##// END OF EJS Templates
the interrupt sub routine related to the waveform picker is now lighter...
paul -
r112:5b5da8d2c053 VHDLib206
parent child
Show More
@@ -1,339 +1,339
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.1, 2014-03-28T16:51:27. -->
3 <!-- Written by QtCreator 3.0.1, 2014-03-31T06:56:28. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">1</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop</value>
55 55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop</value>
56 56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{e04e3924-0bd8-4708-be18-f1474e45608e}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 72 </valuemap>
73 73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 79 <value type="QString">-w</value>
80 80 <value type="QString">-r</value>
81 81 </valuelist>
82 82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 85 </valuemap>
86 86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 90 </valuemap>
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 98 <value type="QString">-w</value>
99 99 <value type="QString">-r</value>
100 100 </valuelist>
101 101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 104 </valuemap>
105 105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 109 </valuemap>
110 110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 118 </valuemap>
119 119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 126 </valuemap>
127 127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 131 </valuemap>
132 132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 153 <value type="int">0</value>
154 154 <value type="int">1</value>
155 155 <value type="int">2</value>
156 156 <value type="int">3</value>
157 157 <value type="int">4</value>
158 158 <value type="int">5</value>
159 159 <value type="int">6</value>
160 160 <value type="int">7</value>
161 161 <value type="int">8</value>
162 162 <value type="int">9</value>
163 163 <value type="int">10</value>
164 164 <value type="int">11</value>
165 165 <value type="int">12</value>
166 166 <value type="int">13</value>
167 167 <value type="int">14</value>
168 168 </valuelist>
169 169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 180 <value type="bool" key="RunConfiguration.UseCppDebugger">false</value>
181 181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">true</value>
182 182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 185 </valuemap>
186 186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 187 </valuemap>
188 188 </data>
189 189 <data>
190 190 <variable>ProjectExplorer.Project.Target.1</variable>
191 191 <valuemap type="QVariantMap">
192 192 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
193 193 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
194 194 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
195 195 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
196 196 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
197 197 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
198 198 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
199 199 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
200 200 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
201 201 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
202 202 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
203 203 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
204 204 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
205 205 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
206 206 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
207 207 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
208 208 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
209 209 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
210 210 </valuemap>
211 211 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
212 212 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
213 213 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
214 214 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
215 215 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
216 216 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
217 217 <value type="QString">-w</value>
218 218 <value type="QString">-r</value>
219 219 </valuelist>
220 220 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
221 221 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
222 222 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
223 223 </valuemap>
224 224 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
225 225 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
226 226 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
227 227 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
228 228 </valuemap>
229 229 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
230 230 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
231 231 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
232 232 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
233 233 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
234 234 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
235 235 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
236 236 <value type="QString">-w</value>
237 237 <value type="QString">-r</value>
238 238 </valuelist>
239 239 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
240 240 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
241 241 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
242 242 </valuemap>
243 243 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
244 244 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
245 245 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
246 246 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
247 247 </valuemap>
248 248 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
249 249 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
250 250 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
251 251 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
252 252 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
253 253 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
254 254 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
255 255 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
256 256 </valuemap>
257 257 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
258 258 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
259 259 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
260 260 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
261 261 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
262 262 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
263 263 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
264 264 </valuemap>
265 265 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
266 266 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
267 267 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
268 268 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
269 269 </valuemap>
270 270 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
271 271 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
272 272 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
273 273 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
274 274 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
275 275 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
276 276 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
277 277 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
278 278 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
279 279 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
280 280 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
281 281 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
282 282 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
283 283 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
284 284 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
285 285 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
286 286 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
287 287 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
288 288 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
289 289 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
290 290 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
291 291 <value type="int">0</value>
292 292 <value type="int">1</value>
293 293 <value type="int">2</value>
294 294 <value type="int">3</value>
295 295 <value type="int">4</value>
296 296 <value type="int">5</value>
297 297 <value type="int">6</value>
298 298 <value type="int">7</value>
299 299 <value type="int">8</value>
300 300 <value type="int">9</value>
301 301 <value type="int">10</value>
302 302 <value type="int">11</value>
303 303 <value type="int">12</value>
304 304 <value type="int">13</value>
305 305 <value type="int">14</value>
306 306 </valuelist>
307 307 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
308 308 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
309 309 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
310 310 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
311 311 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
312 312 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
313 313 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
314 314 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
315 315 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
316 316 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
317 317 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
318 318 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
319 319 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
320 320 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
321 321 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
322 322 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
323 323 </valuemap>
324 324 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
325 325 </valuemap>
326 326 </data>
327 327 <data>
328 328 <variable>ProjectExplorer.Project.TargetCount</variable>
329 329 <value type="int">2</value>
330 330 </data>
331 331 <data>
332 332 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
333 333 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
334 334 </data>
335 335 <data>
336 336 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
337 337 <value type="int">15</value>
338 338 </data>
339 339 </qtcreator>
@@ -1,230 +1,225
1 1 #ifndef FSW_PARAMS_H_INCLUDED
2 2 #define FSW_PARAMS_H_INCLUDED
3 3
4 4 #include "grlib_regs.h"
5 5 #include "fsw_params_processing.h"
6 6 #include "fsw_params_nb_bytes.h"
7 7 #include "tm_byte_positions.h"
8 8 #include "ccsds_types.h"
9 9
10 10 #define GRSPW_DEVICE_NAME "/dev/grspw0"
11 11 #define UART_DEVICE_NAME "/dev/console"
12 12
13 13 typedef struct ring_node
14 14 {
15 15 struct ring_node *previous;
16 16 int buffer_address;
17 17 struct ring_node *next;
18 18 unsigned int status;
19 19 } ring_node;
20 20
21 21 //************************
22 22 // flight software version
23 23 // this parameters is handled by the Qt project options
24 24
25 25 #define NB_PACKETS_PER_GROUP_OF_CWF 8 // 8 packets containing 336 blk
26 26 #define NB_PACKETS_PER_GROUP_OF_CWF_LIGHT 4 // 4 packets containing 672 blk
27 27 #define NB_SAMPLES_PER_SNAPSHOT 2688 // 336 * 8 = 672 * 4 = 2688
28 28 #define TIME_OFFSET 2
29 29 #define TIME_OFFSET_IN_BYTES 8
30 30 #define WAVEFORM_EXTENDED_HEADER_OFFSET 22
31 31 #define NB_BYTES_SWF_BLK (2 * 6)
32 32 #define NB_WORDS_SWF_BLK 3
33 33 #define NB_BYTES_CWF3_LIGHT_BLK 6
34 34 #define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
35 35 #define NB_RING_NODES_F0 3 // AT LEAST 3
36 36 #define NB_RING_NODES_F1 5 // AT LEAST 3
37 37 #define NB_RING_NODES_F2 5 // AT LEAST 3
38 38
39 39 //**********
40 40 // LFR MODES
41 41 #define LFR_MODE_STANDBY 0
42 42 #define LFR_MODE_NORMAL 1
43 43 #define LFR_MODE_BURST 2
44 44 #define LFR_MODE_SBM1 3
45 45 #define LFR_MODE_SBM2 4
46 46
47 47 #define TDS_MODE_LFM 5
48 48 #define TDS_MODE_STANDBY 0
49 49 #define TDS_MODE_NORMAL 1
50 50 #define TDS_MODE_BURST 2
51 51 #define TDS_MODE_SBM1 3
52 52 #define TDS_MODE_SBM2 4
53 53
54 54 #define THR_MODE_STANDBY 0
55 #define THR_MODE_NORMAL 1
55 #define THR_MODE_NORMAL 1
56 56 #define THR_MODE_BURST 2
57 57
58 58 #define RTEMS_EVENT_MODE_STANDBY RTEMS_EVENT_0
59 59 #define RTEMS_EVENT_MODE_NORMAL RTEMS_EVENT_1
60 60 #define RTEMS_EVENT_MODE_BURST RTEMS_EVENT_2
61 61 #define RTEMS_EVENT_MODE_SBM1 RTEMS_EVENT_3
62 62 #define RTEMS_EVENT_MODE_SBM2 RTEMS_EVENT_4
63 63 #define RTEMS_EVENT_MODE_SBM2_WFRM RTEMS_EVENT_5
64 64 #define RTEMS_EVENT_MODE_NORMAL_SWF_F0 RTEMS_EVENT_6
65 65 #define RTEMS_EVENT_MODE_NORMAL_SWF_F1 RTEMS_EVENT_7
66 66 #define RTEMS_EVENT_MODE_NORMAL_SWF_F2 RTEMS_EVENT_8
67 67
68 68 //****************************
69 69 // LFR DEFAULT MODE PARAMETERS
70 70 // COMMON
71 71 #define DEFAULT_SY_LFR_COMMON0 0x00
72 72 #define DEFAULT_SY_LFR_COMMON1 0x10 // default value 0 0 0 1 0 0 0 0
73 73 // NORM
74 74 #define SY_LFR_N_SWF_L 2048 // nb sample
75 75 #define SY_LFR_N_SWF_P 300 // sec
76 76 #define SY_LFR_N_ASM_P 3600 // sec
77 77 #define SY_LFR_N_BP_P0 4 // sec
78 78 #define SY_LFR_N_BP_P1 20 // sec
79 79 #define SY_LFR_N_CWF_LONG_F3 0 // 0 => production of light continuous waveforms at f3
80 80 #define MIN_DELTA_SNAPSHOT 16 // sec
81 81 // BURST
82 82 #define DEFAULT_SY_LFR_B_BP_P0 1 // sec
83 83 #define DEFAULT_SY_LFR_B_BP_P1 5 // sec
84 84 // SBM1
85 85 #define DEFAULT_SY_LFR_S1_BP_P0 1 // sec
86 86 #define DEFAULT_SY_LFR_S1_BP_P1 1 // sec
87 87 // SBM2
88 88 #define DEFAULT_SY_LFR_S2_BP_P0 1 // sec
89 89 #define DEFAULT_SY_LFR_S2_BP_P1 5 // sec
90 90 // ADDITIONAL PARAMETERS
91 91 #define TIME_BETWEEN_TWO_SWF_PACKETS 30 // nb x 10 ms => 300 ms
92 92 #define TIME_BETWEEN_TWO_CWF3_PACKETS 1000 // nb x 10 ms => 10 s
93 93 // STATUS WORD
94 94 #define DEFAULT_STATUS_WORD_BYTE0 0x0d // [0000] [1] [101] mode 4 bits / SPW enabled 1 bit / state is run 3 bits
95 95 #define DEFAULT_STATUS_WORD_BYTE1 0x00
96 96 //
97 97 #define SY_LFR_DPU_CONNECT_TIMEOUT 100 // 100 * 10 ms = 1 s
98 98 #define SY_LFR_DPU_CONNECT_ATTEMPT 3
99 99 //****************************
100 100
101 101 //*****************************
102 102 // APB REGISTERS BASE ADDRESSES
103 103 #define REGS_ADDR_APBUART 0x80000100
104 104 #define REGS_ADDR_GPTIMER 0x80000300
105 105 #define REGS_ADDR_GRSPW 0x80000500
106 106 #define REGS_ADDR_TIME_MANAGEMENT 0x80000600
107 107 #define REGS_ADDR_GRGPIO 0x80000b00
108 108
109 #ifdef VHDL_DEV
110 109 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
111 110 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f40
112 #else
113 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
114 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f20
115 #endif
116 111
117 112 #define APBUART_CTRL_REG_MASK_DB 0xfffff7ff
118 113 #define APBUART_CTRL_REG_MASK_TE 0x00000002
119 114 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400 (0x50)
120 115
121 116 //**********
122 117 // IRQ LINES
123 118 #define IRQ_SM_SIMULATOR 9
124 119 #define IRQ_SPARC_SM_SIMULATOR 0x19 // see sparcv8.pdf p.76 for interrupt levels
125 120 #define IRQ_WAVEFORM_PICKER 14
126 121 #define IRQ_SPARC_WAVEFORM_PICKER 0x1e // see sparcv8.pdf p.76 for interrupt levels
127 122 #define IRQ_SPECTRAL_MATRIX 6
128 123 #define IRQ_SPARC_SPECTRAL_MATRIX 0x16 // see sparcv8.pdf p.76 for interrupt levels
129 124
130 125 //*****
131 126 // TIME
132 127 #define CLKDIV_SM_SIMULATOR (10000 - 1) // 10 ms
133 128 #define TIMER_SM_SIMULATOR 1
134 129 #define HK_PERIOD 100 // 100 * 10ms => 1s
135 130 #define SY_LFR_TIME_SYN_TIMEOUT_in_ms 2000
136 131 #define SY_LFR_TIME_SYN_TIMEOUT_in_ticks 200 // 200 * 10 ms = 2 s
137 132
138 133 //**********
139 134 // LPP CODES
140 135 #define LFR_SUCCESSFUL 0
141 136 #define LFR_DEFAULT 1
142 137
143 138 //******
144 139 // RTEMS
145 140 #define TASKID_RECV 1
146 141 #define TASKID_ACTN 2
147 142 #define TASKID_SPIQ 3
148 143 #define TASKID_SMIQ 4
149 144 #define TASKID_STAT 5
150 145 #define TASKID_AVF0 6
151 146 #define TASKID_SWBD 7
152 147 #define TASKID_WFRM 8
153 148 #define TASKID_DUMB 9
154 149 #define TASKID_HOUS 10
155 150 #define TASKID_MATR 11
156 151 #define TASKID_CWF3 12
157 152 #define TASKID_CWF2 13
158 153 #define TASKID_CWF1 14
159 154 #define TASKID_SEND 15
160 155 #define TASKID_WTDG 16
161 156
162 157 #define TASK_PRIORITY_SPIQ 5
163 158 #define TASK_PRIORITY_SMIQ 10
164 159 #define TASK_PRIORITY_WTDG 20
165 160 #define TASK_PRIORITY_HOUS 30
166 161 #define TASK_PRIORITY_CWF1 35 // CWF1 and CWF2 are never running together
167 162 #define TASK_PRIORITY_CWF2 35 //
168 163 #define TASK_PRIORITY_SWBD 37 // SWBD has a lower priority than WFRM, this is to extract the snapshot before sending it
169 164 #define TASK_PRIORITY_WFRM 40
170 165 #define TASK_PRIORITY_CWF3 40 // there is a printf in this function, be careful with its priority wrt CWF1
171 166 #define TASK_PRIORITY_SEND 45
172 167 #define TASK_PRIORITY_RECV 50
173 168 #define TASK_PRIORITY_ACTN 50
174 169 #define TASK_PRIORITY_AVF0 60
175 170 #define TASK_PRIORITY_BPF0 60
176 171 #define TASK_PRIORITY_MATR 100
177 172 #define TASK_PRIORITY_STAT 200
178 173 #define TASK_PRIORITY_DUMB 200
179 174
180 175 #define ACTION_MSG_QUEUE_COUNT 10
181 176 #define ACTION_MSG_PKTS_COUNT 50
182 177 #define ACTION_MSG_PKTS_MAX_SIZE (PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES)
183 178 #define ACTION_MSG_SPW_IOCTL_SEND_SIZE 24 // hlen *hdr dlen *data sent options
184 179
185 180 #define QUEUE_RECV 0
186 181 #define QUEUE_SEND 1
187 182
188 183 //*******
189 184 // MACROS
190 185 #ifdef PRINT_MESSAGES_ON_CONSOLE
191 186 #define PRINTF(x) printf(x);
192 187 #define PRINTF1(x,y) printf(x,y);
193 188 #define PRINTF2(x,y,z) printf(x,y,z);
194 189 #else
195 190 #define PRINTF(x) ;
196 191 #define PRINTF1(x,y) ;
197 192 #define PRINTF2(x,y,z) ;
198 193 #endif
199 194
200 195 #ifdef BOOT_MESSAGES
201 196 #define BOOT_PRINTF(x) printf(x);
202 197 #define BOOT_PRINTF1(x,y) printf(x,y);
203 198 #define BOOT_PRINTF2(x,y,z) printf(x,y,z);
204 199 #else
205 200 #define BOOT_PRINTF(x) ;
206 201 #define BOOT_PRINTF1(x,y) ;
207 202 #define BOOT_PRINTF2(x,y,z) ;
208 203 #endif
209 204
210 205 #ifdef DEBUG_MESSAGES
211 206 #define DEBUG_PRINTF(x) printf(x);
212 207 #define DEBUG_PRINTF1(x,y) printf(x,y);
213 208 #define DEBUG_PRINTF2(x,y,z) printf(x,y,z);
214 209 #else
215 210 #define DEBUG_PRINTF(x) ;
216 211 #define DEBUG_PRINTF1(x,y) ;
217 212 #define DEBUG_PRINTF2(x,y,z) ;
218 213 #endif
219 214
220 215 #define CPU_USAGE_REPORT_PERIOD 6 // * 10 s = period
221 216
222 217 struct param_local_str{
223 218 unsigned int local_sbm1_nb_cwf_sent;
224 219 unsigned int local_sbm1_nb_cwf_max;
225 220 unsigned int local_sbm2_nb_cwf_sent;
226 221 unsigned int local_sbm2_nb_cwf_max;
227 222 unsigned int local_nb_interrupt_f0_MAX;
228 223 };
229 224
230 225 #endif // FSW_PARAMS_H_INCLUDED
@@ -1,29 +1,28
1 1 #ifndef TM_BYTE_POSITIONS_H
2 2 #define TM_BYTE_POSITIONS_H
3 3
4 #define BYTE_POS_CP_LFR_MODE 11
5
6 4 // TC_LFR_LOAD_COMMON_PAR
7 5
8 6 // TC_LFR_LOAD_NORMAL_PAR
9 7 #define BYTE_POS_SY_LFR_N_SWF_L 0
10 8 #define BYTE_POS_SY_LFR_N_SWF_P 2
11 9 #define BYTE_POS_SY_LFR_N_ASM_P 4
12 10 #define BYTE_POS_SY_LFR_N_BP_P0 6
13 11 #define BYTE_POS_SY_LFR_N_BP_P1 7
14 12 #define BYTE_POS_SY_LFR_N_CWF_LONG_F3 8
15 13
16 14 // TC_LFR_LOAD_BURST_PAR
17 15
18 16 // TC_LFR_LOAD_SBM1_PAR
19 17
20 18 // TC_LFR_LOAD_SBM2_PAR
21 19
22 20 // TC_LFR_UPDATE_INFO
23 #define BYTE_POS_HK_UPDATE_INFO_PAR_SET5 24 // 34 - 10
24 #define BYTE_POS_HK_UPDATE_INFO_PAR_SET6 25 // 35 - 10
21 #define BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 34
22 #define BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 35
25 23
26 24 // TC_LFR_ENTER_MODE
27 #define BYTE_POS_CP_LFR_ENTER_MODE_TIME 2 // 12 - 10
25 #define BYTE_POS_CP_MODE_LFR_SET 11
26 #define BYTE_POS_CP_LFR_ENTER_MODE_TIME 12
28 27
29 28 #endif // TM_BYTE_POSITIONS_H
@@ -1,25 +1,25
1 1 #ifndef TC_ACCEPTANCE_H_INCLUDED
2 2 #define TC_ACCEPTANCE_H_INCLUDED
3 3
4 4 //#include "tm_lfr_tc_exe.h"
5 5 #include "fsw_params.h"
6 6
7 7 //**********************
8 8 // GENERAL USE FUNCTIONS
9 9 unsigned int Crc_opt( unsigned char D, unsigned int Chk);
10 10 void initLookUpTableForCRC( void );
11 11 void GetCRCAsTwoBytes(unsigned char* data, unsigned char* crcAsTwoBytes, unsigned int sizeOfData);
12 12
13 13 //*********************
14 14 // ACCEPTANCE FUNCTIONS
15 int tc_parser(ccsdsTelecommandPacket_t * TCPacket, unsigned int TC_LEN_RCV, unsigned char *computed_CRC);
15 int tc_parser( ccsdsTelecommandPacket_t * TCPacket, unsigned int estimatedPacketLength, unsigned char *computed_CRC );
16 16 int tc_check_type( unsigned char packetType );
17 17 int tc_check_type_subtype( unsigned char packetType, unsigned char packetSubType );
18 18 int tc_check_sid( unsigned char sid );
19 19 int tc_check_length( unsigned char packetType, unsigned int length );
20 20 int tc_check_crc(ccsdsTelecommandPacket_t * TCPacket, unsigned int length , unsigned char *computed_CRC);
21 21
22 22 #endif // TC_ACCEPTANCE_H_INCLUDED
23 23
24 24
25 25
@@ -1,26 +1,26
1 1 #ifndef TM_LFR_TC_EXE_H_INCLUDED
2 2 #define TM_LFR_TC_EXE_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "fsw_spacewire.h"
9 9
10 10 extern unsigned short sequenceCounters_TC_EXE[];
11 11
12 12 int send_tm_lfr_tc_exe_success( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
13 13 int send_tm_lfr_tc_exe_inconsistent( ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
14 14 unsigned char byte_position, unsigned char rcv_value );
15 15 int send_tm_lfr_tc_exe_not_executable( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
16 16 int send_tm_lfr_tc_exe_not_implemented( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
17 int send_tm_lfr_tc_exe_error( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
17 int send_tm_lfr_tc_exe_error(ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
18 18 int send_tm_lfr_tc_exe_corrupted( ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
19 19 unsigned char *computed_CRC, unsigned char *currentTC_LEN_RCV, unsigned char destinationID );
20 20
21 21 void increment_seq_counter_destination_id( unsigned char *packet_sequence_control, unsigned char destination_id );
22 22
23 23 #endif // TM_LFR_TC_EXE_H_INCLUDED
24 24
25 25
26 26
@@ -1,644 +1,644
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 36 #define CONFIGURE_MAXIMUM_PERIODS 5
37 37 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 38 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 2
39 39 #ifdef PRINT_STACK_REPORT
40 40 #define CONFIGURE_STACK_CHECKER_ENABLED
41 41 #endif
42 42
43 43 #include <rtems/confdefs.h>
44 44
45 45 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 46 #ifdef RTEMS_DRVMGR_STARTUP
47 47 #ifdef LEON3
48 48 /* Add Timer and UART Driver */
49 49 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 50 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 51 #endif
52 52 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 54 #endif
55 55 #endif
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 57 #include <drvmgr/drvmgr_confdefs.h>
58 58 #endif
59 59
60 60 #include "fsw_init.h"
61 61 #include "fsw_config.c"
62 62
63 63 rtems_task Init( rtems_task_argument ignored )
64 64 {
65 65 /** This is the RTEMS INIT taks, it the first task launched by the system.
66 66 *
67 67 * @param unused is the starting argument of the RTEMS task
68 68 *
69 69 * The INIT task create and run all other RTEMS tasks.
70 70 *
71 71 */
72 72
73 73 reset_local_time();
74 74
75 75 rtems_status_code status;
76 76 rtems_status_code status_spw;
77 77 rtems_isr_entry old_isr_handler;
78 78
79 79 // UART settings
80 80 send_console_outputs_on_apbuart_port();
81 81 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
82 82 enable_apbuart_transmitter();
83 83 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
84 84
85 85 PRINTF("\n\n\n\n\n")
86 86 PRINTF("*************************\n")
87 87 PRINTF("** LFR Flight Software **\n")
88 88 PRINTF1("** %d.", SW_VERSION_N1)
89 89 PRINTF1("%d.", SW_VERSION_N2)
90 90 PRINTF1("%d.", SW_VERSION_N3)
91 91 PRINTF1("%d **\n", SW_VERSION_N4)
92 92 PRINTF("*************************\n")
93 93 PRINTF("\n\n")
94 94
95 95 init_parameter_dump();
96 96 init_local_mode_parameters();
97 97 init_housekeeping_parameters();
98 98
99 99 init_waveform_rings(); // initialize the waveform rings
100 100 init_sm_rings(); // initialize spectral matrices rings
101 101
102 102 reset_wfp_burst_enable();
103 103 reset_wfp_status();
104 104 set_wfp_data_shaping();
105 105
106 106 updateLFRCurrentMode();
107 107
108 108 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
109 109
110 110 create_names(); // create all names
111 111
112 112 status = create_message_queues(); // create message queues
113 113 if (status != RTEMS_SUCCESSFUL)
114 114 {
115 115 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
116 116 }
117 117
118 118 status = create_all_tasks(); // create all tasks
119 119 if (status != RTEMS_SUCCESSFUL)
120 120 {
121 121 PRINTF1("in INIT *** ERR in create_all_tasks, code %d", status)
122 122 }
123 123
124 124 // **************************
125 125 // <SPACEWIRE INITIALIZATION>
126 126 grspw_timecode_callback = &timecode_irq_handler;
127 127
128 128 status_spw = spacewire_open_link(); // (1) open the link
129 129 if ( status_spw != RTEMS_SUCCESSFUL )
130 130 {
131 131 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
132 132 }
133 133
134 134 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
135 135 {
136 136 status_spw = spacewire_configure_link( fdSPW );
137 137 if ( status_spw != RTEMS_SUCCESSFUL )
138 138 {
139 139 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
140 140 }
141 141 }
142 142
143 143 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
144 144 {
145 145 status_spw = spacewire_start_link( fdSPW );
146 146 if ( status_spw != RTEMS_SUCCESSFUL )
147 147 {
148 148 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
149 149 }
150 150 }
151 151 // </SPACEWIRE INITIALIZATION>
152 152 // ***************************
153 153
154 154 status = start_all_tasks(); // start all tasks
155 155 if (status != RTEMS_SUCCESSFUL)
156 156 {
157 157 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
158 158 }
159 159
160 160 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
161 161 status = start_recv_send_tasks();
162 162 if ( status != RTEMS_SUCCESSFUL )
163 163 {
164 164 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
165 165 }
166 166
167 167 // suspend science tasks, they will be restarted later depending on the mode
168 168 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
169 169 if (status != RTEMS_SUCCESSFUL)
170 170 {
171 171 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
172 172 }
173 173
174 174 //******************************
175 175 // <SPECTRAL MATRICES SIMULATOR>
176 176 LEON_Mask_interrupt( IRQ_SM_SIMULATOR );
177 177 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
178 178 IRQ_SPARC_SM_SIMULATOR, spectral_matrices_isr_simu );
179 179 // </SPECTRAL MATRICES SIMULATOR>
180 180 //*******************************
181 181
182 182 // configure IRQ handling for the waveform picker unit
183 183 status = rtems_interrupt_catch( waveforms_isr,
184 184 IRQ_SPARC_WAVEFORM_PICKER,
185 185 &old_isr_handler) ;
186 186 // configure IRQ handling for the spectral matrices unit
187 187 status = rtems_interrupt_catch( spectral_matrices_isr,
188 188 IRQ_SPARC_SPECTRAL_MATRIX,
189 189 &old_isr_handler) ;
190 190
191 191 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
192 192 if ( status_spw != RTEMS_SUCCESSFUL )
193 193 {
194 194 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
195 195 if ( status != RTEMS_SUCCESSFUL ) {
196 196 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
197 197 }
198 198 }
199 199
200 200 BOOT_PRINTF("delete INIT\n")
201 201
202 202 send_dumb_hk();
203 203
204 204 status = rtems_task_delete(RTEMS_SELF);
205 205
206 206 }
207 207
208 208 void init_local_mode_parameters( void )
209 209 {
210 210 /** This function initialize the param_local global variable with default values.
211 211 *
212 212 */
213 213
214 214 unsigned int i;
215 215
216 216 // LOCAL PARAMETERS
217 217 set_local_nb_interrupt_f0_MAX();
218 218
219 219 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
220 220 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
221 221 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
222 222
223 223 // init sequence counters
224 224
225 225 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
226 226 {
227 227 sequenceCounters_TC_EXE[i] = 0x00;
228 228 }
229 229 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
230 230 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
231 231 }
232 232
233 233 void reset_local_time( void )
234 234 {
235
235 time_management_regs->coarse_time_load = 0x80000000;
236 236 }
237 237
238 238 void create_names( void ) // create all names for tasks and queues
239 239 {
240 240 /** This function creates all RTEMS names used in the software for tasks and queues.
241 241 *
242 242 * @return RTEMS directive status codes:
243 243 * - RTEMS_SUCCESSFUL - successful completion
244 244 *
245 245 */
246 246
247 247 // task names
248 248 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
249 249 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
250 250 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
251 251 Task_name[TASKID_SMIQ] = rtems_build_name( 'S', 'M', 'I', 'Q' );
252 252 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
253 253 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
254 254 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
255 255 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
256 256 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
257 257 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
258 258 Task_name[TASKID_MATR] = rtems_build_name( 'M', 'A', 'T', 'R' );
259 259 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
260 260 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
261 261 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
262 262 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
263 263 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
264 264
265 265 // rate monotonic period names
266 266 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
267 267
268 268 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
269 269 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
270 270 }
271 271
272 272 int create_all_tasks( void ) // create all tasks which run in the software
273 273 {
274 274 /** This function creates all RTEMS tasks used in the software.
275 275 *
276 276 * @return RTEMS directive status codes:
277 277 * - RTEMS_SUCCESSFUL - task created successfully
278 278 * - RTEMS_INVALID_ADDRESS - id is NULL
279 279 * - RTEMS_INVALID_NAME - invalid task name
280 280 * - RTEMS_INVALID_PRIORITY - invalid task priority
281 281 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
282 282 * - RTEMS_TOO_MANY - too many tasks created
283 283 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
284 284 * - RTEMS_TOO_MANY - too many global objects
285 285 *
286 286 */
287 287
288 288 rtems_status_code status;
289 289
290 290 //**********
291 291 // SPACEWIRE
292 292 // RECV
293 293 status = rtems_task_create(
294 294 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
295 295 RTEMS_DEFAULT_MODES,
296 296 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
297 297 );
298 298 if (status == RTEMS_SUCCESSFUL) // SEND
299 299 {
300 300 status = rtems_task_create(
301 301 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
302 302 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
303 303 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
304 304 );
305 305 }
306 306 if (status == RTEMS_SUCCESSFUL) // WTDG
307 307 {
308 308 status = rtems_task_create(
309 309 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
310 310 RTEMS_DEFAULT_MODES,
311 311 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
312 312 );
313 313 }
314 314 if (status == RTEMS_SUCCESSFUL) // ACTN
315 315 {
316 316 status = rtems_task_create(
317 317 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
318 318 RTEMS_DEFAULT_MODES,
319 319 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
320 320 );
321 321 }
322 322 if (status == RTEMS_SUCCESSFUL) // SPIQ
323 323 {
324 324 status = rtems_task_create(
325 325 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
326 326 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
327 327 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
328 328 );
329 329 }
330 330
331 331 //******************
332 332 // SPECTRAL MATRICES
333 333 if (status == RTEMS_SUCCESSFUL) // SMIQ
334 334 {
335 335 status = rtems_task_create(
336 336 Task_name[TASKID_SMIQ], TASK_PRIORITY_SMIQ, RTEMS_MINIMUM_STACK_SIZE,
337 337 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
338 338 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SMIQ]
339 339 );
340 340 }
341 341 if (status == RTEMS_SUCCESSFUL) // AVF0
342 342 {
343 343 status = rtems_task_create(
344 344 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
345 345 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
346 346 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
347 347 );
348 348 }
349 349 if (status == RTEMS_SUCCESSFUL) // MATR
350 350 {
351 351 status = rtems_task_create(
352 352 Task_name[TASKID_MATR], TASK_PRIORITY_MATR, RTEMS_MINIMUM_STACK_SIZE,
353 353 RTEMS_DEFAULT_MODES,
354 354 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_MATR]
355 355 );
356 356 }
357 357
358 358 //****************
359 359 // WAVEFORM PICKER
360 360 if (status == RTEMS_SUCCESSFUL) // WFRM
361 361 {
362 362 status = rtems_task_create(
363 363 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
364 364 RTEMS_DEFAULT_MODES,
365 365 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
366 366 );
367 367 }
368 368 if (status == RTEMS_SUCCESSFUL) // CWF3
369 369 {
370 370 status = rtems_task_create(
371 371 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
372 372 RTEMS_DEFAULT_MODES,
373 373 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
374 374 );
375 375 }
376 376 if (status == RTEMS_SUCCESSFUL) // CWF2
377 377 {
378 378 status = rtems_task_create(
379 379 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
380 380 RTEMS_DEFAULT_MODES,
381 381 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
382 382 );
383 383 }
384 384 if (status == RTEMS_SUCCESSFUL) // CWF1
385 385 {
386 386 status = rtems_task_create(
387 387 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
388 388 RTEMS_DEFAULT_MODES,
389 389 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
390 390 );
391 391 }
392 392 if (status == RTEMS_SUCCESSFUL) // SWBD
393 393 {
394 394 status = rtems_task_create(
395 395 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
396 396 RTEMS_DEFAULT_MODES,
397 397 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
398 398 );
399 399 }
400 400
401 401 //*****
402 402 // MISC
403 403 if (status == RTEMS_SUCCESSFUL) // STAT
404 404 {
405 405 status = rtems_task_create(
406 406 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
407 407 RTEMS_DEFAULT_MODES,
408 408 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
409 409 );
410 410 }
411 411 if (status == RTEMS_SUCCESSFUL) // DUMB
412 412 {
413 413 status = rtems_task_create(
414 414 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
415 415 RTEMS_DEFAULT_MODES,
416 416 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
417 417 );
418 418 }
419 419 if (status == RTEMS_SUCCESSFUL) // HOUS
420 420 {
421 421 status = rtems_task_create(
422 422 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
423 423 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
424 424 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_HOUS]
425 425 );
426 426 }
427 427
428 428 return status;
429 429 }
430 430
431 431 int start_recv_send_tasks( void )
432 432 {
433 433 rtems_status_code status;
434 434
435 435 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
436 436 if (status!=RTEMS_SUCCESSFUL) {
437 437 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
438 438 }
439 439
440 440 if (status == RTEMS_SUCCESSFUL) // SEND
441 441 {
442 442 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
443 443 if (status!=RTEMS_SUCCESSFUL) {
444 444 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
445 445 }
446 446 }
447 447
448 448 return status;
449 449 }
450 450
451 451 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
452 452 {
453 453 /** This function starts all RTEMS tasks used in the software.
454 454 *
455 455 * @return RTEMS directive status codes:
456 456 * - RTEMS_SUCCESSFUL - ask started successfully
457 457 * - RTEMS_INVALID_ADDRESS - invalid task entry point
458 458 * - RTEMS_INVALID_ID - invalid task id
459 459 * - RTEMS_INCORRECT_STATE - task not in the dormant state
460 460 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
461 461 *
462 462 */
463 463 // starts all the tasks fot eh flight software
464 464
465 465 rtems_status_code status;
466 466
467 467 //**********
468 468 // SPACEWIRE
469 469 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
470 470 if (status!=RTEMS_SUCCESSFUL) {
471 471 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
472 472 }
473 473
474 474 if (status == RTEMS_SUCCESSFUL) // WTDG
475 475 {
476 476 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
477 477 if (status!=RTEMS_SUCCESSFUL) {
478 478 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
479 479 }
480 480 }
481 481
482 482 if (status == RTEMS_SUCCESSFUL) // ACTN
483 483 {
484 484 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
485 485 if (status!=RTEMS_SUCCESSFUL) {
486 486 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
487 487 }
488 488 }
489 489
490 490 //******************
491 491 // SPECTRAL MATRICES
492 492 if (status == RTEMS_SUCCESSFUL) // SMIQ
493 493 {
494 494 status = rtems_task_start( Task_id[TASKID_SMIQ], smiq_task, 1 );
495 495 if (status!=RTEMS_SUCCESSFUL) {
496 496 BOOT_PRINTF("in INIT *** Error starting TASK_BPPR\n")
497 497 }
498 498 }
499 499
500 500 if (status == RTEMS_SUCCESSFUL) // AVF0
501 501 {
502 502 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, 1 );
503 503 if (status!=RTEMS_SUCCESSFUL) {
504 504 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
505 505 }
506 506 }
507 507
508 508 if (status == RTEMS_SUCCESSFUL) // MATR
509 509 {
510 510 status = rtems_task_start( Task_id[TASKID_MATR], matr_task, 1 );
511 511 if (status!=RTEMS_SUCCESSFUL) {
512 512 BOOT_PRINTF("in INIT *** Error starting TASK_MATR\n")
513 513 }
514 514 }
515 515
516 516 //****************
517 517 // WAVEFORM PICKER
518 518 if (status == RTEMS_SUCCESSFUL) // WFRM
519 519 {
520 520 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
521 521 if (status!=RTEMS_SUCCESSFUL) {
522 522 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
523 523 }
524 524 }
525 525
526 526 if (status == RTEMS_SUCCESSFUL) // CWF3
527 527 {
528 528 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
529 529 if (status!=RTEMS_SUCCESSFUL) {
530 530 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
531 531 }
532 532 }
533 533
534 534 if (status == RTEMS_SUCCESSFUL) // CWF2
535 535 {
536 536 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
537 537 if (status!=RTEMS_SUCCESSFUL) {
538 538 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
539 539 }
540 540 }
541 541
542 542 if (status == RTEMS_SUCCESSFUL) // CWF1
543 543 {
544 544 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
545 545 if (status!=RTEMS_SUCCESSFUL) {
546 546 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
547 547 }
548 548 }
549 549
550 550 if (status == RTEMS_SUCCESSFUL) // SWBD
551 551 {
552 552 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
553 553 if (status!=RTEMS_SUCCESSFUL) {
554 554 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
555 555 }
556 556 }
557 557
558 558 //*****
559 559 // MISC
560 560 if (status == RTEMS_SUCCESSFUL) // HOUS
561 561 {
562 562 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
563 563 if (status!=RTEMS_SUCCESSFUL) {
564 564 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
565 565 }
566 566 }
567 567
568 568 if (status == RTEMS_SUCCESSFUL) // DUMB
569 569 {
570 570 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
571 571 if (status!=RTEMS_SUCCESSFUL) {
572 572 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
573 573 }
574 574 }
575 575
576 576 if (status == RTEMS_SUCCESSFUL) // STAT
577 577 {
578 578 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
579 579 if (status!=RTEMS_SUCCESSFUL) {
580 580 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
581 581 }
582 582 }
583 583
584 584 return status;
585 585 }
586 586
587 587 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
588 588 {
589 589 rtems_status_code status_recv;
590 590 rtems_status_code status_send;
591 591 rtems_status_code ret;
592 592 rtems_id queue_id;
593 593
594 594 // create the queue for handling valid TCs
595 595 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
596 596 ACTION_MSG_QUEUE_COUNT, CCSDS_TC_PKT_MAX_SIZE,
597 597 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
598 598 if ( status_recv != RTEMS_SUCCESSFUL ) {
599 599 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
600 600 }
601 601
602 602 // create the queue for handling TM packet sending
603 603 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
604 604 ACTION_MSG_PKTS_COUNT, ACTION_MSG_PKTS_MAX_SIZE,
605 605 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
606 606 if ( status_send != RTEMS_SUCCESSFUL ) {
607 607 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
608 608 }
609 609
610 610 if ( status_recv != RTEMS_SUCCESSFUL )
611 611 {
612 612 ret = status_recv;
613 613 }
614 614 else
615 615 {
616 616 ret = status_send;
617 617 }
618 618
619 619 return ret;
620 620 }
621 621
622 622 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
623 623 {
624 624 rtems_status_code status;
625 625 rtems_name queue_name;
626 626
627 627 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
628 628
629 629 status = rtems_message_queue_ident( queue_name, 0, queue_id );
630 630
631 631 return status;
632 632 }
633 633
634 634 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
635 635 {
636 636 rtems_status_code status;
637 637 rtems_name queue_name;
638 638
639 639 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
640 640
641 641 status = rtems_message_queue_ident( queue_name, 0, queue_id );
642 642
643 643 return status;
644 644 }
@@ -1,610 +1,610
1 1 /** Functions related to the SpaceWire interface.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle SpaceWire transmissions:
7 7 * - configuration of the SpaceWire link
8 8 * - SpaceWire related interruption requests processing
9 9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 10 * - reception of TeleCommands by a dedicated RTEMS task
11 11 *
12 12 */
13 13
14 14 #include "fsw_spacewire.h"
15 15
16 16 rtems_name semq_name;
17 17 rtems_id semq_id;
18 18
19 19 //***********
20 20 // RTEMS TASK
21 21 rtems_task spiq_task(rtems_task_argument unused)
22 22 {
23 23 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
24 24 *
25 25 * @param unused is the starting argument of the RTEMS task
26 26 *
27 27 */
28 28
29 29 rtems_event_set event_out;
30 30 rtems_status_code status;
31 31 int linkStatus;
32 32
33 33 BOOT_PRINTF("in SPIQ *** \n")
34 34
35 35 while(true){
36 36 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
37 37 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
38 38
39 39 // [0] SUSPEND RECV AND SEND TASKS
40 40 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
41 41 if ( status != RTEMS_SUCCESSFUL ) {
42 42 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
43 43 }
44 44 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
45 45 if ( status != RTEMS_SUCCESSFUL ) {
46 46 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
47 47 }
48 48
49 49 // [1] CHECK THE LINK
50 50 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
51 51 if ( linkStatus != 5) {
52 52 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
53 53 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
54 54 }
55 55
56 56 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
57 57 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
58 58 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
59 59 {
60 60 spacewire_compute_stats_offsets();
61 61 status = spacewire_reset_link( );
62 62 }
63 63 else // [2.b] in run state, start the link
64 64 {
65 65 status = spacewire_stop_start_link( fdSPW ); // start the link
66 66 if ( status != RTEMS_SUCCESSFUL)
67 67 {
68 68 PRINTF1("in SPIQ *** ERR spacewire_start_link %d\n", status)
69 69 }
70 70 }
71 71
72 72 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
73 73 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
74 74 {
75 75 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
76 76 if ( status != RTEMS_SUCCESSFUL ) {
77 77 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
78 78 }
79 79 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
80 80 if ( status != RTEMS_SUCCESSFUL ) {
81 81 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
82 82 }
83 83 }
84 84 else // [3.b] the link is not in run state, go in STANDBY mode
85 85 {
86 86 status = stop_current_mode();
87 87 if ( status != RTEMS_SUCCESSFUL ) {
88 88 PRINTF1("in SPIQ *** ERR stop_current_mode *** code %d\n", status)
89 89 }
90 90 status = enter_mode( LFR_MODE_STANDBY, 0 );
91 91 if ( status != RTEMS_SUCCESSFUL ) {
92 92 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
93 93 }
94 94 // wake the WTDG task up to wait for the link recovery
95 95 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
96 96 status = rtems_task_suspend( RTEMS_SELF );
97 97 }
98 98 }
99 99 }
100 100
101 101 rtems_task recv_task( rtems_task_argument unused )
102 102 {
103 103 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
104 104 *
105 105 * @param unused is the starting argument of the RTEMS task
106 106 *
107 107 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
108 108 * 1. It reads the incoming data.
109 109 * 2. Launches the acceptance procedure.
110 110 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
111 111 *
112 112 */
113 113
114 114 int len;
115 115 ccsdsTelecommandPacket_t currentTC;
116 116 unsigned char computed_CRC[ 2 ];
117 117 unsigned char currentTC_LEN_RCV[ 2 ];
118 118 unsigned char destinationID;
119 unsigned int currentTC_LEN_RCV_AsUnsignedInt;
119 unsigned int estimatedPacketLength;
120 120 unsigned int parserCode;
121 121 rtems_status_code status;
122 122 rtems_id queue_recv_id;
123 123 rtems_id queue_send_id;
124 124
125 125 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
126 126
127 127 status = get_message_queue_id_recv( &queue_recv_id );
128 128 if (status != RTEMS_SUCCESSFUL)
129 129 {
130 130 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
131 131 }
132 132
133 133 status = get_message_queue_id_send( &queue_send_id );
134 134 if (status != RTEMS_SUCCESSFUL)
135 135 {
136 136 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
137 137 }
138 138
139 139 BOOT_PRINTF("in RECV *** \n")
140 140
141 141 while(1)
142 142 {
143 143 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
144 144 if (len == -1){ // error during the read call
145 145 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
146 146 }
147 147 else {
148 148 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
149 149 PRINTF("in RECV *** packet lenght too short\n")
150 150 }
151 151 else {
152 currentTC_LEN_RCV_AsUnsignedInt = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
153 currentTC_LEN_RCV[ 0 ] = (unsigned char) (currentTC_LEN_RCV_AsUnsignedInt >> 8);
154 currentTC_LEN_RCV[ 1 ] = (unsigned char) (currentTC_LEN_RCV_AsUnsignedInt );
152 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
153 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> 8);
154 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
155 155 // CHECK THE TC
156 parserCode = tc_parser( &currentTC, currentTC_LEN_RCV_AsUnsignedInt, computed_CRC ) ;
156 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
157 157 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
158 158 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
159 159 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
160 160 || (parserCode == WRONG_SRC_ID) )
161 161 { // send TM_LFR_TC_EXE_CORRUPTED
162 162 PRINTF1("TC corrupted received, with code: %d\n", parserCode)
163 163 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
164 164 &&
165 165 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
166 166 )
167 167 {
168 168 if ( parserCode == WRONG_SRC_ID )
169 169 {
170 170 destinationID = SID_TC_GROUND;
171 171 }
172 172 else
173 173 {
174 174 destinationID = currentTC.sourceID;
175 175 }
176 176 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
177 177 computed_CRC, currentTC_LEN_RCV,
178 178 destinationID );
179 179 }
180 180 }
181 181 else
182 182 { // send valid TC to the action launcher
183 183 status = rtems_message_queue_send( queue_recv_id, &currentTC,
184 currentTC_LEN_RCV_AsUnsignedInt + CCSDS_TC_TM_PACKET_OFFSET + 3);
184 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + 3);
185 185 }
186 186 }
187 187 }
188 188 }
189 189 }
190 190
191 191 rtems_task send_task( rtems_task_argument argument)
192 192 {
193 193 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
194 194 *
195 195 * @param unused is the starting argument of the RTEMS task
196 196 *
197 197 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
198 198 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
199 199 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
200 200 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
201 201 * data it contains.
202 202 *
203 203 */
204 204
205 205 rtems_status_code status; // RTEMS status code
206 206 char incomingData[ACTION_MSG_PKTS_MAX_SIZE]; // incoming data buffer
207 207 spw_ioctl_pkt_send *spw_ioctl_send;
208 208 size_t size; // size of the incoming TC packet
209 209 u_int32_t count;
210 210 rtems_id queue_id;
211 211
212 212 status = get_message_queue_id_send( &queue_id );
213 213 if (status != RTEMS_SUCCESSFUL)
214 214 {
215 215 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
216 216 }
217 217
218 218 BOOT_PRINTF("in SEND *** \n")
219 219
220 220 while(1)
221 221 {
222 222 status = rtems_message_queue_receive( queue_id, incomingData, &size,
223 223 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
224 224
225 225 if (status!=RTEMS_SUCCESSFUL)
226 226 {
227 227 PRINTF1("in SEND *** (1) ERR = %d\n", status)
228 228 }
229 229 else
230 230 {
231 231 if ( incomingData[0] == CCSDS_DESTINATION_ID) // the incoming message is a ccsds packet
232 232 {
233 233 status = write( fdSPW, incomingData, size );
234 234 if (status == -1){
235 235 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
236 236 }
237 237 }
238 238 else // the incoming message is a spw_ioctl_pkt_send structure
239 239 {
240 240 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
241 241 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
242 242 if (status == -1){
243 243 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
244 244 }
245 245 }
246 246 }
247 247
248 248 status = rtems_message_queue_get_number_pending( queue_id, &count );
249 249 if (status != RTEMS_SUCCESSFUL)
250 250 {
251 251 PRINTF1("in SEND *** (3) ERR = %d\n", status)
252 252 }
253 253 else
254 254 {
255 255 if (count > maxCount)
256 256 {
257 257 maxCount = count;
258 258 }
259 259 }
260 260 }
261 261 }
262 262
263 263 rtems_task wtdg_task( rtems_task_argument argument )
264 264 {
265 265 rtems_event_set event_out;
266 266 rtems_status_code status;
267 267 int linkStatus;
268 268
269 269 BOOT_PRINTF("in WTDG ***\n")
270 270
271 271 while(1)
272 272 {
273 273 // wait for an RTEMS_EVENT
274 274 rtems_event_receive( RTEMS_EVENT_0,
275 275 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
276 276 PRINTF("in WTDG *** wait for the link\n")
277 277 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
278 278 while( linkStatus != 5) // wait for the link
279 279 {
280 280 rtems_task_wake_after( 10 );
281 281 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
282 282 }
283 283
284 284 status = spacewire_stop_start_link( fdSPW );
285 285
286 286 if (status != RTEMS_SUCCESSFUL)
287 287 {
288 288 PRINTF1("in WTDG *** ERR link not started %d\n", status)
289 289 }
290 290 else
291 291 {
292 292 PRINTF("in WTDG *** OK link started\n")
293 293 }
294 294
295 295 // restart the SPIQ task
296 296 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
297 297 if ( status != RTEMS_SUCCESSFUL ) {
298 298 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
299 299 }
300 300
301 301 // restart RECV and SEND
302 302 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
303 303 if ( status != RTEMS_SUCCESSFUL ) {
304 304 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
305 305 }
306 306 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
307 307 if ( status != RTEMS_SUCCESSFUL ) {
308 308 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
309 309 }
310 310 }
311 311 }
312 312
313 313 //****************
314 314 // OTHER FUNCTIONS
315 315 int spacewire_open_link( void )
316 316 {
317 317 /** This function opens the SpaceWire link.
318 318 *
319 319 * @return a valid file descriptor in case of success, -1 in case of a failure
320 320 *
321 321 */
322 322 rtems_status_code status;
323 323
324 324 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
325 325 if ( fdSPW < 0 ) {
326 326 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
327 327 }
328 328 else
329 329 {
330 330 status = RTEMS_SUCCESSFUL;
331 331 }
332 332
333 333 return status;
334 334 }
335 335
336 336 int spacewire_start_link( int fd )
337 337 {
338 338 rtems_status_code status;
339 339
340 340 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
341 341 // -1 default hardcoded driver timeout
342 342
343 343 return status;
344 344 }
345 345
346 346 int spacewire_stop_start_link( int fd )
347 347 {
348 348 rtems_status_code status;
349 349
350 350 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
351 351 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
352 352 // -1 default hardcoded driver timeout
353 353
354 354 return status;
355 355 }
356 356
357 357 int spacewire_configure_link( int fd )
358 358 {
359 359 /** This function configures the SpaceWire link.
360 360 *
361 361 * @return GR-RTEMS-DRIVER directive status codes:
362 362 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
363 363 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
364 364 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
365 365 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
366 366 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
367 367 * - 5 EIO - Error when writing to grswp hardware registers.
368 368 * - 2 ENOENT - No such file or directory
369 369 */
370 370
371 371 rtems_status_code status;
372 372
373 373 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
374 374 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
375 375
376 376 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
377 377 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
378 378 //
379 379 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
380 380 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
381 381 //
382 382 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
383 383 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
384 384 //
385 385 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
386 386 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
387 387 //
388 388 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 0); // transmission blocks
389 389 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
390 390 //
391 391 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
392 392 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
393 393 //
394 394 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
395 395 if (status!=RTEMS_SUCCESSFUL) PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
396 396
397 397 return status;
398 398 }
399 399
400 400 int spacewire_reset_link( void )
401 401 {
402 402 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
403 403 *
404 404 * @return RTEMS directive status code:
405 405 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
406 406 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
407 407 *
408 408 */
409 409
410 410 rtems_status_code status_spw;
411 411 int i;
412 412
413 413 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
414 414 {
415 415 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
416 416
417 417 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
418 418
419 419 status_spw = spacewire_stop_start_link( fdSPW );
420 420 if ( status_spw != RTEMS_SUCCESSFUL )
421 421 {
422 422 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
423 423 }
424 424
425 425 if ( status_spw == RTEMS_SUCCESSFUL)
426 426 {
427 427 break;
428 428 }
429 429 }
430 430
431 431 return status_spw;
432 432 }
433 433
434 434 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
435 435 {
436 436 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
437 437 *
438 438 * @param val is the value, 0 or 1, used to set the value of the NP bit.
439 439 * @param regAddr is the address of the GRSPW control register.
440 440 *
441 441 * NP is the bit 20 of the GRSPW control register.
442 442 *
443 443 */
444 444
445 445 unsigned int *spwptr = (unsigned int*) regAddr;
446 446
447 447 if (val == 1) {
448 448 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
449 449 }
450 450 if (val== 0) {
451 451 *spwptr = *spwptr & 0xffdfffff;
452 452 }
453 453 }
454 454
455 455 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
456 456 {
457 457 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
458 458 *
459 459 * @param val is the value, 0 or 1, used to set the value of the RE bit.
460 460 * @param regAddr is the address of the GRSPW control register.
461 461 *
462 462 * RE is the bit 16 of the GRSPW control register.
463 463 *
464 464 */
465 465
466 466 unsigned int *spwptr = (unsigned int*) regAddr;
467 467
468 468 if (val == 1)
469 469 {
470 470 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
471 471 }
472 472 if (val== 0)
473 473 {
474 474 *spwptr = *spwptr & 0xfffdffff;
475 475 }
476 476 }
477 477
478 478 void spacewire_compute_stats_offsets( void )
479 479 {
480 480 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
481 481 *
482 482 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
483 483 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
484 484 * during the open systel call).
485 485 *
486 486 */
487 487
488 488 spw_stats spacewire_stats_grspw;
489 489 rtems_status_code status;
490 490
491 491 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
492 492
493 493 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
494 494 + spacewire_stats.packets_received;
495 495 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
496 496 + spacewire_stats.packets_sent;
497 497 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
498 498 + spacewire_stats.parity_err;
499 499 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
500 500 + spacewire_stats.disconnect_err;
501 501 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
502 502 + spacewire_stats.escape_err;
503 503 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
504 504 + spacewire_stats.credit_err;
505 505 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
506 506 + spacewire_stats.write_sync_err;
507 507 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
508 508 + spacewire_stats.rx_rmap_header_crc_err;
509 509 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
510 510 + spacewire_stats.rx_rmap_data_crc_err;
511 511 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
512 512 + spacewire_stats.early_ep;
513 513 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
514 514 + spacewire_stats.invalid_address;
515 515 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
516 516 + spacewire_stats.rx_eep_err;
517 517 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
518 518 + spacewire_stats.rx_truncated;
519 519 }
520 520
521 521 void spacewire_update_statistics( void )
522 522 {
523 523 rtems_status_code status;
524 524 spw_stats spacewire_stats_grspw;
525 525
526 526 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
527 527
528 528 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
529 529 + spacewire_stats_grspw.packets_received;
530 530 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
531 531 + spacewire_stats_grspw.packets_sent;
532 532 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
533 533 + spacewire_stats_grspw.parity_err;
534 534 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
535 535 + spacewire_stats_grspw.disconnect_err;
536 536 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
537 537 + spacewire_stats_grspw.escape_err;
538 538 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
539 539 + spacewire_stats_grspw.credit_err;
540 540 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
541 541 + spacewire_stats_grspw.write_sync_err;
542 542 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
543 543 + spacewire_stats_grspw.rx_rmap_header_crc_err;
544 544 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
545 545 + spacewire_stats_grspw.rx_rmap_data_crc_err;
546 546 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
547 547 + spacewire_stats_grspw.early_ep;
548 548 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
549 549 + spacewire_stats_grspw.invalid_address;
550 550 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
551 551 + spacewire_stats_grspw.rx_eep_err;
552 552 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
553 553 + spacewire_stats_grspw.rx_truncated;
554 554 //spacewire_stats.tx_link_err;
555 555
556 556 //****************************
557 557 // DPU_SPACEWIRE_IF_STATISTICS
558 558 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
559 559 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
560 560 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
561 561 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
562 562 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
563 563 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
564 564
565 565 //******************************************
566 566 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
567 567 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
568 568 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
569 569 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
570 570 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
571 571 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
572 572
573 573 //*********************************************
574 574 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
575 575 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
576 576 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
577 577 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
578 578 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
579 579 }
580 580
581 581 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
582 582 {
583 583 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_9 );
584 584 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
585 585
586 586 grgpio_regs->io_port_direction_register =
587 587 grgpio_regs->io_port_direction_register | 0x08; // [0001 1000], 0 = output disabled, 1 = output enabled
588 588
589 589 if ( (grgpio_regs->io_port_output_register & 0x08) == 0x08 )
590 590 {
591 591 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xf7;
592 592 }
593 593 else
594 594 {
595 595 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register | 0x08;
596 596 }
597 597 }
598 598
599 599 rtems_timer_service_routine user_routine( rtems_id timer_id, void *user_data )
600 600 {
601 601 int linkStatus;
602 602 rtems_status_code status;
603 603
604 604 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
605 605
606 606 if ( linkStatus == 5) {
607 607 PRINTF("in spacewire_reset_link *** link is running\n")
608 608 status = RTEMS_SUCCESSFUL;
609 609 }
610 610 }
@@ -1,437 +1,437
1 1 /** Functions related to TeleCommand acceptance.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands parsing.\n
7 7 *
8 8 */
9 9
10 10 #include "tc_acceptance.h"
11 11
12 12 unsigned int lookUpTableForCRC[256];
13 13
14 14 //**********************
15 15 // GENERAL USE FUNCTIONS
16 16 unsigned int Crc_opt( unsigned char D, unsigned int Chk)
17 17 {
18 18 /** This function generate the CRC for one byte and returns the value of the new syndrome.
19 19 *
20 20 * @param D is the current byte of data.
21 21 * @param Chk is the current syndrom value.
22 22 *
23 23 * @return the value of the new syndrome on two bytes.
24 24 *
25 25 */
26 26
27 27 return(((Chk << 8) & 0xff00)^lookUpTableForCRC [(((Chk >> 8)^D) & 0x00ff)]);
28 28 }
29 29
30 30 void initLookUpTableForCRC( void )
31 31 {
32 32 /** This function is used to initiates the look-up table for fast CRC computation.
33 33 *
34 34 * The global table lookUpTableForCRC[256] is initiated.
35 35 *
36 36 */
37 37
38 38 unsigned int i;
39 39 unsigned int tmp;
40 40
41 41 for (i=0; i<256; i++)
42 42 {
43 43 tmp = 0;
44 44 if((i & 1) != 0) {
45 45 tmp = tmp ^ 0x1021;
46 46 }
47 47 if((i & 2) != 0) {
48 48 tmp = tmp ^ 0x2042;
49 49 }
50 50 if((i & 4) != 0) {
51 51 tmp = tmp ^ 0x4084;
52 52 }
53 53 if((i & 8) != 0) {
54 54 tmp = tmp ^ 0x8108;
55 55 }
56 56 if((i & 16) != 0) {
57 57 tmp = tmp ^ 0x1231;
58 58 }
59 59 if((i & 32) != 0) {
60 60 tmp = tmp ^ 0x2462;
61 61 }
62 62 if((i & 64) != 0) {
63 63 tmp = tmp ^ 0x48c4;
64 64 }
65 65 if((i & 128) != 0) {
66 66 tmp = tmp ^ 0x9188;
67 67 }
68 68 lookUpTableForCRC[i] = tmp;
69 69 }
70 70 }
71 71
72 72 void GetCRCAsTwoBytes(unsigned char* data, unsigned char* crcAsTwoBytes, unsigned int sizeOfData)
73 73 {
74 74 /** This function calculates a two bytes Cyclic Redundancy Code.
75 75 *
76 76 * @param data points to a buffer containing the data on which to compute the CRC.
77 77 * @param crcAsTwoBytes points points to a two bytes buffer in which the CRC is stored.
78 78 * @param sizeOfData is the number of bytes of *data* used to compute the CRC.
79 79 *
80 80 * The specification of the Cyclic Redundancy Code is described in the following document: ECSS-E-70-41-A.
81 81 *
82 82 */
83 83
84 84 unsigned int Chk;
85 85 int j;
86 86 Chk = 0xffff; // reset the syndrom to all ones
87 87 for (j=0; j<sizeOfData; j++) {
88 88 Chk = Crc_opt(data[j], Chk);
89 89 }
90 90 crcAsTwoBytes[0] = (unsigned char) (Chk >> 8);
91 91 crcAsTwoBytes[1] = (unsigned char) (Chk & 0x00ff);
92 92 }
93 93
94 94 //*********************
95 95 // ACCEPTANCE FUNCTIONS
96 int tc_parser(ccsdsTelecommandPacket_t * TCPacket, unsigned int TC_LEN_RCV, unsigned char *computed_CRC)
96 int tc_parser(ccsdsTelecommandPacket_t * TCPacket, unsigned int estimatedPacketLength, unsigned char *computed_CRC)
97 97 {
98 98 /** This function parses TeleCommands.
99 99 *
100 100 * @param TC points to the TeleCommand that will be parsed.
101 * @param TC_LEN_RCV is the received packet length.
101 * @param estimatedPacketLength is the PACKET_LENGTH field calculated from the effective length of the received packet.
102 102 *
103 103 * @return Status code of the parsing.
104 104 *
105 105 * The parsing checks:
106 106 * - process id
107 107 * - category
108 108 * - length: a global check is performed and a per subtype check also
109 109 * - type
110 110 * - subtype
111 111 * - crc
112 112 *
113 113 */
114 114
115 115 int status;
116 116 int status_crc;
117 117 unsigned char pid;
118 118 unsigned char category;
119 unsigned int length;
119 unsigned int packetLength;
120 120 unsigned char packetType;
121 121 unsigned char packetSubtype;
122 122 unsigned char sid;
123 123
124 124 status = CCSDS_TM_VALID;
125 125
126 126 // APID check *** APID on 2 bytes
127 pid = ((TCPacket->packetID[0] & 0x07)<<4) + ( (TCPacket->packetID[1]>>4) & 0x0f ); // PID = 11 *** 7 bits xxxxx210 7654xxxx
128 category = (TCPacket->packetID[1] & 0x0f); // PACKET_CATEGORY = 12 *** 4 bits xxxxxxxx xxxx3210
129 length = (TCPacket->packetLength[0] * 256) + TCPacket->packetLength[1];
130 packetType = TCPacket->serviceType;
131 packetSubtype = TCPacket->serviceSubType;
132 sid = TCPacket->sourceID;
127 pid = ((TCPacket->packetID[0] & 0x07)<<4) + ( (TCPacket->packetID[1]>>4) & 0x0f ); // PID = 11 *** 7 bits xxxxx210 7654xxxx
128 category = (TCPacket->packetID[1] & 0x0f); // PACKET_CATEGORY = 12 *** 4 bits xxxxxxxx xxxx3210
129 packetLength = (TCPacket->packetLength[0] * 256) + TCPacket->packetLength[1];
130 packetType = TCPacket->serviceType;
131 packetSubtype = TCPacket->serviceSubType;
132 sid = TCPacket->sourceID;
133 133
134 134 if ( pid != CCSDS_PROCESS_ID ) // CHECK THE PROCESS ID
135 135 {
136 136 status = ILLEGAL_APID;
137 137 }
138 138 if (status == CCSDS_TM_VALID) // CHECK THE CATEGORY
139 139 {
140 140 if ( category != CCSDS_PACKET_CATEGORY )
141 141 {
142 142 status = ILLEGAL_APID;
143 143 }
144 144 }
145 if (status == CCSDS_TM_VALID) // CHECK THE PACKET LENGTH FIELD AND THE ACTUAL LENGTH COMPLIANCE
145 if (status == CCSDS_TM_VALID) // CHECK THE PACKET_LENGTH FIELD AND THE ESTIMATED PACKET_LENGTH COMPLIANCE
146 146 {
147 if (length != TC_LEN_RCV ) {
147 if (packetLength != estimatedPacketLength ) {
148 148 status = WRONG_LEN_PKT;
149 149 }
150 150 }
151 151 if (status == CCSDS_TM_VALID) // CHECK THAT THE PACKET DOES NOT EXCEED THE MAX SIZE
152 152 {
153 if ( length >= CCSDS_TC_PKT_MAX_SIZE ) {
153 if ( packetLength >= CCSDS_TC_PKT_MAX_SIZE ) {
154 154 status = WRONG_LEN_PKT;
155 155 }
156 156 }
157 157 if (status == CCSDS_TM_VALID) // CHECK THE TYPE
158 158 {
159 159 status = tc_check_type( packetType );
160 160 }
161 161 if (status == CCSDS_TM_VALID) // CHECK THE SUBTYPE
162 162 {
163 163 status = tc_check_type_subtype( packetType, packetSubtype );
164 164 }
165 165 if (status == CCSDS_TM_VALID) // CHECK THE SID
166 166 {
167 167 status = tc_check_sid( sid );
168 168 }
169 169 if (status == CCSDS_TM_VALID) // CHECK THE SUBTYPE AND LENGTH COMPLIANCE
170 170 {
171 status = tc_check_length( packetSubtype, length );
171 status = tc_check_length( packetSubtype, packetLength );
172 172 }
173 status_crc = tc_check_crc( TCPacket, length, computed_CRC );
173 status_crc = tc_check_crc( TCPacket, estimatedPacketLength, computed_CRC );
174 174 if (status == CCSDS_TM_VALID ) // CHECK CRC
175 175 {
176 176 status = status_crc;
177 177 }
178 178
179 179 return status;
180 180 }
181 181
182 182 int tc_check_type( unsigned char packetType )
183 183 {
184 184 /** This function checks that the type of a TeleCommand is valid.
185 185 *
186 186 * @param packetType is the type to check.
187 187 *
188 188 * @return Status code CCSDS_TM_VALID or ILL_TYPE.
189 189 *
190 190 */
191 191
192 192 int status;
193 193
194 194 if ( (packetType == TC_TYPE_GEN) || (packetType == TC_TYPE_TIME))
195 195 {
196 196 status = CCSDS_TM_VALID;
197 197 }
198 198 else
199 199 {
200 200 status = ILL_TYPE;
201 201 }
202 202
203 203 return status;
204 204 }
205 205
206 206 int tc_check_type_subtype( unsigned char packetType, unsigned char packetSubType )
207 207 {
208 208 /** This function checks that the subtype of a TeleCommand is valid and coherent with the type.
209 209 *
210 210 * @param packetType is the type of the TC.
211 211 * @param packetSubType is the subtype to check.
212 212 *
213 213 * @return Status code CCSDS_TM_VALID or ILL_SUBTYPE.
214 214 *
215 215 */
216 216
217 217 int status;
218 218
219 219 switch(packetType)
220 220 {
221 221 case TC_TYPE_GEN:
222 222 if ( (packetSubType == TC_SUBTYPE_RESET)
223 223 || (packetSubType == TC_SUBTYPE_LOAD_COMM)
224 224 || (packetSubType == TC_SUBTYPE_LOAD_NORM) || (packetSubType == TC_SUBTYPE_LOAD_BURST)
225 225 || (packetSubType == TC_SUBTYPE_LOAD_SBM1) || (packetSubType == TC_SUBTYPE_LOAD_SBM2)
226 226 || (packetSubType == TC_SUBTYPE_DUMP)
227 227 || (packetSubType == TC_SUBTYPE_ENTER)
228 228 || (packetSubType == TC_SUBTYPE_UPDT_INFO)
229 229 || (packetSubType == TC_SUBTYPE_EN_CAL) || (packetSubType == TC_SUBTYPE_DIS_CAL) )
230 230 {
231 231 status = CCSDS_TM_VALID;
232 232 }
233 233 else
234 234 {
235 235 status = ILL_SUBTYPE;
236 236 }
237 237 break;
238 238
239 239 case TC_TYPE_TIME:
240 240 if (packetSubType == TC_SUBTYPE_UPDT_TIME)
241 241 {
242 242 status = CCSDS_TM_VALID;
243 243 }
244 244 else
245 245 {
246 246 status = ILL_SUBTYPE;
247 247 }
248 248 break;
249 249
250 250 default:
251 251 status = ILL_SUBTYPE;
252 252 break;
253 253 }
254 254
255 255 return status;
256 256 }
257 257
258 258 int tc_check_sid( unsigned char sid )
259 259 {
260 260 /** This function checks that the sid of a TeleCommand is valid.
261 261 *
262 262 * @param sid is the sid to check.
263 263 *
264 264 * @return Status code CCSDS_TM_VALID or CORRUPTED.
265 265 *
266 266 */
267 267
268 268 int status;
269 269
270 270 if ( (sid == SID_TC_MISSION_TIMELINE) || (sid == SID_TC_TC_SEQUENCES) || (sid == SID_TC_RECOVERY_ACTION_CMD)
271 271 || (sid == SID_TC_BACKUP_MISSION_TIMELINE)
272 272 || (sid == SID_TC_DIRECT_CMD) || (sid == SID_TC_SPARE_GRD_SRC1) || (sid == SID_TC_SPARE_GRD_SRC2)
273 273 || (sid == SID_TC_OBCP) || (sid == SID_TC_SYSTEM_CONTROL) || (sid == SID_TC_AOCS)
274 274 || (sid == SID_TC_RPW_INTERNAL))
275 275 {
276 276 status = CCSDS_TM_VALID;
277 277 }
278 278 else
279 279 {
280 280 status = WRONG_SRC_ID;
281 281 }
282 282
283 283 return status;
284 284 }
285 285
286 286 int tc_check_length( unsigned char packetSubType, unsigned int length )
287 287 {
288 288 /** This function checks that the subtype and the length are compliant.
289 289 *
290 290 * @param packetSubType is the subtype to check.
291 291 * @param length is the length to check.
292 292 *
293 293 * @return Status code CCSDS_TM_VALID or ILL_TYPE.
294 294 *
295 295 */
296 296
297 297 int status;
298 298
299 299 status = LFR_SUCCESSFUL;
300 300
301 301 switch(packetSubType)
302 302 {
303 303 case TC_SUBTYPE_RESET:
304 304 if (length!=(TC_LEN_RESET-CCSDS_TC_TM_PACKET_OFFSET)) {
305 305 status = WRONG_LEN_PKT;
306 306 }
307 307 else {
308 308 status = CCSDS_TM_VALID;
309 309 }
310 310 break;
311 311 case TC_SUBTYPE_LOAD_COMM:
312 312 if (length!=(TC_LEN_LOAD_COMM-CCSDS_TC_TM_PACKET_OFFSET)) {
313 313 status = WRONG_LEN_PKT;
314 314 }
315 315 else {
316 316 status = CCSDS_TM_VALID;
317 317 }
318 318 break;
319 319 case TC_SUBTYPE_LOAD_NORM:
320 320 if (length!=(TC_LEN_LOAD_NORM-CCSDS_TC_TM_PACKET_OFFSET)) {
321 321 status = WRONG_LEN_PKT;
322 322 }
323 323 else {
324 324 status = CCSDS_TM_VALID;
325 325 }
326 326 break;
327 327 case TC_SUBTYPE_LOAD_BURST:
328 328 if (length!=(TC_LEN_LOAD_BURST-CCSDS_TC_TM_PACKET_OFFSET)) {
329 329 status = WRONG_LEN_PKT;
330 330 }
331 331 else {
332 332 status = CCSDS_TM_VALID;
333 333 }
334 334 break;
335 335 case TC_SUBTYPE_LOAD_SBM1:
336 336 if (length!=(TC_LEN_LOAD_SBM1-CCSDS_TC_TM_PACKET_OFFSET)) {
337 337 status = WRONG_LEN_PKT;
338 338 }
339 339 else {
340 340 status = CCSDS_TM_VALID;
341 341 }
342 342 break;
343 343 case TC_SUBTYPE_LOAD_SBM2:
344 344 if (length!=(TC_LEN_LOAD_SBM2-CCSDS_TC_TM_PACKET_OFFSET)) {
345 345 status = WRONG_LEN_PKT;
346 346 }
347 347 else {
348 348 status = CCSDS_TM_VALID;
349 349 }
350 350 break;
351 351 case TC_SUBTYPE_DUMP:
352 352 if (length!=(TC_LEN_DUMP-CCSDS_TC_TM_PACKET_OFFSET)) {
353 353 status = WRONG_LEN_PKT;
354 354 }
355 355 else {
356 356 status = CCSDS_TM_VALID;
357 357 }
358 358 break;
359 359 case TC_SUBTYPE_ENTER:
360 360 if (length!=(TC_LEN_ENTER-CCSDS_TC_TM_PACKET_OFFSET)) {
361 361 status = WRONG_LEN_PKT;
362 362 }
363 363 else {
364 364 status = CCSDS_TM_VALID;
365 365 }
366 366 break;
367 367 case TC_SUBTYPE_UPDT_INFO:
368 368 if (length!=(TC_LEN_UPDT_INFO-CCSDS_TC_TM_PACKET_OFFSET)) {
369 369 status = WRONG_LEN_PKT;
370 370 }
371 371 else {
372 372 status = CCSDS_TM_VALID;
373 373 }
374 374 break;
375 375 case TC_SUBTYPE_EN_CAL:
376 376 if (length!=(TC_LEN_EN_CAL-CCSDS_TC_TM_PACKET_OFFSET)) {
377 377 status = WRONG_LEN_PKT;
378 378 }
379 379 else {
380 380 status = CCSDS_TM_VALID;
381 381 }
382 382 break;
383 383 case TC_SUBTYPE_DIS_CAL:
384 384 if (length!=(TC_LEN_DIS_CAL-CCSDS_TC_TM_PACKET_OFFSET)) {
385 385 status = WRONG_LEN_PKT;
386 386 }
387 387 else {
388 388 status = CCSDS_TM_VALID;
389 389 }
390 390 break;
391 391 case TC_SUBTYPE_UPDT_TIME:
392 392 if (length!=(TC_LEN_UPDT_TIME-CCSDS_TC_TM_PACKET_OFFSET)) {
393 393 status = WRONG_LEN_PKT;
394 394 }
395 395 else {
396 396 status = CCSDS_TM_VALID;
397 397 }
398 398 break;
399 399 default: // if the subtype is not a legal value, return ILL_SUBTYPE
400 400 status = ILL_SUBTYPE;
401 401 break ;
402 402 }
403 403
404 404 return status;
405 405 }
406 406
407 407 int tc_check_crc( ccsdsTelecommandPacket_t * TCPacket, unsigned int length, unsigned char *computed_CRC )
408 408 {
409 409 /** This function checks the CRC validity of the corresponding TeleCommand packet.
410 410 *
411 411 * @param TCPacket points to the TeleCommand packet to check.
412 412 * @param length is the length of the TC packet.
413 413 *
414 414 * @return Status code CCSDS_TM_VALID or INCOR_CHECKSUM.
415 415 *
416 416 */
417 417
418 418 int status;
419 419 unsigned char * CCSDSContent;
420 420
421 421 CCSDSContent = (unsigned char*) TCPacket->packetID;
422 422 GetCRCAsTwoBytes(CCSDSContent, computed_CRC, length + CCSDS_TC_TM_PACKET_OFFSET - 2); // 2 CRC bytes removed from the calculation of the CRC
423 423 if (computed_CRC[0] != CCSDSContent[length + CCSDS_TC_TM_PACKET_OFFSET -2]) {
424 424 status = INCOR_CHECKSUM;
425 425 }
426 426 else if (computed_CRC[1] != CCSDSContent[length + CCSDS_TC_TM_PACKET_OFFSET -1]) {
427 427 status = INCOR_CHECKSUM;
428 428 }
429 429 else {
430 430 status = CCSDS_TM_VALID;
431 431 }
432 432
433 433 return status;
434 434 }
435 435
436 436
437 437
@@ -1,873 +1,885
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14
15 15 //***********
16 16 // RTEMS TASK
17 17
18 18 rtems_task actn_task( rtems_task_argument unused )
19 19 {
20 20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 21 *
22 22 * @param unused is the starting argument of the RTEMS task
23 23 *
24 24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 25 * on the incoming TeleCommand.
26 26 *
27 27 */
28 28
29 29 int result;
30 30 rtems_status_code status; // RTEMS status code
31 31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 32 size_t size; // size of the incoming TC packet
33 33 unsigned char subtype; // subtype of the current TC packet
34 34 unsigned char time[6];
35 35 rtems_id queue_rcv_id;
36 36 rtems_id queue_snd_id;
37 37
38 38 status = get_message_queue_id_recv( &queue_rcv_id );
39 39 if (status != RTEMS_SUCCESSFUL)
40 40 {
41 41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 42 }
43 43
44 44 status = get_message_queue_id_send( &queue_snd_id );
45 45 if (status != RTEMS_SUCCESSFUL)
46 46 {
47 47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 48 }
49 49
50 50 result = LFR_SUCCESSFUL;
51 51 subtype = 0; // subtype of the current TC packet
52 52
53 53 BOOT_PRINTF("in ACTN *** \n")
54 54
55 55 while(1)
56 56 {
57 57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 59 getTime( time ); // set time to the current time
60 60 if (status!=RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 63 }
64 64 else
65 65 {
66 66 subtype = TC.serviceSubType;
67 67 switch(subtype)
68 68 {
69 69 case TC_SUBTYPE_RESET:
70 70 result = action_reset( &TC, queue_snd_id, time );
71 71 close_action( &TC, result, queue_snd_id );
72 72 break;
73 73 //
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 //
79 79 case TC_SUBTYPE_LOAD_NORM:
80 80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 81 close_action( &TC, result, queue_snd_id );
82 82 break;
83 83 //
84 84 case TC_SUBTYPE_LOAD_BURST:
85 85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 86 close_action( &TC, result, queue_snd_id );
87 87 break;
88 88 //
89 89 case TC_SUBTYPE_LOAD_SBM1:
90 90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 91 close_action( &TC, result, queue_snd_id );
92 92 break;
93 93 //
94 94 case TC_SUBTYPE_LOAD_SBM2:
95 95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 //
99 99 case TC_SUBTYPE_DUMP:
100 100 result = action_dump_par( queue_snd_id );
101 101 close_action( &TC, result, queue_snd_id );
102 102 break;
103 103 //
104 104 case TC_SUBTYPE_ENTER:
105 105 result = action_enter_mode( &TC, queue_snd_id );
106 106 close_action( &TC, result, queue_snd_id );
107 107 break;
108 108 //
109 109 case TC_SUBTYPE_UPDT_INFO:
110 110 result = action_update_info( &TC, queue_snd_id );
111 111 close_action( &TC, result, queue_snd_id );
112 112 break;
113 113 //
114 114 case TC_SUBTYPE_EN_CAL:
115 115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 //
119 119 case TC_SUBTYPE_DIS_CAL:
120 120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 121 close_action( &TC, result, queue_snd_id );
122 122 break;
123 123 //
124 124 case TC_SUBTYPE_UPDT_TIME:
125 125 result = action_update_time( &TC );
126 126 close_action( &TC, result, queue_snd_id );
127 127 break;
128 128 //
129 129 default:
130 130 break;
131 131 }
132 132 }
133 133 }
134 134 }
135 135
136 136 //***********
137 137 // TC ACTIONS
138 138
139 139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 140 {
141 141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 142 *
143 143 * @param TC points to the TeleCommand packet that is being processed
144 144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 145 *
146 146 */
147 147
148 148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 149 return LFR_DEFAULT;
150 150 }
151 151
152 152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
153 153 {
154 154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 158 *
159 159 */
160 160
161 161 rtems_status_code status;
162 162 unsigned char requestedMode;
163 163 unsigned int *transitionCoarseTime_ptr;
164 164 unsigned int transitionCoarseTime;
165 unsigned char * bytePosPtr;
165 166
166 requestedMode = TC->dataAndCRC[1];
167 transitionCoarseTime_ptr = (unsigned int *) (&TC->dataAndCRC[BYTE_POS_CP_LFR_ENTER_MODE_TIME]);
167 bytePosPtr = (unsigned char *) &TC->packetID;
168
169 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
170 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
168 171 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
169 172
170 173 status = check_mode_value( requestedMode );
171 174
172 if ( status != LFR_SUCCESSFUL )
175 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
173 176 {
174 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_LFR_MODE, requestedMode );
177 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
175 178 }
176 179 else // the mode value is consistent, check the transition
177 180 {
178 181 status = check_mode_transition(requestedMode);
179 182 if (status != LFR_SUCCESSFUL)
180 183 {
181 184 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
182 185 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
183 186 }
184 187 }
185 188
186 189 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
187 190 {
188 191 status = check_transition_date( transitionCoarseTime );
189 192 if (status != LFR_SUCCESSFUL)
190 193 {
191 194 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
192 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
195 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
196 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
197 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
193 198 }
194 199 }
195 200
196 201 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
197 202 {
198 203 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
199 204 status = enter_mode( requestedMode, transitionCoarseTime );
200 205 }
201 206
202 207 return status;
203 208 }
204 209
205 210 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
206 211 {
207 212 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
208 213 *
209 214 * @param TC points to the TeleCommand packet that is being processed
210 215 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
211 216 *
212 217 * @return LFR directive status code:
213 218 * - LFR_DEFAULT
214 219 * - LFR_SUCCESSFUL
215 220 *
216 221 */
217 222
218 223 unsigned int val;
219 224 int result;
220 225 unsigned int status;
221 226 unsigned char mode;
227 unsigned char * bytePosPtr;
228
229 bytePosPtr = (unsigned char *) &TC->packetID;
222 230
223 231 // check LFR mode
224 mode = (TC->dataAndCRC[ BYTE_POS_HK_UPDATE_INFO_PAR_SET5 ] & 0x1e) >> 1;
232 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
225 233 status = check_update_info_hk_lfr_mode( mode );
226 234 if (status == LFR_SUCCESSFUL) // check TDS mode
227 235 {
228 mode = (TC->dataAndCRC[ BYTE_POS_HK_UPDATE_INFO_PAR_SET6 ] & 0xf0) >> 4;
236 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
229 237 status = check_update_info_hk_tds_mode( mode );
230 238 }
231 239 if (status == LFR_SUCCESSFUL) // check THR mode
232 240 {
233 mode = (TC->dataAndCRC[ BYTE_POS_HK_UPDATE_INFO_PAR_SET6 ] & 0x0f);
241 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
234 242 status = check_update_info_hk_thr_mode( mode );
235 243 }
236 244 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
237 245 {
238 246 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
239 247 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
240 248 val++;
241 249 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
242 250 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
243 251 }
244 252
245 253 result = status;
246 254
247 255 return result;
248 256 }
249 257
250 258 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
251 259 {
252 260 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
253 261 *
254 262 * @param TC points to the TeleCommand packet that is being processed
255 263 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
256 264 *
257 265 */
258 266
259 267 int result;
260 268 unsigned char lfrMode;
261 269
262 270 result = LFR_DEFAULT;
263 271 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
264 272
265 273 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
266 274 result = LFR_DEFAULT;
267 275
268 276 return result;
269 277 }
270 278
271 279 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
272 280 {
273 281 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
274 282 *
275 283 * @param TC points to the TeleCommand packet that is being processed
276 284 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
277 285 *
278 286 */
279 287
280 288 int result;
281 289 unsigned char lfrMode;
282 290
283 291 result = LFR_DEFAULT;
284 292 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
285 293
286 294 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
287 295 result = LFR_DEFAULT;
288 296
289 297 return result;
290 298 }
291 299
292 300 int action_update_time(ccsdsTelecommandPacket_t *TC)
293 301 {
294 302 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
295 303 *
296 304 * @param TC points to the TeleCommand packet that is being processed
297 305 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
298 306 *
299 307 * @return LFR_SUCCESSFUL
300 308 *
301 309 */
302 310
303 311 unsigned int val;
304 312
305 313 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
306 314 + (TC->dataAndCRC[1] << 16)
307 315 + (TC->dataAndCRC[2] << 8)
308 316 + TC->dataAndCRC[3];
309 317
310 318 PRINTF1("time received: %x\n", time_management_regs->coarse_time_load)
311 319
312 320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
313 321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
314 322 val++;
315 323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
316 324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
317 325 // time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
318 326
319 327 return LFR_SUCCESSFUL;
320 328 }
321 329
322 330 //*******************
323 331 // ENTERING THE MODES
324 332 int check_mode_value( unsigned char requestedMode )
325 333 {
326 334 int status;
327 335
328 336 if ( (requestedMode != LFR_MODE_STANDBY)
329 337 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
330 338 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
331 339 {
332 340 status = LFR_DEFAULT;
333 341 }
334 342 else
335 343 {
336 344 status = LFR_SUCCESSFUL;
337 345 }
338 346
339 347 return status;
340 348 }
341 349
342 350 int check_mode_transition( unsigned char requestedMode )
343 351 {
344 352 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
345 353 *
346 354 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
347 355 *
348 356 * @return LFR directive status codes:
349 357 * - LFR_SUCCESSFUL - the transition is authorized
350 358 * - LFR_DEFAULT - the transition is not authorized
351 359 *
352 360 */
353 361
354 362 int status;
355 363
356 364 switch (requestedMode)
357 365 {
358 366 case LFR_MODE_STANDBY:
359 367 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
360 368 status = LFR_DEFAULT;
361 369 }
362 370 else
363 371 {
364 372 status = LFR_SUCCESSFUL;
365 373 }
366 374 break;
367 375 case LFR_MODE_NORMAL:
368 376 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
369 377 status = LFR_DEFAULT;
370 378 }
371 379 else {
372 380 status = LFR_SUCCESSFUL;
373 381 }
374 382 break;
375 383 case LFR_MODE_BURST:
376 384 if ( lfrCurrentMode == LFR_MODE_BURST ) {
377 385 status = LFR_DEFAULT;
378 386 }
379 387 else {
380 388 status = LFR_SUCCESSFUL;
381 389 }
382 390 break;
383 391 case LFR_MODE_SBM1:
384 392 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
385 393 status = LFR_DEFAULT;
386 394 }
387 395 else {
388 396 status = LFR_SUCCESSFUL;
389 397 }
390 398 break;
391 399 case LFR_MODE_SBM2:
392 400 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
393 401 status = LFR_DEFAULT;
394 402 }
395 403 else {
396 404 status = LFR_SUCCESSFUL;
397 405 }
398 406 break;
399 407 default:
400 408 status = LFR_DEFAULT;
401 409 break;
402 410 }
403 411
404 412 return status;
405 413 }
406 414
407 415 int check_transition_date( unsigned int transitionCoarseTime )
408 416 {
409 417 int status;
410 418 unsigned int localCoarseTime;
411 419 unsigned int deltaCoarseTime;
412 420
413 421 status = LFR_SUCCESSFUL;
414 422
415 423 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
416 424 {
417 425 status = LFR_SUCCESSFUL;
418 426 }
419 427 else
420 428 {
421 429 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
422 430
423 if ( transitionCoarseTime < localCoarseTime ) // SSS-CP-EQS-322
431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
424 432 {
425 433 status = LFR_DEFAULT;
426 434 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
427 435 }
428 436
429 437 if (status == LFR_SUCCESSFUL)
430 438 {
431 439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
432 440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
433 441 {
434 442 status = LFR_DEFAULT;
435 443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
436 444 }
437 445 }
438 446 }
439 447
440 448 return status;
441 449 }
442 450
443 451 int stop_current_mode( void )
444 452 {
445 453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
446 454 *
447 455 * @return RTEMS directive status codes:
448 456 * - RTEMS_SUCCESSFUL - task restarted successfully
449 457 * - RTEMS_INVALID_ID - task id invalid
450 458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
451 459 *
452 460 */
453 461
454 462 rtems_status_code status;
455 463
456 464 status = RTEMS_SUCCESSFUL;
457 465
458 466 // (1) mask interruptions
459 467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
460 468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
461 469
462 470 // (2) clear interruptions
463 471 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
464 472 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
465 473
466 474 // (3) reset waveform picker registers
467 475 reset_wfp_burst_enable(); // reset burst and enable bits
468 476 reset_wfp_status(); // reset all the status bits
469 477
470 478 // (4) reset spectral matrices registers
471 479 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
472 480 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
473 481 reset_extractSWF(); // reset the extractSWF flag to false
474 482
475 483 // <Spectral Matrices simulator>
476 484 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
477 485 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
478 486 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
479 487 // </Spectral Matrices simulator>
480 488
481 489 // suspend several tasks
482 490 if (lfrCurrentMode != LFR_MODE_STANDBY) {
483 491 status = suspend_science_tasks();
484 492 }
485 493
486 494 if (status != RTEMS_SUCCESSFUL)
487 495 {
488 496 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
489 497 }
490 498
491 499 return status;
492 500 }
493 501
494 502 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
495 503 {
496 504 /** This function is launched after a mode transition validation.
497 505 *
498 506 * @param mode is the mode in which LFR will be put.
499 507 *
500 508 * @return RTEMS directive status codes:
501 509 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
502 510 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
503 511 *
504 512 */
505 513
506 514 rtems_status_code status;
507 515
508 516 //**********************
509 517 // STOP THE CURRENT MODE
510 518 status = stop_current_mode();
511 519 if (status != RTEMS_SUCCESSFUL)
512 520 {
513 521 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
514 522 }
515 523
516 524 //*************************
517 525 // ENTER THE REQUESTED MODE
518 526 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
519 527 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
520 528 {
521 529 #ifdef PRINT_TASK_STATISTICS
522 530 rtems_cpu_usage_reset();
523 531 maxCount = 0;
524 532 #endif
525 533 status = restart_science_tasks();
526 534 launch_waveform_picker( mode, transitionCoarseTime );
527 535 // launch_spectral_matrix( mode );
528 536 }
529 537 else if ( mode == LFR_MODE_STANDBY )
530 538 {
531 539 #ifdef PRINT_TASK_STATISTICS
532 540 rtems_cpu_usage_report();
533 541 #endif
534 542
535 543 #ifdef PRINT_STACK_REPORT
536 544 rtems_stack_checker_report_usage();
537 545 #endif
538 546 PRINTF1("maxCount = %d\n", maxCount)
539 547 }
540 548 else
541 549 {
542 550 status = RTEMS_UNSATISFIED;
543 551 }
544 552
545 553 if (status != RTEMS_SUCCESSFUL)
546 554 {
547 555 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
548 556 status = RTEMS_UNSATISFIED;
549 557 }
550 558
551 559 return status;
552 560 }
553 561
554 562 int restart_science_tasks()
555 563 {
556 564 /** This function is used to restart all science tasks.
557 565 *
558 566 * @return RTEMS directive status codes:
559 567 * - RTEMS_SUCCESSFUL - task restarted successfully
560 568 * - RTEMS_INVALID_ID - task id invalid
561 569 * - RTEMS_INCORRECT_STATE - task never started
562 570 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
563 571 *
564 572 * Science tasks are AVF0, BPF0, WFRM, CWF3, CW2, CWF1
565 573 *
566 574 */
567 575
568 576 rtems_status_code status[6];
569 577 rtems_status_code ret;
570 578
571 579 ret = RTEMS_SUCCESSFUL;
572 580
573 581 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], 1 );
574 582 if (status[0] != RTEMS_SUCCESSFUL)
575 583 {
576 584 PRINTF1("in restart_science_task *** 0 ERR %d\n", status[0])
577 585 }
578 586
579 587 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
580 588 if (status[2] != RTEMS_SUCCESSFUL)
581 589 {
582 590 PRINTF1("in restart_science_task *** 2 ERR %d\n", status[2])
583 591 }
584 592
585 593 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
586 594 if (status[3] != RTEMS_SUCCESSFUL)
587 595 {
588 596 PRINTF1("in restart_science_task *** 3 ERR %d\n", status[3])
589 597 }
590 598
591 599 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
592 600 if (status[4] != RTEMS_SUCCESSFUL)
593 601 {
594 602 PRINTF1("in restart_science_task *** 4 ERR %d\n", status[4])
595 603 }
596 604
597 605 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
598 606 if (status[5] != RTEMS_SUCCESSFUL)
599 607 {
600 608 PRINTF1("in restart_science_task *** 5 ERR %d\n", status[5])
601 609 }
602 610
603 611 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[2] != RTEMS_SUCCESSFUL) ||
604 612 (status[3] != RTEMS_SUCCESSFUL) || (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
605 613 {
606 614 ret = RTEMS_UNSATISFIED;
607 615 }
608 616
609 617 return ret;
610 618 }
611 619
612 620 int suspend_science_tasks()
613 621 {
614 622 /** This function suspends the science tasks.
615 623 *
616 624 * @return RTEMS directive status codes:
617 625 * - RTEMS_SUCCESSFUL - task restarted successfully
618 626 * - RTEMS_INVALID_ID - task id invalid
619 627 * - RTEMS_ALREADY_SUSPENDED - task already suspended
620 628 *
621 629 */
622 630
623 631 rtems_status_code status;
624 632
625 633 status = rtems_task_suspend( Task_id[TASKID_AVF0] );
626 634 if (status != RTEMS_SUCCESSFUL)
627 635 {
628 636 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
629 637 }
630 638
631 639 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
632 640 {
633 641 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
634 642 if (status != RTEMS_SUCCESSFUL)
635 643 {
636 644 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
637 645 }
638 646 }
639 647
640 648 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
641 649 {
642 650 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
643 651 if (status != RTEMS_SUCCESSFUL)
644 652 {
645 653 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
646 654 }
647 655 }
648 656
649 657 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
650 658 {
651 659 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
652 660 if (status != RTEMS_SUCCESSFUL)
653 661 {
654 662 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
655 663 }
656 664 }
657 665
658 666 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
659 667 {
660 668 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
661 669 if (status != RTEMS_SUCCESSFUL)
662 670 {
663 671 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
664 672 }
665 673 }
666 674
667 675 return status;
668 676 }
669 677
670 678 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
671 679 {
672 680 reset_current_ring_nodes();
673 681 reset_waveform_picker_regs();
674 682 set_wfp_burst_enable_register( mode );
675 683
676 684 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
677 685 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
678 686
679 687 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
680 688 if (transitionCoarseTime == 0)
681 689 {
682 690 waveform_picker_regs->start_date = time_management_regs->coarse_time;
683 691 }
684 692 else
685 693 {
686 694 waveform_picker_regs->start_date = transitionCoarseTime;
687 695 }
688 696 }
689 697
690 698 void launch_spectral_matrix( unsigned char mode )
691 699 {
692 700 reset_nb_sm_f0();
693 701 reset_current_sm_ring_nodes();
694 702 reset_spectral_matrix_regs();
695 703
696 704 #ifdef VHDL_DEV
697 705 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
698 706 grgpio_regs->io_port_direction_register =
699 707 grgpio_regs->io_port_direction_register | 0x01; // [0001 1000], 0 = output disabled, 1 = output enabled
700 708 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register | 0x00; // set the bit 0 to 1
701 709 set_irq_on_new_ready_matrix( 1 );
702 710 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
703 711 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
704 712 set_run_matrix_spectral( 1 );
705 713 #else
706 714 // Spectral Matrices simulator
707 715 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
708 716 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
709 717 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
710 718 #endif
711 719 }
712 720
713 721 void set_irq_on_new_ready_matrix( unsigned char value )
714 722 {
715 723 if (value == 1)
716 724 {
717 725 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
718 726 }
719 727 else
720 728 {
721 729 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
722 730 }
723 731 }
724 732
725 733 void set_run_matrix_spectral( unsigned char value )
726 734 {
727 735 if (value == 1)
728 736 {
729 737 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // [0100] set run_matrix spectral to 1
730 738 }
731 739 else
732 740 {
733 741 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // [1011] set run_matrix spectral to 0
734 742 }
735 743 }
736 744
737 745 void launch_spectral_matrix_simu( unsigned char mode )
738 746 {
739 747 reset_nb_sm_f0();
740 748 reset_current_sm_ring_nodes();
741 749 reset_spectral_matrix_regs();
742 750
743 751 // Spectral Matrices simulator
744 752 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
745 753 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
746 754 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
747 755 set_local_nb_interrupt_f0_MAX();
748 756 }
749 757
750 758 //****************
751 759 // CLOSING ACTIONS
752 760 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
753 761 {
754 762 /** This function is used to update the HK packets statistics after a successful TC execution.
755 763 *
756 764 * @param TC points to the TC being processed
757 765 * @param time is the time used to date the TC execution
758 766 *
759 767 */
760 768
761 769 unsigned int val;
762 770
763 771 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
764 772 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
765 773 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
766 774 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
767 775 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
768 776 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
769 777 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
770 778 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
771 779 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
772 780 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
773 781 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
774 782 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
775 783
776 784 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
777 785 val++;
778 786 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
779 787 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
780 788 }
781 789
782 790 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
783 791 {
784 792 /** This function is used to update the HK packets statistics after a TC rejection.
785 793 *
786 794 * @param TC points to the TC being processed
787 795 * @param time is the time used to date the TC rejection
788 796 *
789 797 */
790 798
791 799 unsigned int val;
792 800
793 801 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
794 802 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
795 803 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
796 804 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
797 805 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
798 806 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
799 807 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
800 808 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
801 809 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
802 810 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
803 811 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
804 812 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
805 813
806 814 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
807 815 val++;
808 816 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
809 817 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
810 818 }
811 819
812 820 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
813 821 {
814 822 /** This function is the last step of the TC execution workflow.
815 823 *
816 824 * @param TC points to the TC being processed
817 825 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
818 826 * @param queue_id is the id of the RTEMS message queue used to send TM packets
819 827 * @param time is the time used to date the TC execution
820 828 *
821 829 */
822 830
823 831 unsigned char requestedMode;
824 832
825 833 if (result == LFR_SUCCESSFUL)
826 834 {
827 835 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
828 836 &
829 837 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
830 838 )
831 839 {
832 840 send_tm_lfr_tc_exe_success( TC, queue_id );
833 841 }
834 842 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
835 843 {
836 844 //**********************************
837 845 // UPDATE THE LFRMODE LOCAL VARIABLE
838 846 requestedMode = TC->dataAndCRC[1];
839 847 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
840 848 updateLFRCurrentMode();
841 849 }
842 850 }
851 else
852 {
853 send_tm_lfr_tc_exe_error( TC, queue_id );
854 }
843 855 }
844 856
845 857 //***************************
846 858 // Interrupt Service Routines
847 859 rtems_isr commutation_isr1( rtems_vector_number vector )
848 860 {
849 861 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
850 862 printf("In commutation_isr1 *** Error sending event to DUMB\n");
851 863 }
852 864 }
853 865
854 866 rtems_isr commutation_isr2( rtems_vector_number vector )
855 867 {
856 868 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
857 869 printf("In commutation_isr2 *** Error sending event to DUMB\n");
858 870 }
859 871 }
860 872
861 873 //****************
862 874 // OTHER FUNCTIONS
863 875 void updateLFRCurrentMode()
864 876 {
865 877 /** This function updates the value of the global variable lfrCurrentMode.
866 878 *
867 879 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
868 880 *
869 881 */
870 882 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
871 883 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
872 884 }
873 885
@@ -1,539 +1,539
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
18 18 {
19 19 /** This function updates the LFR registers with the incoming common parameters.
20 20 *
21 21 * @param TC points to the TeleCommand packet that is being processed
22 22 *
23 23 *
24 24 */
25 25
26 26 parameter_dump_packet.unused0 = TC->dataAndCRC[0];
27 27 parameter_dump_packet.bw_sp0_sp1_r0_r1 = TC->dataAndCRC[1];
28 28 set_wfp_data_shaping( );
29 29 return LFR_SUCCESSFUL;
30 30 }
31 31
32 32 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
33 33 {
34 34 /** This function updates the LFR registers with the incoming normal parameters.
35 35 *
36 36 * @param TC points to the TeleCommand packet that is being processed
37 37 * @param queue_id is the id of the queue which handles TM related to this execution step
38 38 *
39 39 */
40 40
41 41 int result;
42 42 int flag;
43 43 rtems_status_code status;
44 44
45 45 flag = LFR_SUCCESSFUL;
46 46
47 47 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
48 48 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
49 49 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
50 50 flag = LFR_DEFAULT;
51 51 }
52 52
53 53 //***************
54 54 // sy_lfr_n_swf_l
55 55 if (flag == LFR_SUCCESSFUL)
56 56 {
57 57 result = set_sy_lfr_n_swf_l( TC, queue_id, time );
58 58 if (result != LFR_SUCCESSFUL)
59 59 {
60 60 flag = LFR_DEFAULT;
61 61 }
62 62 }
63 63
64 64 //***************
65 65 // sy_lfr_n_swf_p
66 66 if (flag == LFR_SUCCESSFUL)
67 67 {
68 68 result = set_sy_lfr_n_swf_p( TC, queue_id, time );
69 69 if (result != LFR_SUCCESSFUL)
70 70 {
71 71 flag = LFR_DEFAULT;
72 72 }
73 73 }
74 74
75 75 //***************
76 76 // sy_lfr_n_asm_p
77 77 if (flag == LFR_SUCCESSFUL)
78 78 {
79 79 result = set_sy_lfr_n_asm_p( TC, queue_id );
80 80 if (result != LFR_SUCCESSFUL)
81 81 {
82 82 flag = LFR_DEFAULT;
83 83 }
84 84 }
85 85
86 86 //***************
87 87 // sy_lfr_n_bp_p0
88 88 if (flag == LFR_SUCCESSFUL)
89 89 {
90 90 result = set_sy_lfr_n_bp_p0( TC, queue_id );
91 91 if (result != LFR_SUCCESSFUL)
92 92 {
93 93 flag = LFR_DEFAULT;
94 94 }
95 95 }
96 96
97 97 //***************
98 98 // sy_lfr_n_bp_p1
99 99 if (flag == LFR_SUCCESSFUL)
100 100 {
101 101 result = set_sy_lfr_n_bp_p1( TC, queue_id );
102 102 if (result != LFR_SUCCESSFUL)
103 103 {
104 104 flag = LFR_DEFAULT;
105 105 }
106 106 }
107 107
108 108 //*********************
109 109 // sy_lfr_n_cwf_long_f3
110 110 if (flag == LFR_SUCCESSFUL)
111 111 {
112 112 result = set_sy_lfr_n_cwf_long_f3( TC, queue_id );
113 113 if (result != LFR_SUCCESSFUL)
114 114 {
115 115 flag = LFR_DEFAULT;
116 116 }
117 117 }
118 118
119 119 return flag;
120 120 }
121 121
122 122 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
123 123 {
124 124 /** This function updates the LFR registers with the incoming burst parameters.
125 125 *
126 126 * @param TC points to the TeleCommand packet that is being processed
127 127 * @param queue_id is the id of the queue which handles TM related to this execution step
128 128 *
129 129 */
130 130
131 131 int result;
132 132 unsigned char lfrMode;
133 133 rtems_status_code status;
134 134
135 135 result = LFR_DEFAULT;
136 136 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
137 137
138 138 if ( lfrMode == LFR_MODE_BURST ) {
139 139 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
140 140 result = LFR_DEFAULT;
141 141 }
142 142 else {
143 143 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[0];
144 144 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[1];
145 145
146 146 result = LFR_SUCCESSFUL;
147 147 }
148 148
149 149 return result;
150 150 }
151 151
152 152 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
153 153 {
154 154 /** This function updates the LFR registers with the incoming sbm1 parameters.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM related to this execution step
158 158 *
159 159 */
160 160 int result;
161 161 unsigned char lfrMode;
162 162 rtems_status_code status;
163 163
164 164 result = LFR_DEFAULT;
165 165 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
166 166
167 if ( (lfrMode == LFR_MODE_SBM1) || (lfrMode == LFR_MODE_SBM2) ) {
167 if ( lfrMode == LFR_MODE_SBM1 ) {
168 168 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
169 169 result = LFR_DEFAULT;
170 170 }
171 171 else {
172 172 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[0];
173 173 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[1];
174 174
175 175 result = LFR_SUCCESSFUL;
176 176 }
177 177
178 178 return result;
179 179 }
180 180
181 181 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
182 182 {
183 183 /** This function updates the LFR registers with the incoming sbm2 parameters.
184 184 *
185 185 * @param TC points to the TeleCommand packet that is being processed
186 186 * @param queue_id is the id of the queue which handles TM related to this execution step
187 187 *
188 188 */
189 189
190 190 int result;
191 191 unsigned char lfrMode;
192 192 rtems_status_code status;
193 193
194 194 result = LFR_DEFAULT;
195 195 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
196 196
197 if ( (lfrMode == LFR_MODE_SBM1) || (lfrMode == LFR_MODE_SBM2) ) {
197 if ( lfrMode == LFR_MODE_SBM2 ) {
198 198 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
199 199 result = LFR_DEFAULT;
200 200 }
201 201 else {
202 202 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[0];
203 203 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[1];
204 204
205 205 result = LFR_SUCCESSFUL;
206 206 }
207 207
208 208 return result;
209 209 }
210 210
211 211 int action_dump_par( rtems_id queue_id )
212 212 {
213 213 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
214 214 *
215 215 * @param queue_id is the id of the queue which handles TM related to this execution step.
216 216 *
217 217 * @return RTEMS directive status codes:
218 218 * - RTEMS_SUCCESSFUL - message sent successfully
219 219 * - RTEMS_INVALID_ID - invalid queue id
220 220 * - RTEMS_INVALID_SIZE - invalid message size
221 221 * - RTEMS_INVALID_ADDRESS - buffer is NULL
222 222 * - RTEMS_UNSATISFIED - out of message buffers
223 223 * - RTEMS_TOO_MANY - queue s limit has been reached
224 224 *
225 225 */
226 226
227 227 int status;
228 228
229 229 // UPDATE TIME
230 230 increment_seq_counter( parameter_dump_packet.packetSequenceControl );
231 231 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
232 232 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
233 233 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
234 234 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
235 235 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
236 236 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
237 237 // SEND DATA
238 238 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
239 239 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
240 240 if (status != RTEMS_SUCCESSFUL) {
241 241 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
242 242 }
243 243
244 244 return status;
245 245 }
246 246
247 247 //***********************
248 248 // NORMAL MODE PARAMETERS
249 249
250 250 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time )
251 251 {
252 252 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
253 253 *
254 254 * @param TC points to the TeleCommand packet that is being processed
255 255 * @param queue_id is the id of the queue which handles TM related to this execution step
256 256 *
257 257 */
258 258
259 259 unsigned int tmp;
260 260 int result;
261 261 unsigned char msb;
262 262 unsigned char lsb;
263 263 rtems_status_code status;
264 264
265 265 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_L ];
266 266 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_L+1 ];
267 267
268 268 tmp = ( unsigned int ) floor(
269 269 ( ( msb*256 ) + lsb ) / 16
270 270 ) * 16;
271 271
272 272 if ( (tmp < 16) || (tmp > 2048) ) // the snapshot period is a multiple of 16
273 273 { // 2048 is the maximum limit due to the size of the buffers
274 274 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_SY_LFR_N_SWF_L+10, lsb );
275 275 result = WRONG_APP_DATA;
276 276 }
277 277 else if (tmp != 2048)
278 278 {
279 279 status = send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
280 280 result = FUNCT_NOT_IMPL;
281 281 }
282 282 else
283 283 {
284 284 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (tmp >> 8);
285 285 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (tmp );
286 286 result = LFR_SUCCESSFUL;
287 287 }
288 288
289 289 return result;
290 290 }
291 291
292 292 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time)
293 293 {
294 294 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
295 295 *
296 296 * @param TC points to the TeleCommand packet that is being processed
297 297 * @param queue_id is the id of the queue which handles TM related to this execution step
298 298 *
299 299 */
300 300
301 301 unsigned int tmp;
302 302 int result;
303 303 unsigned char msb;
304 304 unsigned char lsb;
305 305 rtems_status_code status;
306 306
307 307 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_P ];
308 308 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_P+1 ];
309 309
310 310 tmp = msb * 256 + lsb;
311 311
312 312 if ( tmp < 16 )
313 313 {
314 314 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_SY_LFR_N_SWF_P+10, lsb );
315 315 result = WRONG_APP_DATA;
316 316 }
317 317 else
318 318 {
319 319 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (tmp >> 8);
320 320 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (tmp );
321 321 result = LFR_SUCCESSFUL;
322 322 }
323 323
324 324 return result;
325 325 }
326 326
327 327 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
328 328 {
329 329 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
330 330 *
331 331 * @param TC points to the TeleCommand packet that is being processed
332 332 * @param queue_id is the id of the queue which handles TM related to this execution step
333 333 *
334 334 */
335 335
336 336 int result;
337 337 unsigned char msb;
338 338 unsigned char lsb;
339 339
340 340 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_ASM_P ];
341 341 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_ASM_P+1 ];
342 342
343 343 parameter_dump_packet.sy_lfr_n_asm_p[0] = msb;
344 344 parameter_dump_packet.sy_lfr_n_asm_p[1] = lsb;
345 345 result = LFR_SUCCESSFUL;
346 346
347 347 return result;
348 348 }
349 349
350 350 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
351 351 {
352 352 /** This function sets the time between two basic parameter sets, in s (SY_LFR_N_BP_P0).
353 353 *
354 354 * @param TC points to the TeleCommand packet that is being processed
355 355 * @param queue_id is the id of the queue which handles TM related to this execution step
356 356 *
357 357 */
358 358
359 359 int status;
360 360
361 361 status = LFR_SUCCESSFUL;
362 362
363 363 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_BP_P0 ];
364 364
365 365 return status;
366 366 }
367 367
368 368 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
369 369 {
370 370 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
371 371 *
372 372 * @param TC points to the TeleCommand packet that is being processed
373 373 * @param queue_id is the id of the queue which handles TM related to this execution step
374 374 *
375 375 */
376 376
377 377 int status;
378 378
379 379 status = LFR_SUCCESSFUL;
380 380
381 381 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_BP_P1 ];
382 382
383 383 return status;
384 384 }
385 385
386 386 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
387 387 {
388 388 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
389 389 *
390 390 * @param TC points to the TeleCommand packet that is being processed
391 391 * @param queue_id is the id of the queue which handles TM related to this execution step
392 392 *
393 393 */
394 394
395 395 int status;
396 396
397 397 status = LFR_SUCCESSFUL;
398 398
399 399 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_CWF_LONG_F3 ];
400 400
401 401 return status;
402 402 }
403 403
404 404 //**********************
405 405 // BURST MODE PARAMETERS
406 406
407 407 //*********************
408 408 // SBM1 MODE PARAMETERS
409 409
410 410 //*********************
411 411 // SBM2 MODE PARAMETERS
412 412
413 413 //*******************
414 414 // TC_LFR_UPDATE_INFO
415 415 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
416 416 {
417 417 unsigned int status;
418 418
419 419 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
420 420 || (mode == LFR_MODE_BURST)
421 421 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
422 422 {
423 423 status = LFR_SUCCESSFUL;
424 424 }
425 425 else
426 426 {
427 427 status = LFR_DEFAULT;
428 428 }
429 429
430 430 return status;
431 431 }
432 432
433 433 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
434 434 {
435 435 unsigned int status;
436 436
437 437 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
438 438 || (mode == TDS_MODE_BURST)
439 439 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
440 440 || (mode == TDS_MODE_LFM))
441 441 {
442 442 status = LFR_SUCCESSFUL;
443 443 }
444 444 else
445 445 {
446 446 status = LFR_DEFAULT;
447 447 }
448 448
449 449 return status;
450 450 }
451 451
452 452 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
453 453 {
454 454 unsigned int status;
455 455
456 456 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
457 457 || (mode == THR_MODE_BURST))
458 458 {
459 459 status = LFR_SUCCESSFUL;
460 460 }
461 461 else
462 462 {
463 463 status = LFR_DEFAULT;
464 464 }
465 465
466 466 return status;
467 467 }
468 468
469 469 //**********
470 470 // init dump
471 471
472 472 void init_parameter_dump( void )
473 473 {
474 474 /** This function initialize the parameter_dump_packet global variable with default values.
475 475 *
476 476 */
477 477
478 478 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
479 479 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
480 480 parameter_dump_packet.reserved = CCSDS_RESERVED;
481 481 parameter_dump_packet.userApplication = CCSDS_USER_APP;
482 482 parameter_dump_packet.packetID[0] = (unsigned char) (TM_PACKET_ID_PARAMETER_DUMP >> 8);
483 483 parameter_dump_packet.packetID[1] = (unsigned char) TM_PACKET_ID_PARAMETER_DUMP;
484 484 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
485 485 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
486 486 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
487 487 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
488 488 // DATA FIELD HEADER
489 489 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
490 490 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
491 491 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
492 492 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
493 493 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
494 494 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
495 495 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
496 496 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
497 497 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
498 498 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
499 499 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
500 500
501 501 //******************
502 502 // COMMON PARAMETERS
503 503 parameter_dump_packet.unused0 = DEFAULT_SY_LFR_COMMON0;
504 504 parameter_dump_packet.bw_sp0_sp1_r0_r1 = DEFAULT_SY_LFR_COMMON1;
505 505
506 506 //******************
507 507 // NORMAL PARAMETERS
508 508 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (SY_LFR_N_SWF_L >> 8);
509 509 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (SY_LFR_N_SWF_L );
510 510 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (SY_LFR_N_SWF_P >> 8);
511 511 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (SY_LFR_N_SWF_P );
512 512 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (SY_LFR_N_ASM_P >> 8);
513 513 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (SY_LFR_N_ASM_P );
514 514 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) SY_LFR_N_BP_P0;
515 515 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) SY_LFR_N_BP_P1;
516 516 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) SY_LFR_N_CWF_LONG_F3;
517 517
518 518 //*****************
519 519 // BURST PARAMETERS
520 520 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
521 521 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
522 522
523 523 //****************
524 524 // SBM1 PARAMETERS
525 525 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
526 526 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
527 527
528 528 //****************
529 529 // SBM2 PARAMETERS
530 530 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
531 531 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
532 532 }
533 533
534 534
535 535
536 536
537 537
538 538
539 539
@@ -1,511 +1,511
1 1 /** Functions to send TM packets related to TC parsing and execution.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to send appropriate TM packets after parsing and execution:
7 7 * - TM_LFR_TC_EXE_SUCCESS
8 8 * - TM_LFR_TC_EXE_INCONSISTENT
9 9 * - TM_LFR_TC_EXE_NOT_EXECUTABLE
10 10 * - TM_LFR_TC_EXE_NOT_IMPLEMENTED
11 11 * - TM_LFR_TC_EXE_ERROR
12 12 * - TM_LFR_TC_EXE_CORRUPTED
13 13 *
14 14 */
15 15
16 16 #include "tm_lfr_tc_exe.h"
17 17
18 18 int send_tm_lfr_tc_exe_success( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
19 19 {
20 20 /** This function sends a TM_LFR_TC_EXE_SUCCESS packet in the dedicated RTEMS message queue.
21 21 *
22 22 * @param TC points to the TeleCommand packet that is being processed
23 23 * @param queue_id is the id of the queue which handles TM
24 24 *
25 25 * @return RTEMS directive status code:
26 26 * - RTEMS_SUCCESSFUL - message sent successfully
27 27 * - RTEMS_INVALID_ID - invalid queue id
28 28 * - RTEMS_INVALID_SIZE - invalid message size
29 29 * - RTEMS_INVALID_ADDRESS - buffer is NULL
30 30 * - RTEMS_UNSATISFIED - out of message buffers
31 31 * - RTEMS_TOO_MANY - queue s limit has been reached
32 32 *
33 33 */
34 34
35 35 rtems_status_code status;
36 36 Packet_TM_LFR_TC_EXE_SUCCESS_t TM;
37 37 unsigned char messageSize;
38 38
39 39 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
40 40 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
41 41 TM.reserved = DEFAULT_RESERVED;
42 42 TM.userApplication = CCSDS_USER_APP;
43 43 // PACKET HEADER
44 44 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
45 45 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
46 46 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
47 47 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_SUCCESS >> 8);
48 48 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_SUCCESS );
49 49 // DATA FIELD HEADER
50 50 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
51 51 TM.serviceType = TM_TYPE_TC_EXE;
52 52 TM.serviceSubType = TM_SUBTYPE_EXE_OK;
53 53 TM.destinationID = TC->sourceID;
54 54 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
55 55 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
56 56 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
57 57 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
58 58 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
59 59 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
60 60 //
61 61 TM.telecommand_pkt_id[0] = TC->packetID[0];
62 62 TM.telecommand_pkt_id[1] = TC->packetID[1];
63 63 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
64 64 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
65 65
66 66 messageSize = PACKET_LENGTH_TC_EXE_SUCCESS + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
67 67
68 68 // SEND DATA
69 69 status = rtems_message_queue_send( queue_id, &TM, messageSize);
70 70 if (status != RTEMS_SUCCESSFUL) {
71 71 PRINTF("in send_tm_lfr_tc_exe_success *** ERR\n")
72 72 }
73 73
74 74 // UPDATE HK FIELDS
75 75 update_last_TC_exe( TC, TM.time );
76 76
77 77 return status;
78 78 }
79 79
80 80 int send_tm_lfr_tc_exe_inconsistent( ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
81 81 unsigned char byte_position, unsigned char rcv_value )
82 82 {
83 83 /** This function sends a TM_LFR_TC_EXE_INCONSISTENT packet in the dedicated RTEMS message queue.
84 84 *
85 85 * @param TC points to the TeleCommand packet that is being processed
86 86 * @param queue_id is the id of the queue which handles TM
87 87 * @param byte_position is the byte position of the MSB of the parameter that has been seen as inconsistent
88 88 * @param rcv_value is the value of the LSB of the parameter that has been deteced as inconsistent
89 89 *
90 90 * @return RTEMS directive status code:
91 91 * - RTEMS_SUCCESSFUL - message sent successfully
92 92 * - RTEMS_INVALID_ID - invalid queue id
93 93 * - RTEMS_INVALID_SIZE - invalid message size
94 94 * - RTEMS_INVALID_ADDRESS - buffer is NULL
95 95 * - RTEMS_UNSATISFIED - out of message buffers
96 96 * - RTEMS_TOO_MANY - queue s limit has been reached
97 97 *
98 98 */
99 99
100 100 rtems_status_code status;
101 101 Packet_TM_LFR_TC_EXE_INCONSISTENT_t TM;
102 102 unsigned char messageSize;
103 103
104 104 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
105 105 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
106 106 TM.reserved = DEFAULT_RESERVED;
107 107 TM.userApplication = CCSDS_USER_APP;
108 108 // PACKET HEADER
109 109 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
110 110 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
111 111 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
112 112 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_INCONSISTENT >> 8);
113 113 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_INCONSISTENT );
114 114 // DATA FIELD HEADER
115 115 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
116 116 TM.serviceType = TM_TYPE_TC_EXE;
117 117 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
118 118 TM.destinationID = TC->sourceID;
119 119 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
120 120 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
121 121 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
122 122 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
123 123 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
124 124 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
125 125 //
126 126 TM.tc_failure_code[0] = (char) (WRONG_APP_DATA >> 8);
127 127 TM.tc_failure_code[1] = (char) (WRONG_APP_DATA );
128 128 TM.telecommand_pkt_id[0] = TC->packetID[0];
129 129 TM.telecommand_pkt_id[1] = TC->packetID[1];
130 130 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
131 131 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
132 132 TM.tc_service = TC->serviceType; // type of the rejected TC
133 133 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
134 134 TM.byte_position = byte_position;
135 135 TM.rcv_value = rcv_value;
136 136
137 137 messageSize = PACKET_LENGTH_TC_EXE_INCONSISTENT + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
138 138
139 139 // SEND DATA
140 140 status = rtems_message_queue_send( queue_id, &TM, messageSize);
141 141 if (status != RTEMS_SUCCESSFUL) {
142 142 PRINTF("in send_tm_lfr_tc_exe_inconsistent *** ERR\n")
143 143 }
144 144
145 145 // UPDATE HK FIELDS
146 146 update_last_TC_rej( TC, TM.time );
147 147
148 148 return status;
149 149 }
150 150
151 151 int send_tm_lfr_tc_exe_not_executable( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
152 152 {
153 153 /** This function sends a TM_LFR_TC_EXE_NOT_EXECUTABLE packet in the dedicated RTEMS message queue.
154 154 *
155 155 * @param TC points to the TeleCommand packet that is being processed
156 156 * @param queue_id is the id of the queue which handles TM
157 157 *
158 158 * @return RTEMS directive status code:
159 159 * - RTEMS_SUCCESSFUL - message sent successfully
160 160 * - RTEMS_INVALID_ID - invalid queue id
161 161 * - RTEMS_INVALID_SIZE - invalid message size
162 162 * - RTEMS_INVALID_ADDRESS - buffer is NULL
163 163 * - RTEMS_UNSATISFIED - out of message buffers
164 164 * - RTEMS_TOO_MANY - queue s limit has been reached
165 165 *
166 166 */
167 167
168 168 rtems_status_code status;
169 169 Packet_TM_LFR_TC_EXE_NOT_EXECUTABLE_t TM;
170 170 unsigned char messageSize;
171 171
172 172 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
173 173 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
174 174 TM.reserved = DEFAULT_RESERVED;
175 175 TM.userApplication = CCSDS_USER_APP;
176 176 // PACKET HEADER
177 177 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
178 178 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
179 179 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
180 180 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE >> 8);
181 181 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE );
182 182 // DATA FIELD HEADER
183 183 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
184 184 TM.serviceType = TM_TYPE_TC_EXE;
185 185 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
186 186 TM.destinationID = TC->sourceID; // default destination id
187 187 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
188 188 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
189 189 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
190 190 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
191 191 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
192 192 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
193 193 //
194 194 TM.tc_failure_code[0] = (char) (TC_NOT_EXE >> 8);
195 195 TM.tc_failure_code[1] = (char) (TC_NOT_EXE );
196 196 TM.telecommand_pkt_id[0] = TC->packetID[0];
197 197 TM.telecommand_pkt_id[1] = TC->packetID[1];
198 198 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
199 199 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
200 200 TM.tc_service = TC->serviceType; // type of the rejected TC
201 201 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
202 202 TM.lfr_status_word[0] = housekeeping_packet.lfr_status_word[0];
203 203 TM.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1];
204 204
205 205 messageSize = PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
206 206
207 207 // SEND DATA
208 208 status = rtems_message_queue_send( queue_id, &TM, messageSize);
209 209 if (status != RTEMS_SUCCESSFUL) {
210 210 PRINTF("in send_tm_lfr_tc_exe_not_executable *** ERR\n")
211 211 }
212 212
213 213 // UPDATE HK FIELDS
214 214 update_last_TC_rej( TC, TM.time );
215 215
216 216 return status;
217 217 }
218 218
219 219 int send_tm_lfr_tc_exe_not_implemented( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time )
220 220 {
221 221 /** This function sends a TM_LFR_TC_EXE_NOT_IMPLEMENTED packet in the dedicated RTEMS message queue.
222 222 *
223 223 * @param TC points to the TeleCommand packet that is being processed
224 224 * @param queue_id is the id of the queue which handles TM
225 225 *
226 226 * @return RTEMS directive status code:
227 227 * - RTEMS_SUCCESSFUL - message sent successfully
228 228 * - RTEMS_INVALID_ID - invalid queue id
229 229 * - RTEMS_INVALID_SIZE - invalid message size
230 230 * - RTEMS_INVALID_ADDRESS - buffer is NULL
231 231 * - RTEMS_UNSATISFIED - out of message buffers
232 232 * - RTEMS_TOO_MANY - queue s limit has been reached
233 233 *
234 234 */
235 235
236 236 rtems_status_code status;
237 237 Packet_TM_LFR_TC_EXE_NOT_IMPLEMENTED_t TM;
238 238 unsigned char messageSize;
239 239
240 240 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
241 241 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
242 242 TM.reserved = DEFAULT_RESERVED;
243 243 TM.userApplication = CCSDS_USER_APP;
244 244 // PACKET HEADER
245 245 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
246 246 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
247 247 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
248 248 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED >> 8);
249 249 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED );
250 250 // DATA FIELD HEADER
251 251 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
252 252 TM.serviceType = TM_TYPE_TC_EXE;
253 253 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
254 254 TM.destinationID = TC->sourceID; // default destination id
255 255 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
256 256 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
257 257 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
258 258 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
259 259 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
260 260 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
261 261 //
262 262 TM.tc_failure_code[0] = (char) (FUNCT_NOT_IMPL >> 8);
263 263 TM.tc_failure_code[1] = (char) (FUNCT_NOT_IMPL );
264 264 TM.telecommand_pkt_id[0] = TC->packetID[0];
265 265 TM.telecommand_pkt_id[1] = TC->packetID[1];
266 266 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
267 267 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
268 268 TM.tc_service = TC->serviceType; // type of the rejected TC
269 269 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
270 270
271 271 messageSize = PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
272 272
273 273 // SEND DATA
274 274 status = rtems_message_queue_send( queue_id, &TM, messageSize);
275 275 if (status != RTEMS_SUCCESSFUL) {
276 276 PRINTF("in send_tm_lfr_tc_exe_not_implemented *** ERR\n")
277 277 }
278 278
279 279 // UPDATE HK FIELDS
280 280 update_last_TC_rej( TC, TM.time );
281 281
282 282 return status;
283 283 }
284 284
285 int send_tm_lfr_tc_exe_error( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time )
285 int send_tm_lfr_tc_exe_error( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
286 286 {
287 287 /** This function sends a TM_LFR_TC_EXE_ERROR packet in the dedicated RTEMS message queue.
288 288 *
289 289 * @param TC points to the TeleCommand packet that is being processed
290 290 * @param queue_id is the id of the queue which handles TM
291 291 *
292 292 * @return RTEMS directive status code:
293 293 * - RTEMS_SUCCESSFUL - message sent successfully
294 294 * - RTEMS_INVALID_ID - invalid queue id
295 295 * - RTEMS_INVALID_SIZE - invalid message size
296 296 * - RTEMS_INVALID_ADDRESS - buffer is NULL
297 297 * - RTEMS_UNSATISFIED - out of message buffers
298 298 * - RTEMS_TOO_MANY - queue s limit has been reached
299 299 *
300 300 */
301 301
302 302 rtems_status_code status;
303 303 Packet_TM_LFR_TC_EXE_ERROR_t TM;
304 304 unsigned char messageSize;
305 305
306 306 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
307 307 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
308 308 TM.reserved = DEFAULT_RESERVED;
309 309 TM.userApplication = CCSDS_USER_APP;
310 310 // PACKET HEADER
311 311 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
312 312 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
313 313 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
314 314 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_ERROR >> 8);
315 315 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_ERROR );
316 316 // DATA FIELD HEADER
317 317 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
318 318 TM.serviceType = TM_TYPE_TC_EXE;
319 319 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
320 320 TM.destinationID = TC->sourceID; // default destination id
321 321 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
322 322 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
323 323 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
324 324 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
325 325 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
326 326 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
327 327 //
328 328 TM.tc_failure_code[0] = (char) (FAIL_DETECTED >> 8);
329 329 TM.tc_failure_code[1] = (char) (FAIL_DETECTED );
330 330 TM.telecommand_pkt_id[0] = TC->packetID[0];
331 331 TM.telecommand_pkt_id[1] = TC->packetID[1];
332 332 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
333 333 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
334 334 TM.tc_service = TC->serviceType; // type of the rejected TC
335 335 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
336 336
337 337 messageSize = PACKET_LENGTH_TC_EXE_ERROR + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
338 338
339 339 // SEND DATA
340 340 status = rtems_message_queue_send( queue_id, &TM, messageSize);
341 341 if (status != RTEMS_SUCCESSFUL) {
342 342 PRINTF("in send_tm_lfr_tc_exe_error *** ERR\n")
343 343 }
344 344
345 345 // UPDATE HK FIELDS
346 346 update_last_TC_rej( TC, TM.time );
347 347
348 348 return status;
349 349 }
350 350
351 351 int send_tm_lfr_tc_exe_corrupted(ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
352 352 unsigned char *computed_CRC, unsigned char *currentTC_LEN_RCV,
353 353 unsigned char destinationID )
354 354 {
355 355 /** This function sends a TM_LFR_TC_EXE_CORRUPTED packet in the dedicated RTEMS message queue.
356 356 *
357 357 * @param TC points to the TeleCommand packet that is being processed
358 358 * @param queue_id is the id of the queue which handles TM
359 359 * @param computed_CRC points to a buffer of two bytes containing the CRC computed during the parsing of the TeleCommand
360 360 * @param currentTC_LEN_RCV points to a buffer of two bytes containing a packet size field computed on the received data
361 361 *
362 362 * @return RTEMS directive status code:
363 363 * - RTEMS_SUCCESSFUL - message sent successfully
364 364 * - RTEMS_INVALID_ID - invalid queue id
365 365 * - RTEMS_INVALID_SIZE - invalid message size
366 366 * - RTEMS_INVALID_ADDRESS - buffer is NULL
367 367 * - RTEMS_UNSATISFIED - out of message buffers
368 368 * - RTEMS_TOO_MANY - queue s limit has been reached
369 369 *
370 370 */
371 371
372 372 rtems_status_code status;
373 373 Packet_TM_LFR_TC_EXE_CORRUPTED_t TM;
374 374 unsigned char messageSize;
375 375 unsigned int packetLength;
376 376 unsigned char *packetDataField;
377 377
378 378 packetLength = (TC->packetLength[0] * 256) + TC->packetLength[1]; // compute the packet length parameter
379 379 packetDataField = (unsigned char *) &TC->headerFlag_pusVersion_Ack; // get the beginning of the data field
380 380
381 381 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
382 382 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
383 383 TM.reserved = DEFAULT_RESERVED;
384 384 TM.userApplication = CCSDS_USER_APP;
385 385 // PACKET HEADER
386 386 TM.packetID[0] = (unsigned char) (TM_PACKET_ID_TC_EXE >> 8);
387 387 TM.packetID[1] = (unsigned char) (TM_PACKET_ID_TC_EXE );
388 388 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
389 389 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_CORRUPTED >> 8);
390 390 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_CORRUPTED );
391 391 // DATA FIELD HEADER
392 392 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
393 393 TM.serviceType = TM_TYPE_TC_EXE;
394 394 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
395 395 TM.destinationID = destinationID;
396 396 TM.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
397 397 TM.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
398 398 TM.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
399 399 TM.time[3] = (unsigned char) (time_management_regs->coarse_time);
400 400 TM.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
401 401 TM.time[5] = (unsigned char) (time_management_regs->fine_time);
402 402 //
403 403 TM.tc_failure_code[0] = (unsigned char) (CORRUPTED >> 8);
404 404 TM.tc_failure_code[1] = (unsigned char) (CORRUPTED );
405 405 TM.telecommand_pkt_id[0] = TC->packetID[0];
406 406 TM.telecommand_pkt_id[1] = TC->packetID[1];
407 407 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
408 408 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
409 409 TM.tc_service = TC->serviceType; // type of the rejected TC
410 410 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
411 411 TM.pkt_len_rcv_value[0] = TC->packetLength[0];
412 412 TM.pkt_len_rcv_value[1] = TC->packetLength[1];
413 413 TM.pkt_datafieldsize_cnt[0] = currentTC_LEN_RCV[0];
414 414 TM.pkt_datafieldsize_cnt[1] = currentTC_LEN_RCV[1];
415 415 TM.rcv_crc[0] = packetDataField[ packetLength - 1 ];
416 416 TM.rcv_crc[1] = packetDataField[ packetLength ];
417 417 TM.computed_crc[0] = computed_CRC[0];
418 418 TM.computed_crc[1] = computed_CRC[1];
419 419
420 420 messageSize = PACKET_LENGTH_TC_EXE_CORRUPTED + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
421 421
422 422 // SEND DATA
423 423 status = rtems_message_queue_send( queue_id, &TM, messageSize);
424 424 if (status != RTEMS_SUCCESSFUL) {
425 425 PRINTF("in send_tm_lfr_tc_exe_error *** ERR\n")
426 426 }
427 427
428 428 // UPDATE HK FIELDS
429 429 update_last_TC_rej( TC, TM.time );
430 430
431 431 return status;
432 432 }
433 433
434 434 void increment_seq_counter_destination_id( unsigned char *packet_sequence_control, unsigned char destination_id )
435 435 {
436 436 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
437 437 *
438 438 * @param packet_sequence_control points to the packet sequence control which will be incremented
439 439 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
440 440 *
441 441 * If the destination ID is not known, a dedicated counter is incremented.
442 442 *
443 443 */
444 444
445 445 unsigned short sequence_cnt;
446 446 unsigned short segmentation_grouping_flag;
447 447 unsigned short new_packet_sequence_control;
448 448 unsigned char i;
449 449
450 450 switch (destination_id)
451 451 {
452 452 case SID_TC_GROUND:
453 453 i = GROUND;
454 454 break;
455 455 case SID_TC_MISSION_TIMELINE:
456 456 i = MISSION_TIMELINE;
457 457 break;
458 458 case SID_TC_TC_SEQUENCES:
459 459 i = TC_SEQUENCES;
460 460 break;
461 461 case SID_TC_RECOVERY_ACTION_CMD:
462 462 i = RECOVERY_ACTION_CMD;
463 463 break;
464 464 case SID_TC_BACKUP_MISSION_TIMELINE:
465 465 i = BACKUP_MISSION_TIMELINE;
466 466 break;
467 467 case SID_TC_DIRECT_CMD:
468 468 i = DIRECT_CMD;
469 469 break;
470 470 case SID_TC_SPARE_GRD_SRC1:
471 471 i = SPARE_GRD_SRC1;
472 472 break;
473 473 case SID_TC_SPARE_GRD_SRC2:
474 474 i = SPARE_GRD_SRC2;
475 475 break;
476 476 case SID_TC_OBCP:
477 477 i = OBCP;
478 478 break;
479 479 case SID_TC_SYSTEM_CONTROL:
480 480 i = SYSTEM_CONTROL;
481 481 break;
482 482 case SID_TC_AOCS:
483 483 i = AOCS;
484 484 break;
485 485 case SID_TC_RPW_INTERNAL:
486 486 i = RPW_INTERNAL;
487 487 break;
488 488 default:
489 489 i = GROUND;
490 490 break;
491 491 }
492 492
493 493 // increment the sequence counter
494 494 if ( sequenceCounters_TC_EXE[ i ] < SEQ_CNT_MAX )
495 495 {
496 496 sequenceCounters_TC_EXE[ i ] = sequenceCounters_TC_EXE[ i ] + 1;
497 497 }
498 498 else
499 499 {
500 500 sequenceCounters_TC_EXE[ i ] = 0;
501 501 }
502 502
503 503 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
504 504 sequence_cnt = sequenceCounters_TC_EXE[ i ] & 0x3fff;
505 505
506 506 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
507 507
508 508 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
509 509 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
510 510
511 511 }
@@ -1,1356 +1,1351
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //*****************
13 13 // waveform headers
14 14 // SWF
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
16 16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
17 17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
18 18 // CWF
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[ NB_PACKETS_PER_GROUP_OF_CWF ];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[ NB_PACKETS_PER_GROUP_OF_CWF ];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[ NB_PACKETS_PER_GROUP_OF_CWF ];
22 22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[ NB_PACKETS_PER_GROUP_OF_CWF ];
23 23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[ NB_PACKETS_PER_GROUP_OF_CWF_LIGHT ];
24 24
25 25 //**************
26 26 // waveform ring
27 27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
28 28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
29 29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
30 30 ring_node *current_ring_node_f0;
31 31 ring_node *ring_node_to_send_swf_f0;
32 32 ring_node *current_ring_node_f1;
33 33 ring_node *ring_node_to_send_swf_f1;
34 34 ring_node *ring_node_to_send_cwf_f1;
35 35 ring_node *current_ring_node_f2;
36 36 ring_node *ring_node_to_send_swf_f2;
37 37 ring_node *ring_node_to_send_cwf_f2;
38 38
39 39 bool extractSWF = false;
40 40 bool swf_f0_ready = false;
41 41 bool swf_f1_ready = false;
42 42 bool swf_f2_ready = false;
43 43
44 44 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
45 45
46 46 //*********************
47 47 // Interrupt SubRoutine
48 48
49 49 void reset_extractSWF( void )
50 50 {
51 51 extractSWF = false;
52 52 swf_f0_ready = false;
53 53 swf_f1_ready = false;
54 54 swf_f2_ready = false;
55 55 }
56 56
57 57 rtems_isr waveforms_isr( rtems_vector_number vector )
58 58 {
59 59 /** This is the interrupt sub routine called by the waveform picker core.
60 60 *
61 61 * This ISR launch different actions depending mainly on two pieces of information:
62 62 * 1. the values read in the registers of the waveform picker.
63 63 * 2. the current LFR mode.
64 64 *
65 65 */
66 66
67 67 rtems_status_code status;
68 68 static unsigned char nb_swf = 0;
69 69
70 70 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
71 71 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
72 72 { // in modes other than STANDBY and BURST, send the CWF_F3 data
73 73 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
74 74 // (1) change the receiving buffer for the waveform picker
75 75 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
76 76 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_b);
77 77 }
78 78 else {
79 79 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a);
80 80 }
81 81 // (2) send an event for the waveforms transmission
82 82 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
83 83 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
84 84 }
85 85 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
86 86 }
87 87 }
88 88
89 89 switch(lfrCurrentMode)
90 90 {
91 91 //********
92 92 // STANDBY
93 93 case(LFR_MODE_STANDBY):
94 94 break;
95 95
96 96 //******
97 97 // NORMAL
98 98 case(LFR_MODE_NORMAL):
99 99 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
100 100 {
101 101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
102 102 }
103 103 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
104 104 {
105 105 // change F0 ring node
106 106 ring_node_to_send_swf_f0 = current_ring_node_f0;
107 107 current_ring_node_f0 = current_ring_node_f0->next;
108 108 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
109 109 // change F1 ring node
110 110 ring_node_to_send_swf_f1 = current_ring_node_f1;
111 111 current_ring_node_f1 = current_ring_node_f1->next;
112 112 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
113 113 // change F2 ring node
114 114 ring_node_to_send_swf_f2 = current_ring_node_f2;
115 115 current_ring_node_f2 = current_ring_node_f2->next;
116 116 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
117 117 //
118 118 // if (nb_swf < 2)
119 119 if (true)
120 120 {
121 121 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
122 122 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
123 123 }
124 124 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
125 125 nb_swf = nb_swf + 1;
126 126 }
127 127 else
128 128 {
129 129 reset_wfp_burst_enable();
130 130 nb_swf = 0;
131 131 }
132 132
133 133 }
134 134
135 135 break;
136 136
137 137 //******
138 138 // BURST
139 139 case(LFR_MODE_BURST):
140 140 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
141 141 // (1) change the receiving buffer for the waveform picker
142 142 ring_node_to_send_cwf_f2 = current_ring_node_f2;
143 143 current_ring_node_f2 = current_ring_node_f2->next;
144 144 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
145 145 // (2) send an event for the waveforms transmission
146 146 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
147 147 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
148 148 }
149 149 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
150 150 }
151 151 break;
152 152
153 153 //*****
154 154 // SBM1
155 155 case(LFR_MODE_SBM1):
156 156 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
157 // (0) launch snapshot extraction if needed
158 if (extractSWF == true)
159 {
160 ring_node_to_send_swf_f1 = current_ring_node_f1;
161 // extract the snapshot
162 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
163 extractSWF = false;
164 swf_f1_ready = true;
165 }
166 157 // (1) change the receiving buffer for the waveform picker
167 158 ring_node_to_send_cwf_f1 = current_ring_node_f1;
168 159 current_ring_node_f1 = current_ring_node_f1->next;
169 160 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
170 // (2) send an event for the the CWF1 task for transmission
161 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
171 162 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
172 163 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
173 if (swf_f0_ready == true)
174 {
175 extractSWF = true;
176 swf_f0_ready = false;
177 }
178 if ((swf_f1_ready == true) && (swf_f2_ready == true))
179 {
180 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
181 swf_f1_ready = false;
182 swf_f2_ready = false;
183 }
184 164 }
185 165 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
186 166 swf_f0_ready = true;
187 167 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
188 168 }
189 169 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
190 170 swf_f2_ready = true;
191 171 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
192 172 }
193 173 break;
194 174
195 175 //*****
196 176 // SBM2
197 177 case(LFR_MODE_SBM2):
198 178 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
199 // (0) launch snapshot extraction if needed
200 if (extractSWF == true)
201 {
202 ring_node_to_send_swf_f2 = current_ring_node_f2;
203 // extract the snapshot
204 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM2 );
205 // send the snapshot when build, SWBD priority < WFRM priority
206 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
207 extractSWF = false;
208 }
209 179 // (1) change the receiving buffer for the waveform picker
210 180 ring_node_to_send_cwf_f2 = current_ring_node_f2;
211 181 current_ring_node_f2 = current_ring_node_f2->next;
212 182 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
213 183 // (2) send an event for the waveforms transmission
214 184 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
215 185 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
216 // (3) check whether swf_fo and swf_f& are ready or not
217 if (swf_f0_ready && swf_f1_ready)
218 {
219 extractSWF = true;
220 swf_f0_ready = false;
221 swf_f1_ready = false;
222 }
223 186 }
224 187 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
225 188 swf_f0_ready = true;
226 189 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
227 190 }
228 191 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
229 192 swf_f1_ready = true;
230 193 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
231 194 }
232 195 break;
233 196
234 197 //********
235 198 // DEFAULT
236 199 default:
237 200 break;
238 201 }
239 202 }
240 203
241 204 //************
242 205 // RTEMS TASKS
243 206
244 207 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
245 208 {
246 209 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
247 210 *
248 211 * @param unused is the starting argument of the RTEMS task
249 212 *
250 213 * The following data packets are sent by this task:
251 214 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
252 215 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
253 216 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
254 217 *
255 218 */
256 219
257 220 rtems_event_set event_out;
258 221 rtems_id queue_id;
259 222 rtems_status_code status;
260 223
261 224 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
262 225 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
263 226 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
264 227
265 228 init_waveforms();
266 229
267 230 status = get_message_queue_id_send( &queue_id );
268 231 if (status != RTEMS_SUCCESSFUL)
269 232 {
270 233 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
271 234 }
272 235
273 236 BOOT_PRINTF("in WFRM ***\n")
274 237
275 238 while(1){
276 239 // wait for an RTEMS_EVENT
277 240 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
278 241 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
279 242 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
280 243 if (event_out == RTEMS_EVENT_MODE_NORMAL)
281 244 {
282 245 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
283 246 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
284 247 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
285 248 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
286 249 }
287 250 if (event_out == RTEMS_EVENT_MODE_SBM1)
288 251 {
289 252 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
290 253 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
291 254 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F1, headerSWF_F1, queue_id);
292 255 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
293 256 }
294 257 if (event_out == RTEMS_EVENT_MODE_SBM2)
295 258 {
296 259 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
297 260 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
298 261 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
299 262 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F2, headerSWF_F2, queue_id);
300 263 }
301 264 }
302 265 }
303 266
304 267 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
305 268 {
306 269 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
307 270 *
308 271 * @param unused is the starting argument of the RTEMS task
309 272 *
310 273 * The following data packet is sent by this task:
311 274 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
312 275 *
313 276 */
314 277
315 278 rtems_event_set event_out;
316 279 rtems_id queue_id;
317 280 rtems_status_code status;
318 281
319 282 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
320 283 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
321 284
322 285 status = get_message_queue_id_send( &queue_id );
323 286 if (status != RTEMS_SUCCESSFUL)
324 287 {
325 288 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
326 289 }
327 290
328 291 BOOT_PRINTF("in CWF3 ***\n")
329 292
330 293 while(1){
331 294 // wait for an RTEMS_EVENT
332 295 rtems_event_receive( RTEMS_EVENT_0,
333 296 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
334 297 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
335 298 {
336 299 PRINTF("send CWF_LONG_F3\n")
337 300 }
338 301 else
339 302 {
340 303 PRINTF("send CWF_F3 (light)\n")
341 304 }
342 305 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
343 306 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
344 307 {
345 308 send_waveform_CWF( wf_cont_f3_b, SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
346 309 }
347 310 else
348 311 {
349 312 send_waveform_CWF3_light( wf_cont_f3_b, headerCWF_F3_light, queue_id );
350 313 }
351 314 }
352 315 else
353 316 {
354 317 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
355 318 {
356 319 send_waveform_CWF( wf_cont_f3_a, SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
357 320 }
358 321 else
359 322 {
360 323 send_waveform_CWF3_light( wf_cont_f3_a, headerCWF_F3_light, queue_id );
361 324 }
362 325
363 326 }
364 327 }
365 328 }
366 329
367 330 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
368 331 {
369 332 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
370 333 *
371 334 * @param unused is the starting argument of the RTEMS task
372 335 *
373 336 * The following data packet is sent by this function:
374 337 * - TM_LFR_SCIENCE_BURST_CWF_F2
375 338 * - TM_LFR_SCIENCE_SBM2_CWF_F2
376 339 *
377 340 */
378 341
379 342 rtems_event_set event_out;
380 343 rtems_id queue_id;
381 344 rtems_status_code status;
382 345
383 346 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
384 347 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
385 348
386 349 status = get_message_queue_id_send( &queue_id );
387 350 if (status != RTEMS_SUCCESSFUL)
388 351 {
389 352 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
390 353 }
391 354
392 355 BOOT_PRINTF("in CWF2 ***\n")
393 356
394 357 while(1){
395 358 // wait for an RTEMS_EVENT
396 359 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
397 360 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
398 361 if (event_out == RTEMS_EVENT_MODE_BURST)
399 362 {
400 363 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
401 364 }
402 365 if (event_out == RTEMS_EVENT_MODE_SBM2)
403 366 {
404 367 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
368 // launch snapshot extraction if needed
369 if (extractSWF == true)
370 {
371 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
372 // extract the snapshot
373 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
374 // send the snapshot when built
375 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
376 extractSWF = false;
377 }
378 if (swf_f0_ready && swf_f1_ready)
379 {
380 extractSWF = true;
381 swf_f0_ready = false;
382 swf_f1_ready = false;
383 }
405 384 }
406 385 }
407 386 }
408 387
409 388 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
410 389 {
411 390 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
412 391 *
413 392 * @param unused is the starting argument of the RTEMS task
414 393 *
415 394 * The following data packet is sent by this function:
416 395 * - TM_LFR_SCIENCE_SBM1_CWF_F1
417 396 *
418 397 */
419 398
420 399 rtems_event_set event_out;
421 400 rtems_id queue_id;
422 401 rtems_status_code status;
423 402
424 403 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
425 404
426 405 status = get_message_queue_id_send( &queue_id );
427 406 if (status != RTEMS_SUCCESSFUL)
428 407 {
429 408 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
430 409 }
431 410
432 411 BOOT_PRINTF("in CWF1 ***\n")
433 412
434 413 while(1){
435 414 // wait for an RTEMS_EVENT
436 415 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
437 416 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
438 417 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
418 // launch snapshot extraction if needed
419 if (extractSWF == true)
420 {
421 ring_node_to_send_swf_f1 = ring_node_to_send_cwf_f1;
422 // launch the snapshot extraction
423 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
424 extractSWF = false;
425 }
426 if (swf_f0_ready == true)
427 {
428 extractSWF = true;
429 swf_f0_ready = false; // this step shall be executed only one time
430 }
431 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
432 {
433 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
434 swf_f1_ready = false;
435 swf_f2_ready = false;
436 }
439 437 }
440 438 }
441 439
442 440 rtems_task swbd_task(rtems_task_argument argument)
443 441 {
444 442 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
445 443 *
446 444 * @param unused is the starting argument of the RTEMS task
447 445 *
448 446 */
449 447
450 448 rtems_event_set event_out;
451 449
452 450 BOOT_PRINTF("in SWBD ***\n")
453 451
454 452 while(1){
455 453 // wait for an RTEMS_EVENT
456 454 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
457 455 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
458 456 if (event_out == RTEMS_EVENT_MODE_SBM1)
459 457 {
460 458 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
461 }
462 else if (event_out == RTEMS_EVENT_MODE_SBM2)
463 {
464 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
459 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
465 460 }
466 461 else
467 462 {
468 463 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
469 464 }
470 465 }
471 466 }
472 467
473 468 //******************
474 469 // general functions
475 470 void init_waveforms( void )
476 471 {
477 472 int i = 0;
478 473
479 474 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
480 475 {
481 476 //***
482 477 // F0
483 478 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x88887777; //
484 479 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111; //
485 480 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0x44443333; //
486 481
487 482 //***
488 483 // F1
489 484 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x22221111;
490 485 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x44443333;
491 486 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
492 487
493 488 //***
494 489 // F2
495 490 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x44443333;
496 491 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111;
497 492 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
498 493
499 494 //***
500 495 // F3
501 496 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 0 ] = val1;
502 497 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 1 ] = val2;
503 498 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 2 ] = 0xaaaa0000;
504 499 }
505 500 }
506 501
507 502 void init_waveform_rings( void )
508 503 {
509 504 unsigned char i;
510 505
511 506 // F0 RING
512 507 waveform_ring_f0[0].next = (ring_node*) &waveform_ring_f0[1];
513 508 waveform_ring_f0[0].previous = (ring_node*) &waveform_ring_f0[NB_RING_NODES_F0-1];
514 509 waveform_ring_f0[0].buffer_address = (int) &wf_snap_f0[0][0];
515 510
516 511 waveform_ring_f0[NB_RING_NODES_F0-1].next = (ring_node*) &waveform_ring_f0[0];
517 512 waveform_ring_f0[NB_RING_NODES_F0-1].previous = (ring_node*) &waveform_ring_f0[NB_RING_NODES_F0-2];
518 513 waveform_ring_f0[NB_RING_NODES_F0-1].buffer_address = (int) &wf_snap_f0[NB_RING_NODES_F0-1][0];
519 514
520 515 for(i=1; i<NB_RING_NODES_F0-1; i++)
521 516 {
522 517 waveform_ring_f0[i].next = (ring_node*) &waveform_ring_f0[i+1];
523 518 waveform_ring_f0[i].previous = (ring_node*) &waveform_ring_f0[i-1];
524 519 waveform_ring_f0[i].buffer_address = (int) &wf_snap_f0[i][0];
525 520 }
526 521
527 522 // F1 RING
528 523 waveform_ring_f1[0].next = (ring_node*) &waveform_ring_f1[1];
529 524 waveform_ring_f1[0].previous = (ring_node*) &waveform_ring_f1[NB_RING_NODES_F1-1];
530 525 waveform_ring_f1[0].buffer_address = (int) &wf_snap_f1[0][0];
531 526
532 527 waveform_ring_f1[NB_RING_NODES_F1-1].next = (ring_node*) &waveform_ring_f1[0];
533 528 waveform_ring_f1[NB_RING_NODES_F1-1].previous = (ring_node*) &waveform_ring_f1[NB_RING_NODES_F1-2];
534 529 waveform_ring_f1[NB_RING_NODES_F1-1].buffer_address = (int) &wf_snap_f1[NB_RING_NODES_F1-1][0];
535 530
536 531 for(i=1; i<NB_RING_NODES_F1-1; i++)
537 532 {
538 533 waveform_ring_f1[i].next = (ring_node*) &waveform_ring_f1[i+1];
539 534 waveform_ring_f1[i].previous = (ring_node*) &waveform_ring_f1[i-1];
540 535 waveform_ring_f1[i].buffer_address = (int) &wf_snap_f1[i][0];
541 536 }
542 537
543 538 // F2 RING
544 539 waveform_ring_f2[0].next = (ring_node*) &waveform_ring_f2[1];
545 540 waveform_ring_f2[0].previous = (ring_node*) &waveform_ring_f2[NB_RING_NODES_F2-1];
546 541 waveform_ring_f2[0].buffer_address = (int) &wf_snap_f2[0][0];
547 542
548 543 waveform_ring_f2[NB_RING_NODES_F2-1].next = (ring_node*) &waveform_ring_f2[0];
549 544 waveform_ring_f2[NB_RING_NODES_F2-1].previous = (ring_node*) &waveform_ring_f2[NB_RING_NODES_F2-2];
550 545 waveform_ring_f2[NB_RING_NODES_F2-1].buffer_address = (int) &wf_snap_f2[NB_RING_NODES_F2-1][0];
551 546
552 547 for(i=1; i<NB_RING_NODES_F2-1; i++)
553 548 {
554 549 waveform_ring_f2[i].next = (ring_node*) &waveform_ring_f2[i+1];
555 550 waveform_ring_f2[i].previous = (ring_node*) &waveform_ring_f2[i-1];
556 551 waveform_ring_f2[i].buffer_address = (int) &wf_snap_f2[i][0];
557 552 }
558 553
559 554 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
560 555 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
561 556 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
562 557
563 558 }
564 559
565 560 void reset_current_ring_nodes( void )
566 561 {
567 562 current_ring_node_f0 = waveform_ring_f0;
568 563 ring_node_to_send_swf_f0 = waveform_ring_f0;
569 564
570 565 current_ring_node_f1 = waveform_ring_f1;
571 566 ring_node_to_send_cwf_f1 = waveform_ring_f1;
572 567 ring_node_to_send_swf_f1 = waveform_ring_f1;
573 568
574 569 current_ring_node_f2 = waveform_ring_f2;
575 570 ring_node_to_send_cwf_f2 = waveform_ring_f2;
576 571 ring_node_to_send_swf_f2 = waveform_ring_f2;
577 572 }
578 573
579 574 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
580 575 {
581 576 unsigned char i;
582 577
583 578 for (i=0; i<7; i++)
584 579 {
585 580 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
586 581 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
587 582 headerSWF[ i ].reserved = DEFAULT_RESERVED;
588 583 headerSWF[ i ].userApplication = CCSDS_USER_APP;
589 584 headerSWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
590 585 headerSWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
591 586 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
592 587 if (i == 6)
593 588 {
594 589 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
595 590 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
596 591 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
597 592 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
598 593 }
599 594 else
600 595 {
601 596 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
602 597 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
603 598 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
604 599 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
605 600 }
606 601 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
607 602 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
608 603 headerSWF[ i ].pktNr = i+1; // PKT_NR
609 604 // DATA FIELD HEADER
610 605 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
611 606 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
612 607 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
613 608 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
614 609 // AUXILIARY DATA HEADER
615 610 headerSWF[ i ].time[0] = 0x00;
616 611 headerSWF[ i ].time[0] = 0x00;
617 612 headerSWF[ i ].time[0] = 0x00;
618 613 headerSWF[ i ].time[0] = 0x00;
619 614 headerSWF[ i ].time[0] = 0x00;
620 615 headerSWF[ i ].time[0] = 0x00;
621 616 headerSWF[ i ].sid = sid;
622 617 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
623 618 }
624 619 return LFR_SUCCESSFUL;
625 620 }
626 621
627 622 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
628 623 {
629 624 unsigned int i;
630 625
631 626 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++)
632 627 {
633 628 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
634 629 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
635 630 headerCWF[ i ].reserved = DEFAULT_RESERVED;
636 631 headerCWF[ i ].userApplication = CCSDS_USER_APP;
637 632 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
638 633 {
639 634 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2 >> 8);
640 635 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2);
641 636 }
642 637 else
643 638 {
644 639 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
645 640 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
646 641 }
647 642 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
648 643 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
649 644 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
650 645 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
651 646 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
652 647 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
653 648 // DATA FIELD HEADER
654 649 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
655 650 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
656 651 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
657 652 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
658 653 // AUXILIARY DATA HEADER
659 654 headerCWF[ i ].sid = sid;
660 655 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
661 656 headerCWF[ i ].time[0] = 0x00;
662 657 headerCWF[ i ].time[0] = 0x00;
663 658 headerCWF[ i ].time[0] = 0x00;
664 659 headerCWF[ i ].time[0] = 0x00;
665 660 headerCWF[ i ].time[0] = 0x00;
666 661 headerCWF[ i ].time[0] = 0x00;
667 662 }
668 663 return LFR_SUCCESSFUL;
669 664 }
670 665
671 666 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
672 667 {
673 668 unsigned int i;
674 669
675 670 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++)
676 671 {
677 672 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
678 673 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
679 674 headerCWF[ i ].reserved = DEFAULT_RESERVED;
680 675 headerCWF[ i ].userApplication = CCSDS_USER_APP;
681 676
682 677 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
683 678 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
684 679
685 680 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
686 681 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
687 682 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
688 683 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
689 684 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
690 685
691 686 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
692 687 // DATA FIELD HEADER
693 688 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
694 689 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
695 690 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
696 691 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
697 692 // AUXILIARY DATA HEADER
698 693 headerCWF[ i ].sid = SID_NORM_CWF_F3;
699 694 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
700 695 headerCWF[ i ].time[0] = 0x00;
701 696 headerCWF[ i ].time[0] = 0x00;
702 697 headerCWF[ i ].time[0] = 0x00;
703 698 headerCWF[ i ].time[0] = 0x00;
704 699 headerCWF[ i ].time[0] = 0x00;
705 700 headerCWF[ i ].time[0] = 0x00;
706 701 }
707 702 return LFR_SUCCESSFUL;
708 703 }
709 704
710 705 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
711 706 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
712 707 {
713 708 /** This function sends SWF CCSDS packets (F2, F1 or F0).
714 709 *
715 710 * @param waveform points to the buffer containing the data that will be send.
716 711 * @param sid is the source identifier of the data that will be sent.
717 712 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
718 713 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
719 714 * contain information to setup the transmission of the data packets.
720 715 *
721 716 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
722 717 *
723 718 */
724 719
725 720 unsigned int i;
726 721 int ret;
727 722 unsigned int coarseTime;
728 723 unsigned int fineTime;
729 724 rtems_status_code status;
730 725 spw_ioctl_pkt_send spw_ioctl_send_SWF;
731 726
732 727 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
733 728 spw_ioctl_send_SWF.options = 0;
734 729
735 730 ret = LFR_DEFAULT;
736 731
737 732 coarseTime = waveform[0];
738 733 fineTime = waveform[1];
739 734
740 735 for (i=0; i<7; i++) // send waveform
741 736 {
742 737 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
743 738 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
744 739 // BUILD THE DATA
745 740 if (i==6) {
746 741 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
747 742 }
748 743 else {
749 744 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
750 745 }
751 746 // SET PACKET SEQUENCE COUNTER
752 747 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
753 748 // SET PACKET TIME
754 749 compute_acquisition_time( coarseTime, fineTime, sid, i, headerSWF[ i ].acquisitionTime );
755 750 //
756 751 headerSWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
757 752 headerSWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
758 753 headerSWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
759 754 headerSWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
760 755 headerSWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
761 756 headerSWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
762 757 // SEND PACKET
763 758 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
764 759 if (status != RTEMS_SUCCESSFUL) {
765 760 printf("%d-%d, ERR %d\n", sid, i, (int) status);
766 761 ret = LFR_DEFAULT;
767 762 }
768 763 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
769 764 }
770 765
771 766 return ret;
772 767 }
773 768
774 769 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
775 770 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
776 771 {
777 772 /** This function sends CWF CCSDS packets (F2, F1 or F0).
778 773 *
779 774 * @param waveform points to the buffer containing the data that will be send.
780 775 * @param sid is the source identifier of the data that will be sent.
781 776 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
782 777 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
783 778 * contain information to setup the transmission of the data packets.
784 779 *
785 780 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
786 781 *
787 782 */
788 783
789 784 unsigned int i;
790 785 int ret;
791 786 unsigned int coarseTime;
792 787 unsigned int fineTime;
793 788 rtems_status_code status;
794 789 spw_ioctl_pkt_send spw_ioctl_send_CWF;
795 790
796 791 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
797 792 spw_ioctl_send_CWF.options = 0;
798 793
799 794 ret = LFR_DEFAULT;
800 795
801 796 coarseTime = waveform[0];
802 797 fineTime = waveform[1];
803 798
804 799 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
805 800 {
806 801 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
807 802 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
808 803 // BUILD THE DATA
809 804 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
810 805 // SET PACKET SEQUENCE COUNTER
811 806 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
812 807 // SET PACKET TIME
813 808 compute_acquisition_time( coarseTime, fineTime, sid, i, headerCWF[ i ].acquisitionTime);
814 809 //
815 810 headerCWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
816 811 headerCWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
817 812 headerCWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
818 813 headerCWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
819 814 headerCWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
820 815 headerCWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
821 816 // SEND PACKET
822 817 if (sid == SID_NORM_CWF_LONG_F3)
823 818 {
824 819 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
825 820 if (status != RTEMS_SUCCESSFUL) {
826 821 printf("%d-%d, ERR %d\n", sid, i, (int) status);
827 822 ret = LFR_DEFAULT;
828 823 }
829 824 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
830 825 }
831 826 else
832 827 {
833 828 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
834 829 if (status != RTEMS_SUCCESSFUL) {
835 830 printf("%d-%d, ERR %d\n", sid, i, (int) status);
836 831 ret = LFR_DEFAULT;
837 832 }
838 833 }
839 834 }
840 835
841 836 return ret;
842 837 }
843 838
844 839 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
845 840 {
846 841 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
847 842 *
848 843 * @param waveform points to the buffer containing the data that will be send.
849 844 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
850 845 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
851 846 * contain information to setup the transmission of the data packets.
852 847 *
853 848 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
854 849 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
855 850 *
856 851 */
857 852
858 853 unsigned int i;
859 854 int ret;
860 855 unsigned int coarseTime;
861 856 unsigned int fineTime;
862 857 rtems_status_code status;
863 858 spw_ioctl_pkt_send spw_ioctl_send_CWF;
864 859 char *sample;
865 860
866 861 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
867 862 spw_ioctl_send_CWF.options = 0;
868 863
869 864 ret = LFR_DEFAULT;
870 865
871 866 //**********************
872 867 // BUILD CWF3_light DATA
873 868 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
874 869 {
875 870 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
876 871 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
877 872 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
878 873 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
879 874 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
880 875 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
881 876 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
882 877 }
883 878
884 879 coarseTime = waveform[0];
885 880 fineTime = waveform[1];
886 881
887 882 //*********************
888 883 // SEND CWF3_light DATA
889 884 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
890 885 {
891 886 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
892 887 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
893 888 // BUILD THE DATA
894 889 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
895 890 // SET PACKET SEQUENCE COUNTER
896 891 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
897 892 // SET PACKET TIME
898 893 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, headerCWF[ i ].acquisitionTime );
899 894 //
900 895 headerCWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
901 896 headerCWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
902 897 headerCWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
903 898 headerCWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
904 899 headerCWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
905 900 headerCWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
906 901 // SEND PACKET
907 902 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
908 903 if (status != RTEMS_SUCCESSFUL) {
909 904 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
910 905 ret = LFR_DEFAULT;
911 906 }
912 907 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
913 908 }
914 909
915 910 return ret;
916 911 }
917 912
918 913 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
919 914 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
920 915 {
921 916 unsigned long long int acquisitionTimeAsLong;
922 917 unsigned char localAcquisitionTime[6];
923 918 double deltaT;
924 919
925 920 deltaT = 0.;
926 921
927 922 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 8 );
928 923 localAcquisitionTime[1] = (unsigned char) ( coarseTime );
929 924 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 24 );
930 925 localAcquisitionTime[3] = (unsigned char) ( coarseTime >> 16 );
931 926 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 24 );
932 927 localAcquisitionTime[5] = (unsigned char) ( fineTime >> 16 );
933 928
934 929 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
935 930 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
936 931 + ( localAcquisitionTime[2] << 24 )
937 932 + ( localAcquisitionTime[3] << 16 )
938 933 + ( localAcquisitionTime[4] << 8 )
939 934 + ( localAcquisitionTime[5] );
940 935
941 936 switch( sid )
942 937 {
943 938 case SID_NORM_SWF_F0:
944 939 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
945 940 break;
946 941
947 942 case SID_NORM_SWF_F1:
948 943 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
949 944 break;
950 945
951 946 case SID_NORM_SWF_F2:
952 947 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
953 948 break;
954 949
955 950 case SID_SBM1_CWF_F1:
956 951 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
957 952 break;
958 953
959 954 case SID_SBM2_CWF_F2:
960 955 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
961 956 break;
962 957
963 958 case SID_BURST_CWF_F2:
964 959 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
965 960 break;
966 961
967 962 case SID_NORM_CWF_F3:
968 963 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
969 964 break;
970 965
971 966 case SID_NORM_CWF_LONG_F3:
972 967 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
973 968 break;
974 969
975 970 default:
976 971 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
977 972 deltaT = 0.;
978 973 break;
979 974 }
980 975
981 976 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
982 977 //
983 978 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
984 979 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
985 980 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
986 981 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
987 982 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
988 983 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
989 984
990 985 }
991 986
992 987 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
993 988 {
994 989 unsigned int i;
995 990 unsigned long long int centerTime_asLong;
996 991 unsigned long long int acquisitionTimeF0_asLong;
997 992 unsigned long long int acquisitionTime_asLong;
998 993 unsigned long long int bufferAcquisitionTime_asLong;
999 994 unsigned char *ptr1;
1000 995 unsigned char *ptr2;
1001 996 unsigned char nb_ring_nodes;
1002 997 unsigned long long int frequency_asLong;
1003 998 unsigned long long int nbTicksPerSample_asLong;
1004 999 unsigned long long int nbSamplesPart1_asLong;
1005 1000 unsigned long long int sampleOffset_asLong;
1006 1001
1007 1002 unsigned int deltaT_F0;
1008 1003 unsigned int deltaT_F1;
1009 1004 unsigned long long int deltaT_F2;
1010 1005
1011 1006 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
1012 1007 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
1013 1008 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
1014 1009 sampleOffset_asLong = 0x00;
1015 1010
1016 1011 // (1) get the f0 acquisition time
1017 1012 build_acquisition_time( &acquisitionTimeF0_asLong, current_ring_node_f0 );
1018 1013
1019 1014 // (2) compute the central reference time
1020 1015 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
1021 1016
1022 1017 // (3) compute the acquisition time of the current snapshot
1023 1018 switch(frequencyChannel)
1024 1019 {
1025 1020 case 1: // 1 is for F1 = 4096 Hz
1026 1021 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
1027 1022 nb_ring_nodes = NB_RING_NODES_F1;
1028 1023 frequency_asLong = 4096;
1029 1024 nbTicksPerSample_asLong = 16; // 65536 / 4096;
1030 1025 break;
1031 1026 case 2: // 2 is for F2 = 256 Hz
1032 1027 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
1033 1028 nb_ring_nodes = NB_RING_NODES_F2;
1034 1029 frequency_asLong = 256;
1035 1030 nbTicksPerSample_asLong = 256; // 65536 / 256;
1036 1031 break;
1037 1032 default:
1038 1033 acquisitionTime_asLong = centerTime_asLong;
1039 1034 frequency_asLong = 256;
1040 1035 nbTicksPerSample_asLong = 256;
1041 1036 break;
1042 1037 }
1043 1038
1044 1039 //****************************************************************************
1045 1040 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
1046 1041 for (i=0; i<nb_ring_nodes; i++)
1047 1042 {
1048 1043 PRINTF1("%d ... ", i)
1049 1044 build_acquisition_time( &bufferAcquisitionTime_asLong, ring_node_to_send );
1050 1045 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
1051 1046 {
1052 1047 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
1053 1048 break;
1054 1049 }
1055 1050 ring_node_to_send = ring_node_to_send->previous;
1056 1051 }
1057 1052
1058 1053 // (5) compute the number of samples to take in the current buffer
1059 1054 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
1060 1055 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
1061 1056 PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong)
1062 1057
1063 1058 // (6) compute the final acquisition time
1064 1059 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
1065 1060 sampleOffset_asLong * nbTicksPerSample_asLong;
1066 1061
1067 1062 // (7) copy the acquisition time at the beginning of the extrated snapshot
1068 1063 ptr1 = (unsigned char*) &acquisitionTime_asLong;
1069 1064 ptr2 = (unsigned char*) wf_snap_extracted;
1070 1065 ptr2[0] = ptr1[ 2 + 2 ];
1071 1066 ptr2[1] = ptr1[ 3 + 2 ];
1072 1067 ptr2[2] = ptr1[ 0 + 2 ];
1073 1068 ptr2[3] = ptr1[ 1 + 2 ];
1074 1069 ptr2[4] = ptr1[ 4 + 2 ];
1075 1070 ptr2[5] = ptr1[ 5 + 2 ];
1076 1071
1077 1072 // re set the synchronization bit
1078 1073
1079 1074
1080 1075 // copy the part 1 of the snapshot in the extracted buffer
1081 1076 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1082 1077 {
1083 1078 wf_snap_extracted[i + TIME_OFFSET] =
1084 1079 ((int*) ring_node_to_send->buffer_address)[i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) + TIME_OFFSET];
1085 1080 }
1086 1081 // copy the part 2 of the snapshot in the extracted buffer
1087 1082 ring_node_to_send = ring_node_to_send->next;
1088 1083 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1089 1084 {
1090 1085 wf_snap_extracted[i + TIME_OFFSET] =
1091 1086 ((int*) ring_node_to_send->buffer_address)[(i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) + TIME_OFFSET];
1092 1087 }
1093 1088 }
1094 1089
1095 1090 void build_acquisition_time( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1096 1091 {
1097 1092 unsigned char *acquisitionTimeCharPtr;
1098 1093
1099 1094 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1100 1095
1101 1096 *acquisitionTimeAslong = 0x00;
1102 1097 *acquisitionTimeAslong = ( acquisitionTimeCharPtr[0] << 24 )
1103 1098 + ( acquisitionTimeCharPtr[1] << 16 )
1104 1099 + ( (unsigned long long int) (acquisitionTimeCharPtr[2] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1105 1100 + ( (unsigned long long int) acquisitionTimeCharPtr[3] << 32 )
1106 1101 + ( acquisitionTimeCharPtr[4] << 8 )
1107 1102 + ( acquisitionTimeCharPtr[5] );
1108 1103 }
1109 1104
1110 1105 //**************
1111 1106 // wfp registers
1112 1107 void reset_wfp_burst_enable(void)
1113 1108 {
1114 1109 /** This function resets the waveform picker burst_enable register.
1115 1110 *
1116 1111 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1117 1112 *
1118 1113 */
1119 1114
1120 1115 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1121 1116 }
1122 1117
1123 1118 void reset_wfp_status( void )
1124 1119 {
1125 1120 /** This function resets the waveform picker status register.
1126 1121 *
1127 1122 * All status bits are set to 0 [new_err full_err full].
1128 1123 *
1129 1124 */
1130 1125
1131 1126 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1132 1127 }
1133 1128
1134 1129 void reset_waveform_picker_regs(void)
1135 1130 {
1136 1131 /** This function resets the waveform picker module registers.
1137 1132 *
1138 1133 * The registers affected by this function are located at the following offset addresses:
1139 1134 * - 0x00 data_shaping
1140 1135 * - 0x04 run_burst_enable
1141 1136 * - 0x08 addr_data_f0
1142 1137 * - 0x0C addr_data_f1
1143 1138 * - 0x10 addr_data_f2
1144 1139 * - 0x14 addr_data_f3
1145 1140 * - 0x18 status
1146 1141 * - 0x1C delta_snapshot
1147 1142 * - 0x20 delta_f0
1148 1143 * - 0x24 delta_f0_2
1149 1144 * - 0x28 delta_f1
1150 1145 * - 0x2c delta_f2
1151 1146 * - 0x30 nb_data_by_buffer
1152 1147 * - 0x34 nb_snapshot_param
1153 1148 * - 0x38 start_date
1154 1149 * - 0x3c nb_word_in_buffer
1155 1150 *
1156 1151 */
1157 1152
1158 1153 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1159 1154 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1160 1155 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1161 1156 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1162 1157 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1163 1158 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a); // 0x14
1164 1159 reset_wfp_status(); // 0x18
1165 1160 //
1166 1161 set_wfp_delta_snapshot(); // 0x1c
1167 1162 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1168 1163 set_wfp_delta_f1(); // 0x28
1169 1164 set_wfp_delta_f2(); // 0x2c
1170 1165 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1171 1166 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1172 1167 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1173 1168 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1174 1169 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1175 1170 // 2688 = 8 * 336
1176 1171 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1177 1172 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1178 1173 waveform_picker_regs->start_date = 0x00; // 0x38
1179 1174 waveform_picker_regs->nb_word_in_buffer = 0x1f82; // 0x3c *** 2688 * 3 + 2 = 8066
1180 1175 }
1181 1176
1182 1177 void set_wfp_data_shaping( void )
1183 1178 {
1184 1179 /** This function sets the data_shaping register of the waveform picker module.
1185 1180 *
1186 1181 * The value is read from one field of the parameter_dump_packet structure:\n
1187 1182 * bw_sp0_sp1_r0_r1
1188 1183 *
1189 1184 */
1190 1185
1191 1186 unsigned char data_shaping;
1192 1187
1193 1188 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1194 1189 // waveform picker : [R1 R0 SP1 SP0 BW]
1195 1190
1196 1191 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1197 1192
1198 1193 waveform_picker_regs->data_shaping =
1199 1194 ( (data_shaping & 0x10) >> 4 ) // BW
1200 1195 + ( (data_shaping & 0x08) >> 2 ) // SP0
1201 1196 + ( (data_shaping & 0x04) ) // SP1
1202 1197 + ( (data_shaping & 0x02) << 2 ) // R0
1203 1198 + ( (data_shaping & 0x01) << 4 ); // R1
1204 1199 }
1205 1200
1206 1201 void set_wfp_burst_enable_register( unsigned char mode )
1207 1202 {
1208 1203 /** This function sets the waveform picker burst_enable register depending on the mode.
1209 1204 *
1210 1205 * @param mode is the LFR mode to launch.
1211 1206 *
1212 1207 * The burst bits shall be before the enable bits.
1213 1208 *
1214 1209 */
1215 1210
1216 1211 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1217 1212 // the burst bits shall be set first, before the enable bits
1218 1213 switch(mode) {
1219 1214 case(LFR_MODE_NORMAL):
1220 1215 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1221 1216 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1222 1217 break;
1223 1218 case(LFR_MODE_BURST):
1224 1219 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1225 1220 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1226 1221 break;
1227 1222 case(LFR_MODE_SBM1):
1228 1223 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1229 1224 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1230 1225 break;
1231 1226 case(LFR_MODE_SBM2):
1232 1227 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1233 1228 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1234 1229 break;
1235 1230 default:
1236 1231 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1237 1232 break;
1238 1233 }
1239 1234 }
1240 1235
1241 1236 void set_wfp_delta_snapshot( void )
1242 1237 {
1243 1238 /** This function sets the delta_snapshot register of the waveform picker module.
1244 1239 *
1245 1240 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1246 1241 * - sy_lfr_n_swf_p[0]
1247 1242 * - sy_lfr_n_swf_p[1]
1248 1243 *
1249 1244 */
1250 1245
1251 1246 unsigned int delta_snapshot;
1252 1247 unsigned int delta_snapshot_in_T2;
1253 1248
1254 1249 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1255 1250 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1256 1251
1257 1252 delta_snapshot_in_T2 = delta_snapshot * 256;
1258 1253 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2; // max 4 bytes
1259 1254 }
1260 1255
1261 1256 void set_wfp_delta_f0_f0_2( void )
1262 1257 {
1263 1258 unsigned int delta_snapshot;
1264 1259 unsigned int nb_samples_per_snapshot;
1265 1260 float delta_f0_in_float;
1266 1261
1267 1262 delta_snapshot = waveform_picker_regs->delta_snapshot;
1268 1263 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1269 1264 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1270 1265
1271 1266 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1272 1267 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1273 1268 }
1274 1269
1275 1270 void set_wfp_delta_f1( void )
1276 1271 {
1277 1272 unsigned int delta_snapshot;
1278 1273 unsigned int nb_samples_per_snapshot;
1279 1274 float delta_f1_in_float;
1280 1275
1281 1276 delta_snapshot = waveform_picker_regs->delta_snapshot;
1282 1277 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1283 1278 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1284 1279
1285 1280 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1286 1281 }
1287 1282
1288 1283 void set_wfp_delta_f2()
1289 1284 {
1290 1285 unsigned int delta_snapshot;
1291 1286 unsigned int nb_samples_per_snapshot;
1292 1287
1293 1288 delta_snapshot = waveform_picker_regs->delta_snapshot;
1294 1289 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1295 1290
1296 1291 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1297 1292 }
1298 1293
1299 1294 //*****************
1300 1295 // local parameters
1301 1296 void set_local_nb_interrupt_f0_MAX( void )
1302 1297 {
1303 1298 /** This function sets the value of the nb_interrupt_f0_MAX local parameter.
1304 1299 *
1305 1300 * This parameter is used for the SM validation only.\n
1306 1301 * The software waits param_local.local_nb_interrupt_f0_MAX interruptions from the spectral matrices
1307 1302 * module before launching a basic processing.
1308 1303 *
1309 1304 */
1310 1305
1311 1306 param_local.local_nb_interrupt_f0_MAX = ( (parameter_dump_packet.sy_lfr_n_asm_p[0]) * 256
1312 1307 + parameter_dump_packet.sy_lfr_n_asm_p[1] ) * 100;
1313 1308 }
1314 1309
1315 1310 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1316 1311 {
1317 1312 unsigned short *sequence_cnt;
1318 1313 unsigned short segmentation_grouping_flag;
1319 1314 unsigned short new_packet_sequence_control;
1320 1315
1321 1316 if ( (sid ==SID_NORM_SWF_F0) || (sid ==SID_NORM_SWF_F1) || (sid ==SID_NORM_SWF_F2)
1322 1317 || (sid ==SID_NORM_CWF_F3) || (sid==SID_NORM_CWF_LONG_F3) || (sid ==SID_BURST_CWF_F2) )
1323 1318 {
1324 1319 sequence_cnt = &sequenceCounters_SCIENCE_NORMAL_BURST;
1325 1320 }
1326 1321 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2) )
1327 1322 {
1328 1323 sequence_cnt = &sequenceCounters_SCIENCE_SBM1_SBM2;
1329 1324 }
1330 1325 else
1331 1326 {
1332 1327 sequence_cnt = NULL;
1333 1328 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1334 1329 }
1335 1330
1336 1331 if (sequence_cnt != NULL)
1337 1332 {
1338 1333 segmentation_grouping_flag = (packet_sequence_control[ 0 ] & 0xc0) << 8;
1339 1334 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1340 1335
1341 1336 new_packet_sequence_control = segmentation_grouping_flag | *sequence_cnt ;
1342 1337
1343 1338 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1344 1339 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1345 1340
1346 1341 // increment the sequence counter for the next packet
1347 1342 if ( *sequence_cnt < SEQ_CNT_MAX)
1348 1343 {
1349 1344 *sequence_cnt = *sequence_cnt + 1;
1350 1345 }
1351 1346 else
1352 1347 {
1353 1348 *sequence_cnt = 0;
1354 1349 }
1355 1350 }
1356 1351 }
General Comments 0
You need to be logged in to leave comments. Login now