
1293 1293 binToRemove[2] = (-1);
1294 1294 }
1295 1295
1296 1296 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1297 1297 {
1298 1298 bin = binToRemove[k];
1299 1299 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1300 1300 {
1301 1301 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1302 1302 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1303 1303 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1304 1304 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1305 1305
1306 1306 }
1307 1307 }
1308 1308
1309 1309 // update freqToFilterOut
1310 1310 if ( freqToFilterOut == f_RW_MAX )
1311 1311 {
1312 1312 filteringSet = true; // end of the loop
1313 1313 }
1314 1314 else
1315 1315 {
1316 1316 freqToFilterOut = freqToFilterOut + deltaFreq;
1317 1317 }
1318 1318
1319 1319 if ( freqToFilterOut > f_RW_MAX)
1320 1320 {
1321 1321 freqToFilterOut = f_RW_MAX;
1322 1322 }
1323 1323 }
1324 1324 }
1325 1325 }
1326 1326
1327 1327 void build_sy_lfr_rw_mask( unsigned int channel )
1328 1328 {
1329 1329 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1330 1330 unsigned char *maskPtr;
1331 1331 double deltaF;
1332 1332 unsigned k;
1333 1333
1334 1334 maskPtr = NULL;
1335 1335 deltaF = DELTAF_F2;
1336 1336
1337 1337 switch (channel)
1338 1338 {
1339 1339 case CHANNELF0:
1340 1340 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1341 1341 deltaF = DELTAF_F0;
1342 1342 break;
1343 1343 case CHANNELF1:
1344 1344 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1345 1345 deltaF = DELTAF_F1;
1346 1346 break;
1347 1347 case CHANNELF2:
1348 1348 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1349 1349 deltaF = DELTAF_F2;
1350 1350 break;
1351 1351 default:
1352 1352 break;
1353 1353 }
1354 1354
1355 1355 for (k = 0; k < BYTES_PER_MASK; k++)
1356 1356 {
1357 1357 local_rw_fbins_mask[k] = INT8_ALL_F;
1358 1358 }
1359 1359
1360 1360 // RW1
1361 1361 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f1, deltaF, filterPar.sy_lfr_rw1_k1 );
1362 1362 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f2, deltaF, filterPar.sy_lfr_rw1_k2 );
1363 1363 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f3, deltaF, filterPar.sy_lfr_rw1_k3 );
1364 1364 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f4, deltaF, filterPar.sy_lfr_rw1_k4 );
1365 1365
1366 1366 // RW2
1367 1367 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f1, deltaF, filterPar.sy_lfr_rw2_k1 );
1368 1368 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f2, deltaF, filterPar.sy_lfr_rw2_k2 );
1369 1369 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f3, deltaF, filterPar.sy_lfr_rw2_k3 );
1370 1370 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f4, deltaF, filterPar.sy_lfr_rw2_k4 );
1371 1371
1372 1372 // RW3
1373 1373 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f1, deltaF, filterPar.sy_lfr_rw3_k1 );
1374 1374 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f2, deltaF, filterPar.sy_lfr_rw3_k2 );
1375 1375 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f3, deltaF, filterPar.sy_lfr_rw3_k3 );
1376 1376 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f4, deltaF, filterPar.sy_lfr_rw3_k4 );
1377 1377
1378 1378 // RW4
1379 1379 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f1, deltaF, filterPar.sy_lfr_rw4_k1 );
1380 1380 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f2, deltaF, filterPar.sy_lfr_rw4_k2 );
1381 1381 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f3, deltaF, filterPar.sy_lfr_rw4_k3 );
1382 1382 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f4, deltaF, filterPar.sy_lfr_rw4_k4 );
1383 1383
1384 1384 // update the value of the fbins related to reaction wheels frequency filtering
1385 1385 if (maskPtr != NULL)
1386 1386 {
1387 1387 for (k = 0; k < BYTES_PER_MASK; k++)
1388 1388 {
1389 1389 maskPtr[k] = local_rw_fbins_mask[k];
1390 1390 }
1391 1391 }
1392 1392 }
1393 1393
1394 1394 void build_sy_lfr_rw_masks( void )
1395 1395 {
1396 1396 build_sy_lfr_rw_mask( CHANNELF0 );
1397 1397 build_sy_lfr_rw_mask( CHANNELF1 );
1398 1398 build_sy_lfr_rw_mask( CHANNELF2 );
1399 1399 }
1400 1400
1401 1401 void merge_fbins_masks( void )
1402 1402 {
1403 1403 unsigned char k;
1404 1404
1405 1405 unsigned char *fbins_f0;
1406 1406 unsigned char *fbins_f1;
1407 1407 unsigned char *fbins_f2;
1408 1408 unsigned char *rw_mask_f0;
1409 1409 unsigned char *rw_mask_f1;
1410 1410 unsigned char *rw_mask_f2;
1411 1411
1412 1412 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1413 1413 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1414 1414 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1415 1415 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1416 1416 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1417 1417 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1418 1418
1419 1419 for( k=0; k < BYTES_PER_MASK; k++ )
1420 1420 {
1421 1421 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1422 1422 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1423 1423 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1424 1424 }
1425 1425 }
1426 1426
1427 1427 //***********
1428 1428 // FBINS MASK
1429 1429
1430 1430 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1431 1431 {
1432 1432 int status;
1433 1433 unsigned int k;
1434 1434 unsigned char *fbins_mask_dump;
1435 1435 unsigned char *fbins_mask_TC;
1436 1436
1437 1437 status = LFR_SUCCESSFUL;
1438 1438
1439 1439 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1440 1440 fbins_mask_TC = TC->dataAndCRC;
1441 1441
1442 1442 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1443 1443 {
1444 1444 fbins_mask_dump[k] = fbins_mask_TC[k];
1445 1445 }
1446 1446
1447 1447 return status;
1448 1448 }
1449 1449
1450 1450 //***************************
1451 1451 // TC_LFR_LOAD_PAS_FILTER_PAR
1452 1452
1453 1453 int check_sy_lfr_rw_k( ccsdsTelecommandPacket_t *TC, int offset, int* pos, float* value )
1454 1454 {
1455 1455 float rw_k;
1456 1456 int ret;
1457 1457
1458 1458 ret = LFR_SUCCESSFUL;
1459 1459 rw_k = INIT_FLOAT;
1460 1460
1461 1461 copyFloatByChar( (unsigned char*) &rw_k, (unsigned char*) &TC->dataAndCRC[ offset ] );
1462 1462
1463 1463 *pos = offset;
1464 1464 *value = rw_k;
1465 1465
1466 1466 if (rw_k < MIN_SY_LFR_RW_F)
1467 1467 {
1468 1468 ret = WRONG_APP_DATA;
1469 1469 }
1470 1470
1471 1471 return ret;
1472 1472 }
1473 1473
1474 1474 int check_all_sy_lfr_rw_k( ccsdsTelecommandPacket_t *TC, int *pos, float *value )
1475 1475 {
1476 1476 int ret;
1477 1477
1478 1478 ret = LFR_SUCCESSFUL;
1479 1479
1480 1480 //****
1481 1481 //****
1482 1482 // RW1
1483 1483 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW1_K1, pos, value ); // K1
1484 1484 if (ret == LFR_SUCCESSFUL) // K2
1485 1485 {
1486 1486 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW1_K2, pos, value );
1487 1487 }
1488 1488 if (ret == LFR_SUCCESSFUL) // K3
1489 1489 {
1490 1490 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW1_K3, pos, value );
1491 1491 }
1492 1492 if (ret == LFR_SUCCESSFUL) // K4
1493 1493 {
1494 1494 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW1_K4, pos, value );
1495 1495 }
1496 1496
1497 1497 //****
1498 1498 //****
1499 1499 // RW2
1500 1500 if (ret == LFR_SUCCESSFUL) // K1
1501 1501 {
1502 1502 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW2_K1, pos, value );
1503 1503 }
1504 1504 if (ret == LFR_SUCCESSFUL) // K2
1505 1505 {
1506 1506 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW2_K2, pos, value );
1507 1507 }
1508 1508 if (ret == LFR_SUCCESSFUL) // K3
1509 1509 {
1510 1510 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW2_K3, pos, value );
1511 1511 }
1512 1512 if (ret == LFR_SUCCESSFUL) // K4
1513 1513 {
1514 1514 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW2_K4, pos, value );
1515 1515 }
1516 1516
1517 1517 //****
1518 1518 //****
1519 1519 // RW3
1520 1520 if (ret == LFR_SUCCESSFUL) // K1
1521 1521 {
1522 1522 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW3_K1, pos, value );
1523 1523 }
1524 1524 if (ret == LFR_SUCCESSFUL) // K2
1525 1525 {
1526 1526 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW3_K2, pos, value );
1527 1527 }
1528 1528 if (ret == LFR_SUCCESSFUL) // K3
1529 1529 {
1530 1530 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW3_K3, pos, value );
1531 1531 }
1532 1532 if (ret == LFR_SUCCESSFUL) // K4
1533 1533 {
1534 1534 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW3_K4, pos, value );
1535 1535 }
1536 1536
1537 1537 //****
1538 1538 //****
1539 1539 // RW4
1540 1540 if (ret == LFR_SUCCESSFUL) // K1
1541 1541 {
1542 1542 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW4_K1, pos, value );
1543 1543 }
1544 1544 if (ret == LFR_SUCCESSFUL) // K2
1545 1545 {
1546 1546 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW4_K2, pos, value );
1547 1547 }
1548 1548 if (ret == LFR_SUCCESSFUL) // K3
1549 1549 {
1550 1550 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW4_K3, pos, value );
1551 1551 }
1552 1552 if (ret == LFR_SUCCESSFUL) // K4
1553 1553 {
1554 1554 ret = check_sy_lfr_rw_k( TC, DATAFIELD_POS_SY_LFR_RW4_K4, pos, value );
1555 1555 }
1556 1556
1557 1557 return ret;
1558 1558 }
1559 1559
1560 1560 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1561 1561 {
1562 1562 int flag;
1563 1563 rtems_status_code status;
1564 1564
1565 1565 unsigned char sy_lfr_pas_filter_enabled;
1566 1566 unsigned char sy_lfr_pas_filter_modulus;
1567 1567 float sy_lfr_pas_filter_tbad;
1568 1568 unsigned char sy_lfr_pas_filter_offset;
1569 1569 float sy_lfr_pas_filter_shift;
1570 1570 float sy_lfr_sc_rw_delta_f;
1571 1571 char *parPtr;
1572 1572 int datafield_pos;
1573 1573 float rw_k;
1574 1574
1575 1575 flag = LFR_SUCCESSFUL;
1576 1576 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1577 1577 sy_lfr_pas_filter_shift = INIT_FLOAT;
1578 1578 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1579 1579 parPtr = NULL;
1580 1580 datafield_pos = INIT_INT;
1581 1581 rw_k = INIT_FLOAT;
1582 1582
1583 1583 //***************
1584 1584 // get parameters
1585 1585 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1586 1586 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1587 1587 copyFloatByChar(
1588 1588 (unsigned char*) &sy_lfr_pas_filter_tbad,
1589 1589 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1590 1590 );
1591 1591 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1592 1592 copyFloatByChar(
1593 1593 (unsigned char*) &sy_lfr_pas_filter_shift,
1594 1594 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1595 1595 );
1596 1596 copyFloatByChar(
1597 1597 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1598 1598 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1599 1599 );
1600 1600
1601 1601 //******************
1602 1602 // CHECK CONSISTENCY
1603 1603
1604 1604 //**************************
1605 1605 // sy_lfr_pas_filter_enabled
1606 1606 // nothing to check, value is 0 or 1
1607 1607
1608 1608 //**************************
1609 1609 // sy_lfr_pas_filter_modulus
1610 1610 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1611 1611 {
1612 1612 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1613 1613 flag = WRONG_APP_DATA;
1614 1614 }
1615 1615
1616 1616 //***********************
1617 1617 // sy_lfr_pas_filter_tbad
1618 1618 if (flag == LFR_SUCCESSFUL)
1619 1619 {
1620 1620 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1621 1621 {
1622 1622 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1623 1623 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1624 1624 flag = WRONG_APP_DATA;
1625 1625 }
1626 1626 }
1627 1627
1628 1628 //*************************
1629 1629 // sy_lfr_pas_filter_offset
1630 1630 if (flag == LFR_SUCCESSFUL)
1631 1631 {
1632 1632 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1633 1633 {
1634 1634 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1635 1635 flag = WRONG_APP_DATA;
1636 1636 }
1637 1637 }
1638 1638
1639 1639 //************************
1640 1640 // sy_lfr_pas_filter_shift
1641 1641 if (flag == LFR_SUCCESSFUL)
1642 1642 {
1643 1643 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1644 1644 {
1645 1645 parPtr = (char*) &sy_lfr_pas_filter_shift;
1646 1646 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1647 1647 flag = WRONG_APP_DATA;
1648 1648 }
1649 1649 }
1650 1650
1651 1651 //*************************************
1652 1652 // check global coherency of the values
1653 1653 if (flag == LFR_SUCCESSFUL)
1654 1654 {
1655 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1655 if ( (sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) >= sy_lfr_pas_filter_modulus )
1656 1656 {
1657 1657 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1658 1658 flag = WRONG_APP_DATA;
1659 1659 }
1660 1660 }
1661 1661
1662 1662 //*********************
1663 1663 // sy_lfr_sc_rw_delta_f
1664 1664 if (flag == LFR_SUCCESSFUL)
1665 1665 {
1666 1666 if ( sy_lfr_sc_rw_delta_f < MIN_SY_LFR_SC_RW_DELTA_F )
1667 1667 {
1668 1668 parPtr = (char*) &sy_lfr_pas_filter_shift;
1669 1669 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + DATAFIELD_OFFSET, sy_lfr_sc_rw_delta_f );
1670 1670 flag = WRONG_APP_DATA;
1671 1671 }
1672 1672 }
1673 1673
1674 1674 //************
1675 1675 // sy_lfr_rw_k
1676 1676 if (flag == LFR_SUCCESSFUL)
1677 1677 {
1678 1678 flag = check_all_sy_lfr_rw_k( TC, &datafield_pos, &rw_k );
1679 1679 if (flag != LFR_SUCCESSFUL)
1680 1680 {
1681 1681 parPtr = (char*) &sy_lfr_pas_filter_shift;
1682 1682 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, datafield_pos + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1683 1683 }
1684 1684 }
1685 1685
1686 1686 return flag;
1687 1687 }
1688 1688
1689 1689 //**************
1690 1690 // KCOEFFICIENTS
1691 1691 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1692 1692 {
1693 1693 unsigned int kcoeff;
1694 1694 unsigned short sy_lfr_kcoeff_frequency;
1695 1695 unsigned short bin;
1696 1696 float *kcoeffPtr_norm;
1697 1697 float *kcoeffPtr_sbm;
1698 1698 int status;
1699 1699 unsigned char *kcoeffLoadPtr;
1700 1700 unsigned char *kcoeffNormPtr;
1701 1701 unsigned char *kcoeffSbmPtr_a;
1702 1702 unsigned char *kcoeffSbmPtr_b;
1703 1703
1704 1704 sy_lfr_kcoeff_frequency = 0;
1705 1705 bin = 0;
1706 1706 kcoeffPtr_norm = NULL;
1707 1707 kcoeffPtr_sbm = NULL;
1708 1708 status = LFR_SUCCESSFUL;
1709 1709
1710 1710 // copy the value of the frequency byte by byte DO NOT USE A SHORT* POINTER
1711 1711 copyInt16ByChar( (unsigned char*) &sy_lfr_kcoeff_frequency, &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY] );
1712 1712
1713 1713
1714 1714 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1715 1715 {
1716 1716 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1717 1717 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1718 1718 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1719 1719 status = LFR_DEFAULT;
1720 1720 }
1721 1721 else
1722 1722 {
1723 1723 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1724 1724 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1725 1725 {
1726 1726 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1727 1727 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1728 1728 bin = sy_lfr_kcoeff_frequency;
1729 1729 }
1730 1730 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1731 1731 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1732 1732 {
1733 1733 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1734 1734 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1735 1735 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1736 1736 }
1737 1737 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1738 1738 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1739 1739 {
1740 1740 kcoeffPtr_norm = k_coeff_intercalib_f2;
1741 1741 kcoeffPtr_sbm = NULL;
1742 1742 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1743 1743 }
1744 1744 }
1745 1745
1746 1746 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1747 1747 {
1748 1748 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1749 1749 {
1750 1750 // destination
1751 1751 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1752 1752 // source
1753 1753 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1754 1754 // copy source to destination
1755 1755 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1756 1756 }
1757 1757 }
1758 1758
1759 1759 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1760 1760 {
1761 1761 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1762 1762 {
1763 1763 // destination
1764 1764 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1765 1765 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1766 1766 // source
1767 1767 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1768 1768 // copy source to destination
1769 1769 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1770 1770 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1771 1771 }
1772 1772 }
1773 1773
1774 1774 // print_k_coeff();
1775 1775
1776 1776 return status;
1777 1777 }
1778 1778
1779 1779 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1780 1780 {
1781 1781 destination[BYTE_0] = source[BYTE_0];
1782 1782 destination[BYTE_1] = source[BYTE_1];
1783 1783 destination[BYTE_2] = source[BYTE_2];
1784 1784 destination[BYTE_3] = source[BYTE_3];
1785 1785 }
1786 1786
1787 1787 void copyInt32ByChar( unsigned char *destination, unsigned char *source )
1788 1788 {
1789 1789 destination[BYTE_0] = source[BYTE_0];
1790 1790 destination[BYTE_1] = source[BYTE_1];
1791 1791 destination[BYTE_2] = source[BYTE_2];
1792 1792 destination[BYTE_3] = source[BYTE_3];
1793 1793 }
1794 1794
1795 1795 void copyInt16ByChar( unsigned char *destination, unsigned char *source )
1796 1796 {
1797 1797 destination[BYTE_0] = source[BYTE_0];
1798 1798 destination[BYTE_1] = source[BYTE_1];
1799 1799 }
1800 1800
1801 1801 void floatToChar( float value, unsigned char* ptr)
1802 1802 {
1803 1803 unsigned char* valuePtr;
1804 1804
1805 1805 valuePtr = (unsigned char*) &value;
1806 1806
1807 1807 ptr[BYTE_0] = valuePtr[BYTE_0];
1808 1808 ptr[BYTE_1] = valuePtr[BYTE_1];
1809 1809 ptr[BYTE_2] = valuePtr[BYTE_2];
1810 1810 ptr[BYTE_3] = valuePtr[BYTE_3];
1811 1811 }
1812 1812
1813 1813 //**********
1814 1814 // init dump
1815 1815
1816 1816 void init_parameter_dump( void )
1817 1817 {
1818 1818 /** This function initialize the parameter_dump_packet global variable with default values.
1819 1819 *
1820 1820 */
1821 1821
1822 1822 unsigned int k;
1823 1823
1824 1824 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1825 1825 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1826 1826 parameter_dump_packet.reserved = CCSDS_RESERVED;
1827 1827 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1828 1828 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1829 1829 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1830 1830 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1831 1831 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1832 1832 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1833 1833 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1834 1834 // DATA FIELD HEADER
1835 1835 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1836 1836 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1837 1837 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1838 1838 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1839 1839 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1840 1840 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1841 1841 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1842 1842 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1843 1843 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1844 1844 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1845 1845 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1846 1846
1847 1847 //******************
1848 1848 // COMMON PARAMETERS
1849 1849 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1850 1850 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1851 1851
1852 1852 //******************
1853 1853 // NORMAL PARAMETERS
1854 1854 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1855 1855 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1856 1856 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1857 1857 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1858 1858 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1859 1859 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1860 1860 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1861 1861 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1862 1862 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1863 1863
1864 1864 //*****************
1865 1865 // BURST PARAMETERS
1866 1866 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1867 1867 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1868 1868
1869 1869 //****************
1870 1870 // SBM1 PARAMETERS
1871 1871 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1872 1872 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1873 1873
1874 1874 //****************
1875 1875 // SBM2 PARAMETERS
1876 1876 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1877 1877 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1878 1878
1879 1879 //************
1880 1880 // FBINS MASKS
1881 1881 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1882 1882 {
1883 1883 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = INT8_ALL_F;
1884 1884 }
1885 1885
1886 1886 // PAS FILTER PARAMETERS
1887 1887 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1888 1888 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1889 1889 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1890 1890 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1891 1891 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1892 1892 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1893 1893 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1894 1894
1895 1895 // RW1_K
1896 1896 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw1_k1);
1897 1897 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw1_k2);
1898 1898 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw1_k3);
1899 1899 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw1_k4);
1900 1900 // RW2_K
1901 1901 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw2_k1);
1902 1902 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw2_k2);
1903 1903 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw2_k3);
1904 1904 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw2_k4);
1905 1905 // RW3_K
1906 1906 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw3_k1);
1907 1907 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw3_k2);
1908 1908 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw3_k3);
1909 1909 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw3_k4);
1910 1910 // RW4_K
1911 1911 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw4_k1);
1912 1912 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw4_k2);
1913 1913 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw4_k3);
1914 1914 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw4_k4);
1915 1915
1916 1916 // LFR_RW_MASK
1917 1917 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1918 1918 {
1919 1919 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = INT8_ALL_F;
1920 1920 }
1921 1921
1922 1922 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1923 1923 merge_fbins_masks();
1924 1924 }
1925 1925
1926 1926 void init_kcoefficients_dump( void )
1927 1927 {
1928 1928 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1929 1929 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1930 1930
1931 1931 kcoefficient_node_1.previous = NULL;
1932 1932 kcoefficient_node_1.next = NULL;
1933 1933 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1934 1934 kcoefficient_node_1.coarseTime = INIT_CHAR;
1935 1935 kcoefficient_node_1.fineTime = INIT_CHAR;
1936 1936 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1937 1937 kcoefficient_node_1.status = INIT_CHAR;
1938 1938
1939 1939 kcoefficient_node_2.previous = NULL;
1940 1940 kcoefficient_node_2.next = NULL;
1941 1941 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1942 1942 kcoefficient_node_2.coarseTime = INIT_CHAR;
1943 1943 kcoefficient_node_2.fineTime = INIT_CHAR;
1944 1944 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1945 1945 kcoefficient_node_2.status = INIT_CHAR;
1946 1946 }
1947 1947
1948 1948 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1949 1949 {
1950 1950 unsigned int k;
1951 1951 unsigned int packetLength;
1952 1952
1953 1953 packetLength =
1954 1954 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1955 1955
1956 1956 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1957 1957 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1958 1958 kcoefficients_dump->reserved = CCSDS_RESERVED;
1959 1959 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1960 1960 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1961 1961 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1962 1962 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1963 1963 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1964 1964 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1965 1965 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1966 1966 // DATA FIELD HEADER
1967 1967 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1968 1968 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1969 1969 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1970 1970 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1971 1971 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1972 1972 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1973 1973 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1974 1974 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1975 1975 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1976 1976 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1977 1977 kcoefficients_dump->sid = SID_K_DUMP;
1978 1978
1979 1979 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1980 1980 kcoefficients_dump->pkt_nr = PKTNR_1;
1981 1981 kcoefficients_dump->blk_nr = blk_nr;
1982 1982
1983 1983 //******************
1984 1984 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1985 1985 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1986 1986 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1987 1987 {
1988 1988 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1989 1989 }
1990 1990 }
1991 1991
1992 1992 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1993 1993 {
1994 1994 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1995 1995 *
1996 1996 * @param packet_sequence_control points to the packet sequence control which will be incremented
1997 1997 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1998 1998 *
1999 1999 * If the destination ID is not known, a dedicated counter is incremented.
2000 2000 *
2001 2001 */
2002 2002
2003 2003 unsigned short sequence_cnt;
2004 2004 unsigned short segmentation_grouping_flag;
2005 2005 unsigned short new_packet_sequence_control;
2006 2006 unsigned char i;
2007 2007
2008 2008 switch (destination_id)
2009 2009 {
2010 2010 case SID_TC_GROUND:
2011 2011 i = GROUND;
2012 2012 break;
2013 2013 case SID_TC_MISSION_TIMELINE:
2014 2014 i = MISSION_TIMELINE;
2015 2015 break;
2016 2016 case SID_TC_TC_SEQUENCES:
2017 2017 i = TC_SEQUENCES;
2018 2018 break;
2019 2019 case SID_TC_RECOVERY_ACTION_CMD:
2020 2020 i = RECOVERY_ACTION_CMD;
2021 2021 break;
2022 2022 case SID_TC_BACKUP_MISSION_TIMELINE:
2023 2023 i = BACKUP_MISSION_TIMELINE;
2024 2024 break;
2025 2025 case SID_TC_DIRECT_CMD:
2026 2026 i = DIRECT_CMD;
2027 2027 break;
2028 2028 case SID_TC_SPARE_GRD_SRC1:
2029 2029 i = SPARE_GRD_SRC1;
2030 2030 break;
2031 2031 case SID_TC_SPARE_GRD_SRC2:
2032 2032 i = SPARE_GRD_SRC2;
2033 2033 break;
2034 2034 case SID_TC_OBCP:
2035 2035 i = OBCP;
2036 2036 break;
2037 2037 case SID_TC_SYSTEM_CONTROL:
2038 2038 i = SYSTEM_CONTROL;
2039 2039 break;
2040 2040 case SID_TC_AOCS:
2041 2041 i = AOCS;
2042 2042 break;
2043 2043 case SID_TC_RPW_INTERNAL:
2044 2044 i = RPW_INTERNAL;
2045 2045 break;
2046 2046 default:
2047 2047 i = GROUND;
2048 2048 break;
2049 2049 }
2050 2050
2051 2051 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
2052 2052 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
2053 2053
2054 2054 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
2055 2055
2056 2056 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
2057 2057 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
2058 2058
2059 2059 // increment the sequence counter
2060 2060 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
2061 2061 {
2062 2062 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
2063 2063 }
2064 2064 else
2065 2065 {
2066 2066 sequenceCounters_TM_DUMP[ i ] = 0;
2067 2067 }
2068 2068 }
General Comments 0
You need to be logged in to leave comments. Login now