##// END OF EJS Templates
snapshots extraction fully functionnal in SBM1 and SBM2
paul -
r106:4b288e043b64 VHDLib206
parent child
Show More
@@ -1,253 +1,253
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Tue Mar 4 13:06:39 2014
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Tue Mar 11 15:58:37 2014
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=3 -DPRINT_MESSAGES_ON_CONSOLE
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=3 -DPRINT_MESSAGES_ON_CONSOLE -DDEBUG_MESSAGES
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../../LFR_basic-parameters
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_processing.c \
49 49 ../src/fsw_misc.c \
50 50 ../src/fsw_init.c \
51 51 ../src/fsw_globals.c \
52 52 ../src/fsw_spacewire.c \
53 53 ../src/tc_load_dump_parameters.c \
54 54 ../src/tm_lfr_tc_exe.c \
55 55 ../src/tc_acceptance.c \
56 56 ../../LFR_basic-parameters/basic_parameters.c
57 57 OBJECTS = obj/wf_handler.o \
58 58 obj/tc_handler.o \
59 59 obj/fsw_processing.o \
60 60 obj/fsw_misc.o \
61 61 obj/fsw_init.o \
62 62 obj/fsw_globals.o \
63 63 obj/fsw_spacewire.o \
64 64 obj/tc_load_dump_parameters.o \
65 65 obj/tm_lfr_tc_exe.o \
66 66 obj/tc_acceptance.o \
67 67 obj/basic_parameters.o
68 68 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
69 69 /usr/lib64/qt4/mkspecs/common/linux.conf \
70 70 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
71 71 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
72 72 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
73 73 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
74 74 /usr/lib64/qt4/mkspecs/qconfig.pri \
75 75 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
76 76 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
77 77 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
78 78 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
79 79 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
80 80 sparc.pri \
81 81 /usr/lib64/qt4/mkspecs/features/release.prf \
82 82 /usr/lib64/qt4/mkspecs/features/default_post.prf \
83 83 /usr/lib64/qt4/mkspecs/features/shared.prf \
84 84 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
85 85 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
86 86 /usr/lib64/qt4/mkspecs/features/resources.prf \
87 87 /usr/lib64/qt4/mkspecs/features/uic.prf \
88 88 /usr/lib64/qt4/mkspecs/features/yacc.prf \
89 89 /usr/lib64/qt4/mkspecs/features/lex.prf \
90 90 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
91 91 fsw-qt.pro
92 92 QMAKE_TARGET = fsw
93 93 DESTDIR = bin/
94 94 TARGET = bin/fsw
95 95
96 96 first: all
97 97 ####### Implicit rules
98 98
99 99 .SUFFIXES: .o .c .cpp .cc .cxx .C
100 100
101 101 .cpp.o:
102 102 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
103 103
104 104 .cc.o:
105 105 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
106 106
107 107 .cxx.o:
108 108 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
109 109
110 110 .C.o:
111 111 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
112 112
113 113 .c.o:
114 114 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
115 115
116 116 ####### Build rules
117 117
118 118 all: Makefile $(TARGET)
119 119
120 120 $(TARGET): $(OBJECTS)
121 121 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
122 122 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
123 123
124 124 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
125 125 /usr/lib64/qt4/mkspecs/common/linux.conf \
126 126 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
127 127 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
128 128 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
129 129 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
130 130 /usr/lib64/qt4/mkspecs/qconfig.pri \
131 131 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
132 132 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
133 133 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
134 134 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
135 135 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
136 136 sparc.pri \
137 137 /usr/lib64/qt4/mkspecs/features/release.prf \
138 138 /usr/lib64/qt4/mkspecs/features/default_post.prf \
139 139 /usr/lib64/qt4/mkspecs/features/shared.prf \
140 140 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
141 141 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
142 142 /usr/lib64/qt4/mkspecs/features/resources.prf \
143 143 /usr/lib64/qt4/mkspecs/features/uic.prf \
144 144 /usr/lib64/qt4/mkspecs/features/yacc.prf \
145 145 /usr/lib64/qt4/mkspecs/features/lex.prf \
146 146 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
147 147 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
148 148 /usr/lib64/qt4/mkspecs/common/unix.conf:
149 149 /usr/lib64/qt4/mkspecs/common/linux.conf:
150 150 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
151 151 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
152 152 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
153 153 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
154 154 /usr/lib64/qt4/mkspecs/qconfig.pri:
155 155 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
156 156 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
157 157 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
158 158 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
159 159 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
160 160 sparc.pri:
161 161 /usr/lib64/qt4/mkspecs/features/release.prf:
162 162 /usr/lib64/qt4/mkspecs/features/default_post.prf:
163 163 /usr/lib64/qt4/mkspecs/features/shared.prf:
164 164 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
165 165 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
166 166 /usr/lib64/qt4/mkspecs/features/resources.prf:
167 167 /usr/lib64/qt4/mkspecs/features/uic.prf:
168 168 /usr/lib64/qt4/mkspecs/features/yacc.prf:
169 169 /usr/lib64/qt4/mkspecs/features/lex.prf:
170 170 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
171 171 qmake: FORCE
172 172 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
173 173
174 174 dist:
175 175 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
176 176 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
177 177
178 178
179 179 clean:compiler_clean
180 180 -$(DEL_FILE) $(OBJECTS)
181 181 -$(DEL_FILE) *~ core *.core
182 182
183 183
184 184 ####### Sub-libraries
185 185
186 186 distclean: clean
187 187 -$(DEL_FILE) $(TARGET)
188 188 -$(DEL_FILE) Makefile
189 189
190 190
191 191 grmon:
192 192 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
193 193
194 194 check: first
195 195
196 196 compiler_rcc_make_all:
197 197 compiler_rcc_clean:
198 198 compiler_uic_make_all:
199 199 compiler_uic_clean:
200 200 compiler_image_collection_make_all: qmake_image_collection.cpp
201 201 compiler_image_collection_clean:
202 202 -$(DEL_FILE) qmake_image_collection.cpp
203 203 compiler_yacc_decl_make_all:
204 204 compiler_yacc_decl_clean:
205 205 compiler_yacc_impl_make_all:
206 206 compiler_yacc_impl_clean:
207 207 compiler_lex_make_all:
208 208 compiler_lex_clean:
209 209 compiler_clean:
210 210
211 211 ####### Compile
212 212
213 213 obj/wf_handler.o: ../src/wf_handler.c
214 214 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
215 215
216 216 obj/tc_handler.o: ../src/tc_handler.c
217 217 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
218 218
219 219 obj/fsw_processing.o: ../src/fsw_processing.c ../src/fsw_processing_globals.c
220 220 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/fsw_processing.c
221 221
222 222 obj/fsw_misc.o: ../src/fsw_misc.c
223 223 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
224 224
225 225 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
226 226 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
227 227
228 228 obj/fsw_globals.o: ../src/fsw_globals.c
229 229 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
230 230
231 231 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
232 232 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
233 233
234 234 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
235 235 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
236 236
237 237 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
238 238 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
239 239
240 240 obj/tc_acceptance.o: ../src/tc_acceptance.c
241 241 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
242 242
243 243 obj/basic_parameters.o: ../../LFR_basic-parameters/basic_parameters.c ../../LFR_basic-parameters/basic_parameters.h
244 244 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../../LFR_basic-parameters/basic_parameters.c
245 245
246 246 ####### Install
247 247
248 248 install: FORCE
249 249
250 250 uninstall: FORCE
251 251
252 252 FORCE:
253 253
@@ -1,77 +1,81
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report
4 CONFIG += console verbose
3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev
4 CONFIG += console verbose debug_messages
5 5 CONFIG -= qt
6 6
7 7 include(./sparc.pri)
8 8
9 9 # flight software version
10 10 SWVERSION=-1-0
11 11 DEFINES += SW_VERSION_N1=1 # major
12 12 DEFINES += SW_VERSION_N2=0 # minor
13 13 DEFINES += SW_VERSION_N3=0 # patch
14 14 DEFINES += SW_VERSION_N4=3 # internal
15 15
16 contains( CONFIG, vhdl_dev ) {
17 DEFINES += VHDL_DEV
18 }
19
16 20 contains( CONFIG, verbose ) {
17 21 DEFINES += PRINT_MESSAGES_ON_CONSOLE
18 22 }
19 23
20 24 contains( CONFIG, debug_messages ) {
21 25 DEFINES += DEBUG_MESSAGES
22 26 }
23 27
24 28 contains( CONFIG, cpu_usage_report ) {
25 29 DEFINES += PRINT_TASK_STATISTICS
26 30 }
27 31
28 32 contains( CONFIG, stack_report ) {
29 33 DEFINES += PRINT_STACK_REPORT
30 34 }
31 35
32 36 contains( CONFIG, boot_messages ) {
33 37 DEFINES += BOOT_MESSAGES
34 38 }
35 39
36 40 #doxygen.target = doxygen
37 41 #doxygen.commands = doxygen ../doc/Doxyfile
38 42 #QMAKE_EXTRA_TARGETS += doxygen
39 43
40 44 TARGET = fsw
41 45
42 46 INCLUDEPATH += \
43 47 ../src \
44 48 ../header \
45 49 ../../LFR_basic-parameters
46 50
47 51 SOURCES += \
48 52 ../src/wf_handler.c \
49 53 ../src/tc_handler.c \
50 54 ../src/fsw_processing.c \
51 55 ../src/fsw_misc.c \
52 56 ../src/fsw_init.c \
53 57 ../src/fsw_globals.c \
54 58 ../src/fsw_spacewire.c \
55 59 ../src/tc_load_dump_parameters.c \
56 60 ../src/tm_lfr_tc_exe.c \
57 61 ../src/tc_acceptance.c \
58 62 ../../LFR_basic-parameters/basic_parameters.c
59 63
60 64
61 65 HEADERS += \
62 66 ../header/wf_handler.h \
63 67 ../header/tc_handler.h \
64 68 ../header/grlib_regs.h \
65 69 ../header/fsw_processing.h \
66 70 ../header/fsw_params.h \
67 71 ../header/fsw_misc.h \
68 72 ../header/fsw_init.h \
69 73 ../header/ccsds_types.h \
70 74 ../header/fsw_params_processing.h \
71 75 ../header/fsw_spacewire.h \
72 76 ../header/tc_load_dump_parameters.h \
73 77 ../header/tm_lfr_tc_exe.h \
74 78 ../header/tc_acceptance.h \
75 79 ../header/fsw_params_nb_bytes.h \
76 80 ../../LFR_basic-parameters/basic_parameters.h
77 81
@@ -1,339 +1,339
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.0, 2014-03-06T15:56:18. -->
3 <!-- Written by QtCreator 3.0.1, 2014-03-13T15:53:26. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">1</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop</value>
55 55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop</value>
56 56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{e04e3924-0bd8-4708-be18-f1474e45608e}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 72 </valuemap>
73 73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 79 <value type="QString">-w</value>
80 80 <value type="QString">-r</value>
81 81 </valuelist>
82 82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 85 </valuemap>
86 86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 90 </valuemap>
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 98 <value type="QString">-w</value>
99 99 <value type="QString">-r</value>
100 100 </valuelist>
101 101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 104 </valuemap>
105 105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 109 </valuemap>
110 110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 118 </valuemap>
119 119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 126 </valuemap>
127 127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 131 </valuemap>
132 132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 153 <value type="int">0</value>
154 154 <value type="int">1</value>
155 155 <value type="int">2</value>
156 156 <value type="int">3</value>
157 157 <value type="int">4</value>
158 158 <value type="int">5</value>
159 159 <value type="int">6</value>
160 160 <value type="int">7</value>
161 161 <value type="int">8</value>
162 162 <value type="int">9</value>
163 163 <value type="int">10</value>
164 164 <value type="int">11</value>
165 165 <value type="int">12</value>
166 166 <value type="int">13</value>
167 167 <value type="int">14</value>
168 168 </valuelist>
169 169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 180 <value type="bool" key="RunConfiguration.UseCppDebugger">false</value>
181 181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">true</value>
182 182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 185 </valuemap>
186 186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 187 </valuemap>
188 188 </data>
189 189 <data>
190 190 <variable>ProjectExplorer.Project.Target.1</variable>
191 191 <valuemap type="QVariantMap">
192 192 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
193 193 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
194 194 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
195 195 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
196 196 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
197 197 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
198 198 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
199 199 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
200 200 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
201 201 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
202 202 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
203 203 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
204 204 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
205 205 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
206 206 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
207 207 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
208 208 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
209 209 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
210 210 </valuemap>
211 211 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
212 212 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
213 213 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
214 214 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
215 215 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
216 216 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
217 217 <value type="QString">-w</value>
218 218 <value type="QString">-r</value>
219 219 </valuelist>
220 220 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
221 221 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
222 222 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
223 223 </valuemap>
224 224 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
225 225 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
226 226 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
227 227 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
228 228 </valuemap>
229 229 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
230 230 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
231 231 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
232 232 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
233 233 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
234 234 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
235 235 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
236 236 <value type="QString">-w</value>
237 237 <value type="QString">-r</value>
238 238 </valuelist>
239 239 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
240 240 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
241 241 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
242 242 </valuemap>
243 243 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
244 244 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
245 245 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
246 246 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
247 247 </valuemap>
248 248 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
249 249 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
250 250 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
251 251 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
252 252 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
253 253 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
254 254 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
255 255 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
256 256 </valuemap>
257 257 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
258 258 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
259 259 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
260 260 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
261 261 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
262 262 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
263 263 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
264 264 </valuemap>
265 265 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
266 266 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
267 267 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
268 268 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
269 269 </valuemap>
270 270 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
271 271 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
272 272 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
273 273 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
274 274 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
275 275 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
276 276 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
277 277 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
278 278 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
279 279 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
280 280 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
281 281 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
282 282 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
283 283 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
284 284 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
285 285 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
286 286 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
287 287 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
288 288 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
289 289 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
290 290 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
291 291 <value type="int">0</value>
292 292 <value type="int">1</value>
293 293 <value type="int">2</value>
294 294 <value type="int">3</value>
295 295 <value type="int">4</value>
296 296 <value type="int">5</value>
297 297 <value type="int">6</value>
298 298 <value type="int">7</value>
299 299 <value type="int">8</value>
300 300 <value type="int">9</value>
301 301 <value type="int">10</value>
302 302 <value type="int">11</value>
303 303 <value type="int">12</value>
304 304 <value type="int">13</value>
305 305 <value type="int">14</value>
306 306 </valuelist>
307 307 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
308 308 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
309 309 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
310 310 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
311 311 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
312 312 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
313 313 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
314 314 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
315 315 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
316 316 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
317 317 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
318 318 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
319 319 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
320 320 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
321 321 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
322 322 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
323 323 </valuemap>
324 324 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
325 325 </valuemap>
326 326 </data>
327 327 <data>
328 328 <variable>ProjectExplorer.Project.TargetCount</variable>
329 329 <value type="int">2</value>
330 330 </data>
331 331 <data>
332 332 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
333 333 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
334 334 </data>
335 335 <data>
336 336 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
337 337 <value type="int">15</value>
338 338 </data>
339 339 </qtcreator>
@@ -1,226 +1,229
1 1 #ifndef FSW_PARAMS_H_INCLUDED
2 2 #define FSW_PARAMS_H_INCLUDED
3 3
4 4 #include "grlib_regs.h"
5 5 #include "fsw_params_processing.h"
6 6 #include "fsw_params_nb_bytes.h"
7 7 #include "tm_byte_positions.h"
8 8 #include "ccsds_types.h"
9 9
10 10 #define GRSPW_DEVICE_NAME "/dev/grspw0"
11 11 #define UART_DEVICE_NAME "/dev/console"
12 12
13 13 typedef struct ring_node
14 14 {
15 15 struct ring_node *previous;
16 16 int buffer_address;
17 17 struct ring_node *next;
18 18 unsigned int status;
19 19 } ring_node;
20 20
21 21 //************************
22 22 // flight software version
23 23 // this parameters is handled by the Qt project options
24 24
25 25 #define NB_PACKETS_PER_GROUP_OF_CWF 8 // 8 packets containing 336 blk
26 26 #define NB_PACKETS_PER_GROUP_OF_CWF_LIGHT 4 // 4 packets containing 672 blk
27 27 #define NB_SAMPLES_PER_SNAPSHOT 2688 // 336 * 8 = 672 * 4 = 2688
28 28 #define TIME_OFFSET 2
29 29 #define TIME_OFFSET_IN_BYTES 8
30 30 #define WAVEFORM_EXTENDED_HEADER_OFFSET 22
31 31 #define NB_BYTES_SWF_BLK (2 * 6)
32 32 #define NB_WORDS_SWF_BLK 3
33 33 #define NB_BYTES_CWF3_LIGHT_BLK 6
34 34 #define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
35 35 #define NB_RING_NODES_F0 3 // AT LEAST 3
36 36 #define NB_RING_NODES_F1 5 // AT LEAST 3
37 37 #define NB_RING_NODES_F2 5 // AT LEAST 3
38 #define NB_RING_NODES_ASM_F0 12 // AT LEAST 3
39 #define NB_RING_NODES_ASM_F1 2 // AT LEAST 3
40 #define NB_RING_NODES_ASM_F2 2 // AT LEAST 3
41 38
42 39 //**********
43 40 // LFR MODES
44 41 #define LFR_MODE_STANDBY 0
45 42 #define LFR_MODE_NORMAL 1
46 43 #define LFR_MODE_BURST 2
47 44 #define LFR_MODE_SBM1 3
48 45 #define LFR_MODE_SBM2 4
49 46
50 47 #define TDS_MODE_LFM 5
51 48 #define TDS_MODE_STANDBY 0
52 49 #define TDS_MODE_NORMAL 1
53 50 #define TDS_MODE_BURST 2
54 51 #define TDS_MODE_SBM1 3
55 52 #define TDS_MODE_SBM2 4
56 53
57 54 #define THR_MODE_STANDBY 0
58 55 #define THR_MODE_NORMAL 1
59 56 #define THR_MODE_BURST 2
60 57
61 58 #define RTEMS_EVENT_MODE_STANDBY RTEMS_EVENT_0
62 59 #define RTEMS_EVENT_MODE_NORMAL RTEMS_EVENT_1
63 60 #define RTEMS_EVENT_MODE_BURST RTEMS_EVENT_2
64 61 #define RTEMS_EVENT_MODE_SBM1 RTEMS_EVENT_3
65 62 #define RTEMS_EVENT_MODE_SBM2 RTEMS_EVENT_4
66 63 #define RTEMS_EVENT_MODE_SBM2_WFRM RTEMS_EVENT_5
67 64 #define RTEMS_EVENT_MODE_NORMAL_SWF_F0 RTEMS_EVENT_6
68 65 #define RTEMS_EVENT_MODE_NORMAL_SWF_F1 RTEMS_EVENT_7
69 66 #define RTEMS_EVENT_MODE_NORMAL_SWF_F2 RTEMS_EVENT_8
70 67
71 68 //****************************
72 69 // LFR DEFAULT MODE PARAMETERS
73 70 // COMMON
74 71 #define DEFAULT_SY_LFR_COMMON0 0x00
75 72 #define DEFAULT_SY_LFR_COMMON1 0x10 // default value 0 0 0 1 0 0 0 0
76 73 // NORM
77 74 #define SY_LFR_N_SWF_L 2048 // nb sample
78 75 #define SY_LFR_N_SWF_P 300 // sec
79 76 #define SY_LFR_N_ASM_P 3600 // sec
80 77 #define SY_LFR_N_BP_P0 4 // sec
81 78 #define SY_LFR_N_BP_P1 20 // sec
82 79 #define SY_LFR_N_CWF_LONG_F3 0 // 0 => production of light continuous waveforms at f3
83 80 #define MIN_DELTA_SNAPSHOT 16 // sec
84 81 // BURST
85 82 #define DEFAULT_SY_LFR_B_BP_P0 1 // sec
86 83 #define DEFAULT_SY_LFR_B_BP_P1 5 // sec
87 84 // SBM1
88 85 #define DEFAULT_SY_LFR_S1_BP_P0 1 // sec
89 86 #define DEFAULT_SY_LFR_S1_BP_P1 1 // sec
90 87 // SBM2
91 88 #define DEFAULT_SY_LFR_S2_BP_P0 1 // sec
92 89 #define DEFAULT_SY_LFR_S2_BP_P1 5 // sec
93 90 // ADDITIONAL PARAMETERS
94 91 #define TIME_BETWEEN_TWO_SWF_PACKETS 30 // nb x 10 ms => 300 ms
95 92 #define TIME_BETWEEN_TWO_CWF3_PACKETS 1000 // nb x 10 ms => 10 s
96 93 // STATUS WORD
97 94 #define DEFAULT_STATUS_WORD_BYTE0 0x0d // [0000] [1] [101] mode 4 bits / SPW enabled 1 bit / state is run 3 bits
98 95 #define DEFAULT_STATUS_WORD_BYTE1 0x00
99 96 //
100 97 #define SY_LFR_DPU_CONNECT_TIMEOUT 100 // 100 * 10 ms = 1 s
101 98 #define SY_LFR_DPU_CONNECT_ATTEMPT 3
102 99 //****************************
103 100
104 101 //*****************************
105 102 // APB REGISTERS BASE ADDRESSES
106 103 #define REGS_ADDR_APBUART 0x80000100
107 104 #define REGS_ADDR_GPTIMER 0x80000300
108 105 #define REGS_ADDR_GRSPW 0x80000500
109 106 #define REGS_ADDR_TIME_MANAGEMENT 0x80000600
107
108 #ifdef VHDL_DEV
109 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
110 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f40
111 #else
110 112 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
111 113 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f20
114 #endif
112 115
113 116 #define APBUART_CTRL_REG_MASK_DB 0xfffff7ff
114 117 #define APBUART_CTRL_REG_MASK_TE 0x00000002
115 118 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400 (0x50)
116 119
117 120 //**********
118 121 // IRQ LINES
119 122 #define IRQ_SM_SIMULATOR 9
120 123 #define IRQ_SPARC_SM_SIMULATOR 0x19 // see sparcv8.pdf p.76 for interrupt levels
121 124 #define IRQ_WAVEFORM_PICKER 14
122 125 #define IRQ_SPARC_WAVEFORM_PICKER 0x1e // see sparcv8.pdf p.76 for interrupt levels
123 126 #define IRQ_SPECTRAL_MATRIX 6
124 127 #define IRQ_SPARC_SPECTRAL_MATRIX 0x16 // see sparcv8.pdf p.76 for interrupt levels
125 128
126 129 //*****
127 130 // TIME
128 131 #define CLKDIV_SM_SIMULATOR (10000 - 1) // 10 ms
129 132 #define TIMER_SM_SIMULATOR 1
130 133 #define HK_PERIOD 100 // 100 * 10ms => 1s
131 134 #define SY_LFR_TIME_SYN_TIMEOUT_in_ms 2000
132 135 #define SY_LFR_TIME_SYN_TIMEOUT_in_ticks 200 // 200 * 10 ms = 2 s
133 136
134 137 //**********
135 138 // LPP CODES
136 139 #define LFR_SUCCESSFUL 0
137 140 #define LFR_DEFAULT 1
138 141
139 142 //******
140 143 // RTEMS
141 144 #define TASKID_RECV 1
142 145 #define TASKID_ACTN 2
143 146 #define TASKID_SPIQ 3
144 147 #define TASKID_SMIQ 4
145 148 #define TASKID_STAT 5
146 149 #define TASKID_AVF0 6
147 150 #define TASKID_SWBD 7
148 151 #define TASKID_WFRM 8
149 152 #define TASKID_DUMB 9
150 153 #define TASKID_HOUS 10
151 154 #define TASKID_MATR 11
152 155 #define TASKID_CWF3 12
153 156 #define TASKID_CWF2 13
154 157 #define TASKID_CWF1 14
155 158 #define TASKID_SEND 15
156 159 #define TASKID_WTDG 16
157 160
158 161 #define TASK_PRIORITY_SPIQ 5
159 162 #define TASK_PRIORITY_SMIQ 10
160 163 #define TASK_PRIORITY_WTDG 20
161 164 #define TASK_PRIORITY_HOUS 30
162 165 #define TASK_PRIORITY_CWF1 35 // CWF1 and CWF2 are never running together
163 166 #define TASK_PRIORITY_CWF2 35 //
167 #define TASK_PRIORITY_SWBD 37 // SWBD has a lower priority than WFRM, this is to extract the snapshot before sending it
164 168 #define TASK_PRIORITY_WFRM 40
165 169 #define TASK_PRIORITY_CWF3 40 // there is a printf in this function, be careful with its priority wrt CWF1
166 #define TASK_PRIORITY_SWBD 40
167 170 #define TASK_PRIORITY_SEND 45
168 171 #define TASK_PRIORITY_RECV 50
169 172 #define TASK_PRIORITY_ACTN 50
170 173 #define TASK_PRIORITY_AVF0 60
171 174 #define TASK_PRIORITY_BPF0 60
172 175 #define TASK_PRIORITY_MATR 100
173 176 #define TASK_PRIORITY_STAT 200
174 177 #define TASK_PRIORITY_DUMB 200
175 178
176 179 #define ACTION_MSG_QUEUE_COUNT 10
177 180 #define ACTION_MSG_PKTS_COUNT 50
178 181 #define ACTION_MSG_PKTS_MAX_SIZE (PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES)
179 182 #define ACTION_MSG_SPW_IOCTL_SEND_SIZE 24 // hlen *hdr dlen *data sent options
180 183
181 184 #define QUEUE_RECV 0
182 185 #define QUEUE_SEND 1
183 186
184 187 //*******
185 188 // MACROS
186 189 #ifdef PRINT_MESSAGES_ON_CONSOLE
187 190 #define PRINTF(x) printf(x);
188 191 #define PRINTF1(x,y) printf(x,y);
189 192 #define PRINTF2(x,y,z) printf(x,y,z);
190 193 #else
191 194 #define PRINTF(x) ;
192 195 #define PRINTF1(x,y) ;
193 196 #define PRINTF2(x,y,z) ;
194 197 #endif
195 198
196 199 #ifdef BOOT_MESSAGES
197 200 #define BOOT_PRINTF(x) printf(x);
198 201 #define BOOT_PRINTF1(x,y) printf(x,y);
199 202 #define BOOT_PRINTF2(x,y,z) printf(x,y,z);
200 203 #else
201 204 #define BOOT_PRINTF(x) ;
202 205 #define BOOT_PRINTF1(x,y) ;
203 206 #define BOOT_PRINTF2(x,y,z) ;
204 207 #endif
205 208
206 209 #ifdef DEBUG_MESSAGES
207 210 #define DEBUG_PRINTF(x) printf(x);
208 211 #define DEBUG_PRINTF1(x,y) printf(x,y);
209 212 #define DEBUG_PRINTF2(x,y,z) printf(x,y,z);
210 213 #else
211 214 #define DEBUG_PRINTF(x) ;
212 215 #define DEBUG_PRINTF1(x,y) ;
213 216 #define DEBUG_PRINTF2(x,y,z) ;
214 217 #endif
215 218
216 219 #define CPU_USAGE_REPORT_PERIOD 6 // * 10 s = period
217 220
218 221 struct param_local_str{
219 222 unsigned int local_sbm1_nb_cwf_sent;
220 223 unsigned int local_sbm1_nb_cwf_max;
221 224 unsigned int local_sbm2_nb_cwf_sent;
222 225 unsigned int local_sbm2_nb_cwf_max;
223 226 unsigned int local_nb_interrupt_f0_MAX;
224 227 };
225 228
226 229 #endif // FSW_PARAMS_H_INCLUDED
@@ -1,51 +1,54
1 1 #ifndef FSW_PARAMS_PROCESSING_H
2 2 #define FSW_PARAMS_PROCESSING_H
3 3
4 #define NB_BINS_PER_SM 128 //
5 #define NB_VALUES_PER_SM 25 //
4 #define NB_BINS_PER_SM 128
5 #define NB_VALUES_PER_SM 25
6 6 #define TOTAL_SIZE_SM 3200 // 25 * 128
7 #define SM_HEADER 0 //
7 //
8 #define NB_RING_NODES_ASM_F0 12 // AT LEAST 3
9 #define NB_RING_NODES_ASM_F1 2 // AT LEAST 3
10 #define NB_RING_NODES_ASM_F2 2 // AT LEAST 3
8 11 //
9 12 #define NB_BINS_PER_ASM_F0 88
10 13 #define NB_BINS_PER_PKT_ASM_F0 44
11 14 #define TOTAL_SIZE_ASM_F0_IN_BYTES 4400 // 25 * 88 * 2
12 15 #define ASM_F0_INDICE_START 17 // 88 bins
13 16 #define ASM_F0_INDICE_STOP 104 // 2 packets of 44 bins
14 17 //
15 18 #define NB_BINS_PER_ASM_F1 104
16 19 #define NB_BINS_PER_PKT_ASM_F1 52
17 20 #define TOTAL_SIZE_ASM_F1 2600 // 25 * 104
18 21 #define ASM_F1_INDICE_START 6 // 104 bins
19 22 #define ASM_F1_INDICE_STOP 109 // 2 packets of 52 bins
20 23 //
21 24 #define NB_BINS_PER_ASM_F2 96
22 25 #define NB_BINS_PER_PKT_ASM_F2 48
23 26 #define TOTAL_SIZE_ASM_F2 2400 // 25 * 96
24 27 #define ASM_F2_INDICE_START 7 // 96 bins
25 28 #define ASM_F2_INDICE_STOP 102 // 2 packets of 48 bins
26 29 //
27 30 #define NB_BINS_COMPRESSED_SM_F0 11
28 31 #define NB_BINS_COMPRESSED_SM_F1 13
29 32 #define NB_BINS_COMPRESSED_SM_F2 12
30 33 //
31 34 #define NB_BINS_TO_AVERAGE_ASM_F0 8
32 35 #define NB_BINS_TO_AVERAGE_ASM_F1 8
33 36 #define NB_BINS_TO_AVERAGE_ASM_F2 8
34 37 //
35 38 #define TOTAL_SIZE_COMPRESSED_ASM_F0 275 // 11 * 25
36 39 #define TOTAL_SIZE_COMPRESSED_ASM_F1 325 // 13 * 25
37 40 #define TOTAL_SIZE_COMPRESSED_ASM_F2 300 // 12 * 25
38 41 #define NB_AVERAGE_NORMAL_f0 96*4
39 42 #define NB_SM_TO_RECEIVE_BEFORE_AVF0 8
40 43
41 44 typedef struct {
42 45 volatile unsigned char PE[2];
43 46 volatile unsigned char PB[2];
44 47 volatile unsigned char V0;
45 48 volatile unsigned char V1;
46 49 volatile unsigned char V2_ELLIP_DOP;
47 50 volatile unsigned char SZ;
48 51 volatile unsigned char VPHI;
49 52 } BP1_t;
50 53
51 54 #endif // FSW_PARAMS_PROCESSING_H
@@ -1,55 +1,55
1 1 #ifndef FSW_PROCESSING_H_INCLUDED
2 2 #define FSW_PROCESSING_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <math.h>
7 7 #include <stdlib.h> // abs() is in the stdlib
8 8 #include <stdio.h> // printf()
9 9 #include <math.h>
10 10
11 11 #include "fsw_params.h"
12 12 #include "fsw_spacewire.h"
13 13 #include "basic_parameters.h"
14 14
15 extern volatile int sm_f0[ ][ TIME_OFFSET + TOTAL_SIZE_SM ];
16 extern volatile int sm_f1[ ][ TIME_OFFSET + TOTAL_SIZE_SM ];
17 extern volatile int sm_f2[ ][ TIME_OFFSET + TOTAL_SIZE_SM ];
15 extern volatile int sm_f0[ ];
16 extern volatile int sm_f1[ ];
17 extern volatile int sm_f2[ ];
18 18
19 19 // parameters
20 20 extern struct param_local_str param_local;
21 21
22 22 // registers
23 23 extern time_management_regs_t *time_management_regs;
24 24 extern spectral_matrix_regs_t *spectral_matrix_regs;
25 25
26 26 extern rtems_name misc_name[5];
27 27 extern rtems_id Task_id[20]; /* array of task ids */
28 28
29 29 void init_sm_rings( void );
30 30 void reset_current_sm_ring_nodes( void );
31 31
32 32 // ISR
33 33 void reset_nb_sm_f0( void );
34 34 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
35 35 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
36 36
37 37 // RTEMS TASKS
38 38 rtems_task avf0_task(rtems_task_argument argument);
39 39 rtems_task smiq_task(rtems_task_argument argument); // added to test the spectral matrix simulator
40 40 rtems_task matr_task(rtems_task_argument argument);
41 41
42 42 void matrix_reset(volatile float *averaged_spec_mat);
43 43 void BP1_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * LFR_BP1);
44 44 void BP2_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat);
45 45 //
46 46 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header);
47 47 void ASM_reorganize( float *averaged_spec_mat, float *averaged_spec_mat_reorganized );
48 48 void ASM_compress( float *averaged_spec_mat, unsigned char fChannel, float *compressed_spec_mat );
49 49 void ASM_convert(volatile float *input_matrix, char *output_matrix);
50 50 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
51 51 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id);
52 52 void fill_averaged_spectral_matrix( void );
53 53 void reset_spectral_matrix_regs();
54 54
55 55 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,86 +1,95
1 1 #ifndef GRLIB_REGS_H_INCLUDED
2 2 #define GRLIB_REGS_H_INCLUDED
3 3
4 4 #define NB_GPTIMER 3
5 5
6 6 struct apbuart_regs_str{
7 7 volatile unsigned int data;
8 8 volatile unsigned int status;
9 9 volatile unsigned int ctrl;
10 10 volatile unsigned int scaler;
11 11 volatile unsigned int fifoDebug;
12 12 };
13 13
14 14 struct ahbuart_regs_str{
15 15 volatile unsigned int unused;
16 16 volatile unsigned int status;
17 17 volatile unsigned int ctrl;
18 18 volatile unsigned int scaler;
19 19 };
20 20
21 21 typedef struct {
22 22 volatile unsigned int counter;
23 23 volatile unsigned int reload;
24 24 volatile unsigned int ctrl;
25 25 volatile unsigned int unused;
26 26 } timer_regs_t;
27 27
28 28 typedef struct {
29 29 volatile unsigned int scaler_value;
30 30 volatile unsigned int scaler_reload;
31 31 volatile unsigned int conf;
32 32 volatile unsigned int unused0;
33 33 timer_regs_t timer[NB_GPTIMER];
34 34 } gptimer_regs_t;
35 35
36 36 typedef struct {
37 37 volatile int ctrl; // bit 0 forces the load of the coarse_time_load value and resets the fine_time
38 38 volatile int coarse_time_load;
39 39 volatile int coarse_time;
40 40 volatile int fine_time;
41 41 } time_management_regs_t;
42 42
43 43 typedef struct {
44 44 volatile int data_shaping; // 0x00 00 *** R1 R0 SP1 SP0 BW
45 45 volatile int burst_enable; // 0x04 01 *** burst f2, f1, f0 enable f3, f2, f1, f0
46 46 volatile int addr_data_f0; // 0x08 10 ***
47 47 volatile int addr_data_f1; // 0x0c 11 ***
48 48 volatile int addr_data_f2; // 0x10 100 ***
49 49 volatile int addr_data_f3; // 0x14 101 ***
50 50 volatile int status; // 0x18 110 ***
51 51 volatile int delta_snapshot; // 0x1c 111 ***
52 52 volatile int delta_f2_f1; // 0x20 0000 ***
53 53 volatile int delta_f2_f0; // 0x24 0001 ***
54 54 volatile int nb_burst_available;// 0x28 0010 ***
55 55 volatile int nb_snapshot_param; // 0x2c 0011 ***
56 56 } waveform_picker_regs_t;
57 57
58 58 typedef struct{
59 59 int data_shaping; // 0x00 00 *** R1 R0 SP1 SP0 BW
60 60 int run_burst_enable; // 0x04 01 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
61 61 int addr_data_f0; // 0x08
62 62 int addr_data_f1; // 0x0c
63 63 int addr_data_f2; // 0x10
64 64 int addr_data_f3; // 0x14
65 65 volatile int status; // 0x18
66 66 int delta_snapshot; // 0x1c
67 67 int delta_f0; // 0x20
68 68 int delta_f0_2; // 0x24
69 69 int delta_f1; // 0x28
70 70 int delta_f2; // 0x2c
71 71 int nb_data_by_buffer; // 0x30
72 72 int snapshot_param; // 0x34
73 73 int start_date; // 0x38
74 74 int nb_word_in_buffer; // 0x3c
75 75 } waveform_picker_regs_new_t;
76 76
77 77 typedef struct {
78 78 volatile int config;
79 79 volatile int status;
80 80 volatile int matrixF0_Address0;
81 81 volatile int matrixFO_Address1;
82 82 volatile int matrixF1_Address;
83 83 volatile int matrixF2_Address;
84 volatile int coarse_time_F0_0;
85 volatile int coarse_time_F0_1;
86 volatile int coarse_time_F1;
87 volatile int coarse_time_F2;
88 volatile int fine_time_FO_0;
89 volatile int fine_time_F0_1;
90 volatile int fine_time_F1;
91 volatile int fine_time_F2;
92 volatile int debug;
84 93 } spectral_matrix_regs_t;
85 94
86 95 #endif // GRLIB_REGS_H_INCLUDED
@@ -1,58 +1,58
1 1 #ifndef TC_HANDLER_H_INCLUDED
2 2 #define TC_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "tc_load_dump_parameters.h"
8 8 #include "tc_acceptance.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "wf_handler.h"
11 11 #include "fsw_processing.h"
12 12
13 13 // MODE PARAMETERS
14 14 extern unsigned int maxCount;
15 15
16 16 //****
17 17 // ISR
18 18 rtems_isr commutation_isr1( rtems_vector_number vector );
19 19 rtems_isr commutation_isr2( rtems_vector_number vector );
20 20
21 21 //***********
22 22 // RTEMS TASK
23 23 rtems_task actn_task( rtems_task_argument unused );
24 24
25 25 //***********
26 26 // TC ACTIONS
27 27 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
28 28 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
29 29 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
30 30 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
31 31 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
32 32 int action_update_time(ccsdsTelecommandPacket_t *TC);
33 33
34 34 // mode transition
35 35 int transition_validation(unsigned char requestedMode);
36 36 int stop_current_mode( void );
37 37 int enter_mode(unsigned char mode);
38 38 int restart_science_tasks();
39 39 int suspend_science_tasks();
40 40 void launch_waveform_picker( unsigned char mode );
41 41 void launch_spectral_matrix( unsigned char mode );
42 void enable_irq_on_new_ready_matrix( void );
43 void disable_irq_on_new_ready_matrix( void );
42 void set_irq_on_new_ready_matrix(unsigned char value );
43 void set_run_matrix_spectral( unsigned char value );
44 44 void launch_spectral_matrix_simu( unsigned char mode );
45 45
46 46 // other functions
47 47 void updateLFRCurrentMode();
48 48 void update_last_TC_exe(ccsdsTelecommandPacket_t *TC );
49 49 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC );
50 50 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
51 51
52 52 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
53 53 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
54 54
55 55 #endif // TC_HANDLER_H_INCLUDED
56 56
57 57
58 58
@@ -1,96 +1,98
1 1 #ifndef WF_HANDLER_H_INCLUDED
2 2 #define WF_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <stdio.h>
7 7 #include <math.h>
8 8
9 9 #include "fsw_params.h"
10 10 #include "fsw_spacewire.h"
11 11 #include "fsw_misc.h"
12 12
13 13 #define pi 3.1415
14 14
15 15 extern int fdSPW;
16 16
17 17 //*****************
18 18 // waveform buffers
19 19 // F0
20 20 //extern volatile int wf_snap_f0[ ];
21 21 // F1 F2
22 22 extern volatile int wf_snap_f0[ ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 62 ];
23 23 extern volatile int wf_snap_f1[ ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 62 ];
24 24 extern volatile int wf_snap_f2[ ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 62 ];
25 25 // F3
26 26 extern volatile int wf_cont_f3_a[ ];
27 27 extern volatile int wf_cont_f3_b[ ];
28 28 extern char wf_cont_f3_light[ ];
29 29
30 30 extern waveform_picker_regs_new_t *waveform_picker_regs;
31 31 extern time_management_regs_t *time_management_regs;
32 32 extern Packet_TM_LFR_HK_t housekeeping_packet;
33 33 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
34 34 extern struct param_local_str param_local;
35 35
36 36 extern unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
37 37 extern unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
38 38
39 39 extern rtems_id Task_id[20]; /* array of task ids */
40 40
41 41 extern unsigned char lfrCurrentMode;
42 42
43 43 //**********
44 44 // RTEMS_ISR
45 void reset_extractSWF( void );
45 46 rtems_isr waveforms_isr( rtems_vector_number vector );
46 47
47 48 //***********
48 49 // RTEMS_TASK
49 50 rtems_task wfrm_task( rtems_task_argument argument );
50 51 rtems_task cwf3_task( rtems_task_argument argument );
51 52 rtems_task cwf2_task( rtems_task_argument argument );
52 53 rtems_task cwf1_task( rtems_task_argument argument );
53 54 rtems_task swbd_task( rtems_task_argument argument );
54 55
55 56 //******************
56 57 // general functions
57 58 void init_waveforms( void );
58 59 void init_waveform_rings( void );
59 60 void reset_current_ring_nodes( void );
60 61 //
61 62 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF );
62 63 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
63 64 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
64 65 //
65 66 int send_waveform_SWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id );
66 67 int send_waveform_CWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
67 68 int send_waveform_CWF3( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
68 69 int send_waveform_CWF3_light( volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
69 70 //
70 71 void compute_acquisition_time(unsigned int coarseTime, unsigned int fineTime,
71 72 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char *acquisitionTime );
72 void build_snapshot_from_ring( void );
73 void build_snapshot_from_ring(ring_node *ring_node_to_send , unsigned char frequencyChannel );
74 void build_acquisition_time( unsigned long long int * acquisitionTimeAslong, ring_node *current_ring_node );
73 75 //
74 76 rtems_id get_pkts_queue_id( void );
75 77
76 78 //**************
77 79 // wfp registers
78 80 // RESET
79 81 void reset_wfp_burst_enable( void );
80 82 void reset_wfp_status(void);
81 83 void reset_waveform_picker_regs( void );
82 84 // SET
83 85 void set_wfp_data_shaping(void);
84 86 void set_wfp_burst_enable_register( unsigned char mode );
85 87 void set_wfp_delta_snapshot( void );
86 88 void set_wfp_delta_f0_f0_2( void );
87 89 void set_wfp_delta_f1( void );
88 90 void set_wfp_delta_f2( void );
89 91
90 92 //*****************
91 93 // local parameters
92 94 void set_local_nb_interrupt_f0_MAX( void );
93 95
94 96 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid );
95 97
96 98 #endif // WF_HANDLER_H_INCLUDED
@@ -1,72 +1,73
1 1 /** Global variables of the LFR flight software.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * Among global variables, there are:
7 7 * - RTEMS names and id.
8 8 * - APB configuration registers.
9 9 * - waveforms global buffers, used by the waveform picker hardware module to store data.
10 10 * - spectral matrices buffesr, used by the hardware module to store data.
11 11 * - variable related to LFR modes parameters.
12 12 * - the global HK packet buffer.
13 13 * - the global dump parameter buffer.
14 14 *
15 15 */
16 16
17 17 #include <rtems.h>
18 18 #include <grspw.h>
19 19
20 20 #include "ccsds_types.h"
21 21 #include "grlib_regs.h"
22 22 #include "fsw_params.h"
23 23
24 24 // RTEMS GLOBAL VARIABLES
25 25 rtems_name misc_name[5];
26 26 rtems_id misc_id[5];
27 27 rtems_name Task_name[20]; /* array of task names */
28 28 rtems_id Task_id[20]; /* array of task ids */
29 29 unsigned int maxCount;
30 30 int fdSPW = 0;
31 31 int fdUART = 0;
32 32 unsigned char lfrCurrentMode;
33 33
34 34 // WAVEFORMS GLOBAL VARIABLES // 2048 * 3 * 4 + 2 * 4 = 24576 + 8 bytes = 24584
35 35 // 97 * 256 = 24832 => delta = 248 bytes = 62 words
36 36 // WAVEFORMS GLOBAL VARIABLES // 2688 * 3 * 4 + 2 * 4 = 32256 + 8 bytes = 32264
37 37 // 127 * 256 = 32512 => delta = 248 bytes = 62 words
38 38 // F0
39 39 volatile int wf_snap_f0[ NB_RING_NODES_F0 ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 62 ] __attribute__((aligned(0x100)));
40 40 // F1 F2
41 41 volatile int wf_snap_f1[ NB_RING_NODES_F1 ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 62 ] __attribute__((aligned(0x100)));
42 42 volatile int wf_snap_f2[ NB_RING_NODES_F2 ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 62 ] __attribute__((aligned(0x100)));
43 43 // F3
44 44 volatile int wf_cont_f3_a [ (NB_SAMPLES_PER_SNAPSHOT) * NB_WORDS_SWF_BLK + TIME_OFFSET ] __attribute__((aligned(0x100)));
45 45 volatile int wf_cont_f3_b [ (NB_SAMPLES_PER_SNAPSHOT) * NB_WORDS_SWF_BLK + TIME_OFFSET ] __attribute__((aligned(0x100)));
46 46 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK + TIME_OFFSET_IN_BYTES ] __attribute__((aligned(0x100)));
47 47
48 48 // SPECTRAL MATRICES GLOBAL VARIABLES
49 volatile int sm_f0[ NB_RING_NODES_ASM_F0 ][ TIME_OFFSET + TOTAL_SIZE_SM + 62 ] __attribute__((aligned(0x100)));
50 volatile int sm_f1[ NB_RING_NODES_ASM_F1 ][ TIME_OFFSET + TOTAL_SIZE_SM + 62 ] __attribute__((aligned(0x100)));
51 volatile int sm_f2[ NB_RING_NODES_ASM_F2 ][ TIME_OFFSET + TOTAL_SIZE_SM + 62 ] __attribute__((aligned(0x100)));
49 // alignment constraints for the spectral matrices buffers => the first data after the time (8 bytes) shall be aligned on 0x00
50 volatile int sm_f0[ NB_RING_NODES_ASM_F0 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
51 volatile int sm_f1[ NB_RING_NODES_ASM_F1 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
52 volatile int sm_f2[ NB_RING_NODES_ASM_F2 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
52 53
53 54 // APB CONFIGURATION REGISTERS
54 55 time_management_regs_t *time_management_regs = (time_management_regs_t*) REGS_ADDR_TIME_MANAGEMENT;
55 56 gptimer_regs_t *gptimer_regs = (gptimer_regs_t *) REGS_ADDR_GPTIMER;
56 57 waveform_picker_regs_new_t *waveform_picker_regs = (waveform_picker_regs_new_t*) REGS_ADDR_WAVEFORM_PICKER;
57 58 spectral_matrix_regs_t *spectral_matrix_regs = (spectral_matrix_regs_t*) REGS_ADDR_SPECTRAL_MATRIX;
58 59
59 60 // MODE PARAMETERS
60 61 Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
61 62 struct param_local_str param_local;
62 63
63 64 // HK PACKETS
64 65 Packet_TM_LFR_HK_t housekeeping_packet;
65 66 // sequence counters are incremented by APID (PID + CAT) and destination ID
66 67 unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
67 68 unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
68 69 unsigned short sequenceCounters_TC_EXE[SEQ_CNT_NB_DEST_ID];
69 70 spw_stats spacewire_stats;
70 71 spw_stats spacewire_stats_backup;
71 72
72 73
@@ -1,739 +1,760
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include <fsw_processing.h>
11 11
12 12 #include "fsw_processing_globals.c"
13 13
14 14 //************************
15 15 // spectral matrices rings
16 16 ring_node sm_ring_f0[NB_RING_NODES_ASM_F0];
17 17 ring_node sm_ring_f1[NB_RING_NODES_ASM_F1];
18 18 ring_node sm_ring_f2[NB_RING_NODES_ASM_F2];
19 19 ring_node *current_ring_node_sm_f0;
20 20 ring_node *ring_node_for_averaging_sm_f0;
21 21 ring_node *current_ring_node_sm_f1;
22 22 ring_node *current_ring_node_sm_f2;
23 23
24 24 BP1_t data_BP1[ NB_BINS_COMPRESSED_SM_F0 ];
25 25 float averaged_sm_f0 [ TIME_OFFSET + TOTAL_SIZE_SM ];
26 26 float averaged_sm_f0_reorganized[ TIME_OFFSET + TOTAL_SIZE_SM ];
27 27 char averaged_sm_f0_char [ TIME_OFFSET_IN_BYTES + TOTAL_SIZE_SM * 2 ];
28 28 float compressed_sm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_F0 ];
29 29
30 30 unsigned int nb_sm_f0;
31 31
32 32 void init_sm_rings( void )
33 33 {
34 34 unsigned char i;
35 35
36 36 // F0 RING
37 37 sm_ring_f0[0].next = (ring_node*) &sm_ring_f0[1];
38 38 sm_ring_f0[0].previous = (ring_node*) &sm_ring_f0[NB_RING_NODES_ASM_F0-1];
39 sm_ring_f0[0].buffer_address = (int) &sm_f0[0][0];
39 sm_ring_f0[0].buffer_address =
40 (int) &sm_f0[ 0 ];
40 41
41 42 sm_ring_f0[NB_RING_NODES_ASM_F0-1].next = (ring_node*) &sm_ring_f0[0];
42 43 sm_ring_f0[NB_RING_NODES_ASM_F0-1].previous = (ring_node*) &sm_ring_f0[NB_RING_NODES_ASM_F0-2];
43 sm_ring_f0[NB_RING_NODES_ASM_F0-1].buffer_address = (int) &sm_f0[NB_RING_NODES_ASM_F0-1][0];
44 sm_ring_f0[NB_RING_NODES_ASM_F0-1].buffer_address =
45 (int) &sm_f0[ (NB_RING_NODES_ASM_F0-1) * TOTAL_SIZE_SM ];
44 46
45 47 for(i=1; i<NB_RING_NODES_ASM_F0-1; i++)
46 48 {
47 49 sm_ring_f0[i].next = (ring_node*) &sm_ring_f0[i+1];
48 50 sm_ring_f0[i].previous = (ring_node*) &sm_ring_f0[i-1];
49 sm_ring_f0[i].buffer_address = (int) &sm_f0[i][0];
51 sm_ring_f0[i].buffer_address =
52 (int) &sm_f0[ i * TOTAL_SIZE_SM ];
53 }
54
55 // F1 RING
56 sm_ring_f1[0].next = (ring_node*) &sm_ring_f1[1];
57 sm_ring_f1[0].previous = (ring_node*) &sm_ring_f1[NB_RING_NODES_ASM_F1-1];
58 sm_ring_f1[0].buffer_address =
59 (int) &sm_f1[ 0 ];
60
61 sm_ring_f1[NB_RING_NODES_ASM_F1-1].next = (ring_node*) &sm_ring_f1[0];
62 sm_ring_f1[NB_RING_NODES_ASM_F1-1].previous = (ring_node*) &sm_ring_f1[NB_RING_NODES_ASM_F1-2];
63 sm_ring_f1[NB_RING_NODES_ASM_F1-1].buffer_address =
64 (int) &sm_f1[ (NB_RING_NODES_ASM_F1-1) * TOTAL_SIZE_SM ];
65
66 for(i=1; i<NB_RING_NODES_ASM_F1-1; i++)
67 {
68 sm_ring_f1[i].next = (ring_node*) &sm_ring_f1[i+1];
69 sm_ring_f1[i].previous = (ring_node*) &sm_ring_f1[i-1];
70 sm_ring_f1[i].buffer_address =
71 (int) &sm_f1[ i * TOTAL_SIZE_SM ];
72 }
73
74 // F2 RING
75 sm_ring_f2[0].next = (ring_node*) &sm_ring_f2[1];
76 sm_ring_f2[0].previous = (ring_node*) &sm_ring_f2[NB_RING_NODES_ASM_F2-1];
77 sm_ring_f2[0].buffer_address =
78 (int) &sm_f2[ 0 ];
79
80 sm_ring_f2[NB_RING_NODES_ASM_F2-1].next = (ring_node*) &sm_ring_f2[0];
81 sm_ring_f2[NB_RING_NODES_ASM_F2-1].previous = (ring_node*) &sm_ring_f2[NB_RING_NODES_ASM_F2-2];
82 sm_ring_f2[NB_RING_NODES_ASM_F2-1].buffer_address =
83 (int) &sm_f2[ (NB_RING_NODES_ASM_F2-1) * TOTAL_SIZE_SM ];
84
85 for(i=1; i<NB_RING_NODES_ASM_F2-1; i++)
86 {
87 sm_ring_f2[i].next = (ring_node*) &sm_ring_f2[i+1];
88 sm_ring_f2[i].previous = (ring_node*) &sm_ring_f2[i-1];
89 sm_ring_f2[i].buffer_address =
90 (int) &sm_f2[ i * TOTAL_SIZE_SM ];
50 91 }
51 92
52 93 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
94 DEBUG_PRINTF1("asm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
95 DEBUG_PRINTF1("asm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
53 96
54 97 spectral_matrix_regs->matrixF0_Address0 = sm_ring_f0[0].buffer_address;
55 98 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->matrixF0_Address0)
56 99 }
57 100
58 101 void reset_current_sm_ring_nodes( void )
59 102 {
60 103 current_ring_node_sm_f0 = sm_ring_f0;
104 current_ring_node_sm_f1 = sm_ring_f1;
105 current_ring_node_sm_f2 = sm_ring_f2;
106
61 107 ring_node_for_averaging_sm_f0 = sm_ring_f0;
62 108 }
63 109
64 110 //***********************************************************
65 111 // Interrupt Service Routine for spectral matrices processing
66 112 void reset_nb_sm_f0( void )
67 113 {
68 114 nb_sm_f0 = 0;
69 115 }
70 116
71 117 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
72 118 {
73 119 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
74 120
75 121 if ( (spectral_matrix_regs->status & 0x1) == 0x01)
76 122 {
77 123 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
78 124 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
79 125 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe; // 1110
80 126 nb_sm_f0 = nb_sm_f0 + 1;
81 127 }
82 128 else if ( (spectral_matrix_regs->status & 0x2) == 0x02)
83 129 {
84 130 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
85 131 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
86 132 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // 1101
87 133 nb_sm_f0 = nb_sm_f0 + 1;
88 134 }
89 135
90 136 if ( (spectral_matrix_regs->status & 0x30) != 0x00)
91 137 {
92 138 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
93 139 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // 1100 1111
94 140 }
95 141
96 142 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff3; // 0011
97 143
98 144 if (nb_sm_f0 == (NB_SM_TO_RECEIVE_BEFORE_AVF0-1) )
99 145 {
100 146 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
101 147 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
102 148 {
103 149 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
104 150 }
105 151 nb_sm_f0 = 0;
106 152 }
107 153 else
108 154 {
109 155 nb_sm_f0 = nb_sm_f0 + 1;
110 156 }
111 157 }
112 158
113 159 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
114 160 {
115 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
116
117 if ( (spectral_matrix_regs->status & 0x1) == 0x01)
118 {
119 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
120 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
121 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe; // 1110
122 nb_sm_f0 = nb_sm_f0 + 1;
123 }
124 else if ( (spectral_matrix_regs->status & 0x2) == 0x02)
125 {
126 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
127 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
128 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // 1101
129 nb_sm_f0 = nb_sm_f0 + 1;
130 }
131
132 if ( (spectral_matrix_regs->status & 0x30) != 0x00)
133 {
134 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
135 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // 1100 1111
136 }
137
138 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff3; // 0011
139
140 161 if (nb_sm_f0 == (NB_SM_TO_RECEIVE_BEFORE_AVF0-1) )
141 162 {
142 163 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
143 164 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
144 165 {
145 166 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
146 167 }
147 168 nb_sm_f0 = 0;
148 169 }
149 170 else
150 171 {
151 172 nb_sm_f0 = nb_sm_f0 + 1;
152 173 }
153 174 }
154 175
155 176 //************
156 177 // RTEMS TASKS
157 178
158 179 rtems_task smiq_task(rtems_task_argument argument) // process the Spectral Matrices IRQ
159 180 {
160 181 rtems_event_set event_out;
161 182
162 183 BOOT_PRINTF("in SMIQ *** \n")
163 184
164 185 while(1){
165 186 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
166 187 }
167 188 }
168 189
169 190 rtems_task avf0_task(rtems_task_argument argument)
170 191 {
171 192 int i;
172 193 static int nb_average;
173 194 rtems_event_set event_out;
174 195 rtems_status_code status;
175 196 ring_node *ring_node_tab[8];
176 197
177 198 nb_average = 0;
178 199
179 200 BOOT_PRINTF("in AVFO *** \n")
180 201
181 202 while(1){
182 203 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
183 204 ring_node_tab[NB_SM_TO_RECEIVE_BEFORE_AVF0-1] = ring_node_for_averaging_sm_f0;
184 205 for (i=2; i<NB_SM_TO_RECEIVE_BEFORE_AVF0+1; i++)
185 206 {
186 207 ring_node_for_averaging_sm_f0 = ring_node_for_averaging_sm_f0->previous;
187 208 ring_node_tab[NB_SM_TO_RECEIVE_BEFORE_AVF0-i] = ring_node_for_averaging_sm_f0;
188 209 }
189 210
190 211 averaged_sm_f0[0] = ( (int *) (ring_node_tab[7]->buffer_address) ) [0];
191 212 averaged_sm_f0[1] = ( (int *) (ring_node_tab[7]->buffer_address) ) [1];
192 213 for(i=0; i<TOTAL_SIZE_SM; i++)
193 214 {
194 215 averaged_sm_f0[i] = ( (int *) (ring_node_tab[0]->buffer_address) ) [i + TIME_OFFSET]
195 216 + ( (int *) (ring_node_tab[1]->buffer_address) ) [i + TIME_OFFSET]
196 217 + ( (int *) (ring_node_tab[2]->buffer_address) ) [i + TIME_OFFSET]
197 218 + ( (int *) (ring_node_tab[3]->buffer_address) ) [i + TIME_OFFSET]
198 219 + ( (int *) (ring_node_tab[4]->buffer_address) ) [i + TIME_OFFSET]
199 220 + ( (int *) (ring_node_tab[5]->buffer_address) ) [i + TIME_OFFSET]
200 221 + ( (int *) (ring_node_tab[6]->buffer_address) ) [i + TIME_OFFSET]
201 222 + ( (int *) (ring_node_tab[7]->buffer_address) ) [i + TIME_OFFSET];
202 223 }
203 224
204 225 nb_average = nb_average + NB_SM_TO_RECEIVE_BEFORE_AVF0;
205 226 if (nb_average == NB_AVERAGE_NORMAL_f0) {
206 227 nb_average = 0;
207 228 status = rtems_event_send( Task_id[TASKID_MATR], RTEMS_EVENT_0 ); // sending an event to the task 7, BPF0
208 229 if (status != RTEMS_SUCCESSFUL) {
209 230 printf("in AVF0 *** Error sending RTEMS_EVENT_0, code %d\n", status);
210 231 }
211 232 }
212 233 }
213 234 }
214 235
215 236 rtems_task matr_task(rtems_task_argument argument)
216 237 {
217 238 spw_ioctl_pkt_send spw_ioctl_send_ASM;
218 239 rtems_event_set event_out;
219 240 rtems_status_code status;
220 241 rtems_id queue_id;
221 242 Header_TM_LFR_SCIENCE_ASM_t headerASM;
222 243
223 244 init_header_asm( &headerASM );
224 245
225 246 status = get_message_queue_id_send( &queue_id );
226 247 if (status != RTEMS_SUCCESSFUL)
227 248 {
228 249 PRINTF1("in MATR *** ERR get_message_queue_id_send %d\n", status)
229 250 }
230 251
231 252 BOOT_PRINTF("in MATR *** \n")
232 253
233 254 fill_averaged_spectral_matrix( );
234 255
235 256 while(1){
236 257 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
237 258 // 1) compress the matrix for Basic Parameters calculation
238 259 ASM_compress( averaged_sm_f0, 0, compressed_sm_f0 );
239 260 // 2)
240 261 //BP1_set(compressed_sm_f0, NB_BINS_COMPRESSED_SM_F0, LFR_BP1_F0);
241 262 // 3) convert the float array in a char array
242 263 ASM_reorganize( averaged_sm_f0, averaged_sm_f0_reorganized );
243 264 ASM_convert( averaged_sm_f0_reorganized, averaged_sm_f0_char);
244 265 // 4) send the spectral matrix packets
245 266 ASM_send( &headerASM, averaged_sm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
246 267 }
247 268 }
248 269
249 270 //*****************************
250 271 // Spectral matrices processing
251 272
252 273 void matrix_reset(volatile float *averaged_spec_mat)
253 274 {
254 275 int i;
255 276 for(i=0; i<TOTAL_SIZE_SM; i++){
256 277 averaged_spec_mat[i] = 0;
257 278 }
258 279 }
259 280
260 281 void ASM_reorganize( float *averaged_spec_mat, float *averaged_spec_mat_reorganized )
261 282 {
262 283 int frequencyBin;
263 284 int asmComponent;
264 285
265 286 // copy the time information
266 287 averaged_spec_mat_reorganized[ 0 ] = averaged_spec_mat[ 0 ];
267 288 averaged_spec_mat_reorganized[ 1 ] = averaged_spec_mat[ 1 ];
268 289
269 290 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
270 291 {
271 292 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
272 293 {
273 294 averaged_spec_mat_reorganized[ frequencyBin * NB_VALUES_PER_SM + asmComponent + TIME_OFFSET ] =
274 295 averaged_spec_mat[ asmComponent * NB_BINS_PER_SM + frequencyBin + TIME_OFFSET];
275 296 }
276 297 }
277 298 }
278 299
279 300 void ASM_compress( float *averaged_spec_mat, unsigned char fChannel, float *compressed_spec_mat )
280 301 {
281 302 int frequencyBin;
282 303 int asmComponent;
283 304 int offsetASM;
284 305 int offsetCompressed;
285 306 int k;
286 307
287 308 switch (fChannel){
288 309 case 0:
289 310 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
290 311 {
291 312 for( frequencyBin = 0; frequencyBin < NB_BINS_COMPRESSED_SM_F0; frequencyBin++ )
292 313 {
293 314 offsetASM = asmComponent * NB_BINS_PER_SM
294 315 + ASM_F0_INDICE_START
295 316 + frequencyBin * NB_BINS_TO_AVERAGE_ASM_F0;
296 317 offsetCompressed = frequencyBin * NB_VALUES_PER_SM
297 318 + asmComponent;
298 319 compressed_spec_mat[ offsetCompressed ] = 0;
299 320 for ( k = 0; k < NB_BINS_TO_AVERAGE_ASM_F0; k++ )
300 321 {
301 322 compressed_spec_mat[offsetCompressed ] =
302 323 compressed_spec_mat[ offsetCompressed ]
303 324 + averaged_spec_mat[ offsetASM + k ];
304 325 }
305 326 }
306 327 }
307 328 break;
308 329
309 330 case 1:
310 331 // case fChannel = f1 to be completed later
311 332 break;
312 333
313 334 case 2:
314 335 // case fChannel = f1 to be completed later
315 336 break;
316 337
317 338 default:
318 339 break;
319 340 }
320 341 }
321 342
322 343 void ASM_convert( volatile float *input_matrix, char *output_matrix)
323 344 {
324 345 unsigned int i;
325 346 unsigned int frequencyBin;
326 347 unsigned int asmComponent;
327 348 char * pt_char_input;
328 349 char * pt_char_output;
329 350
330 351 pt_char_input = (char*) &input_matrix;
331 352 pt_char_output = (char*) &output_matrix;
332 353
333 354 // copy the time information
334 355 for (i=0; i<TIME_OFFSET_IN_BYTES; i++)
335 356 {
336 357 pt_char_output[ i ] = pt_char_output[ i ];
337 358 }
338 359
339 360 // convert all other data
340 361 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
341 362 {
342 363 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
343 364 {
344 365 pt_char_input = (char*) &input_matrix [ (frequencyBin*NB_VALUES_PER_SM) + asmComponent + TIME_OFFSET ];
345 366 pt_char_output = (char*) &output_matrix[ 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) + TIME_OFFSET_IN_BYTES ];
346 367 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
347 368 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
348 369 }
349 370 }
350 371 }
351 372
352 373 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
353 374 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
354 375 {
355 376 unsigned int i;
356 377 unsigned int length = 0;
357 378 rtems_status_code status;
358 379
359 380 for (i=0; i<2; i++)
360 381 {
361 382 // (1) BUILD THE DATA
362 383 switch(sid)
363 384 {
364 385 case SID_NORM_ASM_F0:
365 386 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2;
366 387 spw_ioctl_send->data = &spectral_matrix[
367 388 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
368 389 + TIME_OFFSET_IN_BYTES
369 390 ];
370 391 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
371 392 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
372 393 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
373 394 break;
374 395 case SID_NORM_ASM_F1:
375 396 break;
376 397 case SID_NORM_ASM_F2:
377 398 break;
378 399 default:
379 400 PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
380 401 break;
381 402 }
382 403 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
383 404 spw_ioctl_send->hdr = (char *) header;
384 405 spw_ioctl_send->options = 0;
385 406
386 407 // (2) BUILD THE HEADER
387 408 header->packetLength[0] = (unsigned char) (length>>8);
388 409 header->packetLength[1] = (unsigned char) (length);
389 410 header->sid = (unsigned char) sid; // SID
390 411 header->pa_lfr_pkt_cnt_asm = 2;
391 412 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
392 413
393 414 // (3) SET PACKET TIME
394 415 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
395 416 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
396 417 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
397 418 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
398 419 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
399 420 header->time[5] = (unsigned char) (time_management_regs->fine_time);
400 421 //
401 422 header->acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
402 423 header->acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
403 424 header->acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
404 425 header->acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
405 426 header->acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
406 427 header->acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
407 428
408 429 // (4) SEND PACKET
409 430 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
410 431 if (status != RTEMS_SUCCESSFUL) {
411 432 printf("in ASM_send *** ERR %d\n", (int) status);
412 433 }
413 434 }
414 435 }
415 436
416 437 void BP1_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * LFR_BP1){
417 438 int i;
418 439 int j;
419 440 unsigned char tmp_u_char;
420 441 unsigned char * pt_char = NULL;
421 442 float PSDB, PSDE;
422 443 float NVEC_V0;
423 444 float NVEC_V1;
424 445 float NVEC_V2;
425 446 //float significand;
426 447 //int exponent;
427 448 float aux;
428 449 float tr_SB_SB;
429 450 float tmp;
430 451 float sx_re;
431 452 float sx_im;
432 453 float nebx_re = 0;
433 454 float nebx_im = 0;
434 455 float ny = 0;
435 456 float nz = 0;
436 457 float bx_bx_star = 0;
437 458 for(i=0; i<nb_bins_compressed_spec_mat; i++){
438 459 //==============================================
439 460 // BP1 PSD == B PAR_LFR_SC_BP1_PE_FL0 == 16 bits
440 461 PSDB = compressed_spec_mat[i*30] // S11
441 462 + compressed_spec_mat[(i*30) + 10] // S22
442 463 + compressed_spec_mat[(i*30) + 18]; // S33
443 464 //significand = frexp(PSDB, &exponent);
444 465 pt_char = (unsigned char*) &PSDB;
445 466 LFR_BP1[(i*9) + 2] = pt_char[0]; // bits 31 downto 24 of the float
446 467 LFR_BP1[(i*9) + 3] = pt_char[1]; // bits 23 downto 16 of the float
447 468 //==============================================
448 469 // BP1 PSD == E PAR_LFR_SC_BP1_PB_FL0 == 16 bits
449 470 PSDE = compressed_spec_mat[(i*30) + 24] * K44_pe // S44
450 471 + compressed_spec_mat[(i*30) + 28] * K55_pe // S55
451 472 + compressed_spec_mat[(i*30) + 26] * K45_pe_re // S45
452 473 - compressed_spec_mat[(i*30) + 27] * K45_pe_im; // S45
453 474 pt_char = (unsigned char*) &PSDE;
454 475 LFR_BP1[(i*9) + 0] = pt_char[0]; // bits 31 downto 24 of the float
455 476 LFR_BP1[(i*9) + 1] = pt_char[1]; // bits 23 downto 16 of the float
456 477 //==============================================================================
457 478 // BP1 normal wave vector == PAR_LFR_SC_BP1_NVEC_V0_F0 == 8 bits
458 479 // == PAR_LFR_SC_BP1_NVEC_V1_F0 == 8 bits
459 480 // == PAR_LFR_SC_BP1_NVEC_V2_F0 == 1 bits
460 481 tmp = sqrt(
461 482 compressed_spec_mat[(i*30) + 3]*compressed_spec_mat[(i*30) + 3] //Im S12
462 483 +compressed_spec_mat[(i*30) + 5]*compressed_spec_mat[(i*30) + 5] //Im S13
463 484 +compressed_spec_mat[(i*30) + 13]*compressed_spec_mat[(i*30) + 13] //Im S23
464 485 );
465 486 NVEC_V0 = compressed_spec_mat[(i*30) + 13] / tmp; // Im S23
466 487 NVEC_V1 = -compressed_spec_mat[(i*30) + 5] / tmp; // Im S13
467 488 NVEC_V2 = compressed_spec_mat[(i*30) + 3] / tmp; // Im S12
468 489 LFR_BP1[(i*9) + 4] = (char) (NVEC_V0*127);
469 490 LFR_BP1[(i*9) + 5] = (char) (NVEC_V1*127);
470 491 pt_char = (unsigned char*) &NVEC_V2;
471 492 LFR_BP1[(i*9) + 6] = pt_char[0] & 0x80; // extract the sign of NVEC_V2
472 493 //=======================================================
473 494 // BP1 ellipticity == PAR_LFR_SC_BP1_ELLIP_F0 == 4 bits
474 495 aux = 2*tmp / PSDB; // compute the ellipticity
475 496 tmp_u_char = (unsigned char) (aux*(16-1)); // convert the ellipticity
476 497 LFR_BP1[i*9+6] = LFR_BP1[i*9+6] | ((tmp_u_char&0x0f)<<3); // keeps 4 bits of the resulting unsigned char
477 498 //==============================================================
478 499 // BP1 degree of polarization == PAR_LFR_SC_BP1_DOP_F0 == 3 bits
479 500 for(j = 0; j<NB_VALUES_PER_SM;j++){
480 501 tr_SB_SB = compressed_spec_mat[i*30] * compressed_spec_mat[i*30]
481 502 + compressed_spec_mat[(i*30) + 10] * compressed_spec_mat[(i*30) + 10]
482 503 + compressed_spec_mat[(i*30) + 18] * compressed_spec_mat[(i*30) + 18]
483 504 + 2 * compressed_spec_mat[(i*30) + 2] * compressed_spec_mat[(i*30) + 2]
484 505 + 2 * compressed_spec_mat[(i*30) + 3] * compressed_spec_mat[(i*30) + 3]
485 506 + 2 * compressed_spec_mat[(i*30) + 4] * compressed_spec_mat[(i*30) + 4]
486 507 + 2 * compressed_spec_mat[(i*30) + 5] * compressed_spec_mat[(i*30) + 5]
487 508 + 2 * compressed_spec_mat[(i*30) + 12] * compressed_spec_mat[(i*30) + 12]
488 509 + 2 * compressed_spec_mat[(i*30) + 13] * compressed_spec_mat[(i*30) + 13];
489 510 }
490 511 aux = PSDB*PSDB;
491 512 tmp = sqrt( abs( ( 3*tr_SB_SB - aux ) / ( 2 * aux ) ) );
492 513 tmp_u_char = (unsigned char) (NVEC_V0*(8-1));
493 514 LFR_BP1[(i*9) + 6] = LFR_BP1[(i*9) + 6] | (tmp_u_char & 0x07); // keeps 3 bits of the resulting unsigned char
494 515 //=======================================================================================
495 516 // BP1 x-component of the normalized Poynting flux == PAR_LFR_SC_BP1_SZ_F0 == 8 bits (7+1)
496 517 sx_re = compressed_spec_mat[(i*30) + 20] * K34_sx_re
497 518 + compressed_spec_mat[(i*30) + 6] * K14_sx_re
498 519 + compressed_spec_mat[(i*30) + 8] * K15_sx_re
499 520 + compressed_spec_mat[(i*30) + 14] * K24_sx_re
500 521 + compressed_spec_mat[(i*30) + 16] * K25_sx_re
501 522 + compressed_spec_mat[(i*30) + 22] * K35_sx_re;
502 523 sx_im = compressed_spec_mat[(i*30) + 21] * K34_sx_im
503 524 + compressed_spec_mat[(i*30) + 7] * K14_sx_im
504 525 + compressed_spec_mat[(i*30) + 9] * K15_sx_im
505 526 + compressed_spec_mat[(i*30) + 15] * K24_sx_im
506 527 + compressed_spec_mat[(i*30) + 17] * K25_sx_im
507 528 + compressed_spec_mat[(i*30) + 23] * K35_sx_im;
508 529 LFR_BP1[(i*9) + 7] = ((unsigned char) (sx_re * 128)) & 0x7f; // cf DOC for the compression
509 530 if ( abs(sx_re) > abs(sx_im) ) {
510 531 LFR_BP1[(i*9) + 7] = LFR_BP1[(i*9) + 1] | (0x80); // extract the sector of sx
511 532 }
512 533 else {
513 534 LFR_BP1[(i*9) + 7] = LFR_BP1[(i*9) + 1] & (0x7f); // extract the sector of sx
514 535 }
515 536 //======================================================================
516 537 // BP1 phase velocity estimator == PAR_LFR_SC_BP1_VPHI_F0 == 8 bits (7+1)
517 538 ny = sin(Alpha_M)*NVEC_V1 + cos(Alpha_M)*NVEC_V2;
518 539 nz = NVEC_V0;
519 540 bx_bx_star = cos(Alpha_M) * cos(Alpha_M) * compressed_spec_mat[i*30+10] // re S22
520 541 + sin(Alpha_M) * sin(Alpha_M) * compressed_spec_mat[i*30+18] // re S33
521 542 - 2 * sin(Alpha_M) * cos(Alpha_M) * compressed_spec_mat[i*30+12]; // re S23
522 543 nebx_re = ny * (compressed_spec_mat[(i*30) + 14] * K24_ny_re
523 544 +compressed_spec_mat[(i*30) + 16] * K25_ny_re
524 545 +compressed_spec_mat[(i*30) + 20] * K34_ny_re
525 546 +compressed_spec_mat[(i*30) + 22] * K35_ny_re)
526 547 + nz * (compressed_spec_mat[(i*30) + 14] * K24_nz_re
527 548 +compressed_spec_mat[(i*30) + 16] * K25_nz_re
528 549 +compressed_spec_mat[(i*30) + 20] * K34_nz_re
529 550 +compressed_spec_mat[(i*30) + 22] * K35_nz_re);
530 551 nebx_im = ny * (compressed_spec_mat[(i*30) + 15]*K24_ny_re
531 552 +compressed_spec_mat[(i*30) + 17] * K25_ny_re
532 553 +compressed_spec_mat[(i*30) + 21] * K34_ny_re
533 554 +compressed_spec_mat[(i*30) + 23] * K35_ny_re)
534 555 + nz * (compressed_spec_mat[(i*30) + 15] * K24_nz_im
535 556 +compressed_spec_mat[(i*30) + 17] * K25_nz_im
536 557 +compressed_spec_mat[(i*30) + 21] * K34_nz_im
537 558 +compressed_spec_mat[(i*30) + 23] * K35_nz_im);
538 559 tmp = nebx_re / bx_bx_star;
539 560 LFR_BP1[(i*9) + 8] = ((unsigned char) (tmp * 128)) & 0x7f; // cf DOC for the compression
540 561 if ( abs(nebx_re) > abs(nebx_im) ) {
541 562 LFR_BP1[(i*9) + 8] = LFR_BP1[(i*9) + 8] | (0x80); // extract the sector of nebx
542 563 }
543 564 else {
544 565 LFR_BP1[(i*9) + 8] = LFR_BP1[(i*9) + 8] & (0x7f); // extract the sector of nebx
545 566 }
546 567 }
547 568
548 569 }
549 570
550 571 void BP2_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat){
551 572 // BP2 autocorrelation
552 573 int i;
553 574 int aux = 0;
554 575
555 576 for(i = 0; i<nb_bins_compressed_spec_mat; i++){
556 577 // S12
557 578 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 10]);
558 579 compressed_spec_mat[(i*30) + 2] = compressed_spec_mat[(i*30) + 2] / aux;
559 580 compressed_spec_mat[(i*30) + 3] = compressed_spec_mat[(i*30) + 3] / aux;
560 581 // S13
561 582 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 18]);
562 583 compressed_spec_mat[(i*30) + 4] = compressed_spec_mat[(i*30) + 4] / aux;
563 584 compressed_spec_mat[(i*30) + 5] = compressed_spec_mat[(i*30) + 5] / aux;
564 585 // S23
565 586 aux = sqrt(compressed_spec_mat[i*30+12]*compressed_spec_mat[(i*30) + 18]);
566 587 compressed_spec_mat[(i*30) + 12] = compressed_spec_mat[(i*30) + 12] / aux;
567 588 compressed_spec_mat[(i*30) + 13] = compressed_spec_mat[(i*30) + 13] / aux;
568 589 // S45
569 590 aux = sqrt(compressed_spec_mat[i*30+24]*compressed_spec_mat[(i*30) + 28]);
570 591 compressed_spec_mat[(i*30) + 26] = compressed_spec_mat[(i*30) + 26] / aux;
571 592 compressed_spec_mat[(i*30) + 27] = compressed_spec_mat[(i*30) + 27] / aux;
572 593 // S14
573 594 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) +24]);
574 595 compressed_spec_mat[(i*30) + 6] = compressed_spec_mat[(i*30) + 6] / aux;
575 596 compressed_spec_mat[(i*30) + 7] = compressed_spec_mat[(i*30) + 7] / aux;
576 597 // S15
577 598 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 28]);
578 599 compressed_spec_mat[(i*30) + 8] = compressed_spec_mat[(i*30) + 8] / aux;
579 600 compressed_spec_mat[(i*30) + 9] = compressed_spec_mat[(i*30) + 9] / aux;
580 601 // S24
581 602 aux = sqrt(compressed_spec_mat[i*10]*compressed_spec_mat[(i*30) + 24]);
582 603 compressed_spec_mat[(i*30) + 14] = compressed_spec_mat[(i*30) + 14] / aux;
583 604 compressed_spec_mat[(i*30) + 15] = compressed_spec_mat[(i*30) + 15] / aux;
584 605 // S25
585 606 aux = sqrt(compressed_spec_mat[i*10]*compressed_spec_mat[(i*30) + 28]);
586 607 compressed_spec_mat[(i*30) + 16] = compressed_spec_mat[(i*30) + 16] / aux;
587 608 compressed_spec_mat[(i*30) + 17] = compressed_spec_mat[(i*30) + 17] / aux;
588 609 // S34
589 610 aux = sqrt(compressed_spec_mat[i*18]*compressed_spec_mat[(i*30) + 24]);
590 611 compressed_spec_mat[(i*30) + 20] = compressed_spec_mat[(i*30) + 20] / aux;
591 612 compressed_spec_mat[(i*30) + 21] = compressed_spec_mat[(i*30) + 21] / aux;
592 613 // S35
593 614 aux = sqrt(compressed_spec_mat[i*18]*compressed_spec_mat[(i*30) + 28]);
594 615 compressed_spec_mat[(i*30) + 22] = compressed_spec_mat[(i*30) + 22] / aux;
595 616 compressed_spec_mat[(i*30) + 23] = compressed_spec_mat[(i*30) + 23] / aux;
596 617 }
597 618 }
598 619
599 620 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header)
600 621 {
601 622 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
602 623 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
603 624 header->reserved = 0x00;
604 625 header->userApplication = CCSDS_USER_APP;
605 626 header->packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
606 627 header->packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
607 628 header->packetSequenceControl[0] = 0xc0;
608 629 header->packetSequenceControl[1] = 0x00;
609 630 header->packetLength[0] = 0x00;
610 631 header->packetLength[1] = 0x00;
611 632 // DATA FIELD HEADER
612 633 header->spare1_pusVersion_spare2 = 0x10;
613 634 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
614 635 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
615 636 header->destinationID = TM_DESTINATION_ID_GROUND;
616 637 // AUXILIARY DATA HEADER
617 638 header->sid = 0x00;
618 639 header->biaStatusInfo = 0x00;
619 640 header->pa_lfr_pkt_cnt_asm = 0x00;
620 641 header->pa_lfr_pkt_nr_asm = 0x00;
621 642 header->time[0] = 0x00;
622 643 header->time[0] = 0x00;
623 644 header->time[0] = 0x00;
624 645 header->time[0] = 0x00;
625 646 header->time[0] = 0x00;
626 647 header->time[0] = 0x00;
627 648 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
628 649 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
629 650 }
630 651
631 652 void fill_averaged_spectral_matrix(void)
632 653 {
633 654 /** This function fills spectral matrices related buffers with arbitrary data.
634 655 *
635 656 * This function is for testing purpose only.
636 657 *
637 658 */
638 659
639 660 float offset;
640 661 float coeff;
641 662
642 663 offset = 10.;
643 664 coeff = 100000.;
644 665 averaged_sm_f0[ 0 + 25 * 0 ] = 0. + offset;
645 666 averaged_sm_f0[ 0 + 25 * 1 ] = 1. + offset;
646 667 averaged_sm_f0[ 0 + 25 * 2 ] = 2. + offset;
647 668 averaged_sm_f0[ 0 + 25 * 3 ] = 3. + offset;
648 669 averaged_sm_f0[ 0 + 25 * 4 ] = 4. + offset;
649 670 averaged_sm_f0[ 0 + 25 * 5 ] = 5. + offset;
650 671 averaged_sm_f0[ 0 + 25 * 6 ] = 6. + offset;
651 672 averaged_sm_f0[ 0 + 25 * 7 ] = 7. + offset;
652 673 averaged_sm_f0[ 0 + 25 * 8 ] = 8. + offset;
653 674 averaged_sm_f0[ 0 + 25 * 9 ] = 9. + offset;
654 675 averaged_sm_f0[ 0 + 25 * 10 ] = 10. + offset;
655 676 averaged_sm_f0[ 0 + 25 * 11 ] = 11. + offset;
656 677 averaged_sm_f0[ 0 + 25 * 12 ] = 12. + offset;
657 678 averaged_sm_f0[ 0 + 25 * 13 ] = 13. + offset;
658 679 averaged_sm_f0[ 0 + 25 * 14 ] = 14. + offset;
659 680 averaged_sm_f0[ 9 + 25 * 0 ] = -(0. + offset)* coeff;
660 681 averaged_sm_f0[ 9 + 25 * 1 ] = -(1. + offset)* coeff;
661 682 averaged_sm_f0[ 9 + 25 * 2 ] = -(2. + offset)* coeff;
662 683 averaged_sm_f0[ 9 + 25 * 3 ] = -(3. + offset)* coeff;
663 684 averaged_sm_f0[ 9 + 25 * 4 ] = -(4. + offset)* coeff;
664 685 averaged_sm_f0[ 9 + 25 * 5 ] = -(5. + offset)* coeff;
665 686 averaged_sm_f0[ 9 + 25 * 6 ] = -(6. + offset)* coeff;
666 687 averaged_sm_f0[ 9 + 25 * 7 ] = -(7. + offset)* coeff;
667 688 averaged_sm_f0[ 9 + 25 * 8 ] = -(8. + offset)* coeff;
668 689 averaged_sm_f0[ 9 + 25 * 9 ] = -(9. + offset)* coeff;
669 690 averaged_sm_f0[ 9 + 25 * 10 ] = -(10. + offset)* coeff;
670 691 averaged_sm_f0[ 9 + 25 * 11 ] = -(11. + offset)* coeff;
671 692 averaged_sm_f0[ 9 + 25 * 12 ] = -(12. + offset)* coeff;
672 693 averaged_sm_f0[ 9 + 25 * 13 ] = -(13. + offset)* coeff;
673 694 averaged_sm_f0[ 9 + 25 * 14 ] = -(14. + offset)* coeff;
674 695
675 696 offset = 10000000;
676 697 averaged_sm_f0[ 16 + 25 * 0 ] = (0. + offset)* coeff;
677 698 averaged_sm_f0[ 16 + 25 * 1 ] = (1. + offset)* coeff;
678 699 averaged_sm_f0[ 16 + 25 * 2 ] = (2. + offset)* coeff;
679 700 averaged_sm_f0[ 16 + 25 * 3 ] = (3. + offset)* coeff;
680 701 averaged_sm_f0[ 16 + 25 * 4 ] = (4. + offset)* coeff;
681 702 averaged_sm_f0[ 16 + 25 * 5 ] = (5. + offset)* coeff;
682 703 averaged_sm_f0[ 16 + 25 * 6 ] = (6. + offset)* coeff;
683 704 averaged_sm_f0[ 16 + 25 * 7 ] = (7. + offset)* coeff;
684 705 averaged_sm_f0[ 16 + 25 * 8 ] = (8. + offset)* coeff;
685 706 averaged_sm_f0[ 16 + 25 * 9 ] = (9. + offset)* coeff;
686 707 averaged_sm_f0[ 16 + 25 * 10 ] = (10. + offset)* coeff;
687 708 averaged_sm_f0[ 16 + 25 * 11 ] = (11. + offset)* coeff;
688 709 averaged_sm_f0[ 16 + 25 * 12 ] = (12. + offset)* coeff;
689 710 averaged_sm_f0[ 16 + 25 * 13 ] = (13. + offset)* coeff;
690 711 averaged_sm_f0[ 16 + 25 * 14 ] = (14. + offset)* coeff;
691 712
692 713 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 0 ] = averaged_sm_f0[ 0 ];
693 714 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 1 ] = averaged_sm_f0[ 1 ];
694 715 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 2 ] = averaged_sm_f0[ 2 ];
695 716 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 3 ] = averaged_sm_f0[ 3 ];
696 717 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 4 ] = averaged_sm_f0[ 4 ];
697 718 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 5 ] = averaged_sm_f0[ 5 ];
698 719 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 6 ] = averaged_sm_f0[ 6 ];
699 720 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 7 ] = averaged_sm_f0[ 7 ];
700 721 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 8 ] = averaged_sm_f0[ 8 ];
701 722 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 9 ] = averaged_sm_f0[ 9 ];
702 723 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 10 ] = averaged_sm_f0[ 10 ];
703 724 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 11 ] = averaged_sm_f0[ 11 ];
704 725 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 12 ] = averaged_sm_f0[ 12 ];
705 726 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 13 ] = averaged_sm_f0[ 13 ];
706 727 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 14 ] = averaged_sm_f0[ 14 ];
707 728 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 15 ] = averaged_sm_f0[ 15 ];
708 729 }
709 730
710 731 void reset_spectral_matrix_regs()
711 732 {
712 733 /** This function resets the spectral matrices module registers.
713 734 *
714 735 * The registers affected by this function are located at the following offset addresses:
715 736 *
716 737 * - 0x00 config
717 738 * - 0x04 status
718 739 * - 0x08 matrixF0_Address0
719 740 * - 0x10 matrixFO_Address1
720 741 * - 0x14 matrixF1_Address
721 742 * - 0x18 matrixF2_Address
722 743 *
723 744 */
724 745
725 746 spectral_matrix_regs->config = 0x00;
726 747 spectral_matrix_regs->status = 0x00;
727 748
728 749 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
729 750 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
730 751 spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
731 752 spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
732 753 }
733 754
734 755 //******************
735 756 // general functions
736 757
737 758
738 759
739 760
@@ -1,765 +1,791
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14
15 15 //***********
16 16 // RTEMS TASK
17 17
18 18 rtems_task actn_task( rtems_task_argument unused )
19 19 {
20 20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 21 *
22 22 * @param unused is the starting argument of the RTEMS task
23 23 *
24 24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 25 * on the incoming TeleCommand.
26 26 *
27 27 */
28 28
29 29 int result;
30 30 rtems_status_code status; // RTEMS status code
31 31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 32 size_t size; // size of the incoming TC packet
33 33 unsigned char subtype; // subtype of the current TC packet
34 34 unsigned char time[6];
35 35 rtems_id queue_rcv_id;
36 36 rtems_id queue_snd_id;
37 37
38 38 status = get_message_queue_id_recv( &queue_rcv_id );
39 39 if (status != RTEMS_SUCCESSFUL)
40 40 {
41 41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 42 }
43 43
44 44 status = get_message_queue_id_send( &queue_snd_id );
45 45 if (status != RTEMS_SUCCESSFUL)
46 46 {
47 47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 48 }
49 49
50 50 result = LFR_SUCCESSFUL;
51 51 subtype = 0; // subtype of the current TC packet
52 52
53 53 BOOT_PRINTF("in ACTN *** \n")
54 54
55 55 while(1)
56 56 {
57 57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 59 getTime( time ); // set time to the current time
60 60 if (status!=RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 63 }
64 64 else
65 65 {
66 66 subtype = TC.serviceSubType;
67 67 switch(subtype)
68 68 {
69 69 case TC_SUBTYPE_RESET:
70 70 result = action_reset( &TC, queue_snd_id, time );
71 71 close_action( &TC, result, queue_snd_id );
72 72 break;
73 73 //
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 //
79 79 case TC_SUBTYPE_LOAD_NORM:
80 80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 81 close_action( &TC, result, queue_snd_id );
82 82 break;
83 83 //
84 84 case TC_SUBTYPE_LOAD_BURST:
85 85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 86 close_action( &TC, result, queue_snd_id );
87 87 break;
88 88 //
89 89 case TC_SUBTYPE_LOAD_SBM1:
90 90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 91 close_action( &TC, result, queue_snd_id );
92 92 break;
93 93 //
94 94 case TC_SUBTYPE_LOAD_SBM2:
95 95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 //
99 99 case TC_SUBTYPE_DUMP:
100 100 result = action_dump_par( queue_snd_id );
101 101 close_action( &TC, result, queue_snd_id );
102 102 break;
103 103 //
104 104 case TC_SUBTYPE_ENTER:
105 105 result = action_enter_mode( &TC, queue_snd_id, time );
106 106 close_action( &TC, result, queue_snd_id );
107 107 break;
108 108 //
109 109 case TC_SUBTYPE_UPDT_INFO:
110 110 result = action_update_info( &TC, queue_snd_id );
111 111 close_action( &TC, result, queue_snd_id );
112 112 break;
113 113 //
114 114 case TC_SUBTYPE_EN_CAL:
115 115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 //
119 119 case TC_SUBTYPE_DIS_CAL:
120 120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 121 close_action( &TC, result, queue_snd_id );
122 122 break;
123 123 //
124 124 case TC_SUBTYPE_UPDT_TIME:
125 125 result = action_update_time( &TC );
126 126 close_action( &TC, result, queue_snd_id );
127 127 break;
128 128 //
129 129 default:
130 130 break;
131 131 }
132 132 }
133 133 }
134 134 }
135 135
136 136 //***********
137 137 // TC ACTIONS
138 138
139 139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 140 {
141 141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 142 *
143 143 * @param TC points to the TeleCommand packet that is being processed
144 144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 145 *
146 146 */
147 147
148 148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 149 return LFR_DEFAULT;
150 150 }
151 151
152 152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
153 153 {
154 154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 158 *
159 159 */
160 160
161 161 rtems_status_code status;
162 162 unsigned char requestedMode;
163 163
164 164 requestedMode = TC->dataAndCRC[1];
165 165
166 166 if ( (requestedMode != LFR_MODE_STANDBY)
167 167 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
168 168 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
169 169 {
170 170 status = RTEMS_UNSATISFIED;
171 171 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_LFR_MODE, requestedMode );
172 172 }
173 173 else
174 174 {
175 175 printf("in action_enter_mode *** enter mode %d\n", requestedMode);
176 176
177 177 status = transition_validation(requestedMode);
178 178
179 179 if ( status == LFR_SUCCESSFUL ) {
180 180 if ( lfrCurrentMode != LFR_MODE_STANDBY)
181 181 {
182 182 status = stop_current_mode();
183 183 }
184 184 if (status != RTEMS_SUCCESSFUL)
185 185 {
186 186 PRINTF("ERR *** in action_enter *** stop_current_mode\n")
187 187 }
188 188 status = enter_mode( requestedMode );
189 189 }
190 190 else
191 191 {
192 192 PRINTF("ERR *** in action_enter *** transition rejected\n")
193 193 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
194 194 }
195 195 }
196 196
197 197 return status;
198 198 }
199 199
200 200 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
201 201 {
202 202 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
203 203 *
204 204 * @param TC points to the TeleCommand packet that is being processed
205 205 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
206 206 *
207 207 * @return LFR directive status code:
208 208 * - LFR_DEFAULT
209 209 * - LFR_SUCCESSFUL
210 210 *
211 211 */
212 212
213 213 unsigned int val;
214 214 int result;
215 215 unsigned int status;
216 216 unsigned char mode;
217 217
218 218 // check LFR MODE
219 219 mode = (TC->dataAndCRC[ BYTE_POS_HK_UPDATE_INFO_PAR_SET5 ] & 0x1e) >> 1;
220 220 status = check_update_info_hk_lfr_mode( mode );
221 221 if (status != LFR_DEFAULT) // check TDS mode
222 222 {
223 223 mode = (TC->dataAndCRC[ BYTE_POS_HK_UPDATE_INFO_PAR_SET6 ] & 0xf0) >> 4;
224 224 status = check_update_info_hk_tds_mode( mode );
225 225 }
226 226 if (status != LFR_DEFAULT) // check THR mode
227 227 {
228 228 mode = (TC->dataAndCRC[ BYTE_POS_HK_UPDATE_INFO_PAR_SET6 ] & 0x0f);
229 229 status = check_update_info_hk_thr_mode( mode );
230 230 }
231 231 if (status != LFR_DEFAULT) // if the parameter check is successful
232 232 {
233 233 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
234 234 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
235 235 val++;
236 236 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
237 237 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
238 238 }
239 239
240 240 result = status;
241 241
242 242 return result;
243 243 }
244 244
245 245 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
246 246 {
247 247 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
248 248 *
249 249 * @param TC points to the TeleCommand packet that is being processed
250 250 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
251 251 *
252 252 */
253 253
254 254 int result;
255 255 unsigned char lfrMode;
256 256
257 257 result = LFR_DEFAULT;
258 258 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
259 259
260 260 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
261 261 result = LFR_DEFAULT;
262 262
263 263 return result;
264 264 }
265 265
266 266 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
267 267 {
268 268 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
269 269 *
270 270 * @param TC points to the TeleCommand packet that is being processed
271 271 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
272 272 *
273 273 */
274 274
275 275 int result;
276 276 unsigned char lfrMode;
277 277
278 278 result = LFR_DEFAULT;
279 279 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
280 280
281 281 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
282 282 result = LFR_DEFAULT;
283 283
284 284 return result;
285 285 }
286 286
287 287 int action_update_time(ccsdsTelecommandPacket_t *TC)
288 288 {
289 289 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
290 290 *
291 291 * @param TC points to the TeleCommand packet that is being processed
292 292 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
293 293 *
294 294 * @return LFR_SUCCESSFUL
295 295 *
296 296 */
297 297
298 298 unsigned int val;
299 299
300 300 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
301 301 + (TC->dataAndCRC[1] << 16)
302 302 + (TC->dataAndCRC[2] << 8)
303 303 + TC->dataAndCRC[3];
304 304 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
305 305 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
306 306 val++;
307 307 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
308 308 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
309 309 time_management_regs->ctrl = time_management_regs->ctrl | 1;
310 310
311 311 return LFR_SUCCESSFUL;
312 312 }
313 313
314 314 //*******************
315 315 // ENTERING THE MODES
316 316
317 317 int transition_validation(unsigned char requestedMode)
318 318 {
319 319 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
320 320 *
321 321 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
322 322 *
323 323 * @return LFR directive status codes:
324 324 * - LFR_SUCCESSFUL - the transition is authorized
325 325 * - LFR_DEFAULT - the transition is not authorized
326 326 *
327 327 */
328 328
329 329 int status;
330 330
331 331 switch (requestedMode)
332 332 {
333 333 case LFR_MODE_STANDBY:
334 334 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
335 335 status = LFR_DEFAULT;
336 336 }
337 337 else
338 338 {
339 339 status = LFR_SUCCESSFUL;
340 340 }
341 341 break;
342 342 case LFR_MODE_NORMAL:
343 343 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
344 344 status = LFR_DEFAULT;
345 345 }
346 346 else {
347 347 status = LFR_SUCCESSFUL;
348 348 }
349 349 break;
350 350 case LFR_MODE_BURST:
351 351 if ( lfrCurrentMode == LFR_MODE_BURST ) {
352 352 status = LFR_DEFAULT;
353 353 }
354 354 else {
355 355 status = LFR_SUCCESSFUL;
356 356 }
357 357 break;
358 358 case LFR_MODE_SBM1:
359 359 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
360 360 status = LFR_DEFAULT;
361 361 }
362 362 else {
363 363 status = LFR_SUCCESSFUL;
364 364 }
365 365 break;
366 366 case LFR_MODE_SBM2:
367 367 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
368 368 status = LFR_DEFAULT;
369 369 }
370 370 else {
371 371 status = LFR_SUCCESSFUL;
372 372 }
373 373 break;
374 374 default:
375 375 status = LFR_DEFAULT;
376 376 break;
377 377 }
378 378
379 379 return status;
380 380 }
381 381
382 382 int stop_current_mode(void)
383 383 {
384 384 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
385 385 *
386 386 * @return RTEMS directive status codes:
387 387 * - RTEMS_SUCCESSFUL - task restarted successfully
388 388 * - RTEMS_INVALID_ID - task id invalid
389 389 * - RTEMS_ALREADY_SUSPENDED - task already suspended
390 390 *
391 391 */
392 392
393 393 rtems_status_code status;
394 394
395 395 status = RTEMS_SUCCESSFUL;
396 396
397 397 // (1) mask interruptions
398 398 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
399 399 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
400 400
401 401 // (2) clear interruptions
402 402 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
403 403 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
404 404
405 405 // (3) reset registers
406 // waveform picker
406 407 reset_wfp_burst_enable(); // reset burst and enable bits
407 408 reset_wfp_status(); // reset all the status bits
408 disable_irq_on_new_ready_matrix(); // stop the spectral matrices
409 // spectral matrices
410 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
411 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
412 reset_extractSWF(); // reset the extractSWF flag to false
409 413
410 414 // <Spectral Matrices simulator>
411 415 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
412 416 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
413 417 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
414 418 // </Spectral Matrices simulator>
415 419
416 420 // suspend several tasks
417 421 if (lfrCurrentMode != LFR_MODE_STANDBY) {
418 422 status = suspend_science_tasks();
419 423 }
420 424
421 425 if (status != RTEMS_SUCCESSFUL)
422 426 {
423 427 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
424 428 }
425 429
426 430 return status;
427 431 }
428 432
429 433 int enter_mode(unsigned char mode )
430 434 {
431 435 /** This function is launched after a mode transition validation.
432 436 *
433 437 * @param mode is the mode in which LFR will be put.
434 438 *
435 439 * @return RTEMS directive status codes:
436 440 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
437 441 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
438 442 *
439 443 */
440 444
441 445 rtems_status_code status;
442 446
443 447 status = RTEMS_UNSATISFIED;
444 448
445 449 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((mode << 4) + 0x0d);
446 450 updateLFRCurrentMode();
447 451
448 452 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
449 453 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
450 454 {
451 455 #ifdef PRINT_TASK_STATISTICS
452 456 rtems_cpu_usage_reset();
453 457 maxCount = 0;
454 458 #endif
455 459 status = restart_science_tasks();
456 460 launch_waveform_picker( mode );
457 461 launch_spectral_matrix( mode );
458 462 }
459 463 else if ( mode == LFR_MODE_STANDBY )
460 464 {
461 465 #ifdef PRINT_TASK_STATISTICS
462 466 rtems_cpu_usage_report();
463 467 #endif
464 468
465 469 #ifdef PRINT_STACK_REPORT
466 470 rtems_stack_checker_report_usage();
467 471 #endif
468 472 status = stop_current_mode();
469 473 PRINTF1("maxCount = %d\n", maxCount)
470 474 }
471 475 else
472 476 {
473 477 status = RTEMS_UNSATISFIED;
474 478 }
475 479
476 480 if (status != RTEMS_SUCCESSFUL)
477 481 {
478 482 PRINTF1("in enter_mode *** ERR = %d\n", status)
479 483 status = RTEMS_UNSATISFIED;
480 484 }
481 485
482 486 return status;
483 487 }
484 488
485 489 int restart_science_tasks()
486 490 {
487 491 /** This function is used to restart all science tasks.
488 492 *
489 493 * @return RTEMS directive status codes:
490 494 * - RTEMS_SUCCESSFUL - task restarted successfully
491 495 * - RTEMS_INVALID_ID - task id invalid
492 496 * - RTEMS_INCORRECT_STATE - task never started
493 497 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
494 498 *
495 499 * Science tasks are AVF0, BPF0, WFRM, CWF3, CW2, CWF1
496 500 *
497 501 */
498 502
499 503 rtems_status_code status[6];
500 504 rtems_status_code ret;
501 505
502 506 ret = RTEMS_SUCCESSFUL;
503 507
504 508 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], 1 );
505 509 if (status[0] != RTEMS_SUCCESSFUL)
506 510 {
507 511 PRINTF1("in restart_science_task *** 0 ERR %d\n", status[0])
508 512 }
509 513
510 514 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
511 515 if (status[2] != RTEMS_SUCCESSFUL)
512 516 {
513 517 PRINTF1("in restart_science_task *** 2 ERR %d\n", status[2])
514 518 }
515 519
516 520 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
517 521 if (status[3] != RTEMS_SUCCESSFUL)
518 522 {
519 523 PRINTF1("in restart_science_task *** 3 ERR %d\n", status[3])
520 524 }
521 525
522 526 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
523 527 if (status[4] != RTEMS_SUCCESSFUL)
524 528 {
525 529 PRINTF1("in restart_science_task *** 4 ERR %d\n", status[4])
526 530 }
527 531
528 532 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
529 533 if (status[5] != RTEMS_SUCCESSFUL)
530 534 {
531 535 PRINTF1("in restart_science_task *** 5 ERR %d\n", status[5])
532 536 }
533 537
534 538 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[2] != RTEMS_SUCCESSFUL) ||
535 539 (status[3] != RTEMS_SUCCESSFUL) || (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
536 540 {
537 541 ret = RTEMS_UNSATISFIED;
538 542 }
539 543
540 544 return ret;
541 545 }
542 546
543 547 int suspend_science_tasks()
544 548 {
545 549 /** This function suspends the science tasks.
546 550 *
547 551 * @return RTEMS directive status codes:
548 552 * - RTEMS_SUCCESSFUL - task restarted successfully
549 553 * - RTEMS_INVALID_ID - task id invalid
550 554 * - RTEMS_ALREADY_SUSPENDED - task already suspended
551 555 *
552 556 */
553 557
554 558 rtems_status_code status;
555 559
556 560 status = rtems_task_suspend( Task_id[TASKID_AVF0] );
557 561 if (status != RTEMS_SUCCESSFUL)
558 562 {
559 563 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
560 564 }
561 565
562 566 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
563 567 {
564 568 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
565 569 if (status != RTEMS_SUCCESSFUL)
566 570 {
567 571 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
568 572 }
569 573 }
570 574
571 575 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
572 576 {
573 577 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
574 578 if (status != RTEMS_SUCCESSFUL)
575 579 {
576 580 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
577 581 }
578 582 }
579 583
580 584 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
581 585 {
582 586 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
583 587 if (status != RTEMS_SUCCESSFUL)
584 588 {
585 589 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
586 590 }
587 591 }
588 592
589 593 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
590 594 {
591 595 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
592 596 if (status != RTEMS_SUCCESSFUL)
593 597 {
594 598 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
595 599 }
596 600 }
597 601
598 602 return status;
599 603 }
600 604
601 605 void launch_waveform_picker( unsigned char mode )
602 606 {
603 607 int startDate;
604 608
605 609 reset_current_ring_nodes();
606 610 reset_waveform_picker_regs();
607 611 set_wfp_burst_enable_register( mode );
612
608 613 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
609 614 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
615
610 616 startDate = time_management_regs->coarse_time + 2;
611 617 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
612 618 waveform_picker_regs->start_date = startDate;
613 619 }
614 620
615 621 void launch_spectral_matrix( unsigned char mode )
616 622 {
617 623 reset_nb_sm_f0();
618 624 reset_current_sm_ring_nodes();
619 625 reset_spectral_matrix_regs();
620 626
621 enable_irq_on_new_ready_matrix();
622
627 #ifdef VHDL_DEV
628 set_irq_on_new_ready_matrix( 1 );
623 629 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
624 630 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
631 set_run_matrix_spectral( 1 );
632 #else
633 // Spectral Matrices simulator
634 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
635 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
636 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
637 #endif
625 638 }
626 639
627 void enable_irq_on_new_ready_matrix( void )
640 void set_irq_on_new_ready_matrix( unsigned char value )
641 {
642 if (value == 1)
628 643 {
629 644 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
630 645 }
631
632 void disable_irq_on_new_ready_matrix( void )
646 else
633 647 {
634 648 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
635 649 }
650 }
636 651
652 void set_run_matrix_spectral( unsigned char value )
653 {
654 if (value == 1)
655 {
656 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // 0100 set run_matrix spectral to 1
657 }
658 else
659 {
660 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // 1011 set run_matrix spectral to 0
661 }
662 }
637 663
638 664 void launch_spectral_matrix_simu( unsigned char mode )
639 665 {
640 666 reset_nb_sm_f0();
641 667 reset_current_sm_ring_nodes();
642 668 reset_spectral_matrix_regs();
643 669
644 670 // Spectral Matrices simulator
645 671 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
646 672 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
647 673 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
648 674 set_local_nb_interrupt_f0_MAX();
649 675 }
650 676
651 677 //****************
652 678 // CLOSING ACTIONS
653 679 void update_last_TC_exe(ccsdsTelecommandPacket_t *TC)
654 680 {
655 681 /** This function is used to update the HK packets statistics after a successful TC execution.
656 682 *
657 683 * @param TC points to the TC being processed
658 684 * @param time is the time used to date the TC execution
659 685 *
660 686 */
661 687
662 688 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
663 689 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
664 690 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
665 691 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
666 692 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
667 693 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
668 694 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
669 695 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
670 696 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
671 697 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = (unsigned char) (time_management_regs->coarse_time);
672 698 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = (unsigned char) (time_management_regs->fine_time>>8);
673 699 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = (unsigned char) (time_management_regs->fine_time);
674 700 }
675 701
676 702 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC )
677 703 {
678 704 /** This function is used to update the HK packets statistics after a TC rejection.
679 705 *
680 706 * @param TC points to the TC being processed
681 707 * @param time is the time used to date the TC rejection
682 708 *
683 709 */
684 710
685 711 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
686 712 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
687 713 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
688 714 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
689 715 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
690 716 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
691 717 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
692 718 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
693 719 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
694 720 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = (unsigned char) (time_management_regs->coarse_time);
695 721 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = (unsigned char) (time_management_regs->fine_time>>8);
696 722 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = (unsigned char) (time_management_regs->fine_time);
697 723 }
698 724
699 725 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
700 726 {
701 727 /** This function is the last step of the TC execution workflow.
702 728 *
703 729 * @param TC points to the TC being processed
704 730 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
705 731 * @param queue_id is the id of the RTEMS message queue used to send TM packets
706 732 * @param time is the time used to date the TC execution
707 733 *
708 734 */
709 735
710 736 unsigned int val = 0;
711 737
712 738 if (result == LFR_SUCCESSFUL)
713 739 {
714 740 if ( !( (TC->serviceType==TC_TYPE_TIME) && (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
715 741 &&
716 742 !( (TC->serviceType==TC_TYPE_GEN) && (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
717 743 )
718 744 {
719 745 send_tm_lfr_tc_exe_success( TC, queue_id );
720 746 }
721 747 update_last_TC_exe( TC );
722 748 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
723 749 val++;
724 750 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
725 751 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
726 752 }
727 753 else
728 754 {
729 755 update_last_TC_rej( TC );
730 756 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
731 757 val++;
732 758 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
733 759 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
734 760 }
735 761 }
736 762
737 763 //***************************
738 764 // Interrupt Service Routines
739 765 rtems_isr commutation_isr1( rtems_vector_number vector )
740 766 {
741 767 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
742 768 printf("In commutation_isr1 *** Error sending event to DUMB\n");
743 769 }
744 770 }
745 771
746 772 rtems_isr commutation_isr2( rtems_vector_number vector )
747 773 {
748 774 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
749 775 printf("In commutation_isr2 *** Error sending event to DUMB\n");
750 776 }
751 777 }
752 778
753 779 //****************
754 780 // OTHER FUNCTIONS
755 781 void updateLFRCurrentMode()
756 782 {
757 783 /** This function updates the value of the global variable lfrCurrentMode.
758 784 *
759 785 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
760 786 *
761 787 */
762 788 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
763 789 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
764 790 }
765 791
@@ -1,1236 +1,1363
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //*****************
13 13 // waveform headers
14 14 // SWF
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
16 16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
17 17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
18 18 // CWF
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[ NB_PACKETS_PER_GROUP_OF_CWF ];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[ NB_PACKETS_PER_GROUP_OF_CWF ];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[ NB_PACKETS_PER_GROUP_OF_CWF ];
22 22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[ NB_PACKETS_PER_GROUP_OF_CWF ];
23 23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[ NB_PACKETS_PER_GROUP_OF_CWF_LIGHT ];
24 24
25 25 //**************
26 26 // waveform ring
27 27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
28 28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
29 29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
30 30 ring_node *current_ring_node_f0;
31 31 ring_node *ring_node_to_send_swf_f0;
32 32 ring_node *current_ring_node_f1;
33 33 ring_node *ring_node_to_send_swf_f1;
34 34 ring_node *ring_node_to_send_cwf_f1;
35 35 ring_node *current_ring_node_f2;
36 36 ring_node *ring_node_to_send_swf_f2;
37 37 ring_node *ring_node_to_send_cwf_f2;
38 38
39 39 bool extractSWF = false;
40 bool swf_f0_ready = false;
41 bool swf_f1_ready = false;
42 bool swf_f2_ready = false;
40 43
41 int wf_snap_f1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
44 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
45
46 //*********************
47 // Interrupt SubRoutine
48
49 void reset_extractSWF( void )
50 {
51 extractSWF = false;
52 swf_f0_ready = false;
53 swf_f1_ready = false;
54 swf_f2_ready = false;
55 }
42 56
43 57 rtems_isr waveforms_isr( rtems_vector_number vector )
44 58 {
45 59 /** This is the interrupt sub routine called by the waveform picker core.
46 60 *
47 61 * This ISR launch different actions depending mainly on two pieces of information:
48 62 * 1. the values read in the registers of the waveform picker.
49 63 * 2. the current LFR mode.
50 64 *
51 65 */
52 66
67 rtems_status_code status;
53 68 static unsigned char nb_swf = 0;
54 69
55 70 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
56 71 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
57 72 { // in modes other than STANDBY and BURST, send the CWF_F3 data
58 73 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
59 74 // (1) change the receiving buffer for the waveform picker
60 75 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
61 76 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_b);
62 77 }
63 78 else {
64 79 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a);
65 80 }
66 81 // (2) send an event for the waveforms transmission
67 82 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
68 83 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
69 84 }
70 85 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
71 86 }
72 87 }
73 88
74 89 switch(lfrCurrentMode)
75 90 {
76 91 //********
77 92 // STANDBY
78 93 case(LFR_MODE_STANDBY):
79 94 break;
80 95
81 96 //******
82 97 // NORMAL
83 98 case(LFR_MODE_NORMAL):
84 99 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
85 100 {
86 101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
87 102 }
88 103 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
89 104 {
90 105 // change F0 ring node
91 106 ring_node_to_send_swf_f0 = current_ring_node_f0;
92 107 current_ring_node_f0 = current_ring_node_f0->next;
93 108 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
94 109 // change F1 ring node
95 110 ring_node_to_send_swf_f1 = current_ring_node_f1;
96 111 current_ring_node_f1 = current_ring_node_f1->next;
97 112 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
98 113 // change F2 ring node
99 114 ring_node_to_send_swf_f2 = current_ring_node_f2;
100 115 current_ring_node_f2 = current_ring_node_f2->next;
101 116 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
102 117 //
103 118 // if (nb_swf < 2)
104 119 if (true)
105 120 {
106 121 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
107 122 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
108 123 }
109 124 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
110 125 nb_swf = nb_swf + 1;
111 126 }
112 127 else
113 128 {
114 129 reset_wfp_burst_enable();
115 130 nb_swf = 0;
116 131 }
117 132
118 133 }
119 134
120 135 break;
121 136
122 137 //******
123 138 // BURST
124 139 case(LFR_MODE_BURST):
125 140 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
126 141 // (1) change the receiving buffer for the waveform picker
127 142 ring_node_to_send_cwf_f2 = current_ring_node_f2;
128 143 current_ring_node_f2 = current_ring_node_f2->next;
129 144 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
130 145 // (2) send an event for the waveforms transmission
131 146 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
132 147 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
133 148 }
134 149 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
135 150 }
136 151 break;
137 152
138 153 //*****
139 154 // SBM1
140 155 case(LFR_MODE_SBM1):
141 156 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
142 157 // (0) launch snapshot extraction if needed
143 158 if (extractSWF == true)
144 159 {
145 160 ring_node_to_send_swf_f1 = current_ring_node_f1;
146 if (rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
147 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
148 }
161 // extract the snapshot
162 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
149 163 extractSWF = false;
164 swf_f1_ready = true;
150 165 }
151 166 // (1) change the receiving buffer for the waveform picker
152 167 ring_node_to_send_cwf_f1 = current_ring_node_f1;
153 168 current_ring_node_f1 = current_ring_node_f1->next;
154 169 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
155 170 // (2) send an event for the the CWF1 task for transmission
156 if (rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 ) != RTEMS_SUCCESSFUL) {
157 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
171 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
172 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
173 if (swf_f0_ready == true)
174 {
175 extractSWF = true;
176 swf_f0_ready = false;
158 177 }
159 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
178 if ((swf_f1_ready == true) && (swf_f2_ready == true))
179 {
180 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
181 swf_f1_ready = false;
182 swf_f2_ready = false;
183 }
160 184 }
161 185 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
162 extractSWF = true;
186 swf_f0_ready = true;
163 187 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
164 188 }
165 189 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
166 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 ) != RTEMS_SUCCESSFUL) {
167 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
168 }
190 swf_f2_ready = true;
169 191 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
170 192 }
171 193 break;
172 194
173 195 //*****
174 196 // SBM2
175 197 case(LFR_MODE_SBM2):
176 198 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
199 // (0) launch snapshot extraction if needed
200 if (extractSWF == true)
201 {
202 ring_node_to_send_swf_f2 = current_ring_node_f2;
203 // extract the snapshot
204 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM2 );
205 // send the snapshot when build, SWBD priority < WFRM priority
206 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
207 extractSWF = false;
208 }
177 209 // (1) change the receiving buffer for the waveform picker
178 210 ring_node_to_send_cwf_f2 = current_ring_node_f2;
179 211 current_ring_node_f2 = current_ring_node_f2->next;
180 212 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
181 213 // (2) send an event for the waveforms transmission
182 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
183 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
214 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
215 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
216 // (3) check whether swf_fo and swf_f& are ready or not
217 if (swf_f0_ready && swf_f1_ready)
218 {
219 extractSWF = true;
220 swf_f0_ready = false;
221 swf_f1_ready = false;
184 222 }
185 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
186 223 }
187 224 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
188 ring_node_to_send_swf_f2 = current_ring_node_f2->previous;
225 swf_f0_ready = true;
226 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
189 227 }
190 228 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
191 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
192 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
193 }
194 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
229 swf_f1_ready = true;
230 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
195 231 }
196 232 break;
197 233
198 234 //********
199 235 // DEFAULT
200 236 default:
201 237 break;
202 238 }
203 239 }
204 240
241 //************
242 // RTEMS TASKS
243
205 244 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
206 245 {
207 246 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
208 247 *
209 248 * @param unused is the starting argument of the RTEMS task
210 249 *
211 250 * The following data packets are sent by this task:
212 251 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
213 252 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
214 253 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
215 254 *
216 255 */
217 256
218 257 rtems_event_set event_out;
219 258 rtems_id queue_id;
220 259 rtems_status_code status;
221 260
222 261 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
223 262 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
224 263 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
225 264
226 265 init_waveforms();
227 266
228 267 status = get_message_queue_id_send( &queue_id );
229 268 if (status != RTEMS_SUCCESSFUL)
230 269 {
231 270 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
232 271 }
233 272
234 273 BOOT_PRINTF("in WFRM ***\n")
235 274
236 275 while(1){
237 276 // wait for an RTEMS_EVENT
238 277 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
239 278 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
240 279 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
241 280 if (event_out == RTEMS_EVENT_MODE_NORMAL)
242 281 {
243 PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
282 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
244 283 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
245 284 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
246 285 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
247 286 }
248 287 if (event_out == RTEMS_EVENT_MODE_SBM1)
249 288 {
250 PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
289 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
251 290 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
252 send_waveform_SWF((volatile int*) wf_snap_f1_extracted , SID_NORM_SWF_F1, headerSWF_F1, queue_id);
291 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F1, headerSWF_F1, queue_id);
253 292 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
254 293 }
294 if (event_out == RTEMS_EVENT_MODE_SBM2)
295 {
296 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
297 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
298 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
299 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F2, headerSWF_F2, queue_id);
300 }
255 301 }
256 302 }
257 303
258 304 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
259 305 {
260 306 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
261 307 *
262 308 * @param unused is the starting argument of the RTEMS task
263 309 *
264 310 * The following data packet is sent by this task:
265 311 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
266 312 *
267 313 */
268 314
269 315 rtems_event_set event_out;
270 316 rtems_id queue_id;
271 317 rtems_status_code status;
272 318
273 319 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
274 320 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
275 321
276 322 status = get_message_queue_id_send( &queue_id );
277 323 if (status != RTEMS_SUCCESSFUL)
278 324 {
279 325 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
280 326 }
281 327
282 328 BOOT_PRINTF("in CWF3 ***\n")
283 329
284 330 while(1){
285 331 // wait for an RTEMS_EVENT
286 332 rtems_event_receive( RTEMS_EVENT_0,
287 333 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
288 334 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
289 335 {
290 336 PRINTF("send CWF_LONG_F3\n")
291 337 }
292 338 else
293 339 {
294 340 PRINTF("send CWF_F3 (light)\n")
295 341 }
296 342 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
297 343 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
298 344 {
299 345 send_waveform_CWF( wf_cont_f3_b, SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
300 346 }
301 347 else
302 348 {
303 349 send_waveform_CWF3_light( wf_cont_f3_b, headerCWF_F3_light, queue_id );
304 350 }
305 351 }
306 352 else
307 353 {
308 354 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
309 355 {
310 356 send_waveform_CWF( wf_cont_f3_a, SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
311 357 }
312 358 else
313 359 {
314 360 send_waveform_CWF3_light( wf_cont_f3_a, headerCWF_F3_light, queue_id );
315 361 }
316 362
317 363 }
318 364 }
319 365 }
320 366
321 367 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
322 368 {
323 369 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
324 370 *
325 371 * @param unused is the starting argument of the RTEMS task
326 372 *
327 373 * The following data packet is sent by this function:
328 374 * - TM_LFR_SCIENCE_BURST_CWF_F2
329 375 * - TM_LFR_SCIENCE_SBM2_CWF_F2
330 376 *
331 377 */
332 378
333 379 rtems_event_set event_out;
334 380 rtems_id queue_id;
335 381 rtems_status_code status;
336 382
337 383 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
338 384 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
339 385
340 386 status = get_message_queue_id_send( &queue_id );
341 387 if (status != RTEMS_SUCCESSFUL)
342 388 {
343 389 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
344 390 }
345 391
346 392 BOOT_PRINTF("in CWF2 ***\n")
347 393
348 394 while(1){
349 395 // wait for an RTEMS_EVENT
350 396 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
351 397 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
352 398 if (event_out == RTEMS_EVENT_MODE_BURST)
353 399 {
354 400 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
355 401 }
356 402 if (event_out == RTEMS_EVENT_MODE_SBM2)
357 403 {
358 404 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
359 405 }
360 406 }
361 407 }
362 408
363 409 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
364 410 {
365 411 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
366 412 *
367 413 * @param unused is the starting argument of the RTEMS task
368 414 *
369 415 * The following data packet is sent by this function:
370 416 * - TM_LFR_SCIENCE_SBM1_CWF_F1
371 417 *
372 418 */
373 419
374 420 rtems_event_set event_out;
375 421 rtems_id queue_id;
376 422 rtems_status_code status;
377 423
378 424 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
379 425
380 426 status = get_message_queue_id_send( &queue_id );
381 427 if (status != RTEMS_SUCCESSFUL)
382 428 {
383 429 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
384 430 }
385 431
386 432 BOOT_PRINTF("in CWF1 ***\n")
387 433
388 434 while(1){
389 435 // wait for an RTEMS_EVENT
390 436 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
391 437 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
392 438 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
393 439 }
394 440 }
395 441
396 442 rtems_task swbd_task(rtems_task_argument argument)
397 443 {
398 444 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
399 445 *
400 446 * @param unused is the starting argument of the RTEMS task
401 447 *
402 448 */
403 449
404 450 rtems_event_set event_out;
405 451
406 452 BOOT_PRINTF("in SWBD ***\n")
407 453
408 454 while(1){
409 455 // wait for an RTEMS_EVENT
410 rtems_event_receive( RTEMS_EVENT_0,
456 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
411 457 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
412 build_snapshot_from_ring();
458 if (event_out == RTEMS_EVENT_MODE_SBM1)
459 {
460 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
461 }
462 else if (event_out == RTEMS_EVENT_MODE_SBM2)
463 {
464 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
465 }
466 else
467 {
468 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
469 }
413 470 }
414 471 }
415 472
416 473 //******************
417 474 // general functions
418 475 void init_waveforms( void )
419 476 {
420 477 int i = 0;
421 478
422 479 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
423 480 {
424 481 //***
425 482 // F0
426 483 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x88887777; //
427 484 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111; //
428 485 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0x44443333; //
429 486
430 487 //***
431 488 // F1
432 489 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x22221111;
433 490 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x44443333;
434 491 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
435 492
436 493 //***
437 494 // F2
438 495 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x44443333;
439 496 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111;
440 497 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
441 498
442 499 //***
443 500 // F3
444 501 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 0 ] = val1;
445 502 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 1 ] = val2;
446 503 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 2 ] = 0xaaaa0000;
447 504 }
448 505 }
449 506
450 507 void init_waveform_rings( void )
451 508 {
452 509 unsigned char i;
453 510
454 511 // F0 RING
455 512 waveform_ring_f0[0].next = (ring_node*) &waveform_ring_f0[1];
456 513 waveform_ring_f0[0].previous = (ring_node*) &waveform_ring_f0[NB_RING_NODES_F0-1];
457 514 waveform_ring_f0[0].buffer_address = (int) &wf_snap_f0[0][0];
458 515
459 516 waveform_ring_f0[NB_RING_NODES_F0-1].next = (ring_node*) &waveform_ring_f0[0];
460 517 waveform_ring_f0[NB_RING_NODES_F0-1].previous = (ring_node*) &waveform_ring_f0[NB_RING_NODES_F0-2];
461 518 waveform_ring_f0[NB_RING_NODES_F0-1].buffer_address = (int) &wf_snap_f0[NB_RING_NODES_F0-1][0];
462 519
463 520 for(i=1; i<NB_RING_NODES_F0-1; i++)
464 521 {
465 522 waveform_ring_f0[i].next = (ring_node*) &waveform_ring_f0[i+1];
466 523 waveform_ring_f0[i].previous = (ring_node*) &waveform_ring_f0[i-1];
467 524 waveform_ring_f0[i].buffer_address = (int) &wf_snap_f0[i][0];
468 525 }
469 526
470 527 // F1 RING
471 528 waveform_ring_f1[0].next = (ring_node*) &waveform_ring_f1[1];
472 529 waveform_ring_f1[0].previous = (ring_node*) &waveform_ring_f1[NB_RING_NODES_F1-1];
473 530 waveform_ring_f1[0].buffer_address = (int) &wf_snap_f1[0][0];
474 531
475 532 waveform_ring_f1[NB_RING_NODES_F1-1].next = (ring_node*) &waveform_ring_f1[0];
476 533 waveform_ring_f1[NB_RING_NODES_F1-1].previous = (ring_node*) &waveform_ring_f1[NB_RING_NODES_F1-2];
477 534 waveform_ring_f1[NB_RING_NODES_F1-1].buffer_address = (int) &wf_snap_f1[NB_RING_NODES_F1-1][0];
478 535
479 536 for(i=1; i<NB_RING_NODES_F1-1; i++)
480 537 {
481 538 waveform_ring_f1[i].next = (ring_node*) &waveform_ring_f1[i+1];
482 539 waveform_ring_f1[i].previous = (ring_node*) &waveform_ring_f1[i-1];
483 540 waveform_ring_f1[i].buffer_address = (int) &wf_snap_f1[i][0];
484 541 }
485 542
486 543 // F2 RING
487 544 waveform_ring_f2[0].next = (ring_node*) &waveform_ring_f2[1];
488 545 waveform_ring_f2[0].previous = (ring_node*) &waveform_ring_f2[NB_RING_NODES_F2-1];
489 546 waveform_ring_f2[0].buffer_address = (int) &wf_snap_f2[0][0];
490 547
491 548 waveform_ring_f2[NB_RING_NODES_F2-1].next = (ring_node*) &waveform_ring_f2[0];
492 549 waveform_ring_f2[NB_RING_NODES_F2-1].previous = (ring_node*) &waveform_ring_f2[NB_RING_NODES_F2-2];
493 550 waveform_ring_f2[NB_RING_NODES_F2-1].buffer_address = (int) &wf_snap_f2[NB_RING_NODES_F2-1][0];
494 551
495 552 for(i=1; i<NB_RING_NODES_F2-1; i++)
496 553 {
497 554 waveform_ring_f2[i].next = (ring_node*) &waveform_ring_f2[i+1];
498 555 waveform_ring_f2[i].previous = (ring_node*) &waveform_ring_f2[i-1];
499 556 waveform_ring_f2[i].buffer_address = (int) &wf_snap_f2[i][0];
500 557 }
501 558
502 559 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
503 560 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
504 561 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
505 562
506 563 }
507 564
508 565 void reset_current_ring_nodes( void )
509 566 {
510 567 current_ring_node_f0 = waveform_ring_f0;
511 568 ring_node_to_send_swf_f0 = waveform_ring_f0;
512 569
513 570 current_ring_node_f1 = waveform_ring_f1;
514 571 ring_node_to_send_cwf_f1 = waveform_ring_f1;
515 572 ring_node_to_send_swf_f1 = waveform_ring_f1;
516 573
517 574 current_ring_node_f2 = waveform_ring_f2;
518 575 ring_node_to_send_cwf_f2 = waveform_ring_f2;
519 576 ring_node_to_send_swf_f2 = waveform_ring_f2;
520 577 }
521 578
522 579 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
523 580 {
524 581 unsigned char i;
525 582
526 583 for (i=0; i<7; i++)
527 584 {
528 585 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
529 586 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
530 587 headerSWF[ i ].reserved = DEFAULT_RESERVED;
531 588 headerSWF[ i ].userApplication = CCSDS_USER_APP;
532 589 headerSWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
533 590 headerSWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
534 591 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
535 592 if (i == 6)
536 593 {
537 594 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
538 595 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
539 596 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
540 597 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
541 598 }
542 599 else
543 600 {
544 601 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
545 602 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
546 603 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
547 604 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
548 605 }
549 606 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
550 607 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
551 608 headerSWF[ i ].pktNr = i+1; // PKT_NR
552 609 // DATA FIELD HEADER
553 610 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
554 611 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
555 612 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
556 613 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
557 614 // AUXILIARY DATA HEADER
558 615 headerSWF[ i ].time[0] = 0x00;
559 616 headerSWF[ i ].time[0] = 0x00;
560 617 headerSWF[ i ].time[0] = 0x00;
561 618 headerSWF[ i ].time[0] = 0x00;
562 619 headerSWF[ i ].time[0] = 0x00;
563 620 headerSWF[ i ].time[0] = 0x00;
564 621 headerSWF[ i ].sid = sid;
565 622 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
566 623 }
567 624 return LFR_SUCCESSFUL;
568 625 }
569 626
570 627 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
571 628 {
572 629 unsigned int i;
573 630
574 631 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++)
575 632 {
576 633 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
577 634 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
578 635 headerCWF[ i ].reserved = DEFAULT_RESERVED;
579 636 headerCWF[ i ].userApplication = CCSDS_USER_APP;
580 637 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
581 638 {
582 639 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2 >> 8);
583 640 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2);
584 641 }
585 642 else
586 643 {
587 644 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
588 645 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
589 646 }
590 647 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
591 648 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
592 649 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
593 650 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
594 651 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
595 652 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
596 653 // DATA FIELD HEADER
597 654 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
598 655 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
599 656 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
600 657 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
601 658 // AUXILIARY DATA HEADER
602 659 headerCWF[ i ].sid = sid;
603 660 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
604 661 headerCWF[ i ].time[0] = 0x00;
605 662 headerCWF[ i ].time[0] = 0x00;
606 663 headerCWF[ i ].time[0] = 0x00;
607 664 headerCWF[ i ].time[0] = 0x00;
608 665 headerCWF[ i ].time[0] = 0x00;
609 666 headerCWF[ i ].time[0] = 0x00;
610 667 }
611 668 return LFR_SUCCESSFUL;
612 669 }
613 670
614 671 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
615 672 {
616 673 unsigned int i;
617 674
618 675 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++)
619 676 {
620 677 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
621 678 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
622 679 headerCWF[ i ].reserved = DEFAULT_RESERVED;
623 680 headerCWF[ i ].userApplication = CCSDS_USER_APP;
624 681
625 682 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
626 683 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
627 684
628 685 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
629 686 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
630 687 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
631 688 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
632 689 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
633 690
634 691 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
635 692 // DATA FIELD HEADER
636 693 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
637 694 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
638 695 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
639 696 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
640 697 // AUXILIARY DATA HEADER
641 698 headerCWF[ i ].sid = SID_NORM_CWF_F3;
642 699 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
643 700 headerCWF[ i ].time[0] = 0x00;
644 701 headerCWF[ i ].time[0] = 0x00;
645 702 headerCWF[ i ].time[0] = 0x00;
646 703 headerCWF[ i ].time[0] = 0x00;
647 704 headerCWF[ i ].time[0] = 0x00;
648 705 headerCWF[ i ].time[0] = 0x00;
649 706 }
650 707 return LFR_SUCCESSFUL;
651 708 }
652 709
653 710 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
654 711 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
655 712 {
656 713 /** This function sends SWF CCSDS packets (F2, F1 or F0).
657 714 *
658 715 * @param waveform points to the buffer containing the data that will be send.
659 716 * @param sid is the source identifier of the data that will be sent.
660 717 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
661 718 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
662 719 * contain information to setup the transmission of the data packets.
663 720 *
664 721 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
665 722 *
666 723 */
667 724
668 725 unsigned int i;
669 726 int ret;
670 727 unsigned int coarseTime;
671 728 unsigned int fineTime;
672 729 rtems_status_code status;
673 730 spw_ioctl_pkt_send spw_ioctl_send_SWF;
674 731
675 732 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
676 733 spw_ioctl_send_SWF.options = 0;
677 734
678 735 ret = LFR_DEFAULT;
679 736
680 DEBUG_PRINTF1("sid = %d, ", sid)
681 DEBUG_PRINTF2("coarse = %x, fine = %x\n", waveform[0], waveform[1])
682
683 737 coarseTime = waveform[0];
684 738 fineTime = waveform[1];
685 739
686 740 for (i=0; i<7; i++) // send waveform
687 741 {
688 742 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
689 743 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
690 744 // BUILD THE DATA
691 745 if (i==6) {
692 746 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
693 747 }
694 748 else {
695 749 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
696 750 }
697 751 // SET PACKET SEQUENCE COUNTER
698 752 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
699 753 // SET PACKET TIME
700 754 compute_acquisition_time( coarseTime, fineTime, sid, i, headerSWF[ i ].acquisitionTime );
701 755 //
702 756 headerSWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
703 757 headerSWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
704 758 headerSWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
705 759 headerSWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
706 760 headerSWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
707 761 headerSWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
708 762 // SEND PACKET
709 763 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
710 764 if (status != RTEMS_SUCCESSFUL) {
711 765 printf("%d-%d, ERR %d\n", sid, i, (int) status);
712 766 ret = LFR_DEFAULT;
713 767 }
714 768 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
715 769 }
716 770
717 771 return ret;
718 772 }
719 773
720 774 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
721 775 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
722 776 {
723 777 /** This function sends CWF CCSDS packets (F2, F1 or F0).
724 778 *
725 779 * @param waveform points to the buffer containing the data that will be send.
726 780 * @param sid is the source identifier of the data that will be sent.
727 781 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
728 782 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
729 783 * contain information to setup the transmission of the data packets.
730 784 *
731 785 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
732 786 *
733 787 */
734 788
735 789 unsigned int i;
736 790 int ret;
737 791 unsigned int coarseTime;
738 792 unsigned int fineTime;
739 793 rtems_status_code status;
740 794 spw_ioctl_pkt_send spw_ioctl_send_CWF;
741 795
742 796 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
743 797 spw_ioctl_send_CWF.options = 0;
744 798
745 799 ret = LFR_DEFAULT;
746 800
747 801 coarseTime = waveform[0];
748 802 fineTime = waveform[1];
749 803
750 804 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
751 805 {
752 806 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
753 807 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
754 808 // BUILD THE DATA
755 809 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
756 810 // SET PACKET SEQUENCE COUNTER
757 811 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
758 812 // SET PACKET TIME
759 813 compute_acquisition_time( coarseTime, fineTime, sid, i, headerCWF[ i ].acquisitionTime);
760 814 //
761 815 headerCWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
762 816 headerCWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
763 817 headerCWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
764 818 headerCWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
765 819 headerCWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
766 820 headerCWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
767 821 // SEND PACKET
768 822 if (sid == SID_NORM_CWF_LONG_F3)
769 823 {
770 824 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
771 825 if (status != RTEMS_SUCCESSFUL) {
772 826 printf("%d-%d, ERR %d\n", sid, i, (int) status);
773 827 ret = LFR_DEFAULT;
774 828 }
775 829 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
776 830 }
777 831 else
778 832 {
779 833 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
780 834 if (status != RTEMS_SUCCESSFUL) {
781 835 printf("%d-%d, ERR %d\n", sid, i, (int) status);
782 836 ret = LFR_DEFAULT;
783 837 }
784 838 }
785 839 }
786 840
787 841 return ret;
788 842 }
789 843
790 844 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
791 845 {
792 846 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
793 847 *
794 848 * @param waveform points to the buffer containing the data that will be send.
795 849 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
796 850 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
797 851 * contain information to setup the transmission of the data packets.
798 852 *
799 853 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
800 854 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
801 855 *
802 856 */
803 857
804 858 unsigned int i;
805 859 int ret;
806 860 unsigned int coarseTime;
807 861 unsigned int fineTime;
808 862 rtems_status_code status;
809 863 spw_ioctl_pkt_send spw_ioctl_send_CWF;
810 864 char *sample;
811 865
812 866 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
813 867 spw_ioctl_send_CWF.options = 0;
814 868
815 869 ret = LFR_DEFAULT;
816 870
817 871 //**********************
818 872 // BUILD CWF3_light DATA
819 873 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
820 874 {
821 875 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
822 876 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
823 877 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
824 878 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
825 879 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
826 880 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
827 881 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
828 882 }
829 883
830 884 coarseTime = waveform[0];
831 885 fineTime = waveform[1];
832 886
833 887 //*********************
834 888 // SEND CWF3_light DATA
835 889 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
836 890 {
837 891 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
838 892 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
839 893 // BUILD THE DATA
840 894 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
841 895 // SET PACKET SEQUENCE COUNTER
842 896 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
843 897 // SET PACKET TIME
844 898 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, headerCWF[ i ].acquisitionTime );
845 899 //
846 900 headerCWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
847 901 headerCWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
848 902 headerCWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
849 903 headerCWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
850 904 headerCWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
851 905 headerCWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
852 906 // SEND PACKET
853 907 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
854 908 if (status != RTEMS_SUCCESSFUL) {
855 909 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
856 910 ret = LFR_DEFAULT;
857 911 }
858 912 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
859 913 }
860 914
861 915 return ret;
862 916 }
863 917
864 918 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
865 919 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
866 920 {
867 921 unsigned long long int acquisitionTimeAsLong;
868 922 unsigned char localAcquisitionTime[6];
869 923 double deltaT;
870 924
871 925 deltaT = 0.;
872 926
873 927 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 8 );
874 928 localAcquisitionTime[1] = (unsigned char) ( coarseTime );
875 929 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 24 );
876 930 localAcquisitionTime[3] = (unsigned char) ( coarseTime >> 16 );
877 931 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 24 );
878 932 localAcquisitionTime[5] = (unsigned char) ( fineTime >> 16 );
879 933
880 934 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
881 935 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
882 936 + ( localAcquisitionTime[2] << 24 )
883 937 + ( localAcquisitionTime[3] << 16 )
884 938 + ( localAcquisitionTime[4] << 8 )
885 939 + ( localAcquisitionTime[5] );
886 940
887 941 switch( sid )
888 942 {
889 943 case SID_NORM_SWF_F0:
890 944 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
891 945 break;
892 946
893 947 case SID_NORM_SWF_F1:
894 948 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
895 949 break;
896 950
897 951 case SID_NORM_SWF_F2:
898 952 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
899 953 break;
900 954
901 955 case SID_SBM1_CWF_F1:
902 956 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
903 957 break;
904 958
905 959 case SID_SBM2_CWF_F2:
906 960 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
907 961 break;
908 962
909 963 case SID_BURST_CWF_F2:
910 964 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
911 965 break;
912 966
913 967 case SID_NORM_CWF_F3:
914 968 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
915 969 break;
916 970
917 971 case SID_NORM_CWF_LONG_F3:
918 972 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
919 973 break;
920 974
921 975 default:
922 976 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
923 977 deltaT = 0.;
924 978 break;
925 979 }
926 980
927 981 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
928 982 //
929 983 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
930 984 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
931 985 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
932 986 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
933 987 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
934 988 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
935 989
936 990 }
937 991
938 void build_snapshot_from_ring( void )
992 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
939 993 {
940 994 unsigned int i;
941 995 unsigned long long int centerTime_asLong;
942 996 unsigned long long int acquisitionTimeF0_asLong;
943 unsigned long long int acquisitionTimeF1_asLong;
944 unsigned char *acquisitionTimeF0;
945 unsigned char *acquisitionTimeF1;
997 unsigned long long int acquisitionTime_asLong;
998 unsigned long long int bufferAcquisitionTime_asLong;
946 999 unsigned char *ptr1;
947 1000 unsigned char *ptr2;
1001 unsigned char nb_ring_nodes;
1002 unsigned long long int frequency_asLong;
1003 unsigned long long int nbTicksPerSample_asLong;
1004 unsigned long long int nbSamplesPart1_asLong;
1005 unsigned long long int sampleOffset_asLong;
948 1006
949 unsigned int deltaT;
1007 unsigned int deltaT_F0;
1008 unsigned int deltaT_F1;
1009 unsigned long long int deltaT_F2;
950 1010
951 deltaT = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
1011 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
1012 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
1013 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
1014 sampleOffset_asLong = 0x00;
952 1015
953 acquisitionTimeF0 = (unsigned char*) current_ring_node_f0->buffer_address;
954 acquisitionTimeF1 = (unsigned char*) ring_node_to_send_cwf_f1->buffer_address;
1016 // get the f0 acquisition time
1017 build_acquisition_time( &acquisitionTimeF0_asLong, current_ring_node_f0 );
1018 PRINTF1("acquisitionTimeF0_asLong %llx \n", acquisitionTimeF0_asLong)
1019
1020 // compute the central reference time
1021 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
1022 PRINTF1("centerTime_asLong %llx \n", centerTime_asLong)
955 1023
956 acquisitionTimeF0_asLong = 0x00;
957 acquisitionTimeF1_asLong = 0x00;
958 acquisitionTimeF0_asLong = ( acquisitionTimeF0[0] << 24 )
959 + ( acquisitionTimeF0[1] << 16 )
960 + ( (unsigned long long int) acquisitionTimeF0[2] << 40 )
961 + ( (unsigned long long int) acquisitionTimeF0[3] << 32 )
962 + ( acquisitionTimeF0[4] << 8 )
963 + ( acquisitionTimeF0[5] );
1024 // compute the acquisition time of the current snapshot
1025 switch(frequencyChannel)
1026 {
1027 case 1: // 1 is for F1 = 4096 Hz
1028 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
1029 nb_ring_nodes = NB_RING_NODES_F1;
1030 frequency_asLong = 4096;
1031 nbTicksPerSample_asLong = 16; // 65536 / 4096;
1032 break;
1033 case 2: // 2 is for F2 = 256 Hz
1034 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
1035 nb_ring_nodes = NB_RING_NODES_F2;
1036 frequency_asLong = 256;
1037 nbTicksPerSample_asLong = 256; // 65536 / 256;
1038 break;
1039 default:
1040 acquisitionTime_asLong = centerTime_asLong;
1041 frequency_asLong = 256;
1042 nbTicksPerSample_asLong = 256;
1043 break;
1044 }
1045 PRINTF1("acquisitionTime_asLong %llx\n", acquisitionTime_asLong)
964 1046
965 acquisitionTimeF1_asLong = ( acquisitionTimeF1[0] << 24 )
966 + ( acquisitionTimeF1[1] << 16 )
967 + ( (unsigned long long int) acquisitionTimeF1[2] << 40 )
968 + ( (unsigned long long int) acquisitionTimeF1[3] << 32 )
969 + ( acquisitionTimeF1[4] << 8 )
970 + ( acquisitionTimeF1[5] );
1047 //****************************************************************************
1048 // 1) search the ring_node with the acquisition time <= acquisitionTime_asLong
1049 for (i=0; i<nb_ring_nodes; i++)
1050 {
1051 PRINTF1("%d ... ", i)
1052 build_acquisition_time( &bufferAcquisitionTime_asLong, ring_node_to_send );
1053 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
1054 {
1055 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
1056 break;
1057 }
1058 ring_node_to_send = ring_node_to_send->previous;
1059 }
971 1060
972 centerTime_asLong = acquisitionTimeF0_asLong + deltaT;
1061 //*************************************************
1062 // (2) once the buffer is found, build the snapshot
1063
1064 // compute the number of samples to take in the current buffer
1065 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
1066 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
1067 PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1 = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong)
973 1068
974 ptr1 = (unsigned char*) &acquisitionTimeF1_asLong;
975 ptr2 = (unsigned char*) wf_snap_f1_extracted;
1069 // compute the final acquisition time
1070 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
1071 sampleOffset_asLong * nbTicksPerSample_asLong;
1072 PRINTF1("FINAL acquisitionTime_asLong %llx\n\n", acquisitionTime_asLong)
976 1073
1074 // copy the acquisition time at the beginning of the extrated snapshot
1075 ptr1 = (unsigned char*) &acquisitionTime_asLong;
1076 ptr2 = (unsigned char*) wf_snap_extracted;
977 1077 ptr2[0] = ptr1[ 2 + 2 ];
978 1078 ptr2[1] = ptr1[ 3 + 2 ];
979 1079 ptr2[2] = ptr1[ 0 + 2 ];
980 1080 ptr2[3] = ptr1[ 1 + 2 ];
981 1081 ptr2[4] = ptr1[ 4 + 2 ];
982 1082 ptr2[5] = ptr1[ 5 + 2 ];
983 1083
984 for (i=0; i<(NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1084 // re set the synchronization bit
1085
1086
1087 // copy the part 1 of the snapshot in the extracted buffer
1088 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1089 {
1090 wf_snap_extracted[i + TIME_OFFSET] =
1091 ((int*) ring_node_to_send->buffer_address)[i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) + TIME_OFFSET];
1092 }
1093 // copy the part 2 of the snapshot in the extracted buffer
1094 ring_node_to_send = ring_node_to_send->next;
1095 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
985 1096 {
986 wf_snap_f1_extracted[i + TIME_OFFSET] = ((int*)(ring_node_to_send_cwf_f1->buffer_address))[i + TIME_OFFSET];
1097 wf_snap_extracted[i + TIME_OFFSET] =
1098 ((int*) ring_node_to_send->buffer_address)[(i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) + TIME_OFFSET];
1099 }
987 1100 }
1101
1102 void build_acquisition_time( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1103 {
1104 unsigned char *acquisitionTimeCharPtr;
1105
1106 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1107
1108 *acquisitionTimeAslong = 0x00;
1109 *acquisitionTimeAslong = ( acquisitionTimeCharPtr[0] << 24 )
1110 + ( acquisitionTimeCharPtr[1] << 16 )
1111 + ( (unsigned long long int) (acquisitionTimeCharPtr[2] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1112 + ( (unsigned long long int) acquisitionTimeCharPtr[3] << 32 )
1113 + ( acquisitionTimeCharPtr[4] << 8 )
1114 + ( acquisitionTimeCharPtr[5] );
988 1115 }
989 1116
990 1117 //**************
991 1118 // wfp registers
992 1119 void reset_wfp_burst_enable(void)
993 1120 {
994 1121 /** This function resets the waveform picker burst_enable register.
995 1122 *
996 1123 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
997 1124 *
998 1125 */
999 1126
1000 1127 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1001 1128 }
1002 1129
1003 1130 void reset_wfp_status( void )
1004 1131 {
1005 1132 /** This function resets the waveform picker status register.
1006 1133 *
1007 1134 * All status bits are set to 0 [new_err full_err full].
1008 1135 *
1009 1136 */
1010 1137
1011 1138 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1012 1139 }
1013 1140
1014 1141 void reset_waveform_picker_regs(void)
1015 1142 {
1016 1143 /** This function resets the waveform picker module registers.
1017 1144 *
1018 1145 * The registers affected by this function are located at the following offset addresses:
1019 1146 * - 0x00 data_shaping
1020 1147 * - 0x04 run_burst_enable
1021 1148 * - 0x08 addr_data_f0
1022 1149 * - 0x0C addr_data_f1
1023 1150 * - 0x10 addr_data_f2
1024 1151 * - 0x14 addr_data_f3
1025 1152 * - 0x18 status
1026 1153 * - 0x1C delta_snapshot
1027 1154 * - 0x20 delta_f0
1028 1155 * - 0x24 delta_f0_2
1029 1156 * - 0x28 delta_f1
1030 1157 * - 0x2c delta_f2
1031 1158 * - 0x30 nb_data_by_buffer
1032 1159 * - 0x34 nb_snapshot_param
1033 1160 * - 0x38 start_date
1034 1161 * - 0x3c nb_word_in_buffer
1035 1162 *
1036 1163 */
1037 1164
1038 1165 waveform_picker_regs->data_shaping = 0x01; // 0x00 *** R1 R0 SP1 SP0 BW
1039 1166 waveform_picker_regs->run_burst_enable = 0x00; // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1040 1167 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1041 1168 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1042 1169 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1043 1170 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a); // 0x14
1044 1171 waveform_picker_regs->status = 0x00; // 0x18
1045 1172 //
1046 1173 set_wfp_delta_snapshot(); // 0x1c
1047 1174 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1048 1175 set_wfp_delta_f1(); // 0x28
1049 1176 set_wfp_delta_f2(); // 0x2c
1050 1177 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1051 1178 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1052 1179 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1053 1180 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1054 1181 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1055 1182 // 2688 = 8 * 336
1056 1183 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1057 1184 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1058 1185 waveform_picker_regs->start_date = 0x00; // 0x38
1059 1186 waveform_picker_regs->nb_word_in_buffer = 0x1f82; // 0x3c *** 2688 * 3 + 2 = 8066
1060 1187 }
1061 1188
1062 1189 void set_wfp_data_shaping( void )
1063 1190 {
1064 1191 /** This function sets the data_shaping register of the waveform picker module.
1065 1192 *
1066 1193 * The value is read from one field of the parameter_dump_packet structure:\n
1067 1194 * bw_sp0_sp1_r0_r1
1068 1195 *
1069 1196 */
1070 1197
1071 1198 unsigned char data_shaping;
1072 1199
1073 1200 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1074 1201 // waveform picker : [R1 R0 SP1 SP0 BW]
1075 1202
1076 1203 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1077 1204
1078 1205 waveform_picker_regs->data_shaping =
1079 1206 ( (data_shaping & 0x10) >> 4 ) // BW
1080 1207 + ( (data_shaping & 0x08) >> 2 ) // SP0
1081 1208 + ( (data_shaping & 0x04) ) // SP1
1082 1209 + ( (data_shaping & 0x02) << 2 ) // R0
1083 1210 + ( (data_shaping & 0x01) << 4 ); // R1
1084 1211 }
1085 1212
1086 1213 void set_wfp_burst_enable_register( unsigned char mode )
1087 1214 {
1088 1215 /** This function sets the waveform picker burst_enable register depending on the mode.
1089 1216 *
1090 1217 * @param mode is the LFR mode to launch.
1091 1218 *
1092 1219 * The burst bits shall be before the enable bits.
1093 1220 *
1094 1221 */
1095 1222
1096 1223 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1097 1224 // the burst bits shall be set first, before the enable bits
1098 1225 switch(mode) {
1099 1226 case(LFR_MODE_NORMAL):
1100 1227 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1101 1228 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1102 1229 break;
1103 1230 case(LFR_MODE_BURST):
1104 1231 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1105 1232 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1106 1233 break;
1107 1234 case(LFR_MODE_SBM1):
1108 1235 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1109 1236 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1110 1237 break;
1111 1238 case(LFR_MODE_SBM2):
1112 1239 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1113 1240 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1114 1241 break;
1115 1242 default:
1116 1243 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1117 1244 break;
1118 1245 }
1119 1246 }
1120 1247
1121 1248 void set_wfp_delta_snapshot( void )
1122 1249 {
1123 1250 /** This function sets the delta_snapshot register of the waveform picker module.
1124 1251 *
1125 1252 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1126 1253 * - sy_lfr_n_swf_p[0]
1127 1254 * - sy_lfr_n_swf_p[1]
1128 1255 *
1129 1256 */
1130 1257
1131 1258 unsigned int delta_snapshot;
1132 1259 unsigned int delta_snapshot_in_T2;
1133 1260
1134 1261 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1135 1262 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1136 1263
1137 1264 delta_snapshot_in_T2 = delta_snapshot * 256;
1138 1265 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2; // max 4 bytes
1139 1266 }
1140 1267
1141 1268 void set_wfp_delta_f0_f0_2( void )
1142 1269 {
1143 1270 unsigned int delta_snapshot;
1144 1271 unsigned int nb_samples_per_snapshot;
1145 1272 float delta_f0_in_float;
1146 1273
1147 1274 delta_snapshot = waveform_picker_regs->delta_snapshot;
1148 1275 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1149 1276 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1150 1277
1151 1278 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1152 1279 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1153 1280 }
1154 1281
1155 1282 void set_wfp_delta_f1( void )
1156 1283 {
1157 1284 unsigned int delta_snapshot;
1158 1285 unsigned int nb_samples_per_snapshot;
1159 1286 float delta_f1_in_float;
1160 1287
1161 1288 delta_snapshot = waveform_picker_regs->delta_snapshot;
1162 1289 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1163 1290 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1164 1291
1165 1292 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1166 1293 }
1167 1294
1168 1295 void set_wfp_delta_f2()
1169 1296 {
1170 1297 unsigned int delta_snapshot;
1171 1298 unsigned int nb_samples_per_snapshot;
1172 1299
1173 1300 delta_snapshot = waveform_picker_regs->delta_snapshot;
1174 1301 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1175 1302
1176 1303 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1177 1304 }
1178 1305
1179 1306 //*****************
1180 1307 // local parameters
1181 1308 void set_local_nb_interrupt_f0_MAX( void )
1182 1309 {
1183 1310 /** This function sets the value of the nb_interrupt_f0_MAX local parameter.
1184 1311 *
1185 1312 * This parameter is used for the SM validation only.\n
1186 1313 * The software waits param_local.local_nb_interrupt_f0_MAX interruptions from the spectral matrices
1187 1314 * module before launching a basic processing.
1188 1315 *
1189 1316 */
1190 1317
1191 1318 param_local.local_nb_interrupt_f0_MAX = ( (parameter_dump_packet.sy_lfr_n_asm_p[0]) * 256
1192 1319 + parameter_dump_packet.sy_lfr_n_asm_p[1] ) * 100;
1193 1320 }
1194 1321
1195 1322 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1196 1323 {
1197 1324 unsigned short *sequence_cnt;
1198 1325 unsigned short segmentation_grouping_flag;
1199 1326 unsigned short new_packet_sequence_control;
1200 1327
1201 1328 if ( (sid ==SID_NORM_SWF_F0) || (sid ==SID_NORM_SWF_F1) || (sid ==SID_NORM_SWF_F2)
1202 1329 || (sid ==SID_NORM_CWF_F3) || (sid==SID_NORM_CWF_LONG_F3) || (sid ==SID_BURST_CWF_F2) )
1203 1330 {
1204 1331 sequence_cnt = &sequenceCounters_SCIENCE_NORMAL_BURST;
1205 1332 }
1206 1333 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2) )
1207 1334 {
1208 1335 sequence_cnt = &sequenceCounters_SCIENCE_SBM1_SBM2;
1209 1336 }
1210 1337 else
1211 1338 {
1212 1339 sequence_cnt = NULL;
1213 1340 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1214 1341 }
1215 1342
1216 1343 if (sequence_cnt != NULL)
1217 1344 {
1218 1345 segmentation_grouping_flag = (packet_sequence_control[ 0 ] & 0xc0) << 8;
1219 1346 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1220 1347
1221 1348 new_packet_sequence_control = segmentation_grouping_flag | *sequence_cnt ;
1222 1349
1223 1350 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1224 1351 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1225 1352
1226 1353 // increment the sequence counter for the next packet
1227 1354 if ( *sequence_cnt < SEQ_CNT_MAX)
1228 1355 {
1229 1356 *sequence_cnt = *sequence_cnt + 1;
1230 1357 }
1231 1358 else
1232 1359 {
1233 1360 *sequence_cnt = 0;
1234 1361 }
1235 1362 }
1236 1363 }
General Comments 0
You need to be logged in to leave comments. Login now