##// END OF EJS Templates
bug 507 corrected (destination_id of TM_LFR_PARAMETER_DUMP)
paul -
r222:497016d3d9bf R3
parent child
Show More
@@ -1,71 +1,71
1 1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
2 2 #define TC_LOAD_DUMP_PARAMETERS_H
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "wf_handler.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "fsw_misc.h"
11 11 #include "basic_parameters_params.h"
12 12 #include "avf0_prc0.h"
13 13
14 14 #define FLOAT_EQUAL_ZERO 0.001
15 15
16 16 extern unsigned short sequenceCounterParameterDump;
17 17 extern float k_coeff_intercalib_f0_norm[ ];
18 18 extern float k_coeff_intercalib_f0_sbm[ ];
19 19 extern float k_coeff_intercalib_f1_norm[ ];
20 20 extern float k_coeff_intercalib_f1_sbm[ ];
21 21 extern float k_coeff_intercalib_f2[ ];
22 22
23 23 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
24 24 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
25 25 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
26 26 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
27 27 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
28 28 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
29 29 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
30 30 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
31 int action_dump_par(rtems_id queue_id );
31 int action_dump_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
32 32
33 33 // NORMAL
34 34 int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
35 35 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
36 36 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
37 37 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
38 38 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
39 39 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
40 40 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
41 41
42 42 // BURST
43 43 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
44 44 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
45 45
46 46 // SBM1
47 47 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
48 48 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
49 49
50 50 // SBM2
51 51 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
52 52 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
53 53
54 54 // TC_LFR_UPDATE_INFO
55 55 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
56 56 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
57 57 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
58 58
59 59 // FBINS_MASK
60 60 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
61 61
62 62 // KCOEFFICIENTS
63 63 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
64 64 void copyFloatByChar( unsigned char *destination, unsigned char *source );
65 65
66 66 void init_parameter_dump( void );
67 67 void init_kcoefficients_dump( void );
68 68 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
69 69 void print_k_coeff();
70 70
71 71 #endif // TC_LOAD_DUMP_PARAMETERS_H
@@ -1,1169 +1,1169
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14 #include "math.h"
15 15
16 16 //***********
17 17 // RTEMS TASK
18 18
19 19 rtems_task actn_task( rtems_task_argument unused )
20 20 {
21 21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 22 *
23 23 * @param unused is the starting argument of the RTEMS task
24 24 *
25 25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 26 * on the incoming TeleCommand.
27 27 *
28 28 */
29 29
30 30 int result;
31 31 rtems_status_code status; // RTEMS status code
32 32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
33 33 size_t size; // size of the incoming TC packet
34 34 unsigned char subtype; // subtype of the current TC packet
35 35 unsigned char time[6];
36 36 rtems_id queue_rcv_id;
37 37 rtems_id queue_snd_id;
38 38
39 39 status = get_message_queue_id_recv( &queue_rcv_id );
40 40 if (status != RTEMS_SUCCESSFUL)
41 41 {
42 42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
43 43 }
44 44
45 45 status = get_message_queue_id_send( &queue_snd_id );
46 46 if (status != RTEMS_SUCCESSFUL)
47 47 {
48 48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
49 49 }
50 50
51 51 result = LFR_SUCCESSFUL;
52 52 subtype = 0; // subtype of the current TC packet
53 53
54 54 BOOT_PRINTF("in ACTN *** \n")
55 55
56 56 while(1)
57 57 {
58 58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
59 59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
60 60 getTime( time ); // set time to the current time
61 61 if (status!=RTEMS_SUCCESSFUL)
62 62 {
63 63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
64 64 }
65 65 else
66 66 {
67 67 subtype = TC.serviceSubType;
68 68 switch(subtype)
69 69 {
70 70 case TC_SUBTYPE_RESET:
71 71 result = action_reset( &TC, queue_snd_id, time );
72 72 close_action( &TC, result, queue_snd_id );
73 73 break;
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 case TC_SUBTYPE_LOAD_NORM:
79 79 result = action_load_normal_par( &TC, queue_snd_id, time );
80 80 close_action( &TC, result, queue_snd_id );
81 81 break;
82 82 case TC_SUBTYPE_LOAD_BURST:
83 83 result = action_load_burst_par( &TC, queue_snd_id, time );
84 84 close_action( &TC, result, queue_snd_id );
85 85 break;
86 86 case TC_SUBTYPE_LOAD_SBM1:
87 87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
88 88 close_action( &TC, result, queue_snd_id );
89 89 break;
90 90 case TC_SUBTYPE_LOAD_SBM2:
91 91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
92 92 close_action( &TC, result, queue_snd_id );
93 93 break;
94 94 case TC_SUBTYPE_DUMP:
95 result = action_dump_par( queue_snd_id );
95 result = action_dump_par( &TC, queue_snd_id );
96 96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 case TC_SUBTYPE_ENTER:
99 99 result = action_enter_mode( &TC, queue_snd_id );
100 100 close_action( &TC, result, queue_snd_id );
101 101 break;
102 102 case TC_SUBTYPE_UPDT_INFO:
103 103 result = action_update_info( &TC, queue_snd_id );
104 104 close_action( &TC, result, queue_snd_id );
105 105 break;
106 106 case TC_SUBTYPE_EN_CAL:
107 107 result = action_enable_calibration( &TC, queue_snd_id, time );
108 108 close_action( &TC, result, queue_snd_id );
109 109 break;
110 110 case TC_SUBTYPE_DIS_CAL:
111 111 result = action_disable_calibration( &TC, queue_snd_id, time );
112 112 close_action( &TC, result, queue_snd_id );
113 113 break;
114 114 case TC_SUBTYPE_LOAD_K:
115 115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 case TC_SUBTYPE_DUMP_K:
119 119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
120 120 close_action( &TC, result, queue_snd_id );
121 121 break;
122 122 case TC_SUBTYPE_LOAD_FBINS:
123 123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
124 124 close_action( &TC, result, queue_snd_id );
125 125 break;
126 126 case TC_SUBTYPE_UPDT_TIME:
127 127 result = action_update_time( &TC );
128 128 close_action( &TC, result, queue_snd_id );
129 129 break;
130 130 default:
131 131 break;
132 132 }
133 133 }
134 134 }
135 135 }
136 136
137 137 //***********
138 138 // TC ACTIONS
139 139
140 140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
141 141 {
142 142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
143 143 *
144 144 * @param TC points to the TeleCommand packet that is being processed
145 145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
146 146 *
147 147 */
148 148
149 149 printf("this is the end!!!\n");
150 150 exit(0);
151 151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
152 152 return LFR_DEFAULT;
153 153 }
154 154
155 155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
156 156 {
157 157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
158 158 *
159 159 * @param TC points to the TeleCommand packet that is being processed
160 160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
161 161 *
162 162 */
163 163
164 164 rtems_status_code status;
165 165 unsigned char requestedMode;
166 166 unsigned int *transitionCoarseTime_ptr;
167 167 unsigned int transitionCoarseTime;
168 168 unsigned char * bytePosPtr;
169 169
170 170 bytePosPtr = (unsigned char *) &TC->packetID;
171 171
172 172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
173 173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
174 174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
175 175
176 176 status = check_mode_value( requestedMode );
177 177
178 178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
179 179 {
180 180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
181 181 }
182 182 else // the mode value is valid, check the transition
183 183 {
184 184 status = check_mode_transition(requestedMode);
185 185 if (status != LFR_SUCCESSFUL)
186 186 {
187 187 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
188 188 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
189 189 }
190 190 }
191 191
192 192 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
193 193 {
194 194 status = check_transition_date( transitionCoarseTime );
195 195 if (status != LFR_SUCCESSFUL)
196 196 {
197 197 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
198 198 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
199 199 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
200 200 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
201 201 }
202 202 }
203 203
204 204 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
205 205 {
206 206 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
207 207 status = enter_mode( requestedMode, transitionCoarseTime );
208 208 }
209 209
210 210 return status;
211 211 }
212 212
213 213 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
214 214 {
215 215 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
216 216 *
217 217 * @param TC points to the TeleCommand packet that is being processed
218 218 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
219 219 *
220 220 * @return LFR directive status code:
221 221 * - LFR_DEFAULT
222 222 * - LFR_SUCCESSFUL
223 223 *
224 224 */
225 225
226 226 unsigned int val;
227 227 int result;
228 228 unsigned int status;
229 229 unsigned char mode;
230 230 unsigned char * bytePosPtr;
231 231
232 232 bytePosPtr = (unsigned char *) &TC->packetID;
233 233
234 234 // check LFR mode
235 235 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
236 236 status = check_update_info_hk_lfr_mode( mode );
237 237 if (status == LFR_SUCCESSFUL) // check TDS mode
238 238 {
239 239 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
240 240 status = check_update_info_hk_tds_mode( mode );
241 241 }
242 242 if (status == LFR_SUCCESSFUL) // check THR mode
243 243 {
244 244 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
245 245 status = check_update_info_hk_thr_mode( mode );
246 246 }
247 247 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
248 248 {
249 249 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
250 250 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
251 251 val++;
252 252 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
253 253 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
254 254 }
255 255
256 256 result = status;
257 257
258 258 return result;
259 259 }
260 260
261 261 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
262 262 {
263 263 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
264 264 *
265 265 * @param TC points to the TeleCommand packet that is being processed
266 266 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
267 267 *
268 268 */
269 269
270 270 int result;
271 271
272 272 result = LFR_DEFAULT;
273 273
274 274 setCalibration( true );
275 275
276 276 result = LFR_SUCCESSFUL;
277 277
278 278 return result;
279 279 }
280 280
281 281 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
282 282 {
283 283 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
284 284 *
285 285 * @param TC points to the TeleCommand packet that is being processed
286 286 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
287 287 *
288 288 */
289 289
290 290 int result;
291 291
292 292 result = LFR_DEFAULT;
293 293
294 294 setCalibration( false );
295 295
296 296 result = LFR_SUCCESSFUL;
297 297
298 298 return result;
299 299 }
300 300
301 301 int action_update_time(ccsdsTelecommandPacket_t *TC)
302 302 {
303 303 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
304 304 *
305 305 * @param TC points to the TeleCommand packet that is being processed
306 306 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
307 307 *
308 308 * @return LFR_SUCCESSFUL
309 309 *
310 310 */
311 311
312 312 unsigned int val;
313 313
314 314 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
315 315 + (TC->dataAndCRC[1] << 16)
316 316 + (TC->dataAndCRC[2] << 8)
317 317 + TC->dataAndCRC[3];
318 318
319 319 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
320 320 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
321 321 val++;
322 322 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
323 323 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
324 324
325 325 return LFR_SUCCESSFUL;
326 326 }
327 327
328 328 //*******************
329 329 // ENTERING THE MODES
330 330 int check_mode_value( unsigned char requestedMode )
331 331 {
332 332 int status;
333 333
334 334 if ( (requestedMode != LFR_MODE_STANDBY)
335 335 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
336 336 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
337 337 {
338 338 status = LFR_DEFAULT;
339 339 }
340 340 else
341 341 {
342 342 status = LFR_SUCCESSFUL;
343 343 }
344 344
345 345 return status;
346 346 }
347 347
348 348 int check_mode_transition( unsigned char requestedMode )
349 349 {
350 350 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
351 351 *
352 352 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
353 353 *
354 354 * @return LFR directive status codes:
355 355 * - LFR_SUCCESSFUL - the transition is authorized
356 356 * - LFR_DEFAULT - the transition is not authorized
357 357 *
358 358 */
359 359
360 360 int status;
361 361
362 362 switch (requestedMode)
363 363 {
364 364 case LFR_MODE_STANDBY:
365 365 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
366 366 status = LFR_DEFAULT;
367 367 }
368 368 else
369 369 {
370 370 status = LFR_SUCCESSFUL;
371 371 }
372 372 break;
373 373 case LFR_MODE_NORMAL:
374 374 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
375 375 status = LFR_DEFAULT;
376 376 }
377 377 else {
378 378 status = LFR_SUCCESSFUL;
379 379 }
380 380 break;
381 381 case LFR_MODE_BURST:
382 382 if ( lfrCurrentMode == LFR_MODE_BURST ) {
383 383 status = LFR_DEFAULT;
384 384 }
385 385 else {
386 386 status = LFR_SUCCESSFUL;
387 387 }
388 388 break;
389 389 case LFR_MODE_SBM1:
390 390 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
391 391 status = LFR_DEFAULT;
392 392 }
393 393 else {
394 394 status = LFR_SUCCESSFUL;
395 395 }
396 396 break;
397 397 case LFR_MODE_SBM2:
398 398 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
399 399 status = LFR_DEFAULT;
400 400 }
401 401 else {
402 402 status = LFR_SUCCESSFUL;
403 403 }
404 404 break;
405 405 default:
406 406 status = LFR_DEFAULT;
407 407 break;
408 408 }
409 409
410 410 return status;
411 411 }
412 412
413 413 int check_transition_date( unsigned int transitionCoarseTime )
414 414 {
415 415 int status;
416 416 unsigned int localCoarseTime;
417 417 unsigned int deltaCoarseTime;
418 418
419 419 status = LFR_SUCCESSFUL;
420 420
421 421 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
422 422 {
423 423 status = LFR_SUCCESSFUL;
424 424 }
425 425 else
426 426 {
427 427 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
428 428
429 429 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime)
430 430
431 431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
432 432 {
433 433 status = LFR_DEFAULT;
434 434 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n")
435 435 }
436 436
437 437 if (status == LFR_SUCCESSFUL)
438 438 {
439 439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
440 440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
441 441 {
442 442 status = LFR_DEFAULT;
443 443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
444 444 }
445 445 }
446 446 }
447 447
448 448 return status;
449 449 }
450 450
451 451 int stop_current_mode( void )
452 452 {
453 453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
454 454 *
455 455 * @return RTEMS directive status codes:
456 456 * - RTEMS_SUCCESSFUL - task restarted successfully
457 457 * - RTEMS_INVALID_ID - task id invalid
458 458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
459 459 *
460 460 */
461 461
462 462 rtems_status_code status;
463 463
464 464 status = RTEMS_SUCCESSFUL;
465 465
466 466 // (1) mask interruptions
467 467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
468 468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
469 469
470 470 // (2) reset waveform picker registers
471 471 reset_wfp_burst_enable(); // reset burst and enable bits
472 472 reset_wfp_status(); // reset all the status bits
473 473
474 474 // (3) reset spectral matrices registers
475 475 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
476 476 reset_sm_status();
477 477
478 478 // reset lfr VHDL module
479 479 reset_lfr();
480 480
481 481 reset_extractSWF(); // reset the extractSWF flag to false
482 482
483 483 // (4) clear interruptions
484 484 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
485 485 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
486 486
487 487 // <Spectral Matrices simulator>
488 488 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
489 489 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
490 490 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
491 491 // </Spectral Matrices simulator>
492 492
493 493 // suspend several tasks
494 494 if (lfrCurrentMode != LFR_MODE_STANDBY) {
495 495 status = suspend_science_tasks();
496 496 }
497 497
498 498 if (status != RTEMS_SUCCESSFUL)
499 499 {
500 500 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
501 501 }
502 502
503 503 return status;
504 504 }
505 505
506 506 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
507 507 {
508 508 /** This function is launched after a mode transition validation.
509 509 *
510 510 * @param mode is the mode in which LFR will be put.
511 511 *
512 512 * @return RTEMS directive status codes:
513 513 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
514 514 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
515 515 *
516 516 */
517 517
518 518 rtems_status_code status;
519 519
520 520 //**********************
521 521 // STOP THE CURRENT MODE
522 522 status = stop_current_mode();
523 523 if (status != RTEMS_SUCCESSFUL)
524 524 {
525 525 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
526 526 }
527 527
528 528 //*************************
529 529 // ENTER THE REQUESTED MODE
530 530 if (status == RTEMS_SUCCESSFUL) // if the current mode has been successfully stopped
531 531 {
532 532 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
533 533 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
534 534 {
535 535 #ifdef PRINT_TASK_STATISTICS
536 536 rtems_cpu_usage_reset();
537 537 #endif
538 538 status = restart_science_tasks( mode );
539 539 if (status == RTEMS_SUCCESSFUL)
540 540 {
541 541 launch_spectral_matrix( );
542 542 launch_waveform_picker( mode, transitionCoarseTime );
543 543 }
544 544 }
545 545 else if ( mode == LFR_MODE_STANDBY )
546 546 {
547 547 #ifdef PRINT_TASK_STATISTICS
548 548 rtems_cpu_usage_report();
549 549 #endif
550 550
551 551 #ifdef PRINT_STACK_REPORT
552 552 PRINTF("stack report selected\n")
553 553 rtems_stack_checker_report_usage();
554 554 #endif
555 555 }
556 556 else
557 557 {
558 558 status = RTEMS_UNSATISFIED;
559 559 }
560 560 }
561 561
562 562 if (status != RTEMS_SUCCESSFUL)
563 563 {
564 564 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
565 565 status = RTEMS_UNSATISFIED;
566 566 }
567 567
568 568 return status;
569 569 }
570 570
571 571 int restart_science_tasks(unsigned char lfrRequestedMode )
572 572 {
573 573 /** This function is used to restart all science tasks.
574 574 *
575 575 * @return RTEMS directive status codes:
576 576 * - RTEMS_SUCCESSFUL - task restarted successfully
577 577 * - RTEMS_INVALID_ID - task id invalid
578 578 * - RTEMS_INCORRECT_STATE - task never started
579 579 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
580 580 *
581 581 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
582 582 *
583 583 */
584 584
585 585 rtems_status_code status[10];
586 586 rtems_status_code ret;
587 587
588 588 ret = RTEMS_SUCCESSFUL;
589 589
590 590 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
591 591 if (status[0] != RTEMS_SUCCESSFUL)
592 592 {
593 593 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
594 594 }
595 595
596 596 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
597 597 if (status[1] != RTEMS_SUCCESSFUL)
598 598 {
599 599 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
600 600 }
601 601
602 602 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
603 603 if (status[2] != RTEMS_SUCCESSFUL)
604 604 {
605 605 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
606 606 }
607 607
608 608 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
609 609 if (status[3] != RTEMS_SUCCESSFUL)
610 610 {
611 611 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
612 612 }
613 613
614 614 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
615 615 if (status[4] != RTEMS_SUCCESSFUL)
616 616 {
617 617 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
618 618 }
619 619
620 620 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
621 621 if (status[5] != RTEMS_SUCCESSFUL)
622 622 {
623 623 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
624 624 }
625 625
626 626 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
627 627 if (status[6] != RTEMS_SUCCESSFUL)
628 628 {
629 629 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
630 630 }
631 631
632 632 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
633 633 if (status[7] != RTEMS_SUCCESSFUL)
634 634 {
635 635 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
636 636 }
637 637
638 638 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
639 639 if (status[8] != RTEMS_SUCCESSFUL)
640 640 {
641 641 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
642 642 }
643 643
644 644 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
645 645 if (status[9] != RTEMS_SUCCESSFUL)
646 646 {
647 647 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
648 648 }
649 649
650 650 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
651 651 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
652 652 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
653 653 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
654 654 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
655 655 {
656 656 ret = RTEMS_UNSATISFIED;
657 657 }
658 658
659 659 return ret;
660 660 }
661 661
662 662 int suspend_science_tasks()
663 663 {
664 664 /** This function suspends the science tasks.
665 665 *
666 666 * @return RTEMS directive status codes:
667 667 * - RTEMS_SUCCESSFUL - task restarted successfully
668 668 * - RTEMS_INVALID_ID - task id invalid
669 669 * - RTEMS_ALREADY_SUSPENDED - task already suspended
670 670 *
671 671 */
672 672
673 673 rtems_status_code status;
674 674
675 675 printf("in suspend_science_tasks\n");
676 676
677 677 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
678 678 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
679 679 {
680 680 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
681 681 }
682 682 else
683 683 {
684 684 status = RTEMS_SUCCESSFUL;
685 685 }
686 686 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
687 687 {
688 688 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
689 689 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
690 690 {
691 691 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
692 692 }
693 693 else
694 694 {
695 695 status = RTEMS_SUCCESSFUL;
696 696 }
697 697 }
698 698 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
699 699 {
700 700 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
701 701 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
702 702 {
703 703 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
704 704 }
705 705 else
706 706 {
707 707 status = RTEMS_SUCCESSFUL;
708 708 }
709 709 }
710 710 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
711 711 {
712 712 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
713 713 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
714 714 {
715 715 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
716 716 }
717 717 else
718 718 {
719 719 status = RTEMS_SUCCESSFUL;
720 720 }
721 721 }
722 722 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
723 723 {
724 724 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
725 725 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
726 726 {
727 727 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
728 728 }
729 729 else
730 730 {
731 731 status = RTEMS_SUCCESSFUL;
732 732 }
733 733 }
734 734 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
735 735 {
736 736 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
737 737 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
738 738 {
739 739 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
740 740 }
741 741 else
742 742 {
743 743 status = RTEMS_SUCCESSFUL;
744 744 }
745 745 }
746 746 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
747 747 {
748 748 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
749 749 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
750 750 {
751 751 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
752 752 }
753 753 else
754 754 {
755 755 status = RTEMS_SUCCESSFUL;
756 756 }
757 757 }
758 758 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
759 759 {
760 760 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
761 761 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
762 762 {
763 763 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
764 764 }
765 765 else
766 766 {
767 767 status = RTEMS_SUCCESSFUL;
768 768 }
769 769 }
770 770 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
771 771 {
772 772 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
773 773 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
774 774 {
775 775 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
776 776 }
777 777 else
778 778 {
779 779 status = RTEMS_SUCCESSFUL;
780 780 }
781 781 }
782 782 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
783 783 {
784 784 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
785 785 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
786 786 {
787 787 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
788 788 }
789 789 else
790 790 {
791 791 status = RTEMS_SUCCESSFUL;
792 792 }
793 793 }
794 794
795 795 return status;
796 796 }
797 797
798 798 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
799 799 {
800 800 WFP_reset_current_ring_nodes();
801 801
802 802 reset_waveform_picker_regs();
803 803
804 804 set_wfp_burst_enable_register( mode );
805 805
806 806 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
807 807 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
808 808
809 809 if (transitionCoarseTime == 0)
810 810 {
811 811 waveform_picker_regs->start_date = time_management_regs->coarse_time;
812 812 }
813 813 else
814 814 {
815 815 waveform_picker_regs->start_date = transitionCoarseTime;
816 816 }
817 817
818 818 }
819 819
820 820 void launch_spectral_matrix( void )
821 821 {
822 822 SM_reset_current_ring_nodes();
823 823
824 824 reset_spectral_matrix_regs();
825 825
826 826 reset_nb_sm();
827 827
828 828 set_sm_irq_onNewMatrix( 1 );
829 829
830 830 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
831 831 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
832 832
833 833 }
834 834
835 835 void launch_spectral_matrix_simu( void )
836 836 {
837 837 SM_reset_current_ring_nodes();
838 838 reset_spectral_matrix_regs();
839 839 reset_nb_sm();
840 840
841 841 // Spectral Matrices simulator
842 842 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
843 843 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
844 844 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
845 845 }
846 846
847 847 void set_sm_irq_onNewMatrix( unsigned char value )
848 848 {
849 849 if (value == 1)
850 850 {
851 851 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
852 852 }
853 853 else
854 854 {
855 855 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
856 856 }
857 857 }
858 858
859 859 void set_sm_irq_onError( unsigned char value )
860 860 {
861 861 if (value == 1)
862 862 {
863 863 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
864 864 }
865 865 else
866 866 {
867 867 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
868 868 }
869 869 }
870 870
871 871 //*****************************
872 872 // CONFIGURE CALIBRATION SIGNAL
873 873 void setCalibrationPrescaler( unsigned int prescaler )
874 874 {
875 875 // prescaling of the master clock (25 MHz)
876 876 // master clock is divided by 2^prescaler
877 877 time_management_regs->calPrescaler = prescaler;
878 878 }
879 879
880 880 void setCalibrationDivisor( unsigned int divisionFactor )
881 881 {
882 882 // division of the prescaled clock by the division factor
883 883 time_management_regs->calDivisor = divisionFactor;
884 884 }
885 885
886 886 void setCalibrationData( void ){
887 887 unsigned int k;
888 888 unsigned short data;
889 889 float val;
890 890 float f0;
891 891 float f1;
892 892 float fs;
893 893 float Ts;
894 894 float scaleFactor;
895 895
896 896 f0 = 625;
897 897 f1 = 10000;
898 898 fs = 160256.410;
899 899 Ts = 1. / fs;
900 900 scaleFactor = 0.250 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
901 901
902 902 time_management_regs->calDataPtr = 0x00;
903 903
904 904 // build the signal for the SCM calibration
905 905 for (k=0; k<256; k++)
906 906 {
907 907 val = sin( 2 * pi * f0 * k * Ts )
908 908 + sin( 2 * pi * f1 * k * Ts );
909 909 data = (unsigned short) ((val * scaleFactor) + 2048);
910 910 time_management_regs->calData = data & 0xfff;
911 911 }
912 912 }
913 913
914 914 void setCalibrationDataInterleaved( void ){
915 915 unsigned int k;
916 916 float val;
917 917 float f0;
918 918 float f1;
919 919 float fs;
920 920 float Ts;
921 921 unsigned short data[384];
922 922 unsigned char *dataPtr;
923 923
924 924 f0 = 625;
925 925 f1 = 10000;
926 926 fs = 240384.615;
927 927 Ts = 1. / fs;
928 928
929 929 time_management_regs->calDataPtr = 0x00;
930 930
931 931 // build the signal for the SCM calibration
932 932 for (k=0; k<384; k++)
933 933 {
934 934 val = sin( 2 * pi * f0 * k * Ts )
935 935 + sin( 2 * pi * f1 * k * Ts );
936 936 data[k] = (unsigned short) (val * 512 + 2048);
937 937 }
938 938
939 939 // write the signal in interleaved mode
940 940 for (k=0; k<128; k++)
941 941 {
942 942 dataPtr = (unsigned char*) &data[k*3 + 2];
943 943 time_management_regs->calData = (data[k*3] & 0xfff)
944 944 + ( (dataPtr[0] & 0x3f) << 12);
945 945 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
946 946 + ( (dataPtr[1] & 0x3f) << 12);
947 947 }
948 948 }
949 949
950 950 void setCalibrationReload( bool state)
951 951 {
952 952 if (state == true)
953 953 {
954 954 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
955 955 }
956 956 else
957 957 {
958 958 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
959 959 }
960 960 }
961 961
962 962 void setCalibrationEnable( bool state )
963 963 {
964 964 // this bit drives the multiplexer
965 965 if (state == true)
966 966 {
967 967 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
968 968 }
969 969 else
970 970 {
971 971 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
972 972 }
973 973 }
974 974
975 975 void setCalibrationInterleaved( bool state )
976 976 {
977 977 // this bit drives the multiplexer
978 978 if (state == true)
979 979 {
980 980 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
981 981 }
982 982 else
983 983 {
984 984 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
985 985 }
986 986 }
987 987
988 988 void setCalibration( bool state )
989 989 {
990 990 if (state == true)
991 991 {
992 992 setCalibrationEnable( true );
993 993 setCalibrationReload( false );
994 994 set_hk_lfr_calib_enable( true );
995 995 }
996 996 else
997 997 {
998 998 setCalibrationEnable( false );
999 999 setCalibrationReload( true );
1000 1000 set_hk_lfr_calib_enable( false );
1001 1001 }
1002 1002 }
1003 1003
1004 1004 void configureCalibration( bool interleaved )
1005 1005 {
1006 1006 setCalibration( false );
1007 1007 if ( interleaved == true )
1008 1008 {
1009 1009 setCalibrationInterleaved( true );
1010 1010 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1011 1011 setCalibrationDivisor( 26 ); // => 240 384
1012 1012 setCalibrationDataInterleaved();
1013 1013 }
1014 1014 else
1015 1015 {
1016 1016 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1017 1017 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1018 1018 setCalibrationData();
1019 1019 }
1020 1020 }
1021 1021
1022 1022 //****************
1023 1023 // CLOSING ACTIONS
1024 1024 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1025 1025 {
1026 1026 /** This function is used to update the HK packets statistics after a successful TC execution.
1027 1027 *
1028 1028 * @param TC points to the TC being processed
1029 1029 * @param time is the time used to date the TC execution
1030 1030 *
1031 1031 */
1032 1032
1033 1033 unsigned int val;
1034 1034
1035 1035 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1036 1036 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1037 1037 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1038 1038 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1039 1039 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1040 1040 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1041 1041 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1042 1042 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1043 1043 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1044 1044 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1045 1045 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1046 1046 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1047 1047
1048 1048 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1049 1049 val++;
1050 1050 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1051 1051 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1052 1052 }
1053 1053
1054 1054 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1055 1055 {
1056 1056 /** This function is used to update the HK packets statistics after a TC rejection.
1057 1057 *
1058 1058 * @param TC points to the TC being processed
1059 1059 * @param time is the time used to date the TC rejection
1060 1060 *
1061 1061 */
1062 1062
1063 1063 unsigned int val;
1064 1064
1065 1065 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1066 1066 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1067 1067 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1068 1068 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1069 1069 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1070 1070 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1071 1071 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1072 1072 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1073 1073 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1074 1074 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1075 1075 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1076 1076 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1077 1077
1078 1078 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1079 1079 val++;
1080 1080 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1081 1081 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1082 1082 }
1083 1083
1084 1084 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1085 1085 {
1086 1086 /** This function is the last step of the TC execution workflow.
1087 1087 *
1088 1088 * @param TC points to the TC being processed
1089 1089 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1090 1090 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1091 1091 * @param time is the time used to date the TC execution
1092 1092 *
1093 1093 */
1094 1094
1095 1095 unsigned char requestedMode;
1096 1096
1097 1097 if (result == LFR_SUCCESSFUL)
1098 1098 {
1099 1099 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1100 1100 &
1101 1101 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1102 1102 )
1103 1103 {
1104 1104 send_tm_lfr_tc_exe_success( TC, queue_id );
1105 1105 }
1106 1106 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1107 1107 {
1108 1108 //**********************************
1109 1109 // UPDATE THE LFRMODE LOCAL VARIABLE
1110 1110 requestedMode = TC->dataAndCRC[1];
1111 1111 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1112 1112 updateLFRCurrentMode();
1113 1113 }
1114 1114 }
1115 1115 else if (result == LFR_EXE_ERROR)
1116 1116 {
1117 1117 send_tm_lfr_tc_exe_error( TC, queue_id );
1118 1118 }
1119 1119 }
1120 1120
1121 1121 //***************************
1122 1122 // Interrupt Service Routines
1123 1123 rtems_isr commutation_isr1( rtems_vector_number vector )
1124 1124 {
1125 1125 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1126 1126 printf("In commutation_isr1 *** Error sending event to DUMB\n");
1127 1127 }
1128 1128 }
1129 1129
1130 1130 rtems_isr commutation_isr2( rtems_vector_number vector )
1131 1131 {
1132 1132 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1133 1133 printf("In commutation_isr2 *** Error sending event to DUMB\n");
1134 1134 }
1135 1135 }
1136 1136
1137 1137 //****************
1138 1138 // OTHER FUNCTIONS
1139 1139 void updateLFRCurrentMode()
1140 1140 {
1141 1141 /** This function updates the value of the global variable lfrCurrentMode.
1142 1142 *
1143 1143 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1144 1144 *
1145 1145 */
1146 1146 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1147 1147 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
1148 1148 }
1149 1149
1150 1150 void set_lfr_soft_reset( unsigned char value )
1151 1151 {
1152 1152 if (value == 1)
1153 1153 {
1154 1154 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1155 1155 }
1156 1156 else
1157 1157 {
1158 1158 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1159 1159 }
1160 1160 }
1161 1161
1162 1162 void reset_lfr( void )
1163 1163 {
1164 1164 set_lfr_soft_reset( 1 );
1165 1165
1166 1166 set_lfr_soft_reset( 0 );
1167 1167
1168 1168 set_hk_lfr_sc_potential_flag( true );
1169 1169 }
@@ -1,1174 +1,1175
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
18 18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
19 19 ring_node kcoefficient_node_1;
20 20 ring_node kcoefficient_node_2;
21 21
22 22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 23 {
24 24 /** This function updates the LFR registers with the incoming common parameters.
25 25 *
26 26 * @param TC points to the TeleCommand packet that is being processed
27 27 *
28 28 *
29 29 */
30 30
31 31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 33 set_wfp_data_shaping( );
34 34 return LFR_SUCCESSFUL;
35 35 }
36 36
37 37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 38 {
39 39 /** This function updates the LFR registers with the incoming normal parameters.
40 40 *
41 41 * @param TC points to the TeleCommand packet that is being processed
42 42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 43 *
44 44 */
45 45
46 46 int result;
47 47 int flag;
48 48 rtems_status_code status;
49 49
50 50 flag = LFR_SUCCESSFUL;
51 51
52 52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 55 flag = LFR_DEFAULT;
56 56 }
57 57
58 58 // CHECK THE PARAMETERS SET CONSISTENCY
59 59 if (flag == LFR_SUCCESSFUL)
60 60 {
61 61 flag = check_common_par_consistency( TC, queue_id );
62 62 }
63 63
64 64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_l( TC );
68 68 result = set_sy_lfr_n_swf_p( TC );
69 69 result = set_sy_lfr_n_bp_p0( TC );
70 70 result = set_sy_lfr_n_bp_p1( TC );
71 71 result = set_sy_lfr_n_asm_p( TC );
72 72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 73 }
74 74
75 75 return flag;
76 76 }
77 77
78 78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 79 {
80 80 /** This function updates the LFR registers with the incoming burst parameters.
81 81 *
82 82 * @param TC points to the TeleCommand packet that is being processed
83 83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 84 *
85 85 */
86 86
87 87 int flag;
88 88 rtems_status_code status;
89 89 unsigned char sy_lfr_b_bp_p0;
90 90 unsigned char sy_lfr_b_bp_p1;
91 91 float aux;
92 92
93 93 flag = LFR_SUCCESSFUL;
94 94
95 95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 97 flag = LFR_DEFAULT;
98 98 }
99 99
100 100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102 102
103 103 // sy_lfr_b_bp_p0
104 104 if (flag == LFR_SUCCESSFUL)
105 105 {
106 106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 107 {
108 108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
109 109 flag = WRONG_APP_DATA;
110 110 }
111 111 }
112 112 // sy_lfr_b_bp_p1
113 113 if (flag == LFR_SUCCESSFUL)
114 114 {
115 115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 116 {
117 117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1+10, sy_lfr_b_bp_p1 );
118 118 flag = WRONG_APP_DATA;
119 119 }
120 120 }
121 121 //****************************************************************
122 122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 123 if (flag == LFR_SUCCESSFUL)
124 124 {
125 125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 128 if (aux > FLOAT_EQUAL_ZERO)
129 129 {
130 130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0+10, sy_lfr_b_bp_p0 );
131 131 flag = LFR_DEFAULT;
132 132 }
133 133 }
134 134
135 135 // SET HTE PARAMETERS
136 136 if (flag == LFR_SUCCESSFUL)
137 137 {
138 138 flag = set_sy_lfr_b_bp_p0( TC );
139 139 flag = set_sy_lfr_b_bp_p1( TC );
140 140 }
141 141
142 142 return flag;
143 143 }
144 144
145 145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 146 {
147 147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 148 *
149 149 * @param TC points to the TeleCommand packet that is being processed
150 150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 151 *
152 152 */
153 153
154 154 int flag;
155 155 rtems_status_code status;
156 156 unsigned char sy_lfr_s1_bp_p0;
157 157 unsigned char sy_lfr_s1_bp_p1;
158 158 float aux;
159 159
160 160 flag = LFR_SUCCESSFUL;
161 161
162 162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 164 flag = LFR_DEFAULT;
165 165 }
166 166
167 167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169 169
170 170 // sy_lfr_s1_bp_p0
171 171 if (flag == LFR_SUCCESSFUL)
172 172 {
173 173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 174 {
175 175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
176 176 flag = WRONG_APP_DATA;
177 177 }
178 178 }
179 179 // sy_lfr_s1_bp_p1
180 180 if (flag == LFR_SUCCESSFUL)
181 181 {
182 182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 183 {
184 184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1+10, sy_lfr_s1_bp_p1 );
185 185 flag = WRONG_APP_DATA;
186 186 }
187 187 }
188 188 //******************************************************************
189 189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 190 if (flag == LFR_SUCCESSFUL)
191 191 {
192 192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25) ) - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0*0.25));
193 193 if (aux > FLOAT_EQUAL_ZERO)
194 194 {
195 195 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0+10, sy_lfr_s1_bp_p0 );
196 196 flag = LFR_DEFAULT;
197 197 }
198 198 }
199 199
200 200 // SET THE PARAMETERS
201 201 if (flag == LFR_SUCCESSFUL)
202 202 {
203 203 flag = set_sy_lfr_s1_bp_p0( TC );
204 204 flag = set_sy_lfr_s1_bp_p1( TC );
205 205 }
206 206
207 207 return flag;
208 208 }
209 209
210 210 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
211 211 {
212 212 /** This function updates the LFR registers with the incoming sbm2 parameters.
213 213 *
214 214 * @param TC points to the TeleCommand packet that is being processed
215 215 * @param queue_id is the id of the queue which handles TM related to this execution step
216 216 *
217 217 */
218 218
219 219 int flag;
220 220 rtems_status_code status;
221 221 unsigned char sy_lfr_s2_bp_p0;
222 222 unsigned char sy_lfr_s2_bp_p1;
223 223 float aux;
224 224
225 225 flag = LFR_SUCCESSFUL;
226 226
227 227 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
228 228 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
229 229 flag = LFR_DEFAULT;
230 230 }
231 231
232 232 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
233 233 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
234 234
235 235 // sy_lfr_s2_bp_p0
236 236 if (flag == LFR_SUCCESSFUL)
237 237 {
238 238 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
239 239 {
240 240 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
241 241 flag = WRONG_APP_DATA;
242 242 }
243 243 }
244 244 // sy_lfr_s2_bp_p1
245 245 if (flag == LFR_SUCCESSFUL)
246 246 {
247 247 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
248 248 {
249 249 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1+10, sy_lfr_s2_bp_p1 );
250 250 flag = WRONG_APP_DATA;
251 251 }
252 252 }
253 253 //******************************************************************
254 254 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
255 255 if (flag == LFR_SUCCESSFUL)
256 256 {
257 257 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
258 258 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
259 259 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
260 260 if (aux > FLOAT_EQUAL_ZERO)
261 261 {
262 262 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0+10, sy_lfr_s2_bp_p0 );
263 263 flag = LFR_DEFAULT;
264 264 }
265 265 }
266 266
267 267 // SET THE PARAMETERS
268 268 if (flag == LFR_SUCCESSFUL)
269 269 {
270 270 flag = set_sy_lfr_s2_bp_p0( TC );
271 271 flag = set_sy_lfr_s2_bp_p1( TC );
272 272 }
273 273
274 274 return flag;
275 275 }
276 276
277 277 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
278 278 {
279 279 /** This function updates the LFR registers with the incoming sbm2 parameters.
280 280 *
281 281 * @param TC points to the TeleCommand packet that is being processed
282 282 * @param queue_id is the id of the queue which handles TM related to this execution step
283 283 *
284 284 */
285 285
286 286 int flag;
287 287
288 288 flag = LFR_DEFAULT;
289 289
290 290 flag = set_sy_lfr_kcoeff( TC, queue_id );
291 291
292 292 return flag;
293 293 }
294 294
295 295 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
296 296 {
297 297 /** This function updates the LFR registers with the incoming sbm2 parameters.
298 298 *
299 299 * @param TC points to the TeleCommand packet that is being processed
300 300 * @param queue_id is the id of the queue which handles TM related to this execution step
301 301 *
302 302 */
303 303
304 304 int flag;
305 305
306 306 flag = LFR_DEFAULT;
307 307
308 308 flag = set_sy_lfr_fbins( TC );
309 309
310 310 return flag;
311 311 }
312 312
313 313 void printKCoefficients(unsigned int freq, unsigned int bin, float *k_coeff)
314 314 {
315 315 printf("freq = %d *** bin = %d *** (0) %f *** (1) %f *** (2) %f *** (3) %f *** (4) %f\n",
316 316 freq,
317 317 bin,
318 318 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 0 ],
319 319 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 1 ],
320 320 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 2 ],
321 321 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 3 ],
322 322 k_coeff[ (bin*NB_K_COEFF_PER_BIN) + 4 ]);
323 323 }
324 324
325 325 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
326 326 {
327 327 /** This function updates the LFR registers with the incoming sbm2 parameters.
328 328 *
329 329 * @param TC points to the TeleCommand packet that is being processed
330 330 * @param queue_id is the id of the queue which handles TM related to this execution step
331 331 *
332 332 */
333 333
334 334 unsigned int address;
335 335 rtems_status_code status;
336 336 unsigned int freq;
337 337 unsigned int bin;
338 338 unsigned int coeff;
339 339 unsigned char *kCoeffPtr;
340 340 unsigned char *kCoeffDumpPtr;
341 341
342 342 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
343 343 // F0 => 11 bins
344 344 // F1 => 13 bins
345 345 // F2 => 12 bins
346 346 // 36 bins to dump in two packets (30 bins max per packet)
347 347
348 348 //*********
349 349 // PACKET 1
350 350 // 11 F0 bins, 13 F1 bins and 6 F2 bins
351 351 kcoefficients_dump_1.packetSequenceControl[0] = (unsigned char) (sequenceCounterParameterDump >> 8);
352 352 kcoefficients_dump_1.packetSequenceControl[1] = (unsigned char) (sequenceCounterParameterDump );
353 353 kcoefficients_dump_1.destinationID = TC->sourceID;
354 354 increment_seq_counter( &sequenceCounterParameterDump );
355 355 for( freq=0;
356 356 freq<NB_BINS_COMPRESSED_SM_F0;
357 357 freq++ )
358 358 {
359 359 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1] = freq;
360 360 bin = freq;
361 361 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
362 362 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
363 363 {
364 364 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
365 365 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
366 366 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
367 367 }
368 368 }
369 369 for( freq=NB_BINS_COMPRESSED_SM_F0;
370 370 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
371 371 freq++ )
372 372 {
373 373 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
374 374 bin = freq - NB_BINS_COMPRESSED_SM_F0;
375 375 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
376 376 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
377 377 {
378 378 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
379 379 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
380 380 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
381 381 }
382 382 }
383 383 for( freq=(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
384 384 freq<(NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1+6);
385 385 freq++ )
386 386 {
387 387 kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = freq;
388 388 bin = freq - (NB_BINS_COMPRESSED_SM_F0+NB_BINS_COMPRESSED_SM_F1);
389 389 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
390 390 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
391 391 {
392 392 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
393 393 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
394 394 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
395 395 }
396 396 }
397 397 kcoefficients_dump_1.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
398 398 kcoefficients_dump_1.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
399 399 kcoefficients_dump_1.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
400 400 kcoefficients_dump_1.time[3] = (unsigned char) (time_management_regs->coarse_time);
401 401 kcoefficients_dump_1.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
402 402 kcoefficients_dump_1.time[5] = (unsigned char) (time_management_regs->fine_time);
403 403 // SEND DATA
404 404 kcoefficient_node_1.status = 1;
405 405 address = (unsigned int) &kcoefficient_node_1;
406 406 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
407 407 if (status != RTEMS_SUCCESSFUL) {
408 408 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
409 409 }
410 410
411 411 //********
412 412 // PACKET 2
413 413 // 6 F2 bins
414 414 kcoefficients_dump_2.packetSequenceControl[0] = (unsigned char) (sequenceCounterParameterDump >> 8);
415 415 kcoefficients_dump_2.packetSequenceControl[1] = (unsigned char) (sequenceCounterParameterDump );
416 416 kcoefficients_dump_2.destinationID = TC->sourceID;
417 417 increment_seq_counter( &sequenceCounterParameterDump );
418 418 for( freq=0; freq<6; freq++ )
419 419 {
420 420 kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + 1 ] = NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + 6 + freq;
421 421 bin = freq + 6;
422 422 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
423 423 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
424 424 {
425 425 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[ freq*KCOEFF_BLK_SIZE + coeff*NB_BYTES_PER_FLOAT + 2 ]; // 2 for the kcoeff_frequency
426 426 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
427 427 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
428 428 }
429 429 }
430 430 kcoefficients_dump_2.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
431 431 kcoefficients_dump_2.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
432 432 kcoefficients_dump_2.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
433 433 kcoefficients_dump_2.time[3] = (unsigned char) (time_management_regs->coarse_time);
434 434 kcoefficients_dump_2.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
435 435 kcoefficients_dump_2.time[5] = (unsigned char) (time_management_regs->fine_time);
436 436 // SEND DATA
437 437 kcoefficient_node_2.status = 1;
438 438 address = (unsigned int) &kcoefficient_node_2;
439 439 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
440 440 if (status != RTEMS_SUCCESSFUL) {
441 441 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
442 442 }
443 443
444 444 return status;
445 445 }
446 446
447 int action_dump_par( rtems_id queue_id )
447 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
448 448 {
449 449 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
450 450 *
451 451 * @param queue_id is the id of the queue which handles TM related to this execution step.
452 452 *
453 453 * @return RTEMS directive status codes:
454 454 * - RTEMS_SUCCESSFUL - message sent successfully
455 455 * - RTEMS_INVALID_ID - invalid queue id
456 456 * - RTEMS_INVALID_SIZE - invalid message size
457 457 * - RTEMS_INVALID_ADDRESS - buffer is NULL
458 458 * - RTEMS_UNSATISFIED - out of message buffers
459 459 * - RTEMS_TOO_MANY - queue s limit has been reached
460 460 *
461 461 */
462 462
463 463 int status;
464 464
465 465 // UPDATE TIME
466 466 parameter_dump_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterParameterDump >> 8);
467 467 parameter_dump_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterParameterDump );
468 468 increment_seq_counter( &sequenceCounterParameterDump );
469 parameter_dump_packet.destinationID = TC->sourceID;
469 470
470 471 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
471 472 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
472 473 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
473 474 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
474 475 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
475 476 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
476 477 // SEND DATA
477 478 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
478 479 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
479 480 if (status != RTEMS_SUCCESSFUL) {
480 481 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
481 482 }
482 483
483 484 return status;
484 485 }
485 486
486 487 //***********************
487 488 // NORMAL MODE PARAMETERS
488 489
489 490 int check_common_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
490 491 {
491 492 unsigned char msb;
492 493 unsigned char lsb;
493 494 int flag;
494 495 float aux;
495 496 rtems_status_code status;
496 497
497 498 unsigned int sy_lfr_n_swf_l;
498 499 unsigned int sy_lfr_n_swf_p;
499 500 unsigned int sy_lfr_n_asm_p;
500 501 unsigned char sy_lfr_n_bp_p0;
501 502 unsigned char sy_lfr_n_bp_p1;
502 503 unsigned char sy_lfr_n_cwf_long_f3;
503 504
504 505 flag = LFR_SUCCESSFUL;
505 506
506 507 //***************
507 508 // get parameters
508 509 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
509 510 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
510 511 sy_lfr_n_swf_l = msb * 256 + lsb;
511 512
512 513 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
513 514 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
514 515 sy_lfr_n_swf_p = msb * 256 + lsb;
515 516
516 517 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
517 518 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
518 519 sy_lfr_n_asm_p = msb * 256 + lsb;
519 520
520 521 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
521 522
522 523 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
523 524
524 525 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
525 526
526 527 //******************
527 528 // check consistency
528 529 // sy_lfr_n_swf_l
529 530 if (sy_lfr_n_swf_l != 2048)
530 531 {
531 532 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, sy_lfr_n_swf_l );
532 533 flag = WRONG_APP_DATA;
533 534 }
534 535 // sy_lfr_n_swf_p
535 536 if (flag == LFR_SUCCESSFUL)
536 537 {
537 538 if ( sy_lfr_n_swf_p < 16 )
538 539 {
539 540 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, sy_lfr_n_swf_p );
540 541 flag = WRONG_APP_DATA;
541 542 }
542 543 }
543 544 // sy_lfr_n_bp_p0
544 545 if (flag == LFR_SUCCESSFUL)
545 546 {
546 547 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
547 548 {
548 549 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0+10, sy_lfr_n_bp_p0 );
549 550 flag = WRONG_APP_DATA;
550 551 }
551 552 }
552 553 // sy_lfr_n_asm_p
553 554 if (flag == LFR_SUCCESSFUL)
554 555 {
555 556 if (sy_lfr_n_asm_p == 0)
556 557 {
557 558 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
558 559 flag = WRONG_APP_DATA;
559 560 }
560 561 }
561 562 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
562 563 if (flag == LFR_SUCCESSFUL)
563 564 {
564 565 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
565 566 if (aux > FLOAT_EQUAL_ZERO)
566 567 {
567 568 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P+10, sy_lfr_n_asm_p );
568 569 flag = WRONG_APP_DATA;
569 570 }
570 571 }
571 572 // sy_lfr_n_bp_p1
572 573 if (flag == LFR_SUCCESSFUL)
573 574 {
574 575 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
575 576 {
576 577 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
577 578 flag = WRONG_APP_DATA;
578 579 }
579 580 }
580 581 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
581 582 if (flag == LFR_SUCCESSFUL)
582 583 {
583 584 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
584 585 if (aux > FLOAT_EQUAL_ZERO)
585 586 {
586 587 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1+10, sy_lfr_n_bp_p1 );
587 588 flag = LFR_DEFAULT;
588 589 }
589 590 }
590 591 // sy_lfr_n_cwf_long_f3
591 592
592 593 return flag;
593 594 }
594 595
595 596 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
596 597 {
597 598 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
598 599 *
599 600 * @param TC points to the TeleCommand packet that is being processed
600 601 * @param queue_id is the id of the queue which handles TM related to this execution step
601 602 *
602 603 */
603 604
604 605 int result;
605 606
606 607 result = LFR_SUCCESSFUL;
607 608
608 609 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
609 610 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
610 611
611 612 return result;
612 613 }
613 614
614 615 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
615 616 {
616 617 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
617 618 *
618 619 * @param TC points to the TeleCommand packet that is being processed
619 620 * @param queue_id is the id of the queue which handles TM related to this execution step
620 621 *
621 622 */
622 623
623 624 int result;
624 625
625 626 result = LFR_SUCCESSFUL;
626 627
627 628 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
628 629 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
629 630
630 631 return result;
631 632 }
632 633
633 634 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
634 635 {
635 636 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
636 637 *
637 638 * @param TC points to the TeleCommand packet that is being processed
638 639 * @param queue_id is the id of the queue which handles TM related to this execution step
639 640 *
640 641 */
641 642
642 643 int result;
643 644
644 645 result = LFR_SUCCESSFUL;
645 646
646 647 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
647 648 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
648 649
649 650 return result;
650 651 }
651 652
652 653 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
653 654 {
654 655 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
655 656 *
656 657 * @param TC points to the TeleCommand packet that is being processed
657 658 * @param queue_id is the id of the queue which handles TM related to this execution step
658 659 *
659 660 */
660 661
661 662 int status;
662 663
663 664 status = LFR_SUCCESSFUL;
664 665
665 666 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
666 667
667 668 return status;
668 669 }
669 670
670 671 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
671 672 {
672 673 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
673 674 *
674 675 * @param TC points to the TeleCommand packet that is being processed
675 676 * @param queue_id is the id of the queue which handles TM related to this execution step
676 677 *
677 678 */
678 679
679 680 int status;
680 681
681 682 status = LFR_SUCCESSFUL;
682 683
683 684 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
684 685
685 686 return status;
686 687 }
687 688
688 689 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
689 690 {
690 691 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
691 692 *
692 693 * @param TC points to the TeleCommand packet that is being processed
693 694 * @param queue_id is the id of the queue which handles TM related to this execution step
694 695 *
695 696 */
696 697
697 698 int status;
698 699
699 700 status = LFR_SUCCESSFUL;
700 701
701 702 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
702 703
703 704 return status;
704 705 }
705 706
706 707 //**********************
707 708 // BURST MODE PARAMETERS
708 709 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
709 710 {
710 711 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
711 712 *
712 713 * @param TC points to the TeleCommand packet that is being processed
713 714 * @param queue_id is the id of the queue which handles TM related to this execution step
714 715 *
715 716 */
716 717
717 718 int status;
718 719
719 720 status = LFR_SUCCESSFUL;
720 721
721 722 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
722 723
723 724 return status;
724 725 }
725 726
726 727 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
727 728 {
728 729 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
729 730 *
730 731 * @param TC points to the TeleCommand packet that is being processed
731 732 * @param queue_id is the id of the queue which handles TM related to this execution step
732 733 *
733 734 */
734 735
735 736 int status;
736 737
737 738 status = LFR_SUCCESSFUL;
738 739
739 740 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
740 741
741 742 return status;
742 743 }
743 744
744 745 //*********************
745 746 // SBM1 MODE PARAMETERS
746 747 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
747 748 {
748 749 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
749 750 *
750 751 * @param TC points to the TeleCommand packet that is being processed
751 752 * @param queue_id is the id of the queue which handles TM related to this execution step
752 753 *
753 754 */
754 755
755 756 int status;
756 757
757 758 status = LFR_SUCCESSFUL;
758 759
759 760 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
760 761
761 762 return status;
762 763 }
763 764
764 765 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
765 766 {
766 767 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
767 768 *
768 769 * @param TC points to the TeleCommand packet that is being processed
769 770 * @param queue_id is the id of the queue which handles TM related to this execution step
770 771 *
771 772 */
772 773
773 774 int status;
774 775
775 776 status = LFR_SUCCESSFUL;
776 777
777 778 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
778 779
779 780 return status;
780 781 }
781 782
782 783 //*********************
783 784 // SBM2 MODE PARAMETERS
784 785 int set_sy_lfr_s2_bp_p0(ccsdsTelecommandPacket_t *TC)
785 786 {
786 787 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
787 788 *
788 789 * @param TC points to the TeleCommand packet that is being processed
789 790 * @param queue_id is the id of the queue which handles TM related to this execution step
790 791 *
791 792 */
792 793
793 794 int status;
794 795
795 796 status = LFR_SUCCESSFUL;
796 797
797 798 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
798 799
799 800 return status;
800 801 }
801 802
802 803 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
803 804 {
804 805 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
805 806 *
806 807 * @param TC points to the TeleCommand packet that is being processed
807 808 * @param queue_id is the id of the queue which handles TM related to this execution step
808 809 *
809 810 */
810 811
811 812 int status;
812 813
813 814 status = LFR_SUCCESSFUL;
814 815
815 816 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
816 817
817 818 return status;
818 819 }
819 820
820 821 //*******************
821 822 // TC_LFR_UPDATE_INFO
822 823 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
823 824 {
824 825 unsigned int status;
825 826
826 827 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
827 828 || (mode == LFR_MODE_BURST)
828 829 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
829 830 {
830 831 status = LFR_SUCCESSFUL;
831 832 }
832 833 else
833 834 {
834 835 status = LFR_DEFAULT;
835 836 }
836 837
837 838 return status;
838 839 }
839 840
840 841 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
841 842 {
842 843 unsigned int status;
843 844
844 845 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
845 846 || (mode == TDS_MODE_BURST)
846 847 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
847 848 || (mode == TDS_MODE_LFM))
848 849 {
849 850 status = LFR_SUCCESSFUL;
850 851 }
851 852 else
852 853 {
853 854 status = LFR_DEFAULT;
854 855 }
855 856
856 857 return status;
857 858 }
858 859
859 860 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
860 861 {
861 862 unsigned int status;
862 863
863 864 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
864 865 || (mode == THR_MODE_BURST))
865 866 {
866 867 status = LFR_SUCCESSFUL;
867 868 }
868 869 else
869 870 {
870 871 status = LFR_DEFAULT;
871 872 }
872 873
873 874 return status;
874 875 }
875 876
876 877 //***********
877 878 // FBINS MASK
878 879
879 880 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
880 881 {
881 882 int status;
882 883 unsigned int k;
883 884 unsigned char *fbins_mask_dump;
884 885 unsigned char *fbins_mask_TC;
885 886
886 887 status = LFR_SUCCESSFUL;
887 888
888 889 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
889 890 fbins_mask_TC = TC->dataAndCRC;
890 891
891 892 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
892 893 {
893 894 fbins_mask_dump[k] = fbins_mask_TC[k];
894 895 }
895 896 for (k=0; k < NB_FBINS_MASKS; k++)
896 897 {
897 898 unsigned char *auxPtr;
898 899 auxPtr = &parameter_dump_packet.sy_lfr_fbins_f0_word1[k*NB_BYTES_PER_FBINS_MASK];
899 900 printf("%x %x %x %x\n", auxPtr[0], auxPtr[1], auxPtr[2], auxPtr[3]);
900 901 }
901 902
902 903
903 904 return status;
904 905 }
905 906
906 907 //**************
907 908 // KCOEFFICIENTS
908 909 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
909 910 {
910 911 unsigned int kcoeff;
911 912 unsigned short sy_lfr_kcoeff_frequency;
912 913 unsigned short bin;
913 914 unsigned short *freqPtr;
914 915 float *kcoeffPtr_norm;
915 916 float *kcoeffPtr_sbm;
916 917 int status;
917 918 unsigned char *kcoeffLoadPtr;
918 919 unsigned char *kcoeffNormPtr;
919 920 unsigned char *kcoeffSbmPtr_a;
920 921 unsigned char *kcoeffSbmPtr_b;
921 922
922 923 status = LFR_SUCCESSFUL;
923 924
924 925 kcoeffPtr_norm = NULL;
925 926 kcoeffPtr_sbm = NULL;
926 927 bin = 0;
927 928
928 929 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
929 930 sy_lfr_kcoeff_frequency = *freqPtr;
930 931
931 932 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
932 933 {
933 934 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
934 935 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 10 + 1,
935 936 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
936 937 status = LFR_DEFAULT;
937 938 }
938 939 else
939 940 {
940 941 if ( ( sy_lfr_kcoeff_frequency >= 0 )
941 942 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
942 943 {
943 944 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
944 945 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
945 946 bin = sy_lfr_kcoeff_frequency;
946 947 }
947 948 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
948 949 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
949 950 {
950 951 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
951 952 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
952 953 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
953 954 }
954 955 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
955 956 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
956 957 {
957 958 kcoeffPtr_norm = k_coeff_intercalib_f2;
958 959 kcoeffPtr_sbm = NULL;
959 960 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
960 961 }
961 962 }
962 963
963 964 printf("in set_sy_lfr_kcoeff *** freq = %d, bin = %d\n", sy_lfr_kcoeff_frequency, bin);
964 965
965 966 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
966 967 {
967 968 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
968 969 {
969 970 // destination
970 971 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
971 972 // source
972 973 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
973 974 // copy source to destination
974 975 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
975 976 }
976 977 }
977 978
978 979 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
979 980 {
980 981 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
981 982 {
982 983 // destination
983 984 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 ];
984 985 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * 2 + 1 ];
985 986 // source
986 987 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + NB_BYTES_PER_FLOAT * kcoeff];
987 988 // copy source to destination
988 989 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
989 990 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
990 991 }
991 992 }
992 993
993 994 // print_k_coeff();
994 995
995 996 return status;
996 997 }
997 998
998 999 void copyFloatByChar( unsigned char *destination, unsigned char *source )
999 1000 {
1000 1001 destination[0] = source[0];
1001 1002 destination[1] = source[1];
1002 1003 destination[2] = source[2];
1003 1004 destination[3] = source[3];
1004 1005 }
1005 1006
1006 1007 //**********
1007 1008 // init dump
1008 1009
1009 1010 void init_parameter_dump( void )
1010 1011 {
1011 1012 /** This function initialize the parameter_dump_packet global variable with default values.
1012 1013 *
1013 1014 */
1014 1015
1015 1016 unsigned int k;
1016 1017
1017 1018 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1018 1019 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1019 1020 parameter_dump_packet.reserved = CCSDS_RESERVED;
1020 1021 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1021 1022 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);
1022 1023 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1023 1024 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1024 1025 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1025 1026 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
1026 1027 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1027 1028 // DATA FIELD HEADER
1028 1029 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1029 1030 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1030 1031 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1031 1032 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1032 1033 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
1033 1034 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
1034 1035 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
1035 1036 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
1036 1037 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
1037 1038 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
1038 1039 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1039 1040
1040 1041 //******************
1041 1042 // COMMON PARAMETERS
1042 1043 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1043 1044 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1044 1045
1045 1046 //******************
1046 1047 // NORMAL PARAMETERS
1047 1048 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> 8);
1048 1049 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1049 1050 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> 8);
1050 1051 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1051 1052 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> 8);
1052 1053 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1053 1054 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1054 1055 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1055 1056 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1056 1057
1057 1058 //*****************
1058 1059 // BURST PARAMETERS
1059 1060 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1060 1061 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1061 1062
1062 1063 //****************
1063 1064 // SBM1 PARAMETERS
1064 1065 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1065 1066 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1066 1067
1067 1068 //****************
1068 1069 // SBM2 PARAMETERS
1069 1070 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1070 1071 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1071 1072
1072 1073 //************
1073 1074 // FBINS MASKS
1074 1075 for (k=0; k < NB_FBINS_MASKS * NB_BYTES_PER_FBINS_MASK; k++)
1075 1076 {
1076 1077 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = 0xff;
1077 1078 }
1078 1079 }
1079 1080
1080 1081 void init_kcoefficients_dump( void )
1081 1082 {
1082 1083 init_kcoefficients_dump_packet( &kcoefficients_dump_1, 1, 30 );
1083 1084 init_kcoefficients_dump_packet( &kcoefficients_dump_2, 2, 6 );
1084 1085
1085 1086 kcoefficient_node_1.previous = NULL;
1086 1087 kcoefficient_node_1.next = NULL;
1087 1088 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1088 1089 kcoefficient_node_1.coarseTime = 0x00;
1089 1090 kcoefficient_node_1.fineTime = 0x00;
1090 1091 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1091 1092 kcoefficient_node_1.status = 0x00;
1092 1093
1093 1094 kcoefficient_node_2.previous = NULL;
1094 1095 kcoefficient_node_2.next = NULL;
1095 1096 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1096 1097 kcoefficient_node_2.coarseTime = 0x00;
1097 1098 kcoefficient_node_2.fineTime = 0x00;
1098 1099 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1099 1100 kcoefficient_node_2.status = 0x00;
1100 1101 }
1101 1102
1102 1103 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1103 1104 {
1104 1105 unsigned int k;
1105 1106 unsigned int packetLength;
1106 1107
1107 1108 packetLength = blk_nr * 130 + 20 - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1108 1109
1109 1110 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1110 1111 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1111 1112 kcoefficients_dump->reserved = CCSDS_RESERVED;
1112 1113 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1113 1114 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> 8);;
1114 1115 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;;
1115 1116 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1116 1117 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1117 1118 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> 8);
1118 1119 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1119 1120 // DATA FIELD HEADER
1120 1121 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1121 1122 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1122 1123 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1123 1124 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1124 1125 kcoefficients_dump->time[0] = 0x00;
1125 1126 kcoefficients_dump->time[1] = 0x00;
1126 1127 kcoefficients_dump->time[2] = 0x00;
1127 1128 kcoefficients_dump->time[3] = 0x00;
1128 1129 kcoefficients_dump->time[4] = 0x00;
1129 1130 kcoefficients_dump->time[5] = 0x00;
1130 1131 kcoefficients_dump->sid = SID_K_DUMP;
1131 1132
1132 1133 kcoefficients_dump->pkt_cnt = 2;
1133 1134 kcoefficients_dump->pkt_nr = pkt_nr;
1134 1135 kcoefficients_dump->blk_nr = blk_nr;
1135 1136
1136 1137 //******************
1137 1138 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1138 1139 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1139 1140 for (k=0; k<3900; k++)
1140 1141 {
1141 1142 kcoefficients_dump->kcoeff_blks[k] = 0x00;
1142 1143 }
1143 1144 }
1144 1145
1145 1146 void print_k_coeff()
1146 1147 {
1147 1148 unsigned int kcoeff;
1148 1149 unsigned int bin;
1149 1150
1150 1151 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1151 1152 {
1152 1153 printf("kcoeff = %d *** ", kcoeff);
1153 1154 for (bin=0; bin<NB_BINS_COMPRESSED_SM_F0; bin++)
1154 1155 {
1155 1156 printf( "%f ", k_coeff_intercalib_f0_norm[bin*NB_K_COEFF_PER_BIN+kcoeff] );
1156 1157 }
1157 1158 printf("\n");
1158 1159 }
1159 1160
1160 1161 printf("\n");
1161 1162
1162 1163 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1163 1164 {
1164 1165 printf("kcoeff = %d *** ", kcoeff);
1165 1166 for (bin=0; bin<NB_BINS_COMPRESSED_SM_F0; bin++)
1166 1167 {
1167 1168 printf( "[%f, %f] ",
1168 1169 k_coeff_intercalib_f0_sbm[(bin*NB_K_COEFF_PER_BIN )*2 + kcoeff],
1169 1170 k_coeff_intercalib_f0_sbm[(bin*NB_K_COEFF_PER_BIN+1)*2 + kcoeff]);
1170 1171 }
1171 1172 printf("\n");
1172 1173 }
1173 1174 }
1174 1175
General Comments 0
You need to be logged in to leave comments. Login now