##// END OF EJS Templates
3.2.0.5...
paul -
r354:6155c628c251 R3++ draft
parent child
Show More
@@ -1,2 +1,2
1 1 3081d1f9bb20b2b64a192585337a292a9804e0c5 LFR_basic-parameters
2 5dfc0745a617f0b14b9b4c6d6c12d01f1fb9a801 header/lfr_common_headers
2 26659466eb11170e587645c796142ac8a7fd0add header/lfr_common_headers
@@ -1,371 +1,373
1 1 #ifndef FSW_PROCESSING_H_INCLUDED
2 2 #define FSW_PROCESSING_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <math.h>
7 7 #include <stdlib.h> // abs() is in the stdlib
8 8 #include <stdio.h>
9 9 #include <math.h>
10 10 #include <grlib_regs.h>
11 11
12 12 #include "fsw_params.h"
13 13
14 14 #define SBM_COEFF_PER_NORM_COEFF 2
15 15 #define MAX_SRC_DATA 780 // MAX size is 26 bins * 30 Bytes [TM_LFR_SCIENCE_BURST_BP2_F1]
16 16 #define MAX_SRC_DATA_WITH_SPARE 143 // 13 bins * 11 Bytes
17 17
18 18 #define NODE_0 0
19 19 #define NODE_1 1
20 20 #define NODE_2 2
21 21 #define NODE_3 3
22 22 #define NODE_4 4
23 23 #define NODE_5 5
24 24 #define NODE_6 6
25 25 #define NODE_7 7
26 26
27 27 typedef struct ring_node_asm
28 28 {
29 29 struct ring_node_asm *next;
30 30 float matrix[ TOTAL_SIZE_SM ];
31 31 unsigned int status;
32 32 } ring_node_asm;
33 33
34 34 typedef struct
35 35 {
36 36 unsigned char targetLogicalAddress;
37 37 unsigned char protocolIdentifier;
38 38 unsigned char reserved;
39 39 unsigned char userApplication;
40 40 unsigned char packetID[BYTES_PER_PACKETID];
41 41 unsigned char packetSequenceControl[BYTES_PER_SEQ_CTRL];
42 42 unsigned char packetLength[BYTES_PER_PKT_LEN];
43 43 // DATA FIELD HEADER
44 44 unsigned char spare1_pusVersion_spare2;
45 45 unsigned char serviceType;
46 46 unsigned char serviceSubType;
47 47 unsigned char destinationID;
48 48 unsigned char time[BYTES_PER_TIME];
49 49 // AUXILIARY HEADER
50 50 unsigned char sid;
51 51 unsigned char pa_bia_status_info;
52 52 unsigned char sy_lfr_common_parameters_spare;
53 53 unsigned char sy_lfr_common_parameters;
54 54 unsigned char acquisitionTime[BYTES_PER_TIME];
55 55 unsigned char pa_lfr_bp_blk_nr[BYTES_PER_BLKNR];
56 56 // SOURCE DATA
57 57 unsigned char data[ MAX_SRC_DATA ]; // MAX size is 26 bins * 30 Bytes [TM_LFR_SCIENCE_BURST_BP2_F1]
58 58 } bp_packet;
59 59
60 60 typedef struct
61 61 {
62 62 unsigned char targetLogicalAddress;
63 63 unsigned char protocolIdentifier;
64 64 unsigned char reserved;
65 65 unsigned char userApplication;
66 66 unsigned char packetID[BYTES_PER_PACKETID];
67 67 unsigned char packetSequenceControl[BYTES_PER_SEQ_CTRL];
68 68 unsigned char packetLength[BYTES_PER_PKT_LEN];
69 69 // DATA FIELD HEADER
70 70 unsigned char spare1_pusVersion_spare2;
71 71 unsigned char serviceType;
72 72 unsigned char serviceSubType;
73 73 unsigned char destinationID;
74 74 unsigned char time[BYTES_PER_TIME];
75 75 // AUXILIARY HEADER
76 76 unsigned char sid;
77 77 unsigned char pa_bia_status_info;
78 78 unsigned char sy_lfr_common_parameters_spare;
79 79 unsigned char sy_lfr_common_parameters;
80 80 unsigned char acquisitionTime[BYTES_PER_TIME];
81 81 unsigned char source_data_spare;
82 82 unsigned char pa_lfr_bp_blk_nr[BYTES_PER_BLKNR];
83 83 // SOURCE DATA
84 84 unsigned char data[ MAX_SRC_DATA_WITH_SPARE ]; // 13 bins * 11 Bytes
85 85 } bp_packet_with_spare; // only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
86 86
87 87 typedef struct asm_msg
88 88 {
89 89 ring_node_asm *norm;
90 90 ring_node_asm *burst_sbm;
91 91 rtems_event_set event;
92 92 unsigned int coarseTimeNORM;
93 93 unsigned int fineTimeNORM;
94 94 unsigned int coarseTimeSBM;
95 95 unsigned int fineTimeSBM;
96 96 unsigned int numberOfSMInASMNORM;
97 97 unsigned int numberOfSMInASMSBM;
98 98 } asm_msg;
99 99
100 100 extern unsigned char thisIsAnASMRestart;
101 101
102 102 extern volatile int sm_f0[ ];
103 103 extern volatile int sm_f1[ ];
104 104 extern volatile int sm_f2[ ];
105 105 extern unsigned int acquisitionDurations[];
106 106
107 107 // parameters
108 108 extern struct param_local_str param_local;
109 109 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
110 110
111 111 // registers
112 112 extern time_management_regs_t *time_management_regs;
113 113 extern volatile spectral_matrix_regs_t *spectral_matrix_regs;
114 114
115 115 extern rtems_name misc_name[];
116 116 extern rtems_id Task_id[]; /* array of task ids */
117 117
118 118 ring_node * getRingNodeForAveraging( unsigned char frequencyChannel);
119 119 // ISR
120 120 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
121 121
122 122 //******************
123 123 // Spectral Matrices
124 124 void reset_nb_sm( void );
125 125 // SM
126 126 void SM_init_rings( void );
127 127 void SM_reset_current_ring_nodes( void );
128 128 // ASM
129 129 void ASM_generic_init_ring(ring_node_asm *ring, unsigned char nbNodes );
130 130
131 131 //*****************
132 132 // Basic Parameters
133 133
134 134 void BP_reset_current_ring_nodes( void );
135 135 void BP_init_header(bp_packet *packet,
136 136 unsigned int apid, unsigned char sid,
137 137 unsigned int packetLength , unsigned char blkNr);
138 138 void BP_init_header_with_spare(bp_packet_with_spare *packet,
139 139 unsigned int apid, unsigned char sid,
140 140 unsigned int packetLength, unsigned char blkNr );
141 141 void BP_send( char *data,
142 142 rtems_id queue_id,
143 143 unsigned int nbBytesToSend , unsigned int sid );
144 144 void BP_send_s1_s2(char *data,
145 145 rtems_id queue_id,
146 146 unsigned int nbBytesToSend, unsigned int sid );
147 147
148 148 //******************
149 149 // general functions
150 150 void reset_sm_status( void );
151 151 void reset_spectral_matrix_regs( void );
152 152 void set_time(unsigned char *time, unsigned char *timeInBuffer );
153 153 unsigned long long int get_acquisition_time( unsigned char *timePtr );
154 154 unsigned char getSID( rtems_event_set event );
155 155
156 156 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
157 157 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
158 158
159 159 //***************************************
160 160 // DEFINITIONS OF STATIC INLINE FUNCTIONS
161 161 static inline void SM_average(float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
162 162 ring_node *ring_node_tab[],
163 163 unsigned int nbAverageNORM, unsigned int nbAverageSBM,
164 164 asm_msg *msgForMATR , unsigned char channel);
165 165
166 166 void ASM_patch( float *inputASM, float *outputASM );
167 167
168 168 void extractReImVectors(float *inputASM, float *outputASM, unsigned int asmComponent );
169 169
170 170 static inline void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
171 171 float divider );
172 172
173 173 static inline void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
174 174 float divider,
175 175 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
176 176
177 177 static inline void ASM_convert(volatile float *input_matrix, char *output_matrix);
178 178
179 unsigned char isPolluted( u_int64_t t0, u_int64_t t1, u_int64_t tbad0, u_int64_t tbad1 );
180
179 181 unsigned char acquisitionTimeIsValid(unsigned int coarseTime, unsigned int fineTime, unsigned char channel);
180 182
181 183 void SM_average( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
182 184 ring_node *ring_node_tab[],
183 185 unsigned int nbAverageNORM, unsigned int nbAverageSBM,
184 186 asm_msg *msgForMATR, unsigned char channel )
185 187 {
186 188 float sum;
187 189 unsigned int i;
188 190 unsigned int k;
189 191 unsigned char incomingSMIsValid[NB_SM_BEFORE_AVF0_F1];
190 192 unsigned int numberOfValidSM;
191 193 unsigned char isValid;
192 194
193 195 //**************
194 196 // PAS FILTERING
195 197 // check acquisitionTime of the incoming data
196 198 numberOfValidSM = 0;
197 199 for (k=0; k<NB_SM_BEFORE_AVF0_F1; k++)
198 200 {
199 201 isValid = acquisitionTimeIsValid( ring_node_tab[k]->coarseTime, ring_node_tab[k]->fineTime, channel );
200 202 incomingSMIsValid[k] = isValid;
201 203 numberOfValidSM = numberOfValidSM + isValid;
202 204 }
203 205
204 206 //************************
205 207 // AVERAGE SPECTRAL MATRIX
206 208 for(i=0; i<TOTAL_SIZE_SM; i++)
207 209 {
208 210 sum = INIT_FLOAT;
209 211 for ( k = 0; k < NB_SM_BEFORE_AVF0_F1; k++ )
210 212 {
211 if (incomingSMIsValid[k] == 1)
213 if (incomingSMIsValid[k] == MATRIX_IS_NOT_POLLUTED)
212 214 {
213 215 sum = sum + ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ] ;
214 216 }
215 217 }
216 218
217 219 if ( (nbAverageNORM == 0) && (nbAverageSBM == 0) )
218 220 {
219 221 averaged_spec_mat_NORM[ i ] = sum;
220 222 averaged_spec_mat_SBM[ i ] = sum;
221 223 msgForMATR->coarseTimeNORM = ring_node_tab[0]->coarseTime;
222 224 msgForMATR->fineTimeNORM = ring_node_tab[0]->fineTime;
223 225 msgForMATR->coarseTimeSBM = ring_node_tab[0]->coarseTime;
224 226 msgForMATR->fineTimeSBM = ring_node_tab[0]->fineTime;
225 227 }
226 228 else if ( (nbAverageNORM != 0) && (nbAverageSBM != 0) )
227 229 {
228 230 averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
229 231 averaged_spec_mat_SBM[ i ] = ( averaged_spec_mat_SBM[ i ] + sum );
230 232 }
231 233 else if ( (nbAverageNORM != 0) && (nbAverageSBM == 0) )
232 234 {
233 235 averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
234 236 averaged_spec_mat_SBM[ i ] = sum;
235 237 msgForMATR->coarseTimeSBM = ring_node_tab[0]->coarseTime;
236 238 msgForMATR->fineTimeSBM = ring_node_tab[0]->fineTime;
237 239 }
238 240 else
239 241 {
240 242 averaged_spec_mat_NORM[ i ] = sum;
241 243 averaged_spec_mat_SBM[ i ] = ( averaged_spec_mat_SBM[ i ] + sum );
242 244 msgForMATR->coarseTimeNORM = ring_node_tab[0]->coarseTime;
243 245 msgForMATR->fineTimeNORM = ring_node_tab[0]->fineTime;
244 246 // PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNORM, nbAverageSBM)
245 247 }
246 248 }
247 249
248 250 //*******************
249 251 // UPDATE SM COUNTERS
250 252 if ( (nbAverageNORM == 0) && (nbAverageSBM == 0) )
251 253 {
252 254 msgForMATR->numberOfSMInASMNORM = numberOfValidSM;
253 255 msgForMATR->numberOfSMInASMSBM = numberOfValidSM;
254 256 }
255 257 else if ( (nbAverageNORM != 0) && (nbAverageSBM != 0) )
256 258 {
257 259 msgForMATR->numberOfSMInASMNORM = msgForMATR->numberOfSMInASMNORM + numberOfValidSM;
258 260 msgForMATR->numberOfSMInASMSBM = msgForMATR->numberOfSMInASMSBM + numberOfValidSM;
259 261 }
260 262 else if ( (nbAverageNORM != 0) && (nbAverageSBM == 0) )
261 263 {
262 264 msgForMATR->numberOfSMInASMNORM = msgForMATR->numberOfSMInASMNORM + numberOfValidSM;
263 265 msgForMATR->numberOfSMInASMSBM = numberOfValidSM;
264 266 }
265 267 else
266 268 {
267 269 msgForMATR->numberOfSMInASMNORM = numberOfValidSM;
268 270 msgForMATR->numberOfSMInASMSBM = msgForMATR->numberOfSMInASMSBM + numberOfValidSM;
269 271 }
270 272 }
271 273
272 274 void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
273 275 {
274 276 int frequencyBin;
275 277 int asmComponent;
276 278 unsigned int offsetASM;
277 279 unsigned int offsetASMReorganized;
278 280
279 281 // BUILD DATA
280 282 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
281 283 {
282 284 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
283 285 {
284 286 offsetASMReorganized =
285 287 (frequencyBin * NB_VALUES_PER_SM)
286 288 + asmComponent;
287 289 offsetASM =
288 290 (asmComponent * NB_BINS_PER_SM)
289 291 + frequencyBin;
290 292 if ( divider != INIT_FLOAT )
291 293 {
292 294 averaged_spec_mat_reorganized[offsetASMReorganized ] = averaged_spec_mat[ offsetASM ] / divider;
293 295 }
294 296 else
295 297 {
296 298 averaged_spec_mat_reorganized[offsetASMReorganized ] = INIT_FLOAT;
297 299 }
298 300 }
299 301 }
300 302 }
301 303
302 304 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
303 305 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
304 306 {
305 307 int frequencyBin;
306 308 int asmComponent;
307 309 int offsetASM;
308 310 int offsetCompressed;
309 311 int k;
310 312
311 313 // BUILD DATA
312 314 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
313 315 {
314 316 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
315 317 {
316 318 offsetCompressed = // NO TIME OFFSET
317 319 (frequencyBin * NB_VALUES_PER_SM)
318 320 + asmComponent;
319 321 offsetASM = // NO TIME OFFSET
320 322 (asmComponent * NB_BINS_PER_SM)
321 323 + ASMIndexStart
322 324 + (frequencyBin * nbBinsToAverage);
323 325 compressed_spec_mat[ offsetCompressed ] = 0;
324 326 for ( k = 0; k < nbBinsToAverage; k++ )
325 327 {
326 328 compressed_spec_mat[offsetCompressed ] =
327 329 ( compressed_spec_mat[ offsetCompressed ]
328 330 + averaged_spec_mat[ offsetASM + k ] );
329 331 }
330 332 compressed_spec_mat[ offsetCompressed ] =
331 333 compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
332 334 }
333 335 }
334 336 }
335 337
336 338 void ASM_convert( volatile float *input_matrix, char *output_matrix)
337 339 {
338 340 unsigned int frequencyBin;
339 341 unsigned int asmComponent;
340 342 char * pt_char_input;
341 343 char * pt_char_output;
342 344 unsigned int offsetInput;
343 345 unsigned int offsetOutput;
344 346
345 347 pt_char_input = (char*) &input_matrix;
346 348 pt_char_output = (char*) &output_matrix;
347 349
348 350 // convert all other data
349 351 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
350 352 {
351 353 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
352 354 {
353 355 offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
354 356 offsetOutput = SM_BYTES_PER_VAL * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
355 357 pt_char_input = (char*) &input_matrix [ offsetInput ];
356 358 pt_char_output = (char*) &output_matrix[ offsetOutput ];
357 359 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
358 360 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
359 361 }
360 362 }
361 363 }
362 364
363 365 void ASM_compress_reorganize_and_divide_mask(float *averaged_spec_mat, float *compressed_spec_mat,
364 366 float divider,
365 367 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart, unsigned char channel);
366 368
367 369 int getFBinMask(int k, unsigned char channel);
368 370
369 371 void init_kcoeff_sbm_from_kcoeff_norm( float *input_kcoeff, float *output_kcoeff, unsigned char nb_bins_norm);
370 372
371 373 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,107 +1,107
1 1 cmake_minimum_required (VERSION 2.6)
2 2 project (fsw)
3 3
4 4 include(sparc-rtems)
5 5 include(cppcheck)
6 6
7 7 include_directories("../header"
8 8 "../header/lfr_common_headers"
9 9 "../header/processing"
10 10 "../LFR_basic-parameters"
11 11 "../src")
12 12
13 13 set(SOURCES wf_handler.c
14 14 tc_handler.c
15 15 fsw_misc.c
16 16 fsw_init.c
17 17 fsw_globals.c
18 18 fsw_spacewire.c
19 19 tc_load_dump_parameters.c
20 20 tm_lfr_tc_exe.c
21 21 tc_acceptance.c
22 22 processing/fsw_processing.c
23 23 processing/avf0_prc0.c
24 24 processing/avf1_prc1.c
25 25 processing/avf2_prc2.c
26 26 lfr_cpu_usage_report.c
27 27 ${LFR_BP_SRC}
28 28 ../header/wf_handler.h
29 29 ../header/tc_handler.h
30 30 ../header/grlib_regs.h
31 31 ../header/fsw_misc.h
32 32 ../header/fsw_init.h
33 33 ../header/fsw_spacewire.h
34 34 ../header/tc_load_dump_parameters.h
35 35 ../header/tm_lfr_tc_exe.h
36 36 ../header/tc_acceptance.h
37 37 ../header/processing/fsw_processing.h
38 38 ../header/processing/avf0_prc0.h
39 39 ../header/processing/avf1_prc1.h
40 40 ../header/processing/avf2_prc2.h
41 41 ../header/fsw_params_wf_handler.h
42 42 ../header/lfr_cpu_usage_report.h
43 43 ../header/lfr_common_headers/ccsds_types.h
44 44 ../header/lfr_common_headers/fsw_params.h
45 45 ../header/lfr_common_headers/fsw_params_nb_bytes.h
46 46 ../header/lfr_common_headers/fsw_params_processing.h
47 47 ../header/lfr_common_headers/tm_byte_positions.h
48 48 ../LFR_basic-parameters/basic_parameters.h
49 49 ../LFR_basic-parameters/basic_parameters_params.h
50 50 ../header/GscMemoryLPP.hpp
51 51 )
52 52
53 53
54 54 option(FSW_verbose "Enable verbose LFR" OFF)
55 55 option(FSW_boot_messages "Enable LFR boot messages" OFF)
56 56 option(FSW_debug_messages "Enable LFR debug messages" OFF)
57 57 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
58 58 option(FSW_stack_report "Enable LFR stack report" OFF)
59 59 option(FSW_vhdl_dev "?" OFF)
60 60 option(FSW_lpp_dpu_destid "Set to debug at LPP" ON)
61 61 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
62 62 option(FSW_debug_tch "?" OFF)
63 63
64 64 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
65 65 set(SW_VERSION_N2 "2" CACHE STRING "Choose N2 FSW Version." FORCE)
66 66 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
67 set(SW_VERSION_N4 "3" CACHE STRING "Choose N4 FSW Version." FORCE)
67 set(SW_VERSION_N4 "5" CACHE STRING "Choose N4 FSW Version." FORCE)
68 68
69 69 if(FSW_verbose)
70 70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
71 71 endif()
72 72 if(FSW_boot_messages)
73 73 add_definitions(-DBOOT_MESSAGES)
74 74 endif()
75 75 if(FSW_debug_messages)
76 76 add_definitions(-DDEBUG_MESSAGES)
77 77 endif()
78 78 if(FSW_cpu_usage_report)
79 79 add_definitions(-DPRINT_TASK_STATISTICS)
80 80 endif()
81 81 if(FSW_stack_report)
82 82 add_definitions(-DPRINT_STACK_REPORT)
83 83 endif()
84 84 if(FSW_vhdl_dev)
85 85 add_definitions(-DVHDL_DEV)
86 86 endif()
87 87 if(FSW_lpp_dpu_destid)
88 88 add_definitions(-DLPP_DPU_DESTID)
89 89 endif()
90 90 if(FSW_debug_watchdog)
91 91 add_definitions(-DDEBUG_WATCHDOG)
92 92 endif()
93 93 if(FSW_debug_tch)
94 94 add_definitions(-DDEBUG_TCH)
95 95 endif()
96 96
97 97 add_definitions(-DMSB_FIRST_TCH)
98 98
99 99 add_definitions(-DSWVERSION=-1-0)
100 100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
101 101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
102 102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
103 103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
104 104
105 105 add_executable(fsw ${SOURCES})
106 106 add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE)
107 107
@@ -1,98 +1,96
1 1 /** Global variables of the LFR flight software.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * Among global variables, there are:
7 7 * - RTEMS names and id.
8 8 * - APB configuration registers.
9 9 * - waveforms global buffers, used by the waveform picker hardware module to store data.
10 10 * - spectral matrices buffesr, used by the hardware module to store data.
11 11 * - variable related to LFR modes parameters.
12 12 * - the global HK packet buffer.
13 13 * - the global dump parameter buffer.
14 14 *
15 15 */
16 16
17 17 #include <rtems.h>
18 18 #include <grspw.h>
19 19
20 20 #include "ccsds_types.h"
21 21 #include "grlib_regs.h"
22 22 #include "fsw_params.h"
23 23 #include "fsw_params_wf_handler.h"
24 24
25 25 #define NB_OF_TASKS 20
26 26 #define NB_OF_MISC_NAMES 5
27 27
28 28 // RTEMS GLOBAL VARIABLES
29 29 rtems_name misc_name[NB_OF_MISC_NAMES] = {0};
30 30 rtems_name Task_name[NB_OF_TASKS] = {0}; /* array of task names */
31 31 rtems_id Task_id[NB_OF_TASKS] = {0}; /* array of task ids */
32 32 rtems_name timecode_timer_name = 0;
33 33 rtems_id timecode_timer_id = RTEMS_ID_NONE;
34 34 rtems_name name_hk_rate_monotonic = 0; // name of the HK rate monotonic
35 35 rtems_id HK_id = RTEMS_ID_NONE;// id of the HK rate monotonic period
36 36 rtems_name name_avgv_rate_monotonic = 0; // name of the AVGV rate monotonic
37 37 rtems_id AVGV_id = RTEMS_ID_NONE;// id of the AVGV rate monotonic period
38 38 int fdSPW = 0;
39 39 int fdUART = 0;
40 40 unsigned char lfrCurrentMode = 0;
41 41 unsigned char pa_bia_status_info = 0;
42 42 unsigned char thisIsAnASMRestart = 0;
43 43 unsigned char oneTcLfrUpdateTimeReceived = 0;
44 44
45 45 // WAVEFORMS GLOBAL VARIABLES // 2048 * 3 * 4 + 2 * 4 = 24576 + 8 bytes = 24584
46 46 // 97 * 256 = 24832 => delta = 248 bytes = 62 words
47 47 // WAVEFORMS GLOBAL VARIABLES // 2688 * 3 * 4 + 2 * 4 = 32256 + 8 bytes = 32264
48 48 // 127 * 256 = 32512 => delta = 248 bytes = 62 words
49 49 // F0 F1 F2 F3
50 50 volatile int wf_buffer_f0[ NB_RING_NODES_F0 * WFRM_BUFFER ] __attribute__((aligned(0x100))) = {0};
51 51 volatile int wf_buffer_f1[ NB_RING_NODES_F1 * WFRM_BUFFER ] __attribute__((aligned(0x100))) = {0};
52 52 volatile int wf_buffer_f2[ NB_RING_NODES_F2 * WFRM_BUFFER ] __attribute__((aligned(0x100))) = {0};
53 53 volatile int wf_buffer_f3[ NB_RING_NODES_F3 * WFRM_BUFFER ] __attribute__((aligned(0x100))) = {0};
54 54
55 55 //***********************************
56 56 // SPECTRAL MATRICES GLOBAL VARIABLES
57 57
58 58 // alignment constraints for the spectral matrices buffers => the first data after the time (8 bytes) shall be aligned on 0x00
59 59 volatile int sm_f0[ NB_RING_NODES_SM_F0 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100))) = {0};
60 60 volatile int sm_f1[ NB_RING_NODES_SM_F1 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100))) = {0};
61 61 volatile int sm_f2[ NB_RING_NODES_SM_F2 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100))) = {0};
62 62
63 63 // APB CONFIGURATION REGISTERS
64 64 time_management_regs_t *time_management_regs = (time_management_regs_t*) REGS_ADDR_TIME_MANAGEMENT;
65 65 gptimer_regs_t *gptimer_regs = (gptimer_regs_t *) REGS_ADDR_GPTIMER;
66 66 waveform_picker_regs_0_1_18_t *waveform_picker_regs = (waveform_picker_regs_0_1_18_t*) REGS_ADDR_WAVEFORM_PICKER;
67 67 spectral_matrix_regs_t *spectral_matrix_regs = (spectral_matrix_regs_t*) REGS_ADDR_SPECTRAL_MATRIX;
68 68
69 69 // MODE PARAMETERS
70 70 Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet = {0};
71 71 struct param_local_str param_local = {0};
72 72 unsigned int lastValidEnterModeTime = {0};
73 73
74 74 // HK PACKETS
75 75 Packet_TM_LFR_HK_t housekeeping_packet = {0};
76 76 // message queues occupancy
77 77 unsigned char hk_lfr_q_sd_fifo_size_max = 0;
78 78 unsigned char hk_lfr_q_rv_fifo_size_max = 0;
79 79 unsigned char hk_lfr_q_p0_fifo_size_max = 0;
80 80 unsigned char hk_lfr_q_p1_fifo_size_max = 0;
81 81 unsigned char hk_lfr_q_p2_fifo_size_max = 0;
82 82 // sequence counters are incremented by APID (PID + CAT) and destination ID
83 83 unsigned short sequenceCounters_SCIENCE_NORMAL_BURST __attribute__((aligned(0x4))) = 0;
84 84 unsigned short sequenceCounters_SCIENCE_SBM1_SBM2 __attribute__((aligned(0x4))) = 0;
85 85 unsigned short sequenceCounters_TC_EXE[SEQ_CNT_NB_DEST_ID] __attribute__((aligned(0x4))) = {0};
86 86 unsigned short sequenceCounters_TM_DUMP[SEQ_CNT_NB_DEST_ID] __attribute__((aligned(0x4))) = {0};
87 87 unsigned short sequenceCounterHK __attribute__((aligned(0x4))) = {0};
88 88 spw_stats grspw_stats __attribute__((aligned(0x4))) = {0};
89 89
90 90 // TC_LFR_UPDATE_INFO
91 91 rw_f_t rw_f;
92 92
93 93 // TC_LFR_LOAD_FILTER_PAR
94 94 filterPar_t filterPar = {0};
95 95
96 96 fbins_masks_t fbins_masks = {0};
97 unsigned int acquisitionDurations[NB_ACQUISITION_DURATION]
98 = {ACQUISITION_DURATION_F0, ACQUISITION_DURATION_F1, ACQUISITION_DURATION_F2};
@@ -1,332 +1,332
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf2_prc2.h"
11 11
12 12 nb_sm_before_bp_asm_f2 nb_sm_before_f2 = {0};
13 13
14 14 //***
15 15 // F2
16 16 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ] = {0};
17 17
18 18 ring_node ring_to_send_asm_f2 [ NB_RING_NODES_ASM_F2 ] = {0};
19 19 int buffer_asm_f2 [ NB_RING_NODES_ASM_F2 * TOTAL_SIZE_SM ] = {0};
20 20
21 21 float asm_f2_patched_norm [ TOTAL_SIZE_SM ] = {0};
22 22 float asm_f2_reorganized [ TOTAL_SIZE_SM ] = {0};
23 23
24 24 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2] = {0};
25 25
26 26 float k_coeff_intercalib_f2[ NB_BINS_COMPRESSED_SM_F2 * NB_K_COEFF_PER_BIN ] = {0}; // 12 * 32 = 384
27 27
28 28 //************
29 29 // RTEMS TASKS
30 30
31 31 //***
32 32 // F2
33 33 rtems_task avf2_task( rtems_task_argument argument )
34 34 {
35 35 rtems_event_set event_out;
36 36 rtems_status_code status;
37 37 rtems_id queue_id_prc2;
38 38 asm_msg msgForPRC;
39 39 ring_node *nodeForAveraging;
40 40 ring_node_asm *current_ring_node_asm_norm_f2;
41 41
42 42 unsigned int nb_norm_bp1;
43 43 unsigned int nb_norm_bp2;
44 44 unsigned int nb_norm_asm;
45 45
46 46 event_out = EVENT_SETS_NONE_PENDING;
47 47 queue_id_prc2 = RTEMS_ID_NONE;
48 48 nb_norm_bp1 = 0;
49 49 nb_norm_bp2 = 0;
50 50 nb_norm_asm = 0;
51 51
52 52 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
53 53 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
54 54 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
55 55
56 56 BOOT_PRINTF("in AVF2 ***\n")
57 57
58 58 status = get_message_queue_id_prc2( &queue_id_prc2 );
59 59 if (status != RTEMS_SUCCESSFUL)
60 60 {
61 61 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
62 62 }
63 63
64 64 while(1){
65 65 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
66 66
67 67 //****************************************
68 68 // initialize the mesage for the MATR task
69 69 msgForPRC.norm = current_ring_node_asm_norm_f2;
70 70 msgForPRC.burst_sbm = NULL;
71 71 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC2 task
72 72 //
73 73 //****************************************
74 74
75 75 nodeForAveraging = getRingNodeForAveraging( CHANNELF2 );
76 76
77 77 // compute the average and store it in the averaged_sm_f2 buffer
78 78 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
79 79 nodeForAveraging,
80 80 nb_norm_bp1,
81 81 &msgForPRC );
82 82
83 83 // update nb_average
84 84 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
85 85 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
86 86 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
87 87
88 88 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
89 89 {
90 90 nb_norm_bp1 = 0;
91 91 // set another ring for the ASM storage
92 92 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
93 93 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
94 94 || (lfrCurrentMode == LFR_MODE_SBM2) )
95 95 {
96 96 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F2;
97 97 }
98 98 }
99 99
100 100 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
101 101 {
102 102 nb_norm_bp2 = 0;
103 103 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
104 104 || (lfrCurrentMode == LFR_MODE_SBM2) )
105 105 {
106 106 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F2;
107 107 }
108 108 }
109 109
110 110 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
111 111 {
112 112 nb_norm_asm = 0;
113 113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
114 114 || (lfrCurrentMode == LFR_MODE_SBM2) )
115 115 {
116 116 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F2;
117 117 }
118 118 }
119 119
120 120 //*************************
121 121 // send the message to PRC2
122 122 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
123 123 {
124 124 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC2);
125 125 }
126 126
127 127 if (status != RTEMS_SUCCESSFUL) {
128 128 PRINTF1("in AVF2 *** Error sending message to PRC2, code %d\n", status)
129 129 }
130 130 }
131 131 }
132 132
133 133 rtems_task prc2_task( rtems_task_argument argument )
134 134 {
135 135 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
136 136 size_t size; // size of the incoming TC packet
137 137 asm_msg *incomingMsg;
138 138 //
139 139 rtems_status_code status;
140 140 rtems_id queue_id_send;
141 141 rtems_id queue_id_q_p2;
142 142 bp_packet __attribute__((aligned(4))) packet_norm_bp1;
143 143 bp_packet __attribute__((aligned(4))) packet_norm_bp2;
144 144 ring_node *current_ring_node_to_send_asm_f2;
145 145 float nbSMInASMNORM;
146 146
147 147 unsigned long long int localTime;
148 148
149 149 size = 0;
150 150 queue_id_send = RTEMS_ID_NONE;
151 151 queue_id_q_p2 = RTEMS_ID_NONE;
152 152 memset( &packet_norm_bp1, 0, sizeof(bp_packet) );
153 153 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
154 154
155 155 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
156 156 init_ring( ring_to_send_asm_f2, NB_RING_NODES_ASM_F2, (volatile int*) buffer_asm_f2, TOTAL_SIZE_SM );
157 157 current_ring_node_to_send_asm_f2 = ring_to_send_asm_f2;
158 158
159 159 //*************
160 160 // NORM headers
161 161 BP_init_header( &packet_norm_bp1,
162 162 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
163 163 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
164 164 BP_init_header( &packet_norm_bp2,
165 165 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
166 166 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
167 167
168 168 status = get_message_queue_id_send( &queue_id_send );
169 169 if (status != RTEMS_SUCCESSFUL)
170 170 {
171 171 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
172 172 }
173 173 status = get_message_queue_id_prc2( &queue_id_q_p2);
174 174 if (status != RTEMS_SUCCESSFUL)
175 175 {
176 176 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
177 177 }
178 178
179 179 BOOT_PRINTF("in PRC2 ***\n")
180 180
181 181 while(1){
182 182 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
183 183 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF2
184 184
185 185 incomingMsg = (asm_msg*) incomingData;
186 186
187 187 ASM_patch( incomingMsg->norm->matrix, asm_f2_patched_norm );
188 188
189 189 localTime = getTimeAsUnsignedLongLongInt( );
190 190
191 191 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
192 192
193 193 //*****
194 194 //*****
195 195 // NORM
196 196 //*****
197 197 //*****
198 198 // 1) compress the matrix for Basic Parameters calculation
199 199 ASM_compress_reorganize_and_divide_mask( asm_f2_patched_norm, compressed_sm_norm_f2,
200 200 nbSMInASMNORM,
201 201 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
202 202 ASM_F2_INDICE_START, CHANNELF2 );
203 203 // BP1_F2
204 204 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
205 205 {
206 206 // 1) compute the BP1 set
207 207 BP1_set( compressed_sm_norm_f2, k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp1.data );
208 208 // 2) send the BP1 set
209 209 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
210 210 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
211 211 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
212 212 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
213 213 BP_send( (char *) &packet_norm_bp1, queue_id_send,
214 214 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
215 215 SID_NORM_BP1_F2 );
216 216 }
217 217 // BP2_F2
218 218 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
219 219 {
220 220 // 1) compute the BP2 set
221 221 BP2_set( compressed_sm_norm_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp2.data );
222 222 // 2) send the BP2 set
223 223 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
224 224 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
225 225 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
226 226 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
227 227 BP_send( (char *) &packet_norm_bp2, queue_id_send,
228 228 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
229 229 SID_NORM_BP2_F2 );
230 230 }
231 231
232 232 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
233 233 {
234 234 // 1) reorganize the ASM and divide
235 235 ASM_reorganize_and_divide( asm_f2_patched_norm,
236 236 (float*) current_ring_node_to_send_asm_f2->buffer_address,
237 237 nb_sm_before_f2.norm_bp1 );
238 238 current_ring_node_to_send_asm_f2->coarseTime = incomingMsg->coarseTimeNORM;
239 239 current_ring_node_to_send_asm_f2->fineTime = incomingMsg->fineTimeNORM;
240 240 current_ring_node_to_send_asm_f2->sid = SID_NORM_ASM_F2;
241 241
242 242 // 3) send the spectral matrix packets
243 243 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f2, sizeof( ring_node* ) );
244 244
245 245 // change asm ring node
246 246 current_ring_node_to_send_asm_f2 = current_ring_node_to_send_asm_f2->next;
247 247 }
248 248
249 249 update_queue_max_count( queue_id_q_p2, &hk_lfr_q_p2_fifo_size_max );
250 250
251 251 }
252 252 }
253 253
254 254 //**********
255 255 // FUNCTIONS
256 256
257 257 void reset_nb_sm_f2( void )
258 258 {
259 259 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
260 260 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
261 261 nb_sm_before_f2.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_asm_p[1];
262 262 }
263 263
264 264 void SM_average_f2( float *averaged_spec_mat_f2,
265 265 ring_node *ring_node,
266 266 unsigned int nbAverageNormF2,
267 267 asm_msg *msgForMATR )
268 268 {
269 269 float sum;
270 270 unsigned int i;
271 271 unsigned char keepMatrix;
272 272
273 273 // test acquisitionTime validity
274 274 keepMatrix = acquisitionTimeIsValid( ring_node->coarseTime, ring_node->fineTime, CHANNELF2 );
275 275
276 276 for(i=0; i<TOTAL_SIZE_SM; i++)
277 277 {
278 278 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
279 279 if ( (nbAverageNormF2 == 0) ) // average initialization
280 280 {
281 if (keepMatrix == 1) // keep the matrix and add it to the average
281 if (keepMatrix == MATRIX_IS_NOT_POLLUTED) // keep the matrix and add it to the average
282 282 {
283 283 averaged_spec_mat_f2[ i ] = sum;
284 284 }
285 285 else // drop the matrix and initialize the average
286 286 {
287 287 averaged_spec_mat_f2[ i ] = INIT_FLOAT;
288 288 }
289 289 msgForMATR->coarseTimeNORM = ring_node->coarseTime;
290 290 msgForMATR->fineTimeNORM = ring_node->fineTime;
291 291 }
292 292 else
293 293 {
294 if (keepMatrix == 1) // keep the matrix and add it to the average
294 if (keepMatrix == MATRIX_IS_NOT_POLLUTED) // keep the matrix and add it to the average
295 295 {
296 296 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
297 297 }
298 298 else
299 299 {
300 300 // nothing to do, the matrix is not valid
301 301 }
302 302 }
303 303 }
304 304
305 305 if (keepMatrix == 1)
306 306 {
307 307 if ( (nbAverageNormF2 == 0) )
308 308 {
309 309 msgForMATR->numberOfSMInASMNORM = 1;
310 310 }
311 311 else
312 312 {
313 313 msgForMATR->numberOfSMInASMNORM++;
314 314 }
315 315 }
316 316 else
317 317 {
318 318 if ( (nbAverageNormF2 == 0) )
319 319 {
320 320 msgForMATR->numberOfSMInASMNORM = 0;
321 321 }
322 322 else
323 323 {
324 324 // nothing to do
325 325 }
326 326 }
327 327 }
328 328
329 329 void init_k_coefficients_prc2( void )
330 330 {
331 331 init_k_coefficients( k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2);
332 332 }
@@ -1,817 +1,830
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "fsw_processing.h"
11 11 #include "fsw_processing_globals.c"
12 12 #include "fsw_init.h"
13 13
14 14 unsigned int nb_sm_f0 = 0;
15 15 unsigned int nb_sm_f0_aux_f1= 0;
16 16 unsigned int nb_sm_f1 = 0;
17 17 unsigned int nb_sm_f0_aux_f2= 0;
18 18
19 19 typedef enum restartState_t
20 20 {
21 21 WAIT_FOR_F2,
22 22 WAIT_FOR_F1,
23 23 WAIT_FOR_F0
24 24 } restartState;
25 25
26 26 //************************
27 27 // spectral matrices rings
28 28 ring_node sm_ring_f0[ NB_RING_NODES_SM_F0 ] = {0};
29 29 ring_node sm_ring_f1[ NB_RING_NODES_SM_F1 ] = {0};
30 30 ring_node sm_ring_f2[ NB_RING_NODES_SM_F2 ] = {0};
31 31 ring_node *current_ring_node_sm_f0 = NULL;
32 32 ring_node *current_ring_node_sm_f1 = NULL;
33 33 ring_node *current_ring_node_sm_f2 = NULL;
34 34 ring_node *ring_node_for_averaging_sm_f0= NULL;
35 35 ring_node *ring_node_for_averaging_sm_f1= NULL;
36 36 ring_node *ring_node_for_averaging_sm_f2= NULL;
37 37
38 38 //
39 39 ring_node * getRingNodeForAveraging( unsigned char frequencyChannel)
40 40 {
41 41 ring_node *node;
42 42
43 43 node = NULL;
44 44 switch ( frequencyChannel ) {
45 45 case CHANNELF0:
46 46 node = ring_node_for_averaging_sm_f0;
47 47 break;
48 48 case CHANNELF1:
49 49 node = ring_node_for_averaging_sm_f1;
50 50 break;
51 51 case CHANNELF2:
52 52 node = ring_node_for_averaging_sm_f2;
53 53 break;
54 54 default:
55 55 break;
56 56 }
57 57
58 58 return node;
59 59 }
60 60
61 61 //***********************************************************
62 62 // Interrupt Service Routine for spectral matrices processing
63 63
64 64 void spectral_matrices_isr_f0( int statusReg )
65 65 {
66 66 unsigned char status;
67 67 rtems_status_code status_code;
68 68 ring_node *full_ring_node;
69 69
70 70 status = (unsigned char) (statusReg & BITS_STATUS_F0); // [0011] get the status_ready_matrix_f0_x bits
71 71
72 72 switch(status)
73 73 {
74 74 case 0:
75 75 break;
76 76 case BIT_READY_0_1:
77 77 // UNEXPECTED VALUE
78 78 spectral_matrix_regs->status = BIT_READY_0_1; // [0011]
79 79 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
80 80 break;
81 81 case BIT_READY_0:
82 82 full_ring_node = current_ring_node_sm_f0->previous;
83 83 full_ring_node->coarseTime = spectral_matrix_regs->f0_0_coarse_time;
84 84 full_ring_node->fineTime = spectral_matrix_regs->f0_0_fine_time;
85 85 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
86 86 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
87 87 // if there are enough ring nodes ready, wake up an AVFx task
88 88 nb_sm_f0 = nb_sm_f0 + 1;
89 89 if (nb_sm_f0 == NB_SM_BEFORE_AVF0_F1)
90 90 {
91 91 ring_node_for_averaging_sm_f0 = full_ring_node;
92 92 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
93 93 {
94 94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
95 95 }
96 96 nb_sm_f0 = 0;
97 97 }
98 98 spectral_matrix_regs->status = BIT_READY_0; // [0000 0001]
99 99 break;
100 100 case BIT_READY_1:
101 101 full_ring_node = current_ring_node_sm_f0->previous;
102 102 full_ring_node->coarseTime = spectral_matrix_regs->f0_1_coarse_time;
103 103 full_ring_node->fineTime = spectral_matrix_regs->f0_1_fine_time;
104 104 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
105 105 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
106 106 // if there are enough ring nodes ready, wake up an AVFx task
107 107 nb_sm_f0 = nb_sm_f0 + 1;
108 108 if (nb_sm_f0 == NB_SM_BEFORE_AVF0_F1)
109 109 {
110 110 ring_node_for_averaging_sm_f0 = full_ring_node;
111 111 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
112 112 {
113 113 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
114 114 }
115 115 nb_sm_f0 = 0;
116 116 }
117 117 spectral_matrix_regs->status = BIT_READY_1; // [0000 0010]
118 118 break;
119 119 default:
120 120 break;
121 121 }
122 122 }
123 123
124 124 void spectral_matrices_isr_f1( int statusReg )
125 125 {
126 126 rtems_status_code status_code;
127 127 unsigned char status;
128 128 ring_node *full_ring_node;
129 129
130 130 status = (unsigned char) ((statusReg & BITS_STATUS_F1) >> SHIFT_2_BITS); // [1100] get the status_ready_matrix_f1_x bits
131 131
132 132 switch(status)
133 133 {
134 134 case 0:
135 135 break;
136 136 case BIT_READY_0_1:
137 137 // UNEXPECTED VALUE
138 138 spectral_matrix_regs->status = BITS_STATUS_F1; // [1100]
139 139 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
140 140 break;
141 141 case BIT_READY_0:
142 142 full_ring_node = current_ring_node_sm_f1->previous;
143 143 full_ring_node->coarseTime = spectral_matrix_regs->f1_0_coarse_time;
144 144 full_ring_node->fineTime = spectral_matrix_regs->f1_0_fine_time;
145 145 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
146 146 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
147 147 // if there are enough ring nodes ready, wake up an AVFx task
148 148 nb_sm_f1 = nb_sm_f1 + 1;
149 149 if (nb_sm_f1 == NB_SM_BEFORE_AVF0_F1)
150 150 {
151 151 ring_node_for_averaging_sm_f1 = full_ring_node;
152 152 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
153 153 {
154 154 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
155 155 }
156 156 nb_sm_f1 = 0;
157 157 }
158 158 spectral_matrix_regs->status = BIT_STATUS_F1_0; // [0000 0100]
159 159 break;
160 160 case BIT_READY_1:
161 161 full_ring_node = current_ring_node_sm_f1->previous;
162 162 full_ring_node->coarseTime = spectral_matrix_regs->f1_1_coarse_time;
163 163 full_ring_node->fineTime = spectral_matrix_regs->f1_1_fine_time;
164 164 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
165 165 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
166 166 // if there are enough ring nodes ready, wake up an AVFx task
167 167 nb_sm_f1 = nb_sm_f1 + 1;
168 168 if (nb_sm_f1 == NB_SM_BEFORE_AVF0_F1)
169 169 {
170 170 ring_node_for_averaging_sm_f1 = full_ring_node;
171 171 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
172 172 {
173 173 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
174 174 }
175 175 nb_sm_f1 = 0;
176 176 }
177 177 spectral_matrix_regs->status = BIT_STATUS_F1_1; // [1000 0000]
178 178 break;
179 179 default:
180 180 break;
181 181 }
182 182 }
183 183
184 184 void spectral_matrices_isr_f2( int statusReg )
185 185 {
186 186 unsigned char status;
187 187 rtems_status_code status_code;
188 188
189 189 status = (unsigned char) ((statusReg & BITS_STATUS_F2) >> SHIFT_4_BITS); // [0011 0000] get the status_ready_matrix_f2_x bits
190 190
191 191 switch(status)
192 192 {
193 193 case 0:
194 194 break;
195 195 case BIT_READY_0_1:
196 196 // UNEXPECTED VALUE
197 197 spectral_matrix_regs->status = BITS_STATUS_F2; // [0011 0000]
198 198 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
199 199 break;
200 200 case BIT_READY_0:
201 201 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
202 202 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
203 203 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_0_coarse_time;
204 204 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_0_fine_time;
205 205 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
206 206 spectral_matrix_regs->status = BIT_STATUS_F2_0; // [0001 0000]
207 207 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
208 208 {
209 209 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
210 210 }
211 211 break;
212 212 case BIT_READY_1:
213 213 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
214 214 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
215 215 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_1_coarse_time;
216 216 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_1_fine_time;
217 217 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
218 218 spectral_matrix_regs->status = BIT_STATUS_F2_1; // [0010 0000]
219 219 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
220 220 {
221 221 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
222 222 }
223 223 break;
224 224 default:
225 225 break;
226 226 }
227 227 }
228 228
229 229 void spectral_matrix_isr_error_handler( int statusReg )
230 230 {
231 231 // STATUS REGISTER
232 232 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
233 233 // 10 9 8
234 234 // buffer_full ** [bad_component_err] ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
235 235 // 7 6 5 4 3 2 1 0
236 236 // [bad_component_err] not defined in the last version of the VHDL code
237 237
238 238 rtems_status_code status_code;
239 239
240 240 //***************************************************
241 241 // the ASM status register is copied in the HK packet
242 242 housekeeping_packet.hk_lfr_vhdl_aa_sm = (unsigned char) ((statusReg & BITS_HK_AA_SM) >> SHIFT_7_BITS); // [0111 1000 0000]
243 243
244 244 if (statusReg & BITS_SM_ERR) // [0111 1100 0000]
245 245 {
246 246 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
247 247 }
248 248
249 249 spectral_matrix_regs->status = spectral_matrix_regs->status & BITS_SM_ERR;
250 250
251 251 }
252 252
253 253 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
254 254 {
255 255 // STATUS REGISTER
256 256 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
257 257 // 10 9 8
258 258 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
259 259 // 7 6 5 4 3 2 1 0
260 260
261 261 int statusReg;
262 262
263 263 static restartState state = WAIT_FOR_F2;
264 264
265 265 statusReg = spectral_matrix_regs->status;
266 266
267 267 if (thisIsAnASMRestart == 0)
268 268 { // this is not a restart sequence, process incoming matrices normally
269 269 spectral_matrices_isr_f0( statusReg );
270 270
271 271 spectral_matrices_isr_f1( statusReg );
272 272
273 273 spectral_matrices_isr_f2( statusReg );
274 274 }
275 275 else
276 276 { // a restart sequence has to be launched
277 277 switch (state) {
278 278 case WAIT_FOR_F2:
279 279 if ((statusReg & BITS_STATUS_F2) != INIT_CHAR) // [0011 0000] check the status_ready_matrix_f2_x bits
280 280 {
281 281 state = WAIT_FOR_F1;
282 282 }
283 283 break;
284 284 case WAIT_FOR_F1:
285 285 if ((statusReg & BITS_STATUS_F1) != INIT_CHAR) // [0000 1100] check the status_ready_matrix_f1_x bits
286 286 {
287 287 state = WAIT_FOR_F0;
288 288 }
289 289 break;
290 290 case WAIT_FOR_F0:
291 291 if ((statusReg & BITS_STATUS_F0) != INIT_CHAR) // [0000 0011] check the status_ready_matrix_f0_x bits
292 292 {
293 293 state = WAIT_FOR_F2;
294 294 thisIsAnASMRestart = 0;
295 295 }
296 296 break;
297 297 default:
298 298 break;
299 299 }
300 300 reset_sm_status();
301 301 }
302 302
303 303 spectral_matrix_isr_error_handler( statusReg );
304 304
305 305 }
306 306
307 307 //******************
308 308 // Spectral Matrices
309 309
310 310 void reset_nb_sm( void )
311 311 {
312 312 nb_sm_f0 = 0;
313 313 nb_sm_f0_aux_f1 = 0;
314 314 nb_sm_f0_aux_f2 = 0;
315 315
316 316 nb_sm_f1 = 0;
317 317 }
318 318
319 319 void SM_init_rings( void )
320 320 {
321 321 init_ring( sm_ring_f0, NB_RING_NODES_SM_F0, sm_f0, TOTAL_SIZE_SM );
322 322 init_ring( sm_ring_f1, NB_RING_NODES_SM_F1, sm_f1, TOTAL_SIZE_SM );
323 323 init_ring( sm_ring_f2, NB_RING_NODES_SM_F2, sm_f2, TOTAL_SIZE_SM );
324 324
325 325 DEBUG_PRINTF1("sm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
326 326 DEBUG_PRINTF1("sm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
327 327 DEBUG_PRINTF1("sm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
328 328 DEBUG_PRINTF1("sm_f0 @%x\n", (unsigned int) sm_f0)
329 329 DEBUG_PRINTF1("sm_f1 @%x\n", (unsigned int) sm_f1)
330 330 DEBUG_PRINTF1("sm_f2 @%x\n", (unsigned int) sm_f2)
331 331 }
332 332
333 333 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
334 334 {
335 335 unsigned char i;
336 336
337 337 ring[ nbNodes - 1 ].next
338 338 = (ring_node_asm*) &ring[ 0 ];
339 339
340 340 for(i=0; i<nbNodes-1; i++)
341 341 {
342 342 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
343 343 }
344 344 }
345 345
346 346 void SM_reset_current_ring_nodes( void )
347 347 {
348 348 current_ring_node_sm_f0 = sm_ring_f0[0].next;
349 349 current_ring_node_sm_f1 = sm_ring_f1[0].next;
350 350 current_ring_node_sm_f2 = sm_ring_f2[0].next;
351 351
352 352 ring_node_for_averaging_sm_f0 = NULL;
353 353 ring_node_for_averaging_sm_f1 = NULL;
354 354 ring_node_for_averaging_sm_f2 = NULL;
355 355 }
356 356
357 357 //*****************
358 358 // Basic Parameters
359 359
360 360 void BP_init_header( bp_packet *packet,
361 361 unsigned int apid, unsigned char sid,
362 362 unsigned int packetLength, unsigned char blkNr )
363 363 {
364 364 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
365 365 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
366 366 packet->reserved = INIT_CHAR;
367 367 packet->userApplication = CCSDS_USER_APP;
368 368 packet->packetID[0] = (unsigned char) (apid >> SHIFT_1_BYTE);
369 369 packet->packetID[1] = (unsigned char) (apid);
370 370 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
371 371 packet->packetSequenceControl[1] = INIT_CHAR;
372 372 packet->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
373 373 packet->packetLength[1] = (unsigned char) (packetLength);
374 374 // DATA FIELD HEADER
375 375 packet->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
376 376 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
377 377 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
378 378 packet->destinationID = TM_DESTINATION_ID_GROUND;
379 379 packet->time[BYTE_0] = INIT_CHAR;
380 380 packet->time[BYTE_1] = INIT_CHAR;
381 381 packet->time[BYTE_2] = INIT_CHAR;
382 382 packet->time[BYTE_3] = INIT_CHAR;
383 383 packet->time[BYTE_4] = INIT_CHAR;
384 384 packet->time[BYTE_5] = INIT_CHAR;
385 385 // AUXILIARY DATA HEADER
386 386 packet->sid = sid;
387 387 packet->pa_bia_status_info = INIT_CHAR;
388 388 packet->sy_lfr_common_parameters_spare = INIT_CHAR;
389 389 packet->sy_lfr_common_parameters = INIT_CHAR;
390 390 packet->acquisitionTime[BYTE_0] = INIT_CHAR;
391 391 packet->acquisitionTime[BYTE_1] = INIT_CHAR;
392 392 packet->acquisitionTime[BYTE_2] = INIT_CHAR;
393 393 packet->acquisitionTime[BYTE_3] = INIT_CHAR;
394 394 packet->acquisitionTime[BYTE_4] = INIT_CHAR;
395 395 packet->acquisitionTime[BYTE_5] = INIT_CHAR;
396 396 packet->pa_lfr_bp_blk_nr[0] = INIT_CHAR; // BLK_NR MSB
397 397 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
398 398 }
399 399
400 400 void BP_init_header_with_spare( bp_packet_with_spare *packet,
401 401 unsigned int apid, unsigned char sid,
402 402 unsigned int packetLength , unsigned char blkNr)
403 403 {
404 404 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
405 405 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
406 406 packet->reserved = INIT_CHAR;
407 407 packet->userApplication = CCSDS_USER_APP;
408 408 packet->packetID[0] = (unsigned char) (apid >> SHIFT_1_BYTE);
409 409 packet->packetID[1] = (unsigned char) (apid);
410 410 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
411 411 packet->packetSequenceControl[1] = INIT_CHAR;
412 412 packet->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
413 413 packet->packetLength[1] = (unsigned char) (packetLength);
414 414 // DATA FIELD HEADER
415 415 packet->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
416 416 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
417 417 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
418 418 packet->destinationID = TM_DESTINATION_ID_GROUND;
419 419 // AUXILIARY DATA HEADER
420 420 packet->sid = sid;
421 421 packet->pa_bia_status_info = INIT_CHAR;
422 422 packet->sy_lfr_common_parameters_spare = INIT_CHAR;
423 423 packet->sy_lfr_common_parameters = INIT_CHAR;
424 424 packet->time[BYTE_0] = INIT_CHAR;
425 425 packet->time[BYTE_1] = INIT_CHAR;
426 426 packet->time[BYTE_2] = INIT_CHAR;
427 427 packet->time[BYTE_3] = INIT_CHAR;
428 428 packet->time[BYTE_4] = INIT_CHAR;
429 429 packet->time[BYTE_5] = INIT_CHAR;
430 430 packet->source_data_spare = INIT_CHAR;
431 431 packet->pa_lfr_bp_blk_nr[0] = INIT_CHAR; // BLK_NR MSB
432 432 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
433 433 }
434 434
435 435 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
436 436 {
437 437 rtems_status_code status;
438 438
439 439 // SEND PACKET
440 440 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
441 441 if (status != RTEMS_SUCCESSFUL)
442 442 {
443 443 PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
444 444 }
445 445 }
446 446
447 447 void BP_send_s1_s2(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
448 448 {
449 449 /** This function is used to send the BP paquets when needed.
450 450 *
451 451 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
452 452 *
453 453 * @return void
454 454 *
455 455 * SBM1 and SBM2 paquets are sent depending on the type of the LFR mode transition.
456 456 * BURST paquets are sent everytime.
457 457 *
458 458 */
459 459
460 460 rtems_status_code status;
461 461
462 462 // SEND PACKET
463 463 // before lastValidTransitionDate, the data are drops even if they are ready
464 464 // this guarantees that no SBM packets will be received before the requested enter mode time
465 465 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
466 466 {
467 467 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
468 468 if (status != RTEMS_SUCCESSFUL)
469 469 {
470 470 PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
471 471 }
472 472 }
473 473 }
474 474
475 475 //******************
476 476 // general functions
477 477
478 478 void reset_sm_status( void )
479 479 {
480 480 // error
481 481 // 10 --------------- 9 ---------------- 8 ---------------- 7 ---------
482 482 // input_fif0_write_2 input_fifo_write_1 input_fifo_write_0 buffer_full
483 483 // ---------- 5 -- 4 -- 3 -- 2 -- 1 -- 0 --
484 484 // ready bits f2_1 f2_0 f1_1 f1_1 f0_1 f0_0
485 485
486 486 spectral_matrix_regs->status = BITS_STATUS_REG; // [0111 1111 1111]
487 487 }
488 488
489 489 void reset_spectral_matrix_regs( void )
490 490 {
491 491 /** This function resets the spectral matrices module registers.
492 492 *
493 493 * The registers affected by this function are located at the following offset addresses:
494 494 *
495 495 * - 0x00 config
496 496 * - 0x04 status
497 497 * - 0x08 matrixF0_Address0
498 498 * - 0x10 matrixFO_Address1
499 499 * - 0x14 matrixF1_Address
500 500 * - 0x18 matrixF2_Address
501 501 *
502 502 */
503 503
504 504 set_sm_irq_onError( 0 );
505 505
506 506 set_sm_irq_onNewMatrix( 0 );
507 507
508 508 reset_sm_status();
509 509
510 510 // F1
511 511 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
512 512 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
513 513 // F2
514 514 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
515 515 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
516 516 // F3
517 517 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
518 518 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
519 519
520 520 spectral_matrix_regs->matrix_length = DEFAULT_MATRIX_LENGTH; // 25 * 128 / 16 = 200 = 0xc8
521 521 }
522 522
523 523 void set_time( unsigned char *time, unsigned char * timeInBuffer )
524 524 {
525 525 time[BYTE_0] = timeInBuffer[BYTE_0];
526 526 time[BYTE_1] = timeInBuffer[BYTE_1];
527 527 time[BYTE_2] = timeInBuffer[BYTE_2];
528 528 time[BYTE_3] = timeInBuffer[BYTE_3];
529 529 time[BYTE_4] = timeInBuffer[BYTE_6];
530 530 time[BYTE_5] = timeInBuffer[BYTE_7];
531 531 }
532 532
533 533 unsigned long long int get_acquisition_time( unsigned char *timePtr )
534 534 {
535 535 unsigned long long int acquisitionTimeAslong;
536 536 acquisitionTimeAslong = INIT_CHAR;
537 537 acquisitionTimeAslong =
538 538 ( (unsigned long long int) (timePtr[BYTE_0] & SYNC_BIT_MASK) << SHIFT_5_BYTES ) // [0111 1111] mask the synchronization bit
539 539 + ( (unsigned long long int) timePtr[BYTE_1] << SHIFT_4_BYTES )
540 540 + ( (unsigned long long int) timePtr[BYTE_2] << SHIFT_3_BYTES )
541 541 + ( (unsigned long long int) timePtr[BYTE_3] << SHIFT_2_BYTES )
542 542 + ( (unsigned long long int) timePtr[BYTE_6] << SHIFT_1_BYTE )
543 543 + ( (unsigned long long int) timePtr[BYTE_7] );
544 544 return acquisitionTimeAslong;
545 545 }
546 546
547 547 unsigned char getSID( rtems_event_set event )
548 548 {
549 549 unsigned char sid;
550 550
551 551 rtems_event_set eventSetBURST;
552 552 rtems_event_set eventSetSBM;
553 553
554 554 sid = 0;
555 555
556 556 //******
557 557 // BURST
558 558 eventSetBURST = RTEMS_EVENT_BURST_BP1_F0
559 559 | RTEMS_EVENT_BURST_BP1_F1
560 560 | RTEMS_EVENT_BURST_BP2_F0
561 561 | RTEMS_EVENT_BURST_BP2_F1;
562 562
563 563 //****
564 564 // SBM
565 565 eventSetSBM = RTEMS_EVENT_SBM_BP1_F0
566 566 | RTEMS_EVENT_SBM_BP1_F1
567 567 | RTEMS_EVENT_SBM_BP2_F0
568 568 | RTEMS_EVENT_SBM_BP2_F1;
569 569
570 570 if (event & eventSetBURST)
571 571 {
572 572 sid = SID_BURST_BP1_F0;
573 573 }
574 574 else if (event & eventSetSBM)
575 575 {
576 576 sid = SID_SBM1_BP1_F0;
577 577 }
578 578 else
579 579 {
580 580 sid = 0;
581 581 }
582 582
583 583 return sid;
584 584 }
585 585
586 586 void extractReImVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
587 587 {
588 588 unsigned int i;
589 589 float re;
590 590 float im;
591 591
592 592 for (i=0; i<NB_BINS_PER_SM; i++){
593 593 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + (i * SM_BYTES_PER_VAL) ];
594 594 im = inputASM[ (asmComponent*NB_BINS_PER_SM) + (i * SM_BYTES_PER_VAL) + 1];
595 595 outputASM[ ( asmComponent *NB_BINS_PER_SM) + i] = re;
596 596 outputASM[ ((asmComponent+1)*NB_BINS_PER_SM) + i] = im;
597 597 }
598 598 }
599 599
600 600 void copyReVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
601 601 {
602 602 unsigned int i;
603 603 float re;
604 604
605 605 for (i=0; i<NB_BINS_PER_SM; i++){
606 606 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + i];
607 607 outputASM[ (asmComponent*NB_BINS_PER_SM) + i] = re;
608 608 }
609 609 }
610 610
611 611 void ASM_patch( float *inputASM, float *outputASM )
612 612 {
613 613 extractReImVectors( inputASM, outputASM, ASM_COMP_B1B2); // b1b2
614 614 extractReImVectors( inputASM, outputASM, ASM_COMP_B1B3 ); // b1b3
615 615 extractReImVectors( inputASM, outputASM, ASM_COMP_B1E1 ); // b1e1
616 616 extractReImVectors( inputASM, outputASM, ASM_COMP_B1E2 ); // b1e2
617 617 extractReImVectors( inputASM, outputASM, ASM_COMP_B2B3 ); // b2b3
618 618 extractReImVectors( inputASM, outputASM, ASM_COMP_B2E1 ); // b2e1
619 619 extractReImVectors( inputASM, outputASM, ASM_COMP_B2E2 ); // b2e2
620 620 extractReImVectors( inputASM, outputASM, ASM_COMP_B3E1 ); // b3e1
621 621 extractReImVectors( inputASM, outputASM, ASM_COMP_B3E2 ); // b3e2
622 622 extractReImVectors( inputASM, outputASM, ASM_COMP_E1E2 ); // e1e2
623 623
624 624 copyReVectors(inputASM, outputASM, ASM_COMP_B1B1 ); // b1b1
625 625 copyReVectors(inputASM, outputASM, ASM_COMP_B2B2 ); // b2b2
626 626 copyReVectors(inputASM, outputASM, ASM_COMP_B3B3); // b3b3
627 627 copyReVectors(inputASM, outputASM, ASM_COMP_E1E1); // e1e1
628 628 copyReVectors(inputASM, outputASM, ASM_COMP_E2E2); // e2e2
629 629 }
630 630
631 631 void ASM_compress_reorganize_and_divide_mask(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
632 632 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage,
633 633 unsigned char ASMIndexStart,
634 634 unsigned char channel )
635 635 {
636 636 //*************
637 637 // input format
638 638 // component0[0 .. 127] component1[0 .. 127] .. component24[0 .. 127]
639 639 //**************
640 640 // output format
641 641 // matr0[0 .. 24] matr1[0 .. 24] .. matr127[0 .. 24]
642 642 //************
643 643 // compression
644 644 // matr0[0 .. 24] matr1[0 .. 24] .. matr11[0 .. 24] => f0 NORM
645 645 // matr0[0 .. 24] matr1[0 .. 24] .. matr22[0 .. 24] => f0 BURST, SBM
646 646
647 647 int frequencyBin;
648 648 int asmComponent;
649 649 int offsetASM;
650 650 int offsetCompressed;
651 651 int offsetFBin;
652 652 int fBinMask;
653 653 int k;
654 654
655 655 // BUILD DATA
656 656 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
657 657 {
658 658 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
659 659 {
660 660 offsetCompressed = // NO TIME OFFSET
661 661 (frequencyBin * NB_VALUES_PER_SM)
662 662 + asmComponent;
663 663 offsetASM = // NO TIME OFFSET
664 664 (asmComponent * NB_BINS_PER_SM)
665 665 + ASMIndexStart
666 666 + (frequencyBin * nbBinsToAverage);
667 667 offsetFBin = ASMIndexStart
668 668 + (frequencyBin * nbBinsToAverage);
669 669 compressed_spec_mat[ offsetCompressed ] = 0;
670 670 for ( k = 0; k < nbBinsToAverage; k++ )
671 671 {
672 672 fBinMask = getFBinMask( offsetFBin + k, channel );
673 673 compressed_spec_mat[offsetCompressed ] = compressed_spec_mat[ offsetCompressed ]
674 674 + (averaged_spec_mat[ offsetASM + k ] * fBinMask);
675 675 }
676 676 if (divider != 0)
677 677 {
678 678 compressed_spec_mat[ offsetCompressed ] = compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
679 679 }
680 680 else
681 681 {
682 682 compressed_spec_mat[ offsetCompressed ] = INIT_FLOAT;
683 683 }
684 684 }
685 685 }
686 686
687 687 }
688 688
689 689 int getFBinMask( int index, unsigned char channel )
690 690 {
691 691 unsigned int indexInChar;
692 692 unsigned int indexInTheChar;
693 693 int fbin;
694 694 unsigned char *sy_lfr_fbins_fx_word1;
695 695
696 696 sy_lfr_fbins_fx_word1 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
697 697
698 698 switch(channel)
699 699 {
700 700 case CHANNELF0:
701 701 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f0;
702 702 break;
703 703 case CHANNELF1:
704 704 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f1;
705 705 break;
706 706 case CHANNELF2:
707 707 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f2;
708 708 break;
709 709 default:
710 710 PRINTF("ERR *** in getFBinMask, wrong frequency channel")
711 711 }
712 712
713 713 indexInChar = index >> SHIFT_3_BITS;
714 714 indexInTheChar = index - (indexInChar * BITS_PER_BYTE);
715 715
716 716 fbin = (int) ((sy_lfr_fbins_fx_word1[ BYTES_PER_MASK - 1 - indexInChar] >> indexInTheChar) & 1);
717 717
718 718 return fbin;
719 719 }
720 720
721 unsigned char isPolluted( u_int64_t t0, u_int64_t t1, u_int64_t tbad0, u_int64_t tbad1 )
722 {
723 unsigned char polluted;
724
725 polluted = MATRIX_IS_NOT_POLLUTED;
726
727 if ( ((tbad0 < t0) && (t0 < tbad1)) // t0 is inside the polluted range
728 || ((tbad0 < t1) && (t1 < tbad1)) // t1 is inside the polluted range
729 || ((t0 < tbad0) && (tbad1 < t1)) // the polluted range is inside the signal range
730 || ((tbad0 < t0) && (t1 < tbad1))) // the signal range is inside the polluted range
731 {
732 polluted = MATRIX_IS_POLLUTED;
733 }
734
735 return polluted;
736 }
737
721 738 unsigned char acquisitionTimeIsValid( unsigned int coarseTime, unsigned int fineTime, unsigned char channel)
722 739 {
723 u_int64_t acquisitionTStart;
724 u_int64_t acquisitionTStop;
725 u_int64_t timecodeReference;
740 u_int64_t t0;
741 u_int64_t t1;
742 u_int64_t tc;
743 u_int64_t tbad0;
744 u_int64_t tbad1;
745
746 u_int64_t modulusInFineTime;
726 747 u_int64_t offsetInFineTime;
727 748 u_int64_t shiftInFineTime;
728 u_int64_t tBadInFineTime;
729 u_int64_t perturbationTStart;
730 u_int64_t perturbationTStop;
749 u_int64_t tbadInFineTime;
750
751 u_int64_t timecodeReference;
752
731 753 unsigned char pasFilteringIsEnabled;
732 754 unsigned char ret;
733 755
734 756 pasFilteringIsEnabled = (filterPar.spare_sy_lfr_pas_filter_enabled & 1); // [0000 0001]
735 ret = 1;
757 ret = MATRIX_IS_NOT_POLLUTED;
758
759 // compute the acquitionTime range
760 modulusInFineTime = ((u_int64_t) filterPar.sy_lfr_pas_filter_modulus) * CONST_65536;
761 offsetInFineTime = ((u_int64_t) filterPar.sy_lfr_pas_filter_offset) * CONST_65536;
762 shiftInFineTime = ((u_int64_t) filterPar.sy_lfr_pas_filter_shift) * CONST_65536;
763 tbadInFineTime = ((u_int64_t) filterPar.sy_lfr_pas_filter_tbad) * CONST_65536;
736 764
737 765 // compute acquisition time from caoarseTime and fineTime
738 acquisitionTStart = ( ((u_int64_t)coarseTime) << SHIFT_2_BYTES )
739 + (u_int64_t) fineTime;
766 t0 = ( ((u_int64_t)coarseTime) << SHIFT_2_BYTES ) + (u_int64_t) fineTime;
740 767 switch(channel)
741 768 {
742 769 case CHANNELF0:
743 acquisitionTStop = acquisitionTStart + ACQUISITION_DURATION_F0;
770 t1 = t0 + ACQUISITION_DURATION_F0;
771 tc = t0 + HALF_ACQUISITION_DURATION_F0;
744 772 break;
745 773 case CHANNELF1:
746 acquisitionTStop = acquisitionTStart + ACQUISITION_DURATION_F1;
774 t1 = t0 + ACQUISITION_DURATION_F1;
775 tc = t0 + HALF_ACQUISITION_DURATION_F1;
747 776 break;
748 777 case CHANNELF2:
749 acquisitionTStop = acquisitionTStart + ACQUISITION_DURATION_F2;
778 t1 = t0 + ACQUISITION_DURATION_F2;
779 tc = t0 + HALF_ACQUISITION_DURATION_F2;
750 780 break;
751 781 }
752 782
753 // compute the timecode reference
754 timecodeReference = (u_int64_t) ( (floor( ((double) coarseTime) / ((double) filterPar.sy_lfr_pas_filter_modulus) )
755 * ((double) filterPar.sy_lfr_pas_filter_modulus)) * CONST_65536 );
756
757 // compute the acquitionTime range
758 offsetInFineTime = ((double) filterPar.sy_lfr_pas_filter_offset) * CONST_65536;
759 shiftInFineTime = ((double) filterPar.sy_lfr_pas_filter_shift) * CONST_65536;
760 tBadInFineTime = ((double) filterPar.sy_lfr_pas_filter_tbad) * CONST_65536;
761
762 perturbationTStart =
763 timecodeReference
764 + offsetInFineTime
765 + shiftInFineTime;
783 // INTERSECTION TEST #1
784 timecodeReference = (tc - (tc % modulusInFineTime)) - modulusInFineTime ;
785 tbad0 = timecodeReference + offsetInFineTime + shiftInFineTime;
786 tbad1 = timecodeReference + offsetInFineTime + shiftInFineTime + tbadInFineTime;
787 ret = isPolluted( t0, t1, tbad0, tbad1 );
766 788
767 perturbationTStop =
768 timecodeReference
769 + offsetInFineTime
770 + shiftInFineTime
771 + tBadInFineTime;
772
773 if ( (acquisitionTStart >= perturbationTStart)
774 && (acquisitionTStart <= perturbationTStop)
775 && (pasFilteringIsEnabled == 1) )
789 // INTERSECTION TEST #2
790 timecodeReference = (tc - (tc % modulusInFineTime)) ;
791 tbad0 = timecodeReference + offsetInFineTime + shiftInFineTime;
792 tbad1 = timecodeReference + offsetInFineTime + shiftInFineTime + tbadInFineTime;
793 if (ret == MATRIX_IS_NOT_POLLUTED)
776 794 {
777 ret = 0; // the acquisition time is INSIDE the range, the matrix shall be ignored
778 }
779 else
780 {
781 ret = 1; // the acquisition time is OUTSIDE the range, the matrix can be used for the averaging
795 ret = isPolluted( t0, t1, tbad0, tbad1 );
782 796 }
783 797
784 // the last sample of the data used to compute the matrix shall not be INSIDE the range, test it now, it depends on the channel
785 if (ret == 1)
798 // INTERSECTION TEST #3
799 timecodeReference = (tc - (tc % modulusInFineTime)) + modulusInFineTime ;
800 tbad0 = timecodeReference + offsetInFineTime + shiftInFineTime;
801 tbad1 = timecodeReference + offsetInFineTime + shiftInFineTime + tbadInFineTime;
802 if (ret == MATRIX_IS_NOT_POLLUTED)
786 803 {
787 if ( (acquisitionTStop >= perturbationTStart)
788 && (acquisitionTStop <= perturbationTStop)
789 && (pasFilteringIsEnabled == 1) )
790 {
791 ret = 0; // the acquisition time is INSIDE the range, the matrix shall be ignored
792 }
793 else
794 {
795 ret = 1; // the acquisition time is OUTSIDE the range, the matrix can be used for the averaging
796 }
804 ret = isPolluted( t0, t1, tbad0, tbad1 );
805 }
806
807 if (pasFilteringIsEnabled == 0)
808 {
809 ret = MATRIX_IS_NOT_POLLUTED;
797 810 }
798 811
799 812 return ret;
800 813 }
801 814
802 815 void init_kcoeff_sbm_from_kcoeff_norm(float *input_kcoeff, float *output_kcoeff, unsigned char nb_bins_norm)
803 816 {
804 817 unsigned char bin;
805 818 unsigned char kcoeff;
806 819
807 820 for (bin=0; bin<nb_bins_norm; bin++)
808 821 {
809 822 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
810 823 {
811 824 output_kcoeff[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff ) * SBM_COEFF_PER_NORM_COEFF ]
812 825 = input_kcoeff[ (bin*NB_K_COEFF_PER_BIN) + kcoeff ];
813 826 output_kcoeff[ ( ( (bin * NB_K_COEFF_PER_BIN ) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ) + 1 ]
814 827 = input_kcoeff[ (bin*NB_K_COEFF_PER_BIN) + kcoeff ];
815 828 }
816 829 }
817 830 }
General Comments 0
You need to be logged in to leave comments. Login now