##// END OF EJS Templates
Removed commented code
jeandet -
r376:30b34f0fbdfa No PWD scrub with... draft
parent child
Show More
@@ -1,112 +1,112
1 1 cmake_minimum_required (VERSION 2.6)
2 2 project (fsw)
3 3
4 4 include(sparc-rtems)
5 5 include(cppcheck)
6 6
7 7 include_directories("../header"
8 8 "../header/lfr_common_headers"
9 9 "../header/processing"
10 10 "../LFR_basic-parameters"
11 11 "../src")
12 12
13 13 set(SOURCES wf_handler.c
14 14 tc_handler.c
15 15 fsw_misc.c
16 16 fsw_init.c
17 17 fsw_globals.c
18 18 fsw_spacewire.c
19 19 tc_load_dump_parameters.c
20 20 tm_lfr_tc_exe.c
21 21 tc_acceptance.c
22 22 processing/fsw_processing.c
23 23 processing/avf0_prc0.c
24 24 processing/avf1_prc1.c
25 25 processing/avf2_prc2.c
26 26 lfr_cpu_usage_report.c
27 27 ${LFR_BP_SRC}
28 28 ../header/wf_handler.h
29 29 ../header/tc_handler.h
30 30 ../header/grlib_regs.h
31 31 ../header/fsw_misc.h
32 32 ../header/fsw_init.h
33 33 ../header/fsw_spacewire.h
34 34 ../header/tc_load_dump_parameters.h
35 35 ../header/tm_lfr_tc_exe.h
36 36 ../header/tc_acceptance.h
37 37 ../header/processing/fsw_processing.h
38 38 ../header/processing/avf0_prc0.h
39 39 ../header/processing/avf1_prc1.h
40 40 ../header/processing/avf2_prc2.h
41 41 ../header/fsw_params_wf_handler.h
42 42 ../header/lfr_cpu_usage_report.h
43 43 ../header/lfr_common_headers/ccsds_types.h
44 44 ../header/lfr_common_headers/fsw_params.h
45 45 ../header/lfr_common_headers/fsw_params_nb_bytes.h
46 46 ../header/lfr_common_headers/fsw_params_processing.h
47 47 ../header/lfr_common_headers/tm_byte_positions.h
48 48 ../LFR_basic-parameters/basic_parameters.h
49 49 ../LFR_basic-parameters/basic_parameters_params.h
50 50 ../header/GscMemoryLPP.hpp
51 51 )
52 52
53 53
54 54 option(FSW_verbose "Enable verbose LFR" OFF)
55 55 option(FSW_boot_messages "Enable LFR boot messages" OFF)
56 56 option(FSW_debug_messages "Enable LFR debug messages" OFF)
57 57 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
58 58 option(FSW_stack_report "Enable LFR stack report" OFF)
59 59 option(FSW_vhdl_dev "?" OFF)
60 60 option(FSW_lpp_dpu_destid "Set to debug at LPP" OFF)
61 61 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
62 62 option(FSW_debug_tch "?" OFF)
63 63
64 64 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
65 65 set(SW_VERSION_N2 "2" CACHE STRING "Choose N2 FSW Version." FORCE)
66 66 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
67 set(SW_VERSION_N4 "15" CACHE STRING "Choose N4 FSW Version." FORCE)
67 set(SW_VERSION_N4 "16" CACHE STRING "Choose N4 FSW Version." FORCE)
68 68
69 69 if(FSW_verbose)
70 70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
71 71 endif()
72 72 if(FSW_boot_messages)
73 73 add_definitions(-DBOOT_MESSAGES)
74 74 endif()
75 75 if(FSW_debug_messages)
76 76 add_definitions(-DDEBUG_MESSAGES)
77 77 endif()
78 78 if(FSW_cpu_usage_report)
79 79 add_definitions(-DPRINT_TASK_STATISTICS)
80 80 endif()
81 81 if(FSW_stack_report)
82 82 add_definitions(-DPRINT_STACK_REPORT)
83 83 endif()
84 84 if(FSW_vhdl_dev)
85 85 add_definitions(-DVHDL_DEV)
86 86 endif()
87 87 if(FSW_lpp_dpu_destid)
88 88 add_definitions(-DLPP_DPU_DESTID)
89 89 endif()
90 90 if(FSW_debug_watchdog)
91 91 add_definitions(-DDEBUG_WATCHDOG)
92 92 endif()
93 93 if(FSW_debug_tch)
94 94 add_definitions(-DDEBUG_TCH)
95 95 endif()
96 96
97 97 add_definitions(-DMSB_FIRST_TCH)
98 98
99 99 add_definitions(-DSWVERSION=-1-0)
100 100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
101 101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
102 102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
103 103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
104 104
105 105 add_executable(fsw ${SOURCES})
106 106
107 107 if(fix-b2bst)
108 108 check_b2bst(fsw ${CMAKE_CURRENT_BINARY_DIR})
109 109 endif()
110 110
111 111 add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE)
112 112
@@ -1,514 +1,512
1 1 /** Functions to send TM packets related to TC parsing and execution.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to send appropriate TM packets after parsing and execution:
7 7 * - TM_LFR_TC_EXE_SUCCESS
8 8 * - TM_LFR_TC_EXE_INCONSISTENT
9 9 * - TM_LFR_TC_EXE_NOT_EXECUTABLE
10 10 * - TM_LFR_TC_EXE_NOT_IMPLEMENTED
11 11 * - TM_LFR_TC_EXE_ERROR
12 12 * - TM_LFR_TC_EXE_CORRUPTED
13 13 *
14 14 */
15 15
16 16 #include "tm_lfr_tc_exe.h"
17 17
18 18 int send_tm_lfr_tc_exe_success( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
19 19 {
20 20 /** This function sends a TM_LFR_TC_EXE_SUCCESS packet in the dedicated RTEMS message queue.
21 21 *
22 22 * @param TC points to the TeleCommand packet that is being processed
23 23 * @param queue_id is the id of the queue which handles TM
24 24 *
25 25 * @return RTEMS directive status code:
26 26 * - RTEMS_SUCCESSFUL - message sent successfully
27 27 * - RTEMS_INVALID_ID - invalid queue id
28 28 * - RTEMS_INVALID_SIZE - invalid message size
29 29 * - RTEMS_INVALID_ADDRESS - buffer is NULL
30 30 * - RTEMS_UNSATISFIED - out of message buffers
31 31 * - RTEMS_TOO_MANY - queue s limit has been reached
32 32 *
33 33 */
34 34
35 35 rtems_status_code status;
36 36 Packet_TM_LFR_TC_EXE_SUCCESS_t TM;
37 37 unsigned char messageSize;
38 38
39 39 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
40 40 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
41 41 TM.reserved = DEFAULT_RESERVED;
42 42 TM.userApplication = CCSDS_USER_APP;
43 43 // PACKET HEADER
44 44 TM.packetID[0] = (unsigned char) (APID_TM_TC_EXE >> SHIFT_1_BYTE);
45 45 TM.packetID[1] = (unsigned char) (APID_TM_TC_EXE );
46 46 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
47 47 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_SUCCESS >> SHIFT_1_BYTE);
48 48 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_SUCCESS );
49 49 // DATA FIELD HEADER
50 50 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
51 51 TM.serviceType = TM_TYPE_TC_EXE;
52 52 TM.serviceSubType = TM_SUBTYPE_EXE_OK;
53 53 TM.destinationID = TC->sourceID;
54 54 TM.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
55 55 TM.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
56 56 TM.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
57 57 TM.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
58 58 TM.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
59 59 TM.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
60 60 //
61 61 TM.telecommand_pkt_id[0] = TC->packetID[0];
62 62 TM.telecommand_pkt_id[1] = TC->packetID[1];
63 63 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
64 64 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
65 65
66 66 messageSize = PACKET_LENGTH_TC_EXE_SUCCESS + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
67 67
68 68 // SEND DATA
69 69 status = rtems_message_queue_send( queue_id, &TM, messageSize);
70 70 if (status != RTEMS_SUCCESSFUL) {
71 71 PRINTF("in send_tm_lfr_tc_exe_success *** ERR\n")
72 72 }
73 73
74 74 // UPDATE HK FIELDS
75 75 update_last_TC_exe( TC, TM.time );
76 76
77 77 return status;
78 78 }
79 79
80 80 int send_tm_lfr_tc_exe_inconsistent( ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
81 81 unsigned char byte_position, unsigned char rcv_value )
82 82 {
83 83 /** This function sends a TM_LFR_TC_EXE_INCONSISTENT packet in the dedicated RTEMS message queue.
84 84 *
85 85 * @param TC points to the TeleCommand packet that is being processed
86 86 * @param queue_id is the id of the queue which handles TM
87 87 * @param byte_position is the byte position of the MSB of the parameter that has been seen as inconsistent
88 88 * @param rcv_value is the value of the LSB of the parameter that has been detected as inconsistent
89 89 *
90 90 * @return RTEMS directive status code:
91 91 * - RTEMS_SUCCESSFUL - message sent successfully
92 92 * - RTEMS_INVALID_ID - invalid queue id
93 93 * - RTEMS_INVALID_SIZE - invalid message size
94 94 * - RTEMS_INVALID_ADDRESS - buffer is NULL
95 95 * - RTEMS_UNSATISFIED - out of message buffers
96 96 * - RTEMS_TOO_MANY - queue s limit has been reached
97 97 *
98 98 */
99 99
100 100 rtems_status_code status;
101 101 Packet_TM_LFR_TC_EXE_INCONSISTENT_t TM;
102 102 unsigned char messageSize;
103 103
104 104 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
105 105 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
106 106 TM.reserved = DEFAULT_RESERVED;
107 107 TM.userApplication = CCSDS_USER_APP;
108 108 // PACKET HEADER
109 109 TM.packetID[0] = (unsigned char) (APID_TM_TC_EXE >> SHIFT_1_BYTE);
110 110 TM.packetID[1] = (unsigned char) (APID_TM_TC_EXE );
111 111 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
112 112 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_INCONSISTENT >> SHIFT_1_BYTE);
113 113 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_INCONSISTENT );
114 114 // DATA FIELD HEADER
115 115 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
116 116 TM.serviceType = TM_TYPE_TC_EXE;
117 117 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
118 118 TM.destinationID = TC->sourceID;
119 119 TM.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
120 120 TM.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
121 121 TM.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
122 122 TM.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
123 123 TM.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
124 124 TM.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
125 125 //
126 126 TM.tc_failure_code[0] = (char) (WRONG_APP_DATA >> SHIFT_1_BYTE);
127 127 TM.tc_failure_code[1] = (char) (WRONG_APP_DATA );
128 128 TM.telecommand_pkt_id[0] = TC->packetID[0];
129 129 TM.telecommand_pkt_id[1] = TC->packetID[1];
130 130 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
131 131 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
132 132 TM.tc_service = TC->serviceType; // type of the rejected TC
133 133 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
134 134 TM.byte_position = byte_position;
135 135 TM.rcv_value = (unsigned char) rcv_value;
136 136
137 137 messageSize = PACKET_LENGTH_TC_EXE_INCONSISTENT + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
138 138
139 139 // SEND DATA
140 140 status = rtems_message_queue_send( queue_id, &TM, messageSize);
141 141 if (status != RTEMS_SUCCESSFUL) {
142 142 PRINTF("in send_tm_lfr_tc_exe_inconsistent *** ERR\n")
143 143 }
144 144
145 145 // UPDATE HK FIELDS
146 146 update_last_TC_rej( TC, TM.time );
147 147
148 148 return status;
149 149 }
150 150
151 151 int send_tm_lfr_tc_exe_not_executable( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
152 152 {
153 153 /** This function sends a TM_LFR_TC_EXE_NOT_EXECUTABLE packet in the dedicated RTEMS message queue.
154 154 *
155 155 * @param TC points to the TeleCommand packet that is being processed
156 156 * @param queue_id is the id of the queue which handles TM
157 157 *
158 158 * @return RTEMS directive status code:
159 159 * - RTEMS_SUCCESSFUL - message sent successfully
160 160 * - RTEMS_INVALID_ID - invalid queue id
161 161 * - RTEMS_INVALID_SIZE - invalid message size
162 162 * - RTEMS_INVALID_ADDRESS - buffer is NULL
163 163 * - RTEMS_UNSATISFIED - out of message buffers
164 164 * - RTEMS_TOO_MANY - queue s limit has been reached
165 165 *
166 166 */
167 167
168 168 rtems_status_code status;
169 169 Packet_TM_LFR_TC_EXE_NOT_EXECUTABLE_t TM;
170 170 unsigned char messageSize;
171 171
172 172 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
173 173 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
174 174 TM.reserved = DEFAULT_RESERVED;
175 175 TM.userApplication = CCSDS_USER_APP;
176 176 // PACKET HEADER
177 177 TM.packetID[0] = (unsigned char) (APID_TM_TC_EXE >> SHIFT_1_BYTE);
178 178 TM.packetID[1] = (unsigned char) (APID_TM_TC_EXE );
179 179 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
180 180 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE >> SHIFT_1_BYTE);
181 181 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE );
182 182 // DATA FIELD HEADER
183 183 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
184 184 TM.serviceType = TM_TYPE_TC_EXE;
185 185 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
186 186 TM.destinationID = TC->sourceID; // default destination id
187 187 TM.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
188 188 TM.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
189 189 TM.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
190 190 TM.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
191 191 TM.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
192 192 TM.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
193 193 //
194 194 TM.tc_failure_code[0] = (char) (TC_NOT_EXE >> SHIFT_1_BYTE);
195 195 TM.tc_failure_code[1] = (char) (TC_NOT_EXE );
196 196 TM.telecommand_pkt_id[0] = TC->packetID[0];
197 197 TM.telecommand_pkt_id[1] = TC->packetID[1];
198 198 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
199 199 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
200 200 TM.tc_service = TC->serviceType; // type of the rejected TC
201 201 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
202 202 TM.lfr_status_word[0] = housekeeping_packet.lfr_status_word[0];
203 203 TM.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1];
204 204
205 205 messageSize = PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
206 206
207 207 // SEND DATA
208 208 status = rtems_message_queue_send( queue_id, &TM, messageSize);
209 209 if (status != RTEMS_SUCCESSFUL) {
210 210 PRINTF("in send_tm_lfr_tc_exe_not_executable *** ERR\n")
211 211 }
212 212
213 213 // UPDATE HK FIELDS
214 214 update_last_TC_rej( TC, TM.time );
215 215
216 216 return status;
217 217 }
218 218
219 219 int send_tm_lfr_tc_exe_not_implemented( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time )
220 220 {
221 221 /** This function sends a TM_LFR_TC_EXE_NOT_IMPLEMENTED packet in the dedicated RTEMS message queue.
222 222 *
223 223 * @param TC points to the TeleCommand packet that is being processed
224 224 * @param queue_id is the id of the queue which handles TM
225 225 *
226 226 * @return RTEMS directive status code:
227 227 * - RTEMS_SUCCESSFUL - message sent successfully
228 228 * - RTEMS_INVALID_ID - invalid queue id
229 229 * - RTEMS_INVALID_SIZE - invalid message size
230 230 * - RTEMS_INVALID_ADDRESS - buffer is NULL
231 231 * - RTEMS_UNSATISFIED - out of message buffers
232 232 * - RTEMS_TOO_MANY - queue s limit has been reached
233 233 *
234 234 */
235 235
236 236 rtems_status_code status;
237 237 Packet_TM_LFR_TC_EXE_NOT_IMPLEMENTED_t TM;
238 238 unsigned char messageSize;
239 239
240 240 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
241 241 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
242 242 TM.reserved = DEFAULT_RESERVED;
243 243 TM.userApplication = CCSDS_USER_APP;
244 244 // PACKET HEADER
245 245 TM.packetID[0] = (unsigned char) (APID_TM_TC_EXE >> SHIFT_1_BYTE);
246 246 TM.packetID[1] = (unsigned char) (APID_TM_TC_EXE );
247 247 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
248 248 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED >> SHIFT_1_BYTE);
249 249 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED );
250 250 // DATA FIELD HEADER
251 251 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
252 252 TM.serviceType = TM_TYPE_TC_EXE;
253 253 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
254 254 TM.destinationID = TC->sourceID; // default destination id
255 255 TM.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
256 256 TM.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
257 257 TM.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
258 258 TM.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
259 259 TM.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
260 260 TM.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
261 261 //
262 262 TM.tc_failure_code[0] = (char) (FUNCT_NOT_IMPL >> SHIFT_1_BYTE);
263 263 TM.tc_failure_code[1] = (char) (FUNCT_NOT_IMPL );
264 264 TM.telecommand_pkt_id[0] = TC->packetID[0];
265 265 TM.telecommand_pkt_id[1] = TC->packetID[1];
266 266 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
267 267 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
268 268 TM.tc_service = TC->serviceType; // type of the rejected TC
269 269 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
270 270
271 271 messageSize = PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
272 272
273 273 // SEND DATA
274 274 status = rtems_message_queue_send( queue_id, &TM, messageSize);
275 275 if (status != RTEMS_SUCCESSFUL) {
276 276 PRINTF("in send_tm_lfr_tc_exe_not_implemented *** ERR\n")
277 277 }
278 278
279 279 // UPDATE HK FIELDS
280 280 update_last_TC_rej( TC, TM.time );
281 281
282 282 return status;
283 283 }
284 284
285 285 int send_tm_lfr_tc_exe_error( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
286 286 {
287 287 /** This function sends a TM_LFR_TC_EXE_ERROR packet in the dedicated RTEMS message queue.
288 288 *
289 289 * @param TC points to the TeleCommand packet that is being processed
290 290 * @param queue_id is the id of the queue which handles TM
291 291 *
292 292 * @return RTEMS directive status code:
293 293 * - RTEMS_SUCCESSFUL - message sent successfully
294 294 * - RTEMS_INVALID_ID - invalid queue id
295 295 * - RTEMS_INVALID_SIZE - invalid message size
296 296 * - RTEMS_INVALID_ADDRESS - buffer is NULL
297 297 * - RTEMS_UNSATISFIED - out of message buffers
298 298 * - RTEMS_TOO_MANY - queue s limit has been reached
299 299 *
300 300 */
301 301
302 302 rtems_status_code status;
303 303 Packet_TM_LFR_TC_EXE_ERROR_t TM;
304 304 unsigned char messageSize;
305 305
306 306 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
307 307 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
308 308 TM.reserved = DEFAULT_RESERVED;
309 309 TM.userApplication = CCSDS_USER_APP;
310 310 // PACKET HEADER
311 311 TM.packetID[0] = (unsigned char) (APID_TM_TC_EXE >> SHIFT_1_BYTE);
312 312 TM.packetID[1] = (unsigned char) (APID_TM_TC_EXE );
313 313 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
314 314 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_ERROR >> SHIFT_1_BYTE);
315 315 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_ERROR );
316 316 // DATA FIELD HEADER
317 317 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
318 318 TM.serviceType = TM_TYPE_TC_EXE;
319 319 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
320 320 TM.destinationID = TC->sourceID; // default destination id
321 321 TM.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
322 322 TM.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
323 323 TM.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
324 324 TM.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
325 325 TM.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
326 326 TM.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
327 327 //
328 328 TM.tc_failure_code[0] = (char) (FAIL_DETECTED >> SHIFT_1_BYTE);
329 329 TM.tc_failure_code[1] = (char) (FAIL_DETECTED );
330 330 TM.telecommand_pkt_id[0] = TC->packetID[0];
331 331 TM.telecommand_pkt_id[1] = TC->packetID[1];
332 332 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
333 333 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
334 334 TM.tc_service = TC->serviceType; // type of the rejected TC
335 335 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
336 336
337 337 messageSize = PACKET_LENGTH_TC_EXE_ERROR + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
338 338
339 339 // SEND DATA
340 340 status = rtems_message_queue_send( queue_id, &TM, messageSize);
341 341 if (status != RTEMS_SUCCESSFUL) {
342 342 PRINTF("in send_tm_lfr_tc_exe_error *** ERR\n")
343 343 }
344 344
345 345 // UPDATE HK FIELDS
346 346 update_last_TC_rej( TC, TM.time );
347 347
348 348 return status;
349 349 }
350 350
351 351 int send_tm_lfr_tc_exe_corrupted(ccsdsTelecommandPacket_t *TC, rtems_id queue_id,
352 352 unsigned char *computed_CRC, unsigned char *currentTC_LEN_RCV,
353 353 unsigned char destinationID )
354 354 {
355 355 /** This function sends a TM_LFR_TC_EXE_CORRUPTED packet in the dedicated RTEMS message queue.
356 356 *
357 357 * @param TC points to the TeleCommand packet that is being processed
358 358 * @param queue_id is the id of the queue which handles TM
359 359 * @param computed_CRC points to a buffer of two bytes containing the CRC computed during the parsing of the TeleCommand
360 360 * @param currentTC_LEN_RCV points to a buffer of two bytes containing a packet size field computed on the received data
361 361 *
362 362 * @return RTEMS directive status code:
363 363 * - RTEMS_SUCCESSFUL - message sent successfully
364 364 * - RTEMS_INVALID_ID - invalid queue id
365 365 * - RTEMS_INVALID_SIZE - invalid message size
366 366 * - RTEMS_INVALID_ADDRESS - buffer is NULL
367 367 * - RTEMS_UNSATISFIED - out of message buffers
368 368 * - RTEMS_TOO_MANY - queue s limit has been reached
369 369 *
370 370 */
371 371
372 372 rtems_status_code status;
373 373 Packet_TM_LFR_TC_EXE_CORRUPTED_t TM;
374 374 unsigned char messageSize;
375 375 unsigned int packetLength;
376 376 unsigned int estimatedPacketLength;
377 377 unsigned char *packetDataField;
378 378
379 379 packetLength = (TC->packetLength[0] * CONST_256) + TC->packetLength[1]; // compute the packet length parameter written in the TC
380 380 estimatedPacketLength = (unsigned int) ((currentTC_LEN_RCV[0] * CONST_256) + currentTC_LEN_RCV[1]);
381 381 packetDataField = (unsigned char *) &TC->headerFlag_pusVersion_Ack; // get the beginning of the data field
382 382
383 383 TM.targetLogicalAddress = CCSDS_DESTINATION_ID;
384 384 TM.protocolIdentifier = CCSDS_PROTOCOLE_ID;
385 385 TM.reserved = DEFAULT_RESERVED;
386 386 TM.userApplication = CCSDS_USER_APP;
387 387 // PACKET HEADER
388 388 TM.packetID[0] = (unsigned char) (APID_TM_TC_EXE >> SHIFT_1_BYTE);
389 389 TM.packetID[1] = (unsigned char) (APID_TM_TC_EXE );
390 390 increment_seq_counter_destination_id( TM.packetSequenceControl, TC->sourceID );
391 391 TM.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_EXE_CORRUPTED >> SHIFT_1_BYTE);
392 392 TM.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_EXE_CORRUPTED );
393 393 // DATA FIELD HEADER
394 394 TM.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
395 395 TM.serviceType = TM_TYPE_TC_EXE;
396 396 TM.serviceSubType = TM_SUBTYPE_EXE_NOK;
397 397 TM.destinationID = destinationID;
398 398 TM.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
399 399 TM.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
400 400 TM.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
401 401 TM.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
402 402 TM.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
403 403 TM.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
404 404 //
405 405 TM.tc_failure_code[0] = (unsigned char) (CORRUPTED >> SHIFT_1_BYTE);
406 406 TM.tc_failure_code[1] = (unsigned char) (CORRUPTED );
407 407 TM.telecommand_pkt_id[0] = TC->packetID[0];
408 408 TM.telecommand_pkt_id[1] = TC->packetID[1];
409 409 TM.pkt_seq_control[0] = TC->packetSequenceControl[0];
410 410 TM.pkt_seq_control[1] = TC->packetSequenceControl[1];
411 411 TM.tc_service = TC->serviceType; // type of the rejected TC
412 412 TM.tc_subtype = TC->serviceSubType; // subtype of the rejected TC
413 413 TM.pkt_len_rcv_value[0] = TC->packetLength[0];
414 414 TM.pkt_len_rcv_value[1] = TC->packetLength[1];
415 415 TM.pkt_datafieldsize_cnt[0] = currentTC_LEN_RCV[0];
416 416 TM.pkt_datafieldsize_cnt[1] = currentTC_LEN_RCV[1];
417 // TM.rcv_crc[0] = packetDataField[ packetLength - 1 ];
418 // TM.rcv_crc[1] = packetDataField[ packetLength ];
419 417 TM.rcv_crc[0] = packetDataField[ estimatedPacketLength - 1 ];
420 418 TM.rcv_crc[1] = packetDataField[ estimatedPacketLength ];
421 419 TM.computed_crc[0] = computed_CRC[0];
422 420 TM.computed_crc[1] = computed_CRC[1];
423 421
424 422 messageSize = PACKET_LENGTH_TC_EXE_CORRUPTED + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
425 423
426 424 // SEND DATA
427 425 status = rtems_message_queue_send( queue_id, &TM, messageSize);
428 426 if (status != RTEMS_SUCCESSFUL) {
429 427 PRINTF("in send_tm_lfr_tc_exe_error *** ERR\n")
430 428 }
431 429
432 430 // UPDATE HK FIELDS
433 431 update_last_TC_rej( TC, TM.time );
434 432
435 433 return status;
436 434 }
437 435
438 436 void increment_seq_counter_destination_id( unsigned char *packet_sequence_control, unsigned char destination_id )
439 437 {
440 438 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
441 439 *
442 440 * @param packet_sequence_control points to the packet sequence control which will be incremented
443 441 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
444 442 *
445 443 * If the destination ID is not known, a dedicated counter is incremented.
446 444 *
447 445 */
448 446
449 447 unsigned short sequence_cnt;
450 448 unsigned short segmentation_grouping_flag;
451 449 unsigned short new_packet_sequence_control;
452 450 unsigned char i;
453 451
454 452 switch (destination_id)
455 453 {
456 454 case SID_TC_GROUND:
457 455 i = GROUND;
458 456 break;
459 457 case SID_TC_MISSION_TIMELINE:
460 458 i = MISSION_TIMELINE;
461 459 break;
462 460 case SID_TC_TC_SEQUENCES:
463 461 i = TC_SEQUENCES;
464 462 break;
465 463 case SID_TC_RECOVERY_ACTION_CMD:
466 464 i = RECOVERY_ACTION_CMD;
467 465 break;
468 466 case SID_TC_BACKUP_MISSION_TIMELINE:
469 467 i = BACKUP_MISSION_TIMELINE;
470 468 break;
471 469 case SID_TC_DIRECT_CMD:
472 470 i = DIRECT_CMD;
473 471 break;
474 472 case SID_TC_SPARE_GRD_SRC1:
475 473 i = SPARE_GRD_SRC1;
476 474 break;
477 475 case SID_TC_SPARE_GRD_SRC2:
478 476 i = SPARE_GRD_SRC2;
479 477 break;
480 478 case SID_TC_OBCP:
481 479 i = OBCP;
482 480 break;
483 481 case SID_TC_SYSTEM_CONTROL:
484 482 i = SYSTEM_CONTROL;
485 483 break;
486 484 case SID_TC_AOCS:
487 485 i = AOCS;
488 486 break;
489 487 case SID_TC_RPW_INTERNAL:
490 488 i = RPW_INTERNAL;
491 489 break;
492 490 default:
493 491 i = GROUND;
494 492 break;
495 493 }
496 494
497 495 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
498 496 sequence_cnt = sequenceCounters_TC_EXE[ i ] & SEQ_CNT_MASK;
499 497
500 498 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
501 499
502 500 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
503 501 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
504 502
505 503 // increment the sequence counter
506 504 if ( sequenceCounters_TC_EXE[ i ] < SEQ_CNT_MAX )
507 505 {
508 506 sequenceCounters_TC_EXE[ i ] = sequenceCounters_TC_EXE[ i ] + 1;
509 507 }
510 508 else
511 509 {
512 510 sequenceCounters_TC_EXE[ i ] = 0;
513 511 }
514 512 }
@@ -1,1344 +1,1342
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //***************
13 13 // waveform rings
14 14 // F0
15 15 ring_node waveform_ring_f0[NB_RING_NODES_F0]= {0};
16 16 ring_node *current_ring_node_f0 = NULL;
17 17 ring_node *ring_node_to_send_swf_f0 = NULL;
18 18 // F1
19 19 ring_node waveform_ring_f1[NB_RING_NODES_F1] = {0};
20 20 ring_node *current_ring_node_f1 = NULL;
21 21 ring_node *ring_node_to_send_swf_f1 = NULL;
22 22 ring_node *ring_node_to_send_cwf_f1 = NULL;
23 23 // F2
24 24 ring_node waveform_ring_f2[NB_RING_NODES_F2] = {0};
25 25 ring_node *current_ring_node_f2 = NULL;
26 26 ring_node *ring_node_to_send_swf_f2 = NULL;
27 27 ring_node *ring_node_to_send_cwf_f2 = NULL;
28 28 // F3
29 29 ring_node waveform_ring_f3[NB_RING_NODES_F3] = {0};
30 30 ring_node *current_ring_node_f3 = NULL;
31 31 ring_node *ring_node_to_send_cwf_f3 = NULL;
32 32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ] = {0};
33 33
34 34 bool extractSWF1 = false;
35 35 bool extractSWF2 = false;
36 36 bool swf0_ready_flag_f1 = false;
37 37 bool swf0_ready_flag_f2 = false;
38 38 bool swf1_ready = false;
39 39 bool swf2_ready = false;
40 40
41 41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ] = {0};
42 42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ] = {0};
43 43 ring_node ring_node_swf1_extracted = {0};
44 44 ring_node ring_node_swf2_extracted = {0};
45 45
46 46 typedef enum resynchro_state_t
47 47 {
48 48 MEASURE,
49 49 CORRECTION
50 50 } resynchro_state;
51 51
52 52 //*********************
53 53 // Interrupt SubRoutine
54 54
55 55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
56 56 {
57 57 ring_node *node;
58 58
59 59 node = NULL;
60 60 switch ( frequencyChannel ) {
61 61 case CHANNELF1:
62 62 node = ring_node_to_send_cwf_f1;
63 63 break;
64 64 case CHANNELF2:
65 65 node = ring_node_to_send_cwf_f2;
66 66 break;
67 67 case CHANNELF3:
68 68 node = ring_node_to_send_cwf_f3;
69 69 break;
70 70 default:
71 71 break;
72 72 }
73 73
74 74 return node;
75 75 }
76 76
77 77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
78 78 {
79 79 ring_node *node;
80 80
81 81 node = NULL;
82 82 switch ( frequencyChannel ) {
83 83 case CHANNELF0:
84 84 node = ring_node_to_send_swf_f0;
85 85 break;
86 86 case CHANNELF1:
87 87 node = ring_node_to_send_swf_f1;
88 88 break;
89 89 case CHANNELF2:
90 90 node = ring_node_to_send_swf_f2;
91 91 break;
92 92 default:
93 93 break;
94 94 }
95 95
96 96 return node;
97 97 }
98 98
99 99 void reset_extractSWF( void )
100 100 {
101 101 extractSWF1 = false;
102 102 extractSWF2 = false;
103 103 swf0_ready_flag_f1 = false;
104 104 swf0_ready_flag_f2 = false;
105 105 swf1_ready = false;
106 106 swf2_ready = false;
107 107 }
108 108
109 109 inline void waveforms_isr_f3( void )
110 110 {
111 111 rtems_status_code spare_status;
112 112
113 113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
114 114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
115 115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
116 116 //***
117 117 // F3
118 118 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F3) != INIT_CHAR ) { // [1100 0000] check the f3 full bits
119 119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
120 120 current_ring_node_f3 = current_ring_node_f3->next;
121 121 if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_0) == BIT_WFP_BUF_F3_0){ // [0100 0000] f3 buffer 0 is full
122 122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
123 123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
124 124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
125 125 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_0; // [1000 1000 0100 0000]
126 126 }
127 127 else if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_1) == BIT_WFP_BUF_F3_1){ // [1000 0000] f3 buffer 1 is full
128 128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
129 129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
130 130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
131 131 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_1; // [1000 1000 1000 0000]
132 132 }
133 133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
134 134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
135 135 }
136 136 }
137 137 }
138 138 }
139 139
140 140 inline void waveforms_isr_burst( void )
141 141 {
142 142 unsigned char status;
143 143 rtems_status_code spare_status;
144 144
145 145 status = (waveform_picker_regs->status & BITS_WFP_STATUS_F2) >> SHIFT_WFP_STATUS_F2; // [0011 0000] get the status bits for f2
146 146
147 147 switch(status)
148 148 {
149 149 case BIT_WFP_BUFFER_0:
150 150 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
151 151 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
152 152 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
153 153 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
154 154 current_ring_node_f2 = current_ring_node_f2->next;
155 155 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
156 156 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
157 157 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
158 158 }
159 159 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
160 160 break;
161 161 case BIT_WFP_BUFFER_1:
162 162 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
163 163 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
164 164 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
165 165 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
166 166 current_ring_node_f2 = current_ring_node_f2->next;
167 167 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
168 168 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
169 169 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
170 170 }
171 171 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
172 172 break;
173 173 default:
174 174 break;
175 175 }
176 176 }
177 177
178 178 inline void waveform_isr_normal_sbm1_sbm2( void )
179 179 {
180 180 rtems_status_code status;
181 181
182 182 //***
183 183 // F0
184 184 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F0) != INIT_CHAR ) // [0000 0011] check the f0 full bits
185 185 {
186 186 swf0_ready_flag_f1 = true;
187 187 swf0_ready_flag_f2 = true;
188 188 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
189 189 current_ring_node_f0 = current_ring_node_f0->next;
190 190 if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_0) == BIT_WFP_BUFFER_0)
191 191 {
192 192
193 193 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
194 194 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
195 195 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
196 196 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_0; // [0001 0001 0000 0001]
197 197 }
198 198 else if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_1) == BIT_WFP_BUFFER_1)
199 199 {
200 200 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
201 201 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
202 202 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
203 203 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_1; // [0001 0001 0000 0010]
204 204 }
205 205 // send an event to the WFRM task for resynchro activities
206 206 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
207 207 status = rtems_event_send( Task_id[TASKID_CALI], RTEMS_EVENT_CAL_SWEEP_WAKE );
208 208 }
209 209
210 210 //***
211 211 // F1
212 212 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F1) != INIT_CHAR ) { // [0000 1100] check the f1 full bits
213 213 // (1) change the receiving buffer for the waveform picker
214 214 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
215 215 current_ring_node_f1 = current_ring_node_f1->next;
216 216 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_0) == BIT_WFP_BUF_F1_0)
217 217 {
218 218 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
219 219 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
220 220 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
221 221 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_0; // [0010 0010 0000 0100] f1 bits = 0
222 222 }
223 223 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_1) == BIT_WFP_BUF_F1_1)
224 224 {
225 225 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
226 226 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
227 227 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
228 228 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_1; // [0010 0010 0000 1000] f1 bits = 0
229 229 }
230 230 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
231 231 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
232 232 }
233 233
234 234 //***
235 235 // F2
236 236 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F2) != INIT_CHAR ) { // [0011 0000] check the f2 full bit
237 237 // (1) change the receiving buffer for the waveform picker
238 238 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
239 239 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
240 240 current_ring_node_f2 = current_ring_node_f2->next;
241 241 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_0) == BIT_WFP_BUF_F2_0)
242 242 {
243 243 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
244 244 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
245 245 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
246 246 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
247 247 }
248 248 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_1) == BIT_WFP_BUF_F2_1)
249 249 {
250 250 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
251 251 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
252 252 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
253 253 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
254 254 }
255 255 // (2) send an event for the waveforms transmission
256 256 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
257 257 }
258 258 }
259 259
260 260 rtems_isr waveforms_isr( rtems_vector_number vector )
261 261 {
262 262 /** This is the interrupt sub routine called by the waveform picker core.
263 263 *
264 264 * This ISR launch different actions depending mainly on two pieces of information:
265 265 * 1. the values read in the registers of the waveform picker.
266 266 * 2. the current LFR mode.
267 267 *
268 268 */
269 269
270 270 // STATUS
271 271 // new error error buffer full
272 272 // 15 14 13 12 11 10 9 8
273 273 // f3 f2 f1 f0 f3 f2 f1 f0
274 274 //
275 275 // ready buffer
276 276 // 7 6 5 4 3 2 1 0
277 277 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
278 278
279 279 rtems_status_code spare_status;
280 280
281 281 waveforms_isr_f3();
282 282
283 283 //*************************************************
284 284 // copy the status bits in the housekeeping packets
285 285 housekeeping_packet.hk_lfr_vhdl_iir_cal =
286 286 (unsigned char) ((waveform_picker_regs->status & BYTE0_MASK) >> SHIFT_1_BYTE);
287 287
288 288 if ( (waveform_picker_regs->status & BYTE0_MASK) != INIT_CHAR) // [1111 1111 0000 0000] check the error bits
289 289 {
290 290 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
291 291 }
292 292
293 293 switch(lfrCurrentMode)
294 294 {
295 295 //********
296 296 // STANDBY
297 297 case LFR_MODE_STANDBY:
298 298 break;
299 299 //**************************
300 300 // LFR NORMAL, SBM1 and SBM2
301 301 case LFR_MODE_NORMAL:
302 302 case LFR_MODE_SBM1:
303 303 case LFR_MODE_SBM2:
304 304 waveform_isr_normal_sbm1_sbm2();
305 305 break;
306 306 //******
307 307 // BURST
308 308 case LFR_MODE_BURST:
309 309 waveforms_isr_burst();
310 310 break;
311 311 //********
312 312 // DEFAULT
313 313 default:
314 314 break;
315 315 }
316 316 }
317 317
318 318 //************
319 319 // RTEMS TASKS
320 320
321 321 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
322 322 {
323 323 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
324 324 *
325 325 * @param unused is the starting argument of the RTEMS task
326 326 *
327 327 * The following data packets are sent by this task:
328 328 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
329 329 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
330 330 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
331 331 *
332 332 */
333 333
334 334 rtems_event_set event_out;
335 335 rtems_id queue_id;
336 336 rtems_status_code status;
337 337 ring_node *ring_node_swf1_extracted_ptr;
338 338 ring_node *ring_node_swf2_extracted_ptr;
339 339
340 340 event_out = EVENT_SETS_NONE_PENDING;
341 341 queue_id = RTEMS_ID_NONE;
342 342
343 343 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
344 344 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
345 345
346 346 status = get_message_queue_id_send( &queue_id );
347 347 if (status != RTEMS_SUCCESSFUL)
348 348 {
349 349 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
350 350 }
351 351
352 352 BOOT_PRINTF("in WFRM ***\n");
353 353
354 354 while(1){
355 355 // wait for an RTEMS_EVENT
356 356 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
357 357 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
358 358
359 359 if (event_out == RTEMS_EVENT_MODE_NORMAL)
360 360 {
361 361 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
362 362 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
363 363 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
364 364 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
365 365 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
366 366 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
367 367 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
368 368 }
369 369 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
370 370 {
371 371 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
372 372 }
373 373 }
374 374 }
375 375
376 376 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
377 377 {
378 378 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
379 379 *
380 380 * @param unused is the starting argument of the RTEMS task
381 381 *
382 382 * The following data packet is sent by this task:
383 383 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
384 384 *
385 385 */
386 386
387 387 rtems_event_set event_out;
388 388 rtems_id queue_id;
389 389 rtems_status_code status;
390 390 ring_node ring_node_cwf3_light;
391 391 ring_node *ring_node_to_send_cwf;
392 392
393 393 event_out = EVENT_SETS_NONE_PENDING;
394 394 queue_id = RTEMS_ID_NONE;
395 395
396 396 status = get_message_queue_id_send( &queue_id );
397 397 if (status != RTEMS_SUCCESSFUL)
398 398 {
399 399 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
400 400 }
401 401
402 402 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
403 403
404 404 // init the ring_node_cwf3_light structure
405 405 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
406 406 ring_node_cwf3_light.coarseTime = INIT_CHAR;
407 407 ring_node_cwf3_light.fineTime = INIT_CHAR;
408 408 ring_node_cwf3_light.next = NULL;
409 409 ring_node_cwf3_light.previous = NULL;
410 410 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
411 411 ring_node_cwf3_light.status = INIT_CHAR;
412 412
413 413 BOOT_PRINTF("in CWF3 ***\n");
414 414
415 415 while(1){
416 416 // wait for an RTEMS_EVENT
417 417 rtems_event_receive( RTEMS_EVENT_0,
418 418 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
419 419 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
420 420 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
421 421 {
422 422 ring_node_to_send_cwf = getRingNodeToSendCWF( CHANNELF3 );
423 423 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & BIT_CWF_LONG_F3) == BIT_CWF_LONG_F3)
424 424 {
425 425 PRINTF("send CWF_LONG_F3\n");
426 426 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
427 427 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
428 428 }
429 429 else
430 430 {
431 431 PRINTF("send CWF_F3 (light)\n");
432 432 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
433 433 }
434 434
435 435 }
436 436 else
437 437 {
438 438 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
439 439 }
440 440 }
441 441 }
442 442
443 443 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
444 444 {
445 445 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
446 446 *
447 447 * @param unused is the starting argument of the RTEMS task
448 448 *
449 449 * The following data packet is sent by this function:
450 450 * - TM_LFR_SCIENCE_BURST_CWF_F2
451 451 * - TM_LFR_SCIENCE_SBM2_CWF_F2
452 452 *
453 453 */
454 454
455 455 rtems_event_set event_out;
456 456 rtems_id queue_id;
457 457 rtems_status_code status;
458 458 ring_node *ring_node_to_send;
459 459 unsigned long long int acquisitionTimeF0_asLong;
460 460
461 461 event_out = EVENT_SETS_NONE_PENDING;
462 462 queue_id = RTEMS_ID_NONE;
463 463
464 464 acquisitionTimeF0_asLong = INIT_CHAR;
465 465
466 466 status = get_message_queue_id_send( &queue_id );
467 467 if (status != RTEMS_SUCCESSFUL)
468 468 {
469 469 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
470 470 }
471 471
472 472 BOOT_PRINTF("in CWF2 ***\n");
473 473
474 474 while(1){
475 475 // wait for an RTEMS_EVENT// send the snapshot when built
476 476 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
477 477 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
478 478 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
479 479 ring_node_to_send = getRingNodeToSendCWF( CHANNELF2 );
480 480 if (event_out == RTEMS_EVENT_MODE_BURST)
481 481 { // data are sent whatever the transition time
482 482 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
483 483 }
484 484 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
485 485 {
486 486 if ( lfrCurrentMode == LFR_MODE_SBM2 )
487 487 {
488 488 // data are sent depending on the transition time
489 489 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
490 490 {
491 491 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
492 492 }
493 493 }
494 494 // launch snapshot extraction if needed
495 495 if (extractSWF2 == true)
496 496 {
497 497 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
498 498 // extract the snapshot
499 499 build_snapshot_from_ring( ring_node_to_send_swf_f2, CHANNELF2, acquisitionTimeF0_asLong,
500 500 &ring_node_swf2_extracted, swf2_extracted );
501 501 extractSWF2 = false;
502 502 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
503 503 }
504 504 if (swf0_ready_flag_f2 == true)
505 505 {
506 506 extractSWF2 = true;
507 507 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
508 508 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
509 509 swf0_ready_flag_f2 = false;
510 510 }
511 511 }
512 512 }
513 513 }
514 514
515 515 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
516 516 {
517 517 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
518 518 *
519 519 * @param unused is the starting argument of the RTEMS task
520 520 *
521 521 * The following data packet is sent by this function:
522 522 * - TM_LFR_SCIENCE_SBM1_CWF_F1
523 523 *
524 524 */
525 525
526 526 rtems_event_set event_out;
527 527 rtems_id queue_id;
528 528 rtems_status_code status;
529 529
530 530 ring_node *ring_node_to_send_cwf;
531 531
532 532 event_out = EVENT_SETS_NONE_PENDING;
533 533 queue_id = RTEMS_ID_NONE;
534 534
535 535 status = get_message_queue_id_send( &queue_id );
536 536 if (status != RTEMS_SUCCESSFUL)
537 537 {
538 538 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
539 539 }
540 540
541 541 BOOT_PRINTF("in CWF1 ***\n");
542 542
543 543 while(1){
544 544 // wait for an RTEMS_EVENT
545 545 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
546 546 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
547 547 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
548 548 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
549 549 if (lfrCurrentMode == LFR_MODE_SBM1)
550 550 {
551 551 // data are sent depending on the transition time
552 552 if ( time_management_regs->coarse_time >= lastValidEnterModeTime )
553 553 {
554 554 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
555 555 }
556 556 }
557 557 // launch snapshot extraction if needed
558 558 if (extractSWF1 == true)
559 559 {
560 560 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
561 561 // launch the snapshot extraction
562 562 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
563 563 extractSWF1 = false;
564 564 }
565 565 if (swf0_ready_flag_f1 == true)
566 566 {
567 567 extractSWF1 = true;
568 568 swf0_ready_flag_f1 = false; // this step shall be executed only one time
569 569 }
570 570 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
571 571 {
572 572 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
573 573 swf1_ready = false;
574 574 swf2_ready = false;
575 575 }
576 576 }
577 577 }
578 578
579 579 rtems_task swbd_task(rtems_task_argument argument)
580 580 {
581 581 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
582 582 *
583 583 * @param unused is the starting argument of the RTEMS task
584 584 *
585 585 */
586 586
587 587 rtems_event_set event_out;
588 588 unsigned long long int acquisitionTimeF0_asLong;
589 589
590 590 event_out = EVENT_SETS_NONE_PENDING;
591 591 acquisitionTimeF0_asLong = INIT_CHAR;
592 592
593 593 BOOT_PRINTF("in SWBD ***\n")
594 594
595 595 while(1){
596 596 // wait for an RTEMS_EVENT
597 597 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
598 598 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
599 599 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
600 600 {
601 601 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
602 602 build_snapshot_from_ring( ring_node_to_send_swf_f1, CHANNELF1, acquisitionTimeF0_asLong,
603 603 &ring_node_swf1_extracted, swf1_extracted );
604 604 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
605 605 }
606 606 else
607 607 {
608 608 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
609 609 }
610 610 }
611 611 }
612 612
613 613 //******************
614 614 // general functions
615 615
616 616 void WFP_init_rings( void )
617 617 {
618 618 // F0 RING
619 619 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
620 620 // F1 RING
621 621 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
622 622 // F2 RING
623 623 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
624 624 // F3 RING
625 625 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
626 626
627 627 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
628 628 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
629 629
630 630 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
631 631 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
632 632 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
633 633 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
634 634 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
635 635 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
636 636 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
637 637 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
638 638
639 639 }
640 640
641 641 void WFP_reset_current_ring_nodes( void )
642 642 {
643 643 current_ring_node_f0 = waveform_ring_f0[0].next;
644 644 current_ring_node_f1 = waveform_ring_f1[0].next;
645 645 current_ring_node_f2 = waveform_ring_f2[0].next;
646 646 current_ring_node_f3 = waveform_ring_f3[0].next;
647 647
648 648 ring_node_to_send_swf_f0 = waveform_ring_f0;
649 649 ring_node_to_send_swf_f1 = waveform_ring_f1;
650 650 ring_node_to_send_swf_f2 = waveform_ring_f2;
651 651
652 652 ring_node_to_send_cwf_f1 = waveform_ring_f1;
653 653 ring_node_to_send_cwf_f2 = waveform_ring_f2;
654 654 ring_node_to_send_cwf_f3 = waveform_ring_f3;
655 655 }
656 656
657 657 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
658 658 {
659 659 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
660 660 *
661 661 * @param waveform points to the buffer containing the data that will be send.
662 662 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
663 663 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
664 664 * contain information to setup the transmission of the data packets.
665 665 *
666 666 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
667 667 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
668 668 *
669 669 */
670 670
671 671 unsigned int i;
672 672 unsigned int j;
673 673 int ret;
674 674 rtems_status_code status;
675 675
676 676 char *sample;
677 677 int *dataPtr;
678 678
679 679 ret = LFR_DEFAULT;
680 680
681 681 dataPtr = (int*) ring_node_to_send->buffer_address;
682 682
683 683 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
684 684 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
685 685
686 686 //**********************
687 687 // BUILD CWF3_light DATA
688 688 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
689 689 {
690 690 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
691 691 for (j=0; j < CWF_BLK_SIZE; j++)
692 692 {
693 693 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + j] = sample[ j ];
694 694 }
695 695 }
696 696
697 697 // SEND PACKET
698 698 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
699 699 if (status != RTEMS_SUCCESSFUL) {
700 700 ret = LFR_DEFAULT;
701 701 }
702 702
703 703 return ret;
704 704 }
705 705
706 706 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
707 707 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
708 708 {
709 709 unsigned long long int acquisitionTimeAsLong;
710 710 unsigned char localAcquisitionTime[BYTES_PER_TIME];
711 711 double deltaT;
712 712
713 713 deltaT = INIT_FLOAT;
714 714
715 715 localAcquisitionTime[BYTE_0] = (unsigned char) ( coarseTime >> SHIFT_3_BYTES );
716 716 localAcquisitionTime[BYTE_1] = (unsigned char) ( coarseTime >> SHIFT_2_BYTES );
717 717 localAcquisitionTime[BYTE_2] = (unsigned char) ( coarseTime >> SHIFT_1_BYTE );
718 718 localAcquisitionTime[BYTE_3] = (unsigned char) ( coarseTime );
719 719 localAcquisitionTime[BYTE_4] = (unsigned char) ( fineTime >> SHIFT_1_BYTE );
720 720 localAcquisitionTime[BYTE_5] = (unsigned char) ( fineTime );
721 721
722 722 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[BYTE_0] << SHIFT_5_BYTES )
723 723 + ( (unsigned long long int) localAcquisitionTime[BYTE_1] << SHIFT_4_BYTES )
724 724 + ( (unsigned long long int) localAcquisitionTime[BYTE_2] << SHIFT_3_BYTES )
725 725 + ( (unsigned long long int) localAcquisitionTime[BYTE_3] << SHIFT_2_BYTES )
726 726 + ( (unsigned long long int) localAcquisitionTime[BYTE_4] << SHIFT_1_BYTE )
727 727 + ( (unsigned long long int) localAcquisitionTime[BYTE_5] );
728 728
729 729 switch( sid )
730 730 {
731 731 case SID_NORM_SWF_F0:
732 732 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T0_IN_FINETIME ;
733 733 break;
734 734
735 735 case SID_NORM_SWF_F1:
736 736 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T1_IN_FINETIME ;
737 737 break;
738 738
739 739 case SID_NORM_SWF_F2:
740 740 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T2_IN_FINETIME ;
741 741 break;
742 742
743 743 case SID_SBM1_CWF_F1:
744 744 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T1_IN_FINETIME ;
745 745 break;
746 746
747 747 case SID_SBM2_CWF_F2:
748 748 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
749 749 break;
750 750
751 751 case SID_BURST_CWF_F2:
752 752 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
753 753 break;
754 754
755 755 case SID_NORM_CWF_F3:
756 756 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * T3_IN_FINETIME ;
757 757 break;
758 758
759 759 case SID_NORM_CWF_LONG_F3:
760 760 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T3_IN_FINETIME ;
761 761 break;
762 762
763 763 default:
764 764 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
765 765 deltaT = 0.;
766 766 break;
767 767 }
768 768
769 769 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
770 770 //
771 771 acquisitionTime[BYTE_0] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_5_BYTES);
772 772 acquisitionTime[BYTE_1] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_4_BYTES);
773 773 acquisitionTime[BYTE_2] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_3_BYTES);
774 774 acquisitionTime[BYTE_3] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_2_BYTES);
775 775 acquisitionTime[BYTE_4] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_1_BYTE );
776 776 acquisitionTime[BYTE_5] = (unsigned char) (acquisitionTimeAsLong );
777 777
778 778 }
779 779
780 780 void build_snapshot_from_ring( ring_node *ring_node_to_send,
781 781 unsigned char frequencyChannel,
782 782 unsigned long long int acquisitionTimeF0_asLong,
783 783 ring_node *ring_node_swf_extracted,
784 784 int *swf_extracted)
785 785 {
786 786 unsigned int i;
787 787 unsigned int node;
788 788 unsigned long long int centerTime_asLong;
789 789 unsigned long long int acquisitionTime_asLong;
790 790 unsigned long long int bufferAcquisitionTime_asLong;
791 791 unsigned char *ptr1;
792 792 unsigned char *ptr2;
793 793 unsigned char *timeCharPtr;
794 794 unsigned char nb_ring_nodes;
795 795 unsigned long long int frequency_asLong;
796 796 unsigned long long int nbTicksPerSample_asLong;
797 797 unsigned long long int nbSamplesPart1_asLong;
798 798 unsigned long long int sampleOffset_asLong;
799 799
800 800 unsigned int deltaT_F0;
801 801 unsigned int deltaT_F1;
802 802 unsigned long long int deltaT_F2;
803 803
804 804 deltaT_F0 = DELTAT_F0;
805 805 deltaT_F1 = DELTAT_F1;
806 806 deltaT_F2 = DELTAT_F2;
807 807 sampleOffset_asLong = INIT_CHAR;
808 808
809 809 // (1) get the f0 acquisition time => the value is passed in argument
810 810
811 811 // (2) compute the central reference time
812 812 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
813 813 acquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
814 814 bufferAcquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
815 815 nbTicksPerSample_asLong = TICKS_PER_T2; //set to default value (Don_Initialisation_P2)
816 816
817 817 // (3) compute the acquisition time of the current snapshot
818 818 switch(frequencyChannel)
819 819 {
820 820 case CHANNELF1: // 1 is for F1 = 4096 Hz
821 821 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
822 822 nb_ring_nodes = NB_RING_NODES_F1;
823 823 frequency_asLong = FREQ_F1;
824 824 nbTicksPerSample_asLong = TICKS_PER_T1; // 65536 / 4096;
825 825 break;
826 826 case CHANNELF2: // 2 is for F2 = 256 Hz
827 827 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
828 828 nb_ring_nodes = NB_RING_NODES_F2;
829 829 frequency_asLong = FREQ_F2;
830 830 nbTicksPerSample_asLong = TICKS_PER_T2; // 65536 / 256;
831 831 break;
832 832 default:
833 833 acquisitionTime_asLong = centerTime_asLong;
834 834 nb_ring_nodes = 0;
835 835 frequency_asLong = FREQ_F2;
836 836 nbTicksPerSample_asLong = TICKS_PER_T2;
837 837 break;
838 838 }
839 839
840 840 //*****************************************************************************
841 841 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
842 842 node = 0;
843 843 while ( node < nb_ring_nodes)
844 844 {
845 //PRINTF1("%d ... ", node);
846 845 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
847 846 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
848 847 {
849 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
850 848 node = nb_ring_nodes;
851 849 }
852 850 else
853 851 {
854 852 node = node + 1;
855 853 ring_node_to_send = ring_node_to_send->previous;
856 854 }
857 855 }
858 856
859 857 // (5) compute the number of samples to take in the current buffer
860 858 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> SHIFT_2_BYTES;
861 859 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
862 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
863 860
864 861 // (6) compute the final acquisition time
865 862 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
866 863 (sampleOffset_asLong * nbTicksPerSample_asLong);
867 864
868 865 // (7) copy the acquisition time at the beginning of the extrated snapshot
869 866 ptr1 = (unsigned char*) &acquisitionTime_asLong;
870 867 // fine time
871 868 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
872 869 ptr2[BYTE_2] = ptr1[ BYTE_4 + OFFSET_2_BYTES ];
873 870 ptr2[BYTE_3] = ptr1[ BYTE_5 + OFFSET_2_BYTES ];
874 871 // coarse time
875 872 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
876 873 ptr2[BYTE_0] = ptr1[ BYTE_0 + OFFSET_2_BYTES ];
877 874 ptr2[BYTE_1] = ptr1[ BYTE_1 + OFFSET_2_BYTES ];
878 875 ptr2[BYTE_2] = ptr1[ BYTE_2 + OFFSET_2_BYTES ];
879 876 ptr2[BYTE_3] = ptr1[ BYTE_3 + OFFSET_2_BYTES ];
880 877
881 878 // re set the synchronization bit
882 879 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
883 880 ptr2[0] = ptr2[0] | (timeCharPtr[0] & SYNC_BIT); // [1000 0000]
884 881
885 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
882 if ( (nbSamplesPart1_asLong > NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
886 883 {
887 884 nbSamplesPart1_asLong = 0;
888 885 }
889 886 // copy the part 1 of the snapshot in the extracted buffer
890 887 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
891 888 {
892 889 swf_extracted[i] =
893 890 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
894 891 }
895 892 // copy the part 2 of the snapshot in the extracted buffer
896 893 ring_node_to_send = ring_node_to_send->next;
897 894 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
898 895 {
899 896 swf_extracted[i] =
900 897 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
901 898 }
902 899 }
903 900
904 901 double computeCorrection( unsigned char *timePtr )
905 902 {
906 903 unsigned long long int acquisitionTime;
907 904 unsigned long long int centerTime;
908 905 unsigned long long int previousTick;
909 906 unsigned long long int nextTick;
910 907 unsigned long long int deltaPreviousTick;
911 908 unsigned long long int deltaNextTick;
912 909 double deltaPrevious_ms;
913 910 double deltaNext_ms;
914 911 double correctionInF2;
915 912
916 913 correctionInF2 = 0; //set to default value (Don_Initialisation_P2)
917 914
918 915 // get acquisition time in fine time ticks
919 916 acquisitionTime = get_acquisition_time( timePtr );
920 917
921 918 // compute center time
922 919 centerTime = acquisitionTime + DELTAT_F0; // (2048. / 24576. / 2.) * 65536. = 2730.667;
923 920 previousTick = centerTime - (centerTime & INT16_ALL_F);
924 921 nextTick = previousTick + TICKS_PER_S;
925 922
926 923 deltaPreviousTick = centerTime - previousTick;
927 924 deltaNextTick = nextTick - centerTime;
928 925
929 926 deltaPrevious_ms = (((double) deltaPreviousTick) / TICKS_PER_S) * MS_PER_S;
930 927 deltaNext_ms = (((double) deltaNextTick) / TICKS_PER_S) * MS_PER_S;
931 928
932 929 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
933 930
934 931 // which tick is the closest?
935 932 if (deltaPreviousTick > deltaNextTick)
936 933 {
937 934 // the snapshot center is just before the second => increase delta_snapshot
938 935 correctionInF2 = + (deltaNext_ms * FREQ_F2 / MS_PER_S );
939 936 }
940 937 else
941 938 {
942 939 // the snapshot center is just after the second => decrease delta_snapshot
943 940 correctionInF2 = - (deltaPrevious_ms * FREQ_F2 / MS_PER_S );
944 941 }
945 942
946 943 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
947 944
948 945 return correctionInF2;
949 946 }
950 947
951 948 void applyCorrection( double correction )
952 949 {
953 950 int correctionInt;
954 951
955 952 correctionInt = 0;
956 953
957 954 if (correction >= 0.)
958 955 {
959 956 if ( (ONE_TICK_CORR_INTERVAL_0_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_0_MAX) )
960 957 {
961 958 correctionInt = ONE_TICK_CORR;
962 959 }
963 960 else
964 961 {
965 962 correctionInt = CORR_MULT * floor(correction);
966 963 }
967 964 }
968 965 else
969 966 {
970 967 if ( (ONE_TICK_CORR_INTERVAL_1_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_1_MAX) )
971 968 {
972 969 correctionInt = -ONE_TICK_CORR;
973 970 }
974 971 else
975 972 {
976 973 correctionInt = CORR_MULT * ceil(correction);
977 974 }
978 975 }
979 976 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
980 977 }
981 978
982 979 void snapshot_resynchronization( unsigned char *timePtr )
983 980 {
984 981 /** This function compute a correction to apply on delta_snapshot.
985 982 *
986 983 *
987 984 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
988 985 *
989 986 * @return void
990 987 *
991 988 */
992 989
993 990 static double correction = INIT_FLOAT;
994 991 static resynchro_state state = MEASURE;
995 992 static unsigned int nbSnapshots = 0;
996 993
997 994 int correctionInt;
998 995
999 996 correctionInt = 0;
1000 997
1001 998 switch (state)
1002 999 {
1003 1000
1004 1001 case MEASURE:
1005 1002 // ********
1006 1003 PRINTF1("MEASURE === %d\n", nbSnapshots);
1007 1004 state = CORRECTION;
1008 1005 correction = computeCorrection( timePtr );
1009 1006 PRINTF1("MEASURE === correction = %.2f\n", correction );
1010 1007 applyCorrection( correction );
1011 1008 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1012 1009 //****
1013 1010 break;
1014 1011
1015 1012 case CORRECTION:
1016 1013 //************
1017 1014 PRINTF1("CORRECTION === %d\n", nbSnapshots);
1018 1015 state = MEASURE;
1019 1016 computeCorrection( timePtr );
1020 1017 set_wfp_delta_snapshot();
1021 1018 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1022 1019 //****
1023 1020 break;
1024 1021
1025 1022 default:
1026 1023 break;
1027 1024
1028 1025 }
1029 1026
1030 1027 nbSnapshots++;
1031 1028 }
1032 1029
1033 1030 //**************
1034 1031 // wfp registers
1035 1032 void reset_wfp_burst_enable( void )
1036 1033 {
1037 1034 /** This function resets the waveform picker burst_enable register.
1038 1035 *
1039 1036 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1040 1037 *
1041 1038 */
1042 1039
1043 1040 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1044 1041 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & RST_BITS_RUN_BURST_EN;
1045 1042 }
1046 1043
1047 1044 void reset_wfp_status( void )
1048 1045 {
1049 1046 /** This function resets the waveform picker status register.
1050 1047 *
1051 1048 * All status bits are set to 0 [new_err full_err full].
1052 1049 *
1053 1050 */
1054 1051
1055 1052 waveform_picker_regs->status = INT16_ALL_F;
1056 1053 }
1057 1054
1058 1055 void reset_wfp_buffer_addresses( void )
1059 1056 {
1060 1057 // F0
1061 1058 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1062 1059 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1063 1060 // F1
1064 1061 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1065 1062 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1066 1063 // F2
1067 1064 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1068 1065 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1069 1066 // F3
1070 1067 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1071 1068 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1072 1069 }
1073 1070
1074 1071 void reset_waveform_picker_regs( void )
1075 1072 {
1076 1073 /** This function resets the waveform picker module registers.
1077 1074 *
1078 1075 * The registers affected by this function are located at the following offset addresses:
1079 1076 * - 0x00 data_shaping
1080 1077 * - 0x04 run_burst_enable
1081 1078 * - 0x08 addr_data_f0
1082 1079 * - 0x0C addr_data_f1
1083 1080 * - 0x10 addr_data_f2
1084 1081 * - 0x14 addr_data_f3
1085 1082 * - 0x18 status
1086 1083 * - 0x1C delta_snapshot
1087 1084 * - 0x20 delta_f0
1088 1085 * - 0x24 delta_f0_2
1089 1086 * - 0x28 delta_f1 (obsolet parameter)
1090 1087 * - 0x2c delta_f2
1091 1088 * - 0x30 nb_data_by_buffer
1092 1089 * - 0x34 nb_snapshot_param
1093 1090 * - 0x38 start_date
1094 1091 * - 0x3c nb_word_in_buffer
1095 1092 *
1096 1093 */
1097 1094
1098 1095 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1099 1096
1100 1097 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1101 1098
1102 1099 reset_wfp_buffer_addresses();
1103 1100
1104 1101 reset_wfp_status(); // 0x18
1105 1102
1106 1103 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1107 1104
1108 1105 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1109 1106
1110 1107 //the parameter delta_f1 [0x28] is not used anymore
1111 1108
1112 1109 set_wfp_delta_f2(); // 0x2c
1113 1110
1114 1111 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1115 1112 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1116 1113 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1117 1114 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1118 1115 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1119 1116 // 2688 = 8 * 336
1120 1117 waveform_picker_regs->nb_data_by_buffer = DFLT_WFP_NB_DATA_BY_BUFFER; // 0x30 *** 2688 - 1 => nb samples -1
1121 1118 waveform_picker_regs->snapshot_param = DFLT_WFP_SNAPSHOT_PARAM; // 0x34 *** 2688 => nb samples
1122 1119 waveform_picker_regs->start_date = COARSE_TIME_MASK;
1123 1120 //
1124 1121 // coarse time and fine time registers are not initialized, they are volatile
1125 1122 //
1126 1123 waveform_picker_regs->buffer_length = DFLT_WFP_BUFFER_LENGTH; // buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1127 1124 }
1128 1125
1129 1126 void set_wfp_data_shaping( void )
1130 1127 {
1131 1128 /** This function sets the data_shaping register of the waveform picker module.
1132 1129 *
1133 1130 * The value is read from one field of the parameter_dump_packet structure:\n
1134 1131 * bw_sp0_sp1_r0_r1
1135 1132 *
1136 1133 */
1137 1134
1138 1135 unsigned char data_shaping;
1139 1136
1140 1137 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1141 1138 // waveform picker : [R1 R0 SP1 SP0 BW]
1142 1139
1143 1140 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1144 1141
1145 1142 waveform_picker_regs->data_shaping =
1146 1143 ( (data_shaping & BIT_5) >> SHIFT_5_BITS ) // BW
1147 1144 + ( (data_shaping & BIT_4) >> SHIFT_3_BITS ) // SP0
1148 1145 + ( (data_shaping & BIT_3) >> 1 ) // SP1
1149 1146 + ( (data_shaping & BIT_2) << 1 ) // R0
1150 1147 + ( (data_shaping & BIT_1) << SHIFT_3_BITS ) // R1
1151 1148 + ( (data_shaping & BIT_0) << SHIFT_5_BITS ); // R2
1152 1149 }
1153 1150
1154 1151 void set_wfp_burst_enable_register( unsigned char mode )
1155 1152 {
1156 1153 /** This function sets the waveform picker burst_enable register depending on the mode.
1157 1154 *
1158 1155 * @param mode is the LFR mode to launch.
1159 1156 *
1160 1157 * The burst bits shall be before the enable bits.
1161 1158 *
1162 1159 */
1163 1160
1164 1161 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1165 1162 // the burst bits shall be set first, before the enable bits
1166 1163 switch(mode) {
1167 1164 case LFR_MODE_NORMAL:
1168 1165 case LFR_MODE_SBM1:
1169 1166 case LFR_MODE_SBM2:
1170 1167 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_SBM2; // [0110 0000] enable f2 and f1 burst
1171 1168 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | BITS_WFP_ENABLE_ALL; // [1111] enable f3 f2 f1 f0
1172 1169 break;
1173 1170 case LFR_MODE_BURST:
1174 1171 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_BURST; // [0100 0000] f2 burst enabled
1175 1172 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | BITS_WFP_ENABLE_BURST; // [1100] enable f3 and f2
1176 1173 break;
1177 1174 default:
1178 1175 waveform_picker_regs->run_burst_enable = INIT_CHAR; // [0000 0000] no burst enabled, no waveform enabled
1179 1176 break;
1180 1177 }
1181 1178 }
1182 1179
1183 1180 void set_wfp_delta_snapshot( void )
1184 1181 {
1185 1182 /** This function sets the delta_snapshot register of the waveform picker module.
1186 1183 *
1187 1184 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1188 1185 * - sy_lfr_n_swf_p[0]
1189 1186 * - sy_lfr_n_swf_p[1]
1190 1187 *
1191 1188 */
1192 1189
1193 1190 unsigned int delta_snapshot;
1194 1191 unsigned int delta_snapshot_in_T2;
1195 1192
1196 1193 delta_snapshot = (parameter_dump_packet.sy_lfr_n_swf_p[0] * CONST_256)
1197 1194 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1198 1195
1199 1196 delta_snapshot_in_T2 = delta_snapshot * FREQ_F2;
1200 1197 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1201 1198 }
1202 1199
1203 1200 void set_wfp_delta_f0_f0_2( void )
1204 1201 {
1205 1202 unsigned int delta_snapshot;
1206 1203 unsigned int nb_samples_per_snapshot;
1207 1204 float delta_f0_in_float;
1208 1205
1209 1206 delta_snapshot = waveform_picker_regs->delta_snapshot;
1210 1207 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1211 1208 delta_f0_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F0) ) * FREQ_F2;
1212 1209
1213 1210 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1214 1211 waveform_picker_regs->delta_f0_2 = DFLT_WFP_DELTA_F0_2;
1215 1212 }
1216 1213
1217 1214 void set_wfp_delta_f1( void )
1218 1215 {
1219 1216 /** Sets the value of the delta_f1 parameter
1220 1217 *
1221 1218 * @param void
1222 1219 *
1223 1220 * @return void
1224 1221 *
1225 1222 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1226 1223 *
1227 1224 */
1228 1225
1229 1226 unsigned int delta_snapshot;
1230 1227 unsigned int nb_samples_per_snapshot;
1231 1228 float delta_f1_in_float;
1232 1229
1233 1230 delta_snapshot = waveform_picker_regs->delta_snapshot;
1234 1231 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1235 1232 delta_f1_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F1) ) * FREQ_F2;
1236 1233
1237 1234 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1238 1235 }
1239 1236
1240 1237 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1241 1238 {
1242 1239 /** Sets the value of the delta_f2 parameter
1243 1240 *
1244 1241 * @param void
1245 1242 *
1246 1243 * @return void
1247 1244 *
1248 1245 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1249 1246 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1250 1247 *
1251 1248 */
1252 1249
1253 1250 unsigned int delta_snapshot;
1254 1251 unsigned int nb_samples_per_snapshot;
1255 1252
1256 1253 delta_snapshot = waveform_picker_regs->delta_snapshot;
1257 1254 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1258 1255
1259 1256 waveform_picker_regs->delta_f2 = delta_snapshot - (nb_samples_per_snapshot / 2) - 1;
1260 1257 }
1261 1258
1262 1259 //*****************
1263 1260 // local parameters
1264 1261
1265 1262 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1266 1263 {
1267 1264 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1268 1265 *
1269 1266 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1270 1267 * @param sid is the source identifier of the packet being updated.
1271 1268 *
1272 1269 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1273 1270 * The sequence counters shall wrap around from 2^14 to zero.
1274 1271 * The sequence counter shall start at zero at startup.
1275 1272 *
1276 1273 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1277 1274 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1278 1275 *
1279 1276 */
1280 1277
1281 1278 unsigned short *sequence_cnt;
1282 1279 unsigned short segmentation_grouping_flag;
1283 1280 unsigned short new_packet_sequence_control;
1284 1281 rtems_mode initial_mode_set;
1285 1282 rtems_mode current_mode_set;
1286 1283 rtems_status_code status;
1287 1284
1288 1285 initial_mode_set = RTEMS_DEFAULT_MODES;
1289 1286 current_mode_set = RTEMS_DEFAULT_MODES;
1290 1287 sequence_cnt = NULL;
1291 1288
1292 1289 //******************************************
1293 1290 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1294 1291 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1295 1292
1296 1293 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1297 1294 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1298 1295 || (sid == SID_BURST_CWF_F2)
1299 1296 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1300 1297 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1301 1298 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1302 1299 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1303 1300 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1304 1301 {
1305 1302 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1306 1303 }
1307 1304 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1308 1305 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1309 1306 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1310 1307 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1311 1308 {
1312 1309 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1313 1310 }
1314 1311 else
1315 1312 {
1316 1313 sequence_cnt = (unsigned short *) NULL;
1317 1314 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1318 1315 }
1319 1316
1320 1317 if (sequence_cnt != NULL)
1321 1318 {
1322 1319 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1323 1320 *sequence_cnt = (*sequence_cnt) & SEQ_CNT_MASK;
1324 1321
1325 1322 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1326 1323
1327 1324 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1328 1325 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1329 1326
1330 1327 // increment the sequence counter
1331 1328 if ( *sequence_cnt < SEQ_CNT_MAX)
1332 1329 {
1333 1330 *sequence_cnt = *sequence_cnt + 1;
1334 1331 }
1335 1332 else
1336 1333 {
1337 1334 *sequence_cnt = 0;
1338 1335 }
1339 1336 }
1340 1337
1341 1338 //*************************************
1342 1339 // RESTORE THE MODE OF THE CALLING TASK
1343 1340 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1344 1341 }
1342
General Comments 0
You need to be logged in to leave comments. Login now