##// END OF EJS Templates
HK emission using the directive...
paul -
r55:278c7d92e10c default
parent child
Show More
@@ -1,248 +1,248
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Mon Nov 4 07:05:32 2013
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Tue Nov 5 13:12:35 2013
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 13 DEFINES = -DSW_VERSION_N1=0 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=20 -DPRINT_MESSAGES_ON_CONSOLE
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_processing.c \
49 49 ../src/fsw_misc.c \
50 50 ../src/fsw_init.c \
51 51 ../src/fsw_globals.c \
52 52 ../src/fsw_spacewire.c \
53 53 ../src/tc_load_dump_parameters.c \
54 54 ../src/tm_lfr_tc_exe.c \
55 55 ../src/tc_acceptance.c
56 56 OBJECTS = obj/wf_handler.o \
57 57 obj/tc_handler.o \
58 58 obj/fsw_processing.o \
59 59 obj/fsw_misc.o \
60 60 obj/fsw_init.o \
61 61 obj/fsw_globals.o \
62 62 obj/fsw_spacewire.o \
63 63 obj/tc_load_dump_parameters.o \
64 64 obj/tm_lfr_tc_exe.o \
65 65 obj/tc_acceptance.o
66 66 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
67 67 /usr/lib64/qt4/mkspecs/common/linux.conf \
68 68 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
69 69 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
70 70 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
71 71 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
72 72 /usr/lib64/qt4/mkspecs/qconfig.pri \
73 73 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
74 74 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
75 75 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
76 76 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
77 77 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
78 78 sparc.pri \
79 79 /usr/lib64/qt4/mkspecs/features/release.prf \
80 80 /usr/lib64/qt4/mkspecs/features/default_post.prf \
81 81 /usr/lib64/qt4/mkspecs/features/shared.prf \
82 82 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
83 83 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
84 84 /usr/lib64/qt4/mkspecs/features/resources.prf \
85 85 /usr/lib64/qt4/mkspecs/features/uic.prf \
86 86 /usr/lib64/qt4/mkspecs/features/yacc.prf \
87 87 /usr/lib64/qt4/mkspecs/features/lex.prf \
88 88 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
89 89 fsw-qt.pro
90 90 QMAKE_TARGET = fsw
91 91 DESTDIR = bin/
92 92 TARGET = bin/fsw
93 93
94 94 first: all
95 95 ####### Implicit rules
96 96
97 97 .SUFFIXES: .o .c .cpp .cc .cxx .C
98 98
99 99 .cpp.o:
100 100 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
101 101
102 102 .cc.o:
103 103 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
104 104
105 105 .cxx.o:
106 106 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
107 107
108 108 .C.o:
109 109 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
110 110
111 111 .c.o:
112 112 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
113 113
114 114 ####### Build rules
115 115
116 116 all: Makefile $(TARGET)
117 117
118 118 $(TARGET): $(OBJECTS)
119 119 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
120 120 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
121 121
122 122 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
123 123 /usr/lib64/qt4/mkspecs/common/linux.conf \
124 124 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
125 125 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
126 126 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
127 127 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
128 128 /usr/lib64/qt4/mkspecs/qconfig.pri \
129 129 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
130 130 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
131 131 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
132 132 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
133 133 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
134 134 sparc.pri \
135 135 /usr/lib64/qt4/mkspecs/features/release.prf \
136 136 /usr/lib64/qt4/mkspecs/features/default_post.prf \
137 137 /usr/lib64/qt4/mkspecs/features/shared.prf \
138 138 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
139 139 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
140 140 /usr/lib64/qt4/mkspecs/features/resources.prf \
141 141 /usr/lib64/qt4/mkspecs/features/uic.prf \
142 142 /usr/lib64/qt4/mkspecs/features/yacc.prf \
143 143 /usr/lib64/qt4/mkspecs/features/lex.prf \
144 144 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
145 145 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
146 146 /usr/lib64/qt4/mkspecs/common/unix.conf:
147 147 /usr/lib64/qt4/mkspecs/common/linux.conf:
148 148 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
149 149 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
150 150 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
151 151 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
152 152 /usr/lib64/qt4/mkspecs/qconfig.pri:
153 153 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
154 154 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
155 155 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
156 156 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
157 157 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
158 158 sparc.pri:
159 159 /usr/lib64/qt4/mkspecs/features/release.prf:
160 160 /usr/lib64/qt4/mkspecs/features/default_post.prf:
161 161 /usr/lib64/qt4/mkspecs/features/shared.prf:
162 162 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
163 163 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
164 164 /usr/lib64/qt4/mkspecs/features/resources.prf:
165 165 /usr/lib64/qt4/mkspecs/features/uic.prf:
166 166 /usr/lib64/qt4/mkspecs/features/yacc.prf:
167 167 /usr/lib64/qt4/mkspecs/features/lex.prf:
168 168 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
169 169 qmake: FORCE
170 170 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
171 171
172 172 dist:
173 173 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
174 174 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
175 175
176 176
177 177 clean:compiler_clean
178 178 -$(DEL_FILE) $(OBJECTS)
179 179 -$(DEL_FILE) *~ core *.core
180 180
181 181
182 182 ####### Sub-libraries
183 183
184 184 distclean: clean
185 185 -$(DEL_FILE) $(TARGET)
186 186 -$(DEL_FILE) Makefile
187 187
188 188
189 189 grmon:
190 190 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
191 191
192 192 check: first
193 193
194 194 compiler_rcc_make_all:
195 195 compiler_rcc_clean:
196 196 compiler_uic_make_all:
197 197 compiler_uic_clean:
198 198 compiler_image_collection_make_all: qmake_image_collection.cpp
199 199 compiler_image_collection_clean:
200 200 -$(DEL_FILE) qmake_image_collection.cpp
201 201 compiler_yacc_decl_make_all:
202 202 compiler_yacc_decl_clean:
203 203 compiler_yacc_impl_make_all:
204 204 compiler_yacc_impl_clean:
205 205 compiler_lex_make_all:
206 206 compiler_lex_clean:
207 207 compiler_clean:
208 208
209 209 ####### Compile
210 210
211 211 obj/wf_handler.o: ../src/wf_handler.c
212 212 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
213 213
214 214 obj/tc_handler.o: ../src/tc_handler.c
215 215 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
216 216
217 217 obj/fsw_processing.o: ../src/fsw_processing.c ../src/fsw_processing_globals.c
218 218 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/fsw_processing.c
219 219
220 220 obj/fsw_misc.o: ../src/fsw_misc.c
221 221 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
222 222
223 223 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
224 224 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
225 225
226 226 obj/fsw_globals.o: ../src/fsw_globals.c
227 227 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
228 228
229 229 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
230 230 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
231 231
232 232 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
233 233 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
234 234
235 235 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
236 236 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
237 237
238 238 obj/tc_acceptance.o: ../src/tc_acceptance.c
239 239 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
240 240
241 241 ####### Install
242 242
243 243 install: FORCE
244 244
245 245 uninstall: FORCE
246 246
247 247 FORCE:
248 248
1 NO CONTENT: modified file, binary diff hidden
@@ -1,305 +1,305
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 2.8.0, 2013-11-04T07:04:49. -->
3 <!-- Written by QtCreator 2.8.1, 2013-11-05T13:11:18. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">0</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QString" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QString" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">System</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
55 55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
56 56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">1</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 61 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
63 63 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
64 64 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
67 67 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">true</value>
69 69 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
70 70 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
71 71 </valuemap>
72 72 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
73 73 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
74 74 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
77 77 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
78 78 <value type="QString">-w</value>
79 79 <value type="QString">-r</value>
80 80 </valuelist>
81 81 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
82 82 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w -j 4</value>
83 83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
84 84 </valuemap>
85 85 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
86 86 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
89 89 </valuemap>
90 90 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
92 92 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
93 93 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
96 96 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
97 97 <value type="QString">-w</value>
98 98 <value type="QString">-r</value>
99 99 </valuelist>
100 100 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
101 101 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w clean</value>
102 102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
103 103 </valuemap>
104 104 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
105 105 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
108 108 </valuemap>
109 109 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
110 110 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
111 111 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
112 112 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Qt 4.8.2 in PATH (System) Release</value>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
115 115 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
116 116 <value type="QString" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildDirectory">/opt/DEV_PLE/FSW-qt</value>
117 117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">false</value>
118 118 </valuemap>
119 119 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.1">
120 120 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
121 121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
122 122 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
123 123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
124 124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
126 126 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
127 127 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">true</value>
128 128 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
129 129 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
130 130 </valuemap>
131 131 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
132 132 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
133 133 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
134 134 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
135 135 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
136 136 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
137 137 <value type="QString">-w</value>
138 138 <value type="QString">-r</value>
139 139 </valuelist>
140 140 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
141 141 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w </value>
142 142 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
143 143 </valuemap>
144 144 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
145 145 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
146 146 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
147 147 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
148 148 </valuemap>
149 149 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
150 150 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
151 151 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
152 152 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
153 153 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
154 154 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
155 155 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
156 156 <value type="QString">-w</value>
157 157 <value type="QString">-r</value>
158 158 </valuelist>
159 159 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
160 160 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">-r -w clean</value>
161 161 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
162 162 </valuemap>
163 163 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
164 164 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
165 165 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
166 166 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
167 167 </valuemap>
168 168 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
169 169 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
170 170 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
171 171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Qt 4.8.2 in PATH (System) Debug</value>
172 172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
174 174 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">2</value>
175 175 <value type="QString" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildDirectory">/opt/DEV_PLE/FSW-qt</value>
176 176 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">false</value>
177 177 </valuemap>
178 178 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">2</value>
179 179 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
180 180 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
181 181 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
182 182 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
183 183 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
184 184 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
185 185 </valuemap>
186 186 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
187 187 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">No deployment</value>
188 188 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
189 189 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
190 190 </valuemap>
191 191 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
192 192 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
193 193 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
194 194 <value type="bool" key="Analyzer.Project.UseGlobal">true</value>
195 195 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
196 196 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
197 197 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
198 198 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
199 199 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
200 200 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
201 201 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
202 202 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
203 203 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
204 204 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
205 205 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
206 206 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
207 207 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
208 208 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
209 209 <value type="int">0</value>
210 210 <value type="int">1</value>
211 211 <value type="int">2</value>
212 212 <value type="int">3</value>
213 213 <value type="int">4</value>
214 214 <value type="int">5</value>
215 215 <value type="int">6</value>
216 216 <value type="int">7</value>
217 217 <value type="int">8</value>
218 218 <value type="int">9</value>
219 219 <value type="int">10</value>
220 220 <value type="int">11</value>
221 221 <value type="int">12</value>
222 222 <value type="int">13</value>
223 223 <value type="int">14</value>
224 224 </valuelist>
225 225 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
226 226 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
227 227 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
228 228 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
229 229 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
230 230 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
231 231 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
232 232 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
233 233 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
234 234 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
235 235 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
236 236 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
237 237 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
238 238 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
239 239 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
240 240 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">false</value>
241 241 </valuemap>
242 242 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.1">
243 243 <value type="bool" key="Analyzer.Project.UseGlobal">true</value>
244 244 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
245 245 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
246 246 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
247 247 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
248 248 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
249 249 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
250 250 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
251 251 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
252 252 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
253 253 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
254 254 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
255 255 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
256 256 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
257 257 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
258 258 <value type="int">0</value>
259 259 <value type="int">1</value>
260 260 <value type="int">2</value>
261 261 <value type="int">3</value>
262 262 <value type="int">4</value>
263 263 <value type="int">5</value>
264 264 <value type="int">6</value>
265 265 <value type="int">7</value>
266 266 <value type="int">8</value>
267 267 <value type="int">9</value>
268 268 <value type="int">10</value>
269 269 <value type="int">11</value>
270 270 <value type="int">12</value>
271 271 <value type="int">13</value>
272 272 <value type="int">14</value>
273 273 </valuelist>
274 274 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
275 275 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
276 276 <value type="QString" key="ProjectExplorer.CustomExecutableRunConfiguration.Arguments"></value>
277 277 <value type="QString" key="ProjectExplorer.CustomExecutableRunConfiguration.Executable">doxygen</value>
278 278 <value type="bool" key="ProjectExplorer.CustomExecutableRunConfiguration.UseTerminal">true</value>
279 279 <value type="QString" key="ProjectExplorer.CustomExecutableRunConfiguration.WorkingDirectory">/opt/DEV_PLE/doc</value>
280 280 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Run doxygen</value>
281 281 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
282 282 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.CustomExecutableRunConfiguration</value>
283 283 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
284 284 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
285 285 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
286 286 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
287 287 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
288 288 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
289 289 </valuemap>
290 290 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">2</value>
291 291 </valuemap>
292 292 </data>
293 293 <data>
294 294 <variable>ProjectExplorer.Project.TargetCount</variable>
295 295 <value type="int">1</value>
296 296 </data>
297 297 <data>
298 298 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
299 299 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
300 300 </data>
301 301 <data>
302 302 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
303 303 <value type="int">14</value>
304 304 </data>
305 305 </qtcreator>
@@ -1,590 +1,592
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 36 #define CONFIGURE_MAXIMUM_PERIODS 5
37 37 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 38 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 2
39 39 #ifdef PRINT_STACK_REPORT
40 40 #define CONFIGURE_STACK_CHECKER_ENABLED
41 41 #endif
42 42
43 43 #include <rtems/confdefs.h>
44 44
45 45 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 46 #ifdef RTEMS_DRVMGR_STARTUP
47 47 #ifdef LEON3
48 48 /* Add Timer and UART Driver */
49 49 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 50 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 51 #endif
52 52 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 54 #endif
55 55 #endif
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 57 #include <drvmgr/drvmgr_confdefs.h>
58 58 #endif
59 59
60 60 #include "fsw_init.h"
61 61 #include "fsw_config.c"
62 62
63 63 rtems_task Init( rtems_task_argument ignored )
64 64 {
65 65 /** This is the RTEMS INIT taks, it the first task launched by the system.
66 66 *
67 67 * @param unused is the starting argument of the RTEMS task
68 68 *
69 69 * The INIT task create and run all other RTEMS tasks.
70 70 *
71 71 */
72 72
73 73
74 74 rtems_status_code status;
75 75 rtems_status_code status_spw;
76 76 rtems_isr_entry old_isr_handler;
77 77
78 78 BOOT_PRINTF("\n\n\n\n\n")
79 79 BOOT_PRINTF("***************************\n")
80 80 BOOT_PRINTF("** START Flight Software **\n")
81 81 BOOT_PRINTF("***************************\n")
82 82 BOOT_PRINTF("\n\n")
83 83
84 84 //send_console_outputs_on_apbuart_port();
85 85 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
86 86
87 reset_wfp_burst_enable(); // stop the waveform picker if it was running
88
87 89 init_parameter_dump();
88 90 init_local_mode_parameters();
89 91 init_housekeeping_parameters();
90 92
91 93 updateLFRCurrentMode();
92 94
93 95 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
94 96
95 97 create_names(); // create all names
96 98
97 99 status = create_message_queues(); // create message queues
98 100 if (status != RTEMS_SUCCESSFUL)
99 101 {
100 102 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
101 103 }
102 104
103 105 status = create_all_tasks(); // create all tasks
104 106 if (status != RTEMS_SUCCESSFUL)
105 107 {
106 108 PRINTF1("in INIT *** ERR in create_all_tasks, code %d", status)
107 109 }
108 110
109 111 // **************************
110 112 // <SPACEWIRE INITIALIZATION>
111 113 grspw_timecode_callback = &timecode_irq_handler;
112 114
113 115 status_spw = spacewire_open_link(); // (1) open the link
114 116 if ( status_spw != RTEMS_SUCCESSFUL )
115 117 {
116 118 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
117 119 }
118 120
119 121 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
120 122 {
121 123 status_spw = spacewire_configure_link( fdSPW );
122 124 if ( status_spw != RTEMS_SUCCESSFUL )
123 125 {
124 126 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
125 127 }
126 128 }
127 129
128 130 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
129 131 {
130 132 status_spw = spacewire_start_link( fdSPW );
131 133 if ( status_spw != RTEMS_SUCCESSFUL )
132 134 {
133 135 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
134 136 }
135 137 }
136 138 // </SPACEWIRE INITIALIZATION>
137 139 // ***************************
138 140
139 141 status = start_all_tasks(); // start all tasks
140 142 if (status != RTEMS_SUCCESSFUL)
141 143 {
142 144 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
143 145 }
144 146
145 147 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
146 148 status = start_recv_send_tasks();
147 149 if ( status != RTEMS_SUCCESSFUL )
148 150 {
149 151 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
150 152 }
151 153
152 154 // suspend science tasks. they will be restarted later depending on the mode
153 155 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
154 156 if (status != RTEMS_SUCCESSFUL)
155 157 {
156 158 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
157 159 }
158 160
159 161 #ifdef GSA
160 162 // mask IRQ lines
161 163 LEON_Mask_interrupt( IRQ_SM );
162 164 LEON_Mask_interrupt( IRQ_WF );
163 165 // Spectral Matrices simulator
164 166 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
165 167 IRQ_SPARC_SM, spectral_matrices_isr );
166 168 // WaveForms
167 169 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_WF_SIMULATOR, CLKDIV_WF_SIMULATOR,
168 170 IRQ_SPARC_WF, waveforms_simulator_isr );
169 171 #else
170 172 // configure IRQ handling for the waveform picker unit
171 173 status = rtems_interrupt_catch( waveforms_isr,
172 174 IRQ_SPARC_WAVEFORM_PICKER,
173 175 &old_isr_handler) ;
174 176 #endif
175 177
176 178 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
177 179 if ( status_spw != RTEMS_SUCCESSFUL )
178 180 {
179 181 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
180 182 if ( status != RTEMS_SUCCESSFUL ) {
181 183 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
182 184 }
183 185 }
184 186
185 187 BOOT_PRINTF("delete INIT\n")
186 188
187 189 status = rtems_task_delete(RTEMS_SELF);
188 190
189 191 }
190 192
191 193 void init_local_mode_parameters( void )
192 194 {
193 195 /** This function initialize the param_local global variable with default values.
194 196 *
195 197 */
196 198
197 199 unsigned int i;
198 200 unsigned int j;
199 201 unsigned int k;
200 202
201 203 // LOCAL PARAMETERS
202 204 set_local_sbm1_nb_cwf_max();
203 205 set_local_sbm2_nb_cwf_max();
204 206 set_local_nb_interrupt_f0_MAX();
205 207
206 208 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
207 209 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
208 210 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
209 211
210 212 reset_local_sbm1_nb_cwf_sent();
211 213 reset_local_sbm2_nb_cwf_sent();
212 214
213 215 // init sequence counters
214 216 for (i = 0; i<SEQ_CNT_NB_PID; i++)
215 217 {
216 218 for(j = 0; j<SEQ_CNT_NB_CAT; j++)
217 219 {
218 220 for(k = 0; k<SEQ_CNT_NB_DEST_ID; k++)
219 221 {
220 222 sequenceCounters[i][j][k] = 0x00;
221 223 }
222 224 }
223 225 }
224 226 }
225 227
226 228 void create_names( void ) // create all names for tasks and queues
227 229 {
228 230 /** This function creates all RTEMS names used in the software for tasks and queues.
229 231 *
230 232 * @return RTEMS directive status codes:
231 233 * - RTEMS_SUCCESSFUL - successful completion
232 234 *
233 235 */
234 236
235 237 // task names
236 238 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
237 239 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
238 240 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
239 241 Task_name[TASKID_SMIQ] = rtems_build_name( 'S', 'M', 'I', 'Q' );
240 242 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
241 243 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
242 244 Task_name[TASKID_BPF0] = rtems_build_name( 'B', 'P', 'F', '0' );
243 245 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
244 246 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
245 247 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
246 248 Task_name[TASKID_MATR] = rtems_build_name( 'M', 'A', 'T', 'R' );
247 249 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
248 250 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
249 251 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
250 252 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
251 253 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
252 254
253 255 // rate monotonic period names
254 256 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
255 257
256 258 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
257 259 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
258 260 }
259 261
260 262 int create_all_tasks( void ) // create all tasks which run in the software
261 263 {
262 264 /** This function creates all RTEMS tasks used in the software.
263 265 *
264 266 * @return RTEMS directive status codes:
265 267 * - RTEMS_SUCCESSFUL - task created successfully
266 268 * - RTEMS_INVALID_ADDRESS - id is NULL
267 269 * - RTEMS_INVALID_NAME - invalid task name
268 270 * - RTEMS_INVALID_PRIORITY - invalid task priority
269 271 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
270 272 * - RTEMS_TOO_MANY - too many tasks created
271 273 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
272 274 * - RTEMS_TOO_MANY - too many global objects
273 275 *
274 276 */
275 277
276 278 rtems_status_code status;
277 279
278 280 // RECV
279 281 status = rtems_task_create(
280 282 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
281 283 RTEMS_DEFAULT_MODES,
282 284 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
283 285 );
284 286
285 287 if (status == RTEMS_SUCCESSFUL) // ACTN
286 288 {
287 289 status = rtems_task_create(
288 290 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
289 291 RTEMS_DEFAULT_MODES,
290 292 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
291 293 );
292 294 }
293 295 if (status == RTEMS_SUCCESSFUL) // SPIQ
294 296 {
295 297 status = rtems_task_create(
296 298 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
297 299 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
298 300 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
299 301 );
300 302 }
301 303 if (status == RTEMS_SUCCESSFUL) // SMIQ
302 304 {
303 305 status = rtems_task_create(
304 306 Task_name[TASKID_SMIQ], TASK_PRIORITY_SMIQ, RTEMS_MINIMUM_STACK_SIZE,
305 307 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
306 308 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SMIQ]
307 309 );
308 310 }
309 311 if (status == RTEMS_SUCCESSFUL) // STAT
310 312 {
311 313 status = rtems_task_create(
312 314 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
313 315 RTEMS_DEFAULT_MODES,
314 316 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
315 317 );
316 318 }
317 319 if (status == RTEMS_SUCCESSFUL) // AVF0
318 320 {
319 321 status = rtems_task_create(
320 322 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
321 323 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
322 324 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
323 325 );
324 326 }
325 327 if (status == RTEMS_SUCCESSFUL) // BPF0
326 328 {
327 329 status = rtems_task_create(
328 330 Task_name[TASKID_BPF0], TASK_PRIORITY_BPF0, RTEMS_MINIMUM_STACK_SIZE,
329 331 RTEMS_DEFAULT_MODES,
330 332 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_BPF0]
331 333 );
332 334 }
333 335 if (status == RTEMS_SUCCESSFUL) // WFRM
334 336 {
335 337 status = rtems_task_create(
336 338 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
337 339 RTEMS_DEFAULT_MODES,
338 340 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
339 341 );
340 342 }
341 343 if (status == RTEMS_SUCCESSFUL) // DUMB
342 344 {
343 345 status = rtems_task_create(
344 346 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
345 347 RTEMS_DEFAULT_MODES,
346 348 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
347 349 );
348 350 }
349 351 if (status == RTEMS_SUCCESSFUL) // HOUS
350 352 {
351 353 status = rtems_task_create(
352 354 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
353 355 RTEMS_DEFAULT_MODES,
354 356 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_HOUS]
355 357 );
356 358 }
357 359 if (status == RTEMS_SUCCESSFUL) // MATR
358 360 {
359 361 status = rtems_task_create(
360 362 Task_name[TASKID_MATR], TASK_PRIORITY_MATR, RTEMS_MINIMUM_STACK_SIZE,
361 363 RTEMS_DEFAULT_MODES,
362 364 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_MATR]
363 365 );
364 366 }
365 367 if (status == RTEMS_SUCCESSFUL) // CWF3
366 368 {
367 369 status = rtems_task_create(
368 370 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
369 371 RTEMS_DEFAULT_MODES,
370 372 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_CWF3]
371 373 );
372 374 }
373 375 if (status == RTEMS_SUCCESSFUL) // CWF2
374 376 {
375 377 status = rtems_task_create(
376 378 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
377 379 RTEMS_DEFAULT_MODES,
378 380 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_CWF2]
379 381 );
380 382 }
381 383 if (status == RTEMS_SUCCESSFUL) // CWF1
382 384 {
383 385 status = rtems_task_create(
384 386 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
385 387 RTEMS_DEFAULT_MODES,
386 388 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_CWF1]
387 389 );
388 390 }
389 391 if (status == RTEMS_SUCCESSFUL) // SEND
390 392 {
391 393 status = rtems_task_create(
392 394 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
393 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
395 RTEMS_DEFAULT_MODES,
394 396 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
395 397 );
396 398 }
397 399 if (status == RTEMS_SUCCESSFUL) // WTDG
398 400 {
399 401 status = rtems_task_create(
400 402 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
401 403 RTEMS_DEFAULT_MODES,
402 404 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
403 405 );
404 406 }
405 407
406 408 return status;
407 409 }
408 410
409 411 int start_recv_send_tasks( void )
410 412 {
411 413 rtems_status_code status;
412 414
413 415 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
414 416 if (status!=RTEMS_SUCCESSFUL) {
415 417 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
416 418 }
417 419
418 420 if (status == RTEMS_SUCCESSFUL) // SEND
419 421 {
420 422 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
421 423 if (status!=RTEMS_SUCCESSFUL) {
422 424 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
423 425 }
424 426 }
425 427
426 428 return status;
427 429 }
428 430
429 431 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
430 432 {
431 433 /** This function starts all RTEMS tasks used in the software.
432 434 *
433 435 * @return RTEMS directive status codes:
434 436 * - RTEMS_SUCCESSFUL - ask started successfully
435 437 * - RTEMS_INVALID_ADDRESS - invalid task entry point
436 438 * - RTEMS_INVALID_ID - invalid task id
437 439 * - RTEMS_INCORRECT_STATE - task not in the dormant state
438 440 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
439 441 *
440 442 */
441 443 // starts all the tasks fot eh flight software
442 444
443 445 rtems_status_code status;
444 446
445 447 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
446 448 if (status!=RTEMS_SUCCESSFUL) {
447 449 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
448 450 }
449 451
450 452 if (status == RTEMS_SUCCESSFUL) // WTDG
451 453 {
452 454 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
453 455 if (status!=RTEMS_SUCCESSFUL) {
454 456 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
455 457 }
456 458 }
457 459
458 460 if (status == RTEMS_SUCCESSFUL) // SMIQ
459 461 {
460 462 status = rtems_task_start( Task_id[TASKID_SMIQ], smiq_task, 1 );
461 463 if (status!=RTEMS_SUCCESSFUL) {
462 464 BOOT_PRINTF("in INIT *** Error starting TASK_BPPR\n")
463 465 }
464 466 }
465 467
466 468 if (status == RTEMS_SUCCESSFUL) // ACTN
467 469 {
468 470 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
469 471 if (status!=RTEMS_SUCCESSFUL) {
470 472 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
471 473 }
472 474 }
473 475
474 476 if (status == RTEMS_SUCCESSFUL) // STAT
475 477 {
476 478 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
477 479 if (status!=RTEMS_SUCCESSFUL) {
478 480 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
479 481 }
480 482 }
481 483
482 484 if (status == RTEMS_SUCCESSFUL) // AVF0
483 485 {
484 486 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, 1 );
485 487 if (status!=RTEMS_SUCCESSFUL) {
486 488 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
487 489 }
488 490 }
489 491
490 492 if (status == RTEMS_SUCCESSFUL) // BPF0
491 493 {
492 494 status = rtems_task_start( Task_id[TASKID_BPF0], bpf0_task, 1 );
493 495 if (status!=RTEMS_SUCCESSFUL) {
494 496 BOOT_PRINTF("in INIT *** Error starting TASK_BPF0\n")
495 497 }
496 498 }
497 499
498 500 if (status == RTEMS_SUCCESSFUL) // WFRM
499 501 {
500 502 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
501 503 if (status!=RTEMS_SUCCESSFUL) {
502 504 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
503 505 }
504 506 }
505 507
506 508 if (status == RTEMS_SUCCESSFUL) // DUMB
507 509 {
508 510 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
509 511 if (status!=RTEMS_SUCCESSFUL) {
510 512 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
511 513 }
512 514 }
513 515
514 516 if (status == RTEMS_SUCCESSFUL) // HOUS
515 517 {
516 518 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
517 519 if (status!=RTEMS_SUCCESSFUL) {
518 520 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
519 521 }
520 522 }
521 523
522 524 if (status == RTEMS_SUCCESSFUL) // MATR
523 525 {
524 526 status = rtems_task_start( Task_id[TASKID_MATR], matr_task, 1 );
525 527 if (status!=RTEMS_SUCCESSFUL) {
526 528 BOOT_PRINTF("in INIT *** Error starting TASK_MATR\n")
527 529 }
528 530 }
529 531
530 532 if (status == RTEMS_SUCCESSFUL) // CWF3
531 533 {
532 534 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
533 535 if (status!=RTEMS_SUCCESSFUL) {
534 536 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
535 537 }
536 538 }
537 539
538 540 if (status == RTEMS_SUCCESSFUL) // CWF2
539 541 {
540 542 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
541 543 if (status!=RTEMS_SUCCESSFUL) {
542 544 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
543 545 }
544 546 }
545 547
546 548 if (status == RTEMS_SUCCESSFUL) // CWF1
547 549 {
548 550 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
549 551 if (status!=RTEMS_SUCCESSFUL) {
550 552 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
551 553 }
552 554 }
553 555 return status;
554 556 }
555 557
556 558 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
557 559 {
558 560 rtems_status_code status_recv;
559 561 rtems_status_code status_send;
560 562 rtems_status_code ret;
561 563 rtems_id queue_id;
562 564
563 565 // create the queue for handling valid TCs
564 566 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
565 567 ACTION_MSG_QUEUE_COUNT, CCSDS_TC_PKT_MAX_SIZE,
566 568 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
567 569 if ( status_recv != RTEMS_SUCCESSFUL ) {
568 570 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
569 571 }
570 572
571 573 // create the queue for handling TM packet sending
572 574 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
573 575 ACTION_MSG_PKTS_COUNT, ACTION_MSG_PKTS_MAX_SIZE,
574 576 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
575 577 if ( status_send != RTEMS_SUCCESSFUL ) {
576 578 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
577 579 }
578 580
579 581 if ( status_recv != RTEMS_SUCCESSFUL )
580 582 {
581 583 ret = status_recv;
582 584 }
583 585 else
584 586 {
585 587 ret = status_send;
586 588 }
587 589
588 590 return ret;
589 591 }
590 592
@@ -1,292 +1,295
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 char *DumbMessages[6] = {"in DUMB *** default", // RTEMS_EVENT_0
10 char *DumbMessages[7] = {"in DUMB *** default", // RTEMS_EVENT_0
11 11 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
12 12 "in DUMB *** waveforms_isr", // RTEMS_EVENT_2
13 13 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
14 14 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
15 "in DUMB *** waveforms_simulator_isr" // RTEMS_EVENT_5
15 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
16 "ERR HK" // RTEMS_EVENT_6
16 17 };
17 18
18 19 int configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
19 20 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
20 21 {
21 22 /** This function configures a GPTIMER timer instantiated in the VHDL design.
22 23 *
23 24 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
24 25 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
25 26 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
26 27 * @param interrupt_level is the interrupt level that the timer drives.
27 28 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
28 29 *
29 30 * @return
30 31 *
31 32 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
32 33 *
33 34 */
34 35
35 36 rtems_status_code status;
36 37 rtems_isr_entry old_isr_handler;
37 38
38 39 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
39 40 if (status!=RTEMS_SUCCESSFUL)
40 41 {
41 42 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
42 43 }
43 44
44 45 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
45 46
46 47 return 1;
47 48 }
48 49
49 50 int timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
50 51 {
51 52 /** This function starts a GPTIMER timer.
52 53 *
53 54 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
54 55 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
55 56 *
56 57 * @return 1
57 58 *
58 59 */
59 60
60 61 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
61 62 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
62 63 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
63 64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
64 65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
65 66
66 67 return 1;
67 68 }
68 69
69 70 int timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
70 71 {
71 72 /** This function stops a GPTIMER timer.
72 73 *
73 74 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 75 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 76 *
76 77 * @return 1
77 78 *
78 79 */
79 80
80 81 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
81 82 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
82 83 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
83 84
84 85 return 1;
85 86 }
86 87
87 88 int timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
88 89 {
89 90 /** This function sets the clock divider of a GPTIMER timer.
90 91 *
91 92 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
92 93 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
93 94 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
94 95 *
95 96 * @return 1
96 97 *
97 98 */
98 99
99 100 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
100 101
101 102 return 1;
102 103 }
103 104
104 105 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
105 106 {
106 107 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
107 108
108 109 apbuart_regs->ctrl = apbuart_regs->ctrl & APBUART_CTRL_REG_MASK_DB;
109 110 PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
110 111
111 112 return 0;
112 113 }
113 114
114 115 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
115 116 {
116 117 /** This function sets the scaler reload register of the apbuart module
117 118 *
118 119 * @param regs is the address of the apbuart registers in memory
119 120 * @param value is the value that will be stored in the scaler register
120 121 *
121 122 * The value shall be set by the software to get data on the serial interface.
122 123 *
123 124 */
124 125
125 126 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
126 127
127 128 apbuart_regs->scaler = value;
128 129 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
129 130 }
130 131
131 132 //************
132 133 // RTEMS TASKS
133 134
134 135 rtems_task stat_task(rtems_task_argument argument)
135 136 {
136 137 int i;
137 138 int j;
138 139 i = 0;
139 140 j = 0;
140 141 BOOT_PRINTF("in STAT *** \n")
141 142 while(1){
142 143 rtems_task_wake_after(1000);
143 144 PRINTF1("%d\n", j)
144 145 if (i == CPU_USAGE_REPORT_PERIOD) {
145 146 // #ifdef PRINT_TASK_STATISTICS
146 147 // rtems_cpu_usage_report();
147 148 // rtems_cpu_usage_reset();
148 149 // #endif
149 150 i = 0;
150 151 }
151 152 else i++;
152 153 j++;
153 154 }
154 155 }
155 156
156 157 rtems_task hous_task(rtems_task_argument argument)
157 158 {
158 159 rtems_status_code status;
159 160 rtems_id queue_id;
160 161
161 162 status = rtems_message_queue_ident( misc_name[QUEUE_SEND], 0, &queue_id );
162 163 if (status != RTEMS_SUCCESSFUL)
163 164 {
164 165 PRINTF1("in HOUS *** ERR %d\n", status)
165 166 }
166 167
167 168 BOOT_PRINTF("in HOUS ***\n")
168 169
169 170 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
170 171 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
171 172 if( status != RTEMS_SUCCESSFUL ) {
172 173 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
173 174 }
174 175 }
175 176
176 177 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
177 178 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
178 179 housekeeping_packet.reserved = DEFAULT_RESERVED;
179 180 housekeeping_packet.userApplication = CCSDS_USER_APP;
180 181 housekeeping_packet.packetID[0] = (unsigned char) (TM_PACKET_ID_HK >> 8);
181 182 housekeeping_packet.packetID[1] = (unsigned char) (TM_PACKET_ID_HK);
182 183 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
183 184 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
184 185 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
185 186 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
186 187 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
187 188 housekeeping_packet.serviceType = TM_TYPE_HK;
188 189 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
189 190 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
190 191
191 192 status = rtems_rate_monotonic_cancel(HK_id);
192 193 if( status != RTEMS_SUCCESSFUL ) {
193 194 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
194 195 }
195 196 else {
196 197 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
197 198 }
198 199
199 200 while(1){ // launch the rate monotonic task
200 201 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
201 202 if ( status != RTEMS_SUCCESSFUL ) {
202 203 PRINTF1( "in HOUS *** ERR period: %d\n", status);
204 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
203 205 }
204 206 else {
205 207 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
206 208 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
207 209 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
208 210 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
209 211 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
210 212 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
211 213 housekeeping_packet.sid = SID_HK;
212 214
213 215 spacewire_update_statistics();
214 216
215 217 // SEND PACKET
216 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
218 status = rtems_message_queue_urgent( queue_id, &housekeeping_packet,
217 219 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
218 220 if (status != RTEMS_SUCCESSFUL) {
219 221 PRINTF1("in HOUS *** ERR send: %d\n", status)
220 222 }
221 223 }
222 224 }
223 225
224 226 PRINTF("in HOUS *** deleting task\n")
225 227
226 228 status = rtems_task_delete( RTEMS_SELF ); // should not return
227 229 printf( "rtems_task_delete returned with status of %d.\n", status );
228 230 return;
229 231 }
230 232
231 233 rtems_task dumb_task( rtems_task_argument unused )
232 234 {
233 235 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
234 236 *
235 237 * @param unused is the starting argument of the RTEMS task
236 238 *
237 239 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
238 240 *
239 241 */
240 242
241 243 unsigned int i;
242 244 unsigned int intEventOut;
243 245 unsigned int coarse_time = 0;
244 246 unsigned int fine_time = 0;
245 247 rtems_event_set event_out;
246 248
247 249 BOOT_PRINTF("in DUMB *** \n")
248 250
249 251 while(1){
250 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3 | RTEMS_EVENT_4 | RTEMS_EVENT_5,
252 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
253 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6,
251 254 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
252 255 intEventOut = (unsigned int) event_out;
253 256 for ( i=0; i<32; i++)
254 257 {
255 258 if ( ((intEventOut >> i) & 0x0001) != 0)
256 259 {
257 260 coarse_time = time_management_regs->coarse_time;
258 261 fine_time = time_management_regs->fine_time;
259 printf("in DUMB *** time = coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
262 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
260 263 }
261 264 }
262 265 }
263 266 }
264 267
265 268 //*****************************
266 269 // init housekeeping parameters
267 270
268 271 void init_housekeeping_parameters( void )
269 272 {
270 273 /** This function initialize the housekeeping_packet global variable with default values.
271 274 *
272 275 */
273 276
274 277 unsigned int i = 0;
275 278 char *parameters;
276 279
277 280 parameters = (char*) &housekeeping_packet.lfr_status_word;
278 281 for(i = 0; i< SIZE_HK_PARAMETERS; i++)
279 282 {
280 283 parameters[i] = 0x00;
281 284 }
282 285 // init status word
283 286 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
284 287 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
285 288 // init software version
286 289 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
287 290 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
288 291 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
289 292 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
290 293
291 294 }
292 295
@@ -1,1191 +1,1172
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 // SWF
13 13 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
14 14 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
16 16 // CWF
17 17 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[7];
18 18 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[7];
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[7];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[7];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[7];
22 22
23 23 unsigned char doubleSendCWF1 = 0;
24 24 unsigned char doubleSendCWF2 = 0;
25 25
26 26 rtems_isr waveforms_isr( rtems_vector_number vector )
27 27 {
28 28 /** This is the interrupt sub routine called by the waveform picker core.
29 29 *
30 30 * This ISR launch different actions depending mainly on two pieces of information:
31 31 * 1. the values read in the registers of the waveform picker.
32 32 * 2. the current LFR mode.
33 33 *
34 34 */
35 35
36 36 #ifdef GSA
37 37 #else
38 38 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
39 39 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
40 40 { // in modes other than STANDBY and BURST, send the CWF_F3 data
41 41 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
42 42 // (1) change the receiving buffer for the waveform picker
43 43 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3) {
44 44 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_bis);
45 45 }
46 46 else {
47 47 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3);
48 48 }
49 49 // (2) send an event for the waveforms transmission
50 50 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
51 51 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
52 52 }
53 53 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
54 54 }
55 55 }
56 56 #endif
57 57
58 58 switch(lfrCurrentMode)
59 59 {
60 60 //********
61 61 // STANDBY
62 62 case(LFR_MODE_STANDBY):
63 63 break;
64 64
65 65 //******
66 66 // NORMAL
67 67 case(LFR_MODE_NORMAL):
68 68 #ifdef GSA
69 69 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
70 70 #else
71 71 if ( (waveform_picker_regs->burst_enable & 0x7) == 0x0 ){ // if no channel is enable
72 72 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
73 73 }
74 74 else {
75 75 if ( (waveform_picker_regs->status & 0x7) == 0x7 ){ // f2 f1 and f0 are full
76 76 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable & 0x08;
77 77 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
78 78 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
79 79 }
80 80 // waveform_picker_regs->status = waveform_picker_regs->status & 0x00;
81 81 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888;
82 82 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x07; // [0111] enable f2 f1 f0
83 83 }
84 84 }
85 85 #endif
86 86 break;
87 87
88 88 //******
89 89 // BURST
90 90 case(LFR_MODE_BURST):
91 91 #ifdef GSA
92 92 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
93 93 #else
94 94 if ((waveform_picker_regs->status & 0x04) == 0x04){ // [0100] check the f2 full bit
95 95 // (1) change the receiving buffer for the waveform picker
96 96 if (waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
97 97 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_bis);
98 98 }
99 99 else {
100 100 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
101 101 }
102 102 // (2) send an event for the waveforms transmission
103 103 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
104 104 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
105 105 }
106 106 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
107 107 }
108 108 #endif
109 109 break;
110 110
111 111 //*****
112 112 // SBM1
113 113 case(LFR_MODE_SBM1):
114 114 #ifdef GSA
115 115 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
116 116 #else
117 117 if ((waveform_picker_regs->status & 0x02) == 0x02){ // [0010] check the f1 full bit
118 118 // (1) change the receiving buffer for the waveform picker
119 119 if ( param_local.local_sbm1_nb_cwf_sent == (param_local.local_sbm1_nb_cwf_max-1) )
120 120 {
121 121 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1_norm);
122 122 }
123 123 else if ( waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1_norm )
124 124 {
125 125 doubleSendCWF1 = 1;
126 126 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1);
127 127 }
128 128 else if ( waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1 ) {
129 129 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1_bis);
130 130 }
131 131 else {
132 132 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1);
133 133 }
134 134 // (2) send an event for the waveforms transmission
135 135 if (rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 ) != RTEMS_SUCCESSFUL) {
136 136 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
137 137 }
138 138 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bit = 0
139 139 }
140 140 if ( ( (waveform_picker_regs->status & 0x05) == 0x05 ) ) { // [0101] check the f2 and f0 full bit
141 141 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
142 142 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
143 143 }
144 144 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2 and f0 bits = 0
145 145 reset_local_sbm1_nb_cwf_sent();
146 146 }
147 147
148 148 #endif
149 149 break;
150 150
151 151 //*****
152 152 // SBM2
153 153 case(LFR_MODE_SBM2):
154 154 #ifdef GSA
155 155 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
156 156 #else
157 157 if ((waveform_picker_regs->status & 0x04) == 0x04){ // [0100] check the f2 full bit
158 158 // (1) change the receiving buffer for the waveform picker
159 159 if ( param_local.local_sbm2_nb_cwf_sent == (param_local.local_sbm2_nb_cwf_max-1) )
160 160 {
161 161 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_norm);
162 162 }
163 163 else if ( waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2_norm ) {
164 164 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
165 165 doubleSendCWF2 = 1;
166 166 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2_WFRM ) != RTEMS_SUCCESSFUL) {
167 167 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
168 168 }
169 169 reset_local_sbm2_nb_cwf_sent();
170 170 }
171 171 else if ( waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2 ) {
172 172 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_bis);
173 173 }
174 174 else {
175 175 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
176 176 }
177 177 // (2) send an event for the waveforms transmission
178 178 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
179 179 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
180 180 }
181 181 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
182 182 }
183 183 if ( ( (waveform_picker_regs->status & 0x03) == 0x03 ) ) { // [0011] f3 f2 f1 f0, f1 and f0 are full
184 184 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
185 185 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
186 186 }
187 187 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
188 188 }
189 189 #endif
190 190 break;
191 191
192 192 //********
193 193 // DEFAULT
194 194 default:
195 195 break;
196 196 }
197 197 }
198 198
199 199 rtems_isr waveforms_simulator_isr( rtems_vector_number vector )
200 200 {
201 201 /** This is the interrupt sub routine called by the waveform picker simulator.
202 202 *
203 203 * This ISR is for debug purpose only.
204 204 *
205 205 */
206 206
207 207 unsigned char lfrMode;
208 208 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
209 209
210 210 switch(lfrMode) {
211 211 case (LFR_MODE_STANDBY):
212 212 break;
213 213 case (LFR_MODE_NORMAL):
214 214 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
215 215 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_5 );
216 216 }
217 217 break;
218 218 case (LFR_MODE_BURST):
219 219 break;
220 220 case (LFR_MODE_SBM1):
221 221 break;
222 222 case (LFR_MODE_SBM2):
223 223 break;
224 224 }
225 225 }
226 226
227 227 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
228 228 {
229 229 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
230 230 *
231 231 * @param unused is the starting argument of the RTEMS task
232 232 *
233 233 * The following data packets are sent by this task:
234 234 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
235 235 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
236 236 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
237 237 *
238 238 */
239 239
240 240 rtems_event_set event_out;
241 241 rtems_id queue_id;
242 242
243 243 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
244 244 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
245 245 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
246 246
247 247 init_waveforms();
248 248
249 249 queue_id = get_pkts_queue_id();
250 250
251 251 BOOT_PRINTF("in WFRM ***\n")
252 252
253 253 while(1){
254 254 // wait for an RTEMS_EVENT
255 255 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
256 256 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
257 257 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
258 258
259 259 if (event_out == RTEMS_EVENT_MODE_NORMAL)
260 260 {
261 261 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
262 262 send_waveform_SWF(wf_snap_f1, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
263 263 send_waveform_SWF(wf_snap_f2, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
264 264 #ifdef GSA
265 265 waveform_picker_regs->status = waveform_picker_regs->status & 0xf888; // [1111 1000 1000 1000] f2, f1, f0 bits =0
266 266 #endif
267 267 }
268 268 else if (event_out == RTEMS_EVENT_MODE_SBM1)
269 269 {
270 270 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
271 271 send_waveform_SWF(wf_snap_f1_norm, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
272 272 send_waveform_SWF(wf_snap_f2, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
273 273 #ifdef GSA
274 274 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2, f0 bits = 0
275 275 #endif
276 276 }
277 277 else if (event_out == RTEMS_EVENT_MODE_SBM2)
278 278 {
279 279 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
280 280 send_waveform_SWF(wf_snap_f1, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
281 281 #ifdef GSA
282 282 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
283 283 #endif
284 284 }
285 285 else if (event_out == RTEMS_EVENT_MODE_SBM2_WFRM)
286 286 {
287 287 send_waveform_SWF(wf_snap_f2_norm, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
288 288 }
289 289 else
290 290 {
291 291 PRINTF("in WFRM *** unexpected event")
292 292 }
293 293
294 294
295 295 #ifdef GSA
296 296 // irq processed, reset the related register of the timer unit
297 297 gptimer_regs->timer[TIMER_WF_SIMULATOR].ctrl = gptimer_regs->timer[TIMER_WF_SIMULATOR].ctrl | 0x00000010;
298 298 // clear the interruption
299 299 LEON_Unmask_interrupt( IRQ_WF );
300 300 #endif
301 301 }
302 302 }
303 303
304 304 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
305 305 {
306 306 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
307 307 *
308 308 * @param unused is the starting argument of the RTEMS task
309 309 *
310 310 * The following data packet is sent by this task:
311 311 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
312 312 *
313 313 */
314 314
315 315 rtems_event_set event_out;
316 316 rtems_id queue_id;
317 317
318 318 init_header_continuous_wf_table( SID_NORM_CWF_F3, headerCWF_F3 );
319 319 init_header_continuous_wf3_light_table( headerCWF_F3_light );
320 320
321 321 queue_id = get_pkts_queue_id();
322 322
323 323 BOOT_PRINTF("in CWF3 ***\n")
324 324
325 325 while(1){
326 326 // wait for an RTEMS_EVENT
327 327 rtems_event_receive( RTEMS_EVENT_0,
328 328 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
329 329 PRINTF("send CWF F3 \n")
330 330 #ifdef GSA
331 331 #else
332 332 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3) {
333 333 send_waveform_CWF3_light( wf_cont_f3_bis, headerCWF_F3_light, queue_id );
334 334 }
335 335 else {
336 336 send_waveform_CWF3_light( wf_cont_f3, headerCWF_F3_light, queue_id );
337 337 }
338 338 #endif
339 339 }
340 340 }
341 341
342 342 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
343 343 {
344 344 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
345 345 *
346 346 * @param unused is the starting argument of the RTEMS task
347 347 *
348 348 * The following data packet is sent by this function:
349 349 * - TM_LFR_SCIENCE_BURST_CWF_F2
350 350 * - TM_LFR_SCIENCE_SBM2_CWF_F2
351 351 *
352 352 */
353 353
354 354 rtems_event_set event_out;
355 355 rtems_id queue_id;
356 356
357 357 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
358 358 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
359 359
360 360 queue_id = get_pkts_queue_id();
361 361
362 362 BOOT_PRINTF("in CWF2 ***\n")
363 363
364 364 while(1){
365 365 // wait for an RTEMS_EVENT
366 366 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
367 367 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
368 368
369 369 if (event_out == RTEMS_EVENT_MODE_BURST)
370 370 {
371 371 // F2
372 372 #ifdef GSA
373 373 #else
374 374 if (waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
375 375 send_waveform_CWF( wf_snap_f2_bis, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
376 376 }
377 377 else {
378 378 send_waveform_CWF( wf_snap_f2, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
379 379 }
380 380 #endif
381 381 }
382 382
383 383 else if (event_out == RTEMS_EVENT_MODE_SBM2)
384 384 {
385 385 #ifdef GSA
386 386 #else
387 387 if (doubleSendCWF2 == 1)
388 388 {
389 389 doubleSendCWF2 = 0;
390 390 send_waveform_CWF( wf_snap_f2_norm, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
391 391 }
392 392 else if (waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
393 393 send_waveform_CWF( wf_snap_f2_bis, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
394 394 }
395 395 else {
396 396 send_waveform_CWF( wf_snap_f2, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
397 397 }
398 398 param_local.local_sbm2_nb_cwf_sent ++;
399 399 #endif
400 400 }
401 401 else
402 402 {
403 403 PRINTF1("in CWF2 *** ERR mode = %d\n", lfrCurrentMode)
404 404 }
405 405 }
406 406 }
407 407
408 408 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
409 409 {
410 410 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
411 411 *
412 412 * @param unused is the starting argument of the RTEMS task
413 413 *
414 414 * The following data packet is sent by this function:
415 415 * - TM_LFR_SCIENCE_SBM1_CWF_F1
416 416 *
417 417 */
418 418
419 419 rtems_event_set event_out;
420 420 rtems_id queue_id;
421 421
422 422 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
423 423
424 424 queue_id = get_pkts_queue_id();
425 425
426 426 BOOT_PRINTF("in CWF1 ***\n")
427 427
428 428 while(1){
429 429 // wait for an RTEMS_EVENT
430 430 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
431 431 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
432 432 if (event_out == RTEMS_EVENT_MODE_SBM1)
433 433 {
434 434 #ifdef GSA
435 435 #else
436 436 if (doubleSendCWF1 == 1)
437 437 {
438 438 doubleSendCWF1 = 0;
439 439 send_waveform_CWF( wf_snap_f1_norm, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
440 440 }
441 441 else if (waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1) {
442 442 send_waveform_CWF( wf_snap_f1_bis, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
443 443 }
444 444 else {
445 445 send_waveform_CWF( wf_snap_f1, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
446 446 }
447 447 param_local.local_sbm1_nb_cwf_sent ++;
448 448 #endif
449 449 }
450 450 else
451 451 {
452 452 PRINTF1("in CWF1 *** ERR mode = %d\n", lfrCurrentMode)
453 453 }
454 454 }
455 455 }
456 456
457 457 //******************
458 458 // general functions
459 459 void init_waveforms( void )
460 460 {
461 461 int i = 0;
462 462
463 463 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
464 464 {
465 465 //***
466 466 // F0
467 467 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x88887777; //
468 468 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111; //
469 469 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0x44443333; //
470 470
471 471 //***
472 472 // F1
473 473 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x22221111;
474 474 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x44443333;
475 475 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
476 476
477 477 //***
478 478 // F2
479 479 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x44443333;
480 480 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111;
481 481 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
482 482
483 483 //***
484 484 // F3
485 485 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 0 ] = val1;
486 486 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 1 ] = val2;
487 487 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 2 ] = 0xaaaa0000;
488 488 }
489 489 }
490 490
491 491 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
492 492 {
493 493 unsigned char i;
494 494
495 495 for (i=0; i<7; i++)
496 496 {
497 497 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
498 498 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
499 499 headerSWF[ i ].reserved = DEFAULT_RESERVED;
500 500 headerSWF[ i ].userApplication = CCSDS_USER_APP;
501 501 headerSWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
502 502 headerSWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
503 503 if (i == 0)
504 504 {
505 505 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
506 506 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_340 >> 8);
507 507 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_340 );
508 508 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
509 509 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
510 510 }
511 511 else if (i == 6)
512 512 {
513 513 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
514 514 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_8 >> 8);
515 515 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_8 );
516 516 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
517 517 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
518 518 }
519 519 else
520 520 {
521 521 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
522 522 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_340 >> 8);
523 523 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_340 );
524 524 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
525 525 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
526 526 }
527 527 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
528 528 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
529 529 headerSWF[ i ].pktNr = i+1; // PKT_NR
530 530 // DATA FIELD HEADER
531 531 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
532 532 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
533 533 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
534 534 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
535 535 // AUXILIARY DATA HEADER
536 536 headerSWF[ i ].sid = sid;
537 537 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
538 538 headerSWF[ i ].time[0] = 0x00;
539 539 headerSWF[ i ].time[0] = 0x00;
540 540 headerSWF[ i ].time[0] = 0x00;
541 541 headerSWF[ i ].time[0] = 0x00;
542 542 headerSWF[ i ].time[0] = 0x00;
543 543 headerSWF[ i ].time[0] = 0x00;
544 544 }
545 545 return LFR_SUCCESSFUL;
546 546 }
547 547
548 548 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
549 549 {
550 550 unsigned int i;
551 551
552 552 for (i=0; i<7; i++)
553 553 {
554 554 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
555 555 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
556 556 headerCWF[ i ].reserved = DEFAULT_RESERVED;
557 557 headerCWF[ i ].userApplication = CCSDS_USER_APP;
558 558 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
559 559 {
560 560 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2 >> 8);
561 561 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2);
562 562 }
563 563 else
564 564 {
565 565 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
566 566 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
567 567 }
568 568 if (i == 0)
569 569 {
570 570 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
571 571 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_340 >> 8);
572 572 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_340 );
573 573 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
574 574 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
575 575 }
576 576 else if (i == 6)
577 577 {
578 578 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
579 579 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_8 >> 8);
580 580 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_8 );
581 581 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
582 582 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
583 583 }
584 584 else
585 585 {
586 586 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
587 587 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_340 >> 8);
588 588 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_340 );
589 589 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
590 590 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
591 591 }
592 592 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
593 593 // PKT_CNT
594 594 // PKT_NR
595 595 // DATA FIELD HEADER
596 596 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
597 597 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
598 598 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
599 599 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
600 600 // AUXILIARY DATA HEADER
601 601 headerCWF[ i ].sid = sid;
602 602 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
603 603 headerCWF[ i ].time[0] = 0x00;
604 604 headerCWF[ i ].time[0] = 0x00;
605 605 headerCWF[ i ].time[0] = 0x00;
606 606 headerCWF[ i ].time[0] = 0x00;
607 607 headerCWF[ i ].time[0] = 0x00;
608 608 headerCWF[ i ].time[0] = 0x00;
609 609 }
610 610 return LFR_SUCCESSFUL;
611 611 }
612 612
613 613 int init_header_continuous_wf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
614 614 {
615 615 unsigned int i;
616 616
617 617 for (i=0; i<7; i++)
618 618 {
619 619 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
620 620 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
621 621 headerCWF[ i ].reserved = DEFAULT_RESERVED;
622 622 headerCWF[ i ].userApplication = CCSDS_USER_APP;
623 623
624 624 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
625 625 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
626 626 if (i == 0)
627 627 {
628 628 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
629 629 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 >> 8);
630 630 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 );
631 631 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
632 632 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
633 633 }
634 634 else if (i == 6)
635 635 {
636 636 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
637 637 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_8 >> 8);
638 638 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_8 );
639 639 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
640 640 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
641 641 }
642 642 else
643 643 {
644 644 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
645 645 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 >> 8);
646 646 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 );
647 647 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
648 648 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
649 649 }
650 650 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
651 651 // DATA FIELD HEADER
652 652 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
653 653 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
654 654 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
655 655 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
656 656 // AUXILIARY DATA HEADER
657 657 headerCWF[ i ].sid = SID_NORM_CWF_F3;
658 658 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
659 659 headerCWF[ i ].time[0] = 0x00;
660 660 headerCWF[ i ].time[0] = 0x00;
661 661 headerCWF[ i ].time[0] = 0x00;
662 662 headerCWF[ i ].time[0] = 0x00;
663 663 headerCWF[ i ].time[0] = 0x00;
664 664 headerCWF[ i ].time[0] = 0x00;
665 665 }
666 666 return LFR_SUCCESSFUL;
667 667 }
668 668
669 669 void reset_waveforms( void )
670 670 {
671 671 int i = 0;
672 672
673 673 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
674 674 {
675 675 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x10002000;
676 676 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0x20001000;
677 677 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x40008000;
678 678
679 679 //***
680 680 // F1
681 681 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x1000f000;
682 682 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0xf0001000;
683 683 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x40008000;
684 684
685 685 //***
686 686 // F2
687 687 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x40008000;
688 688 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0x20001000;
689 689 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x10002000;
690 690
691 691 //***
692 692 // F3
693 693 /*wf_cont_f3[ i* NB_WORDS_SWF_BLK + 0 ] = build_value( i, i ); // v and 1
694 694 wf_cont_f3[ i* NB_WORDS_SWF_BLK + 1 ] = build_value( i, i ); // e2 and b1
695 695 wf_cont_f3[ i* NB_WORDS_SWF_BLK + 2 ] = build_value( i, i ); // b2 and b3*/
696 696 }
697 697 }
698 698
699 699 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
700 700 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
701 701 {
702 702 /** This function sends SWF CCSDS packets (F2, F1 or F0).
703 703 *
704 704 * @param waveform points to the buffer containing the data that will be send.
705 705 * @param sid is the source identifier of the data that will be sent.
706 706 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
707 707 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
708 708 * contain information to setup the transmission of the data packets.
709 709 *
710 710 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
711 711 *
712 712 */
713 713
714 714 unsigned int i;
715 715 int ret;
716 716 rtems_status_code status;
717 717 spw_ioctl_pkt_send spw_ioctl_send_SWF;
718 718
719 719 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
720 720 spw_ioctl_send_SWF.options = 0;
721 721
722 722 ret = LFR_DEFAULT;
723 723
724 724 for (i=0; i<7; i++) // send waveform
725 725 {
726 726 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * 340 * NB_WORDS_SWF_BLK) ];
727 727 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
728 728 // BUILD THE DATA
729 729 if (i==6) {
730 730 spw_ioctl_send_SWF.dlen = 8 * NB_BYTES_SWF_BLK;
731 731 }
732 732 else {
733 733 spw_ioctl_send_SWF.dlen = 340 * NB_BYTES_SWF_BLK;
734 734 }
735 735 // SET PACKET TIME
736 736 headerSWF[ i ].acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
737 737 headerSWF[ i ].acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
738 738 headerSWF[ i ].acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
739 739 headerSWF[ i ].acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
740 740 headerSWF[ i ].acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
741 741 headerSWF[ i ].acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
742 742 headerSWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
743 743 headerSWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
744 744 headerSWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
745 745 headerSWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
746 746 headerSWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
747 747 headerSWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
748 748 // SEND PACKET
749 749 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
750 750 if (status != RTEMS_SUCCESSFUL) {
751 751 printf("%d-%d, ERR %d\n", sid, i, (int) status);
752 752 ret = LFR_DEFAULT;
753 753 }
754 754 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
755 755 }
756 756
757 757 return ret;
758 758 }
759 759
760 760 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
761 761 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
762 762 {
763 763 /** This function sends CWF CCSDS packets (F2, F1 or F0).
764 764 *
765 765 * @param waveform points to the buffer containing the data that will be send.
766 766 * @param sid is the source identifier of the data that will be sent.
767 767 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
768 768 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
769 769 * contain information to setup the transmission of the data packets.
770 770 *
771 771 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
772 772 *
773 773 */
774 774
775 775 unsigned int i;
776 776 int ret;
777 777 rtems_status_code status;
778 778 spw_ioctl_pkt_send spw_ioctl_send_CWF;
779 779
780 780 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
781 781 spw_ioctl_send_CWF.options = 0;
782 782
783 783 ret = LFR_DEFAULT;
784 784
785 785 for (i=0; i<7; i++) // send waveform
786 786 {
787 787 int coarseTime = 0x00;
788 788 int fineTime = 0x00;
789 789 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * 340 * NB_WORDS_SWF_BLK) ];
790 790 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
791 791 // BUILD THE DATA
792 792 if (i==6) {
793 793 spw_ioctl_send_CWF.dlen = 8 * NB_BYTES_SWF_BLK;
794 794 }
795 795 else {
796 796 spw_ioctl_send_CWF.dlen = 340 * NB_BYTES_SWF_BLK;
797 797 }
798 798 // SET PACKET TIME
799 799 coarseTime = time_management_regs->coarse_time;
800 800 fineTime = time_management_regs->fine_time;
801 801 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
802 802 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
803 803 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
804 804 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
805 805 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
806 806 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
807 807 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
808 808 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
809 809 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
810 810 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
811 811 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
812 812 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
813 813 // SEND PACKET
814 814 if (sid == SID_NORM_CWF_F3)
815 815 {
816 816 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
817 817 if (status != RTEMS_SUCCESSFUL) {
818 818 printf("%d-%d, ERR %d\n", sid, i, (int) status);
819 819 ret = LFR_DEFAULT;
820 820 }
821 821 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
822 822 }
823 823 else
824 824 {
825 825 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
826 826 if (status != RTEMS_SUCCESSFUL) {
827 827 printf("%d-%d, ERR %d\n", sid, i, (int) status);
828 828 ret = LFR_DEFAULT;
829 829 }
830 830 }
831 831 }
832 832
833 833 return ret;
834 834 }
835 835
836 836 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
837 837 {
838 838 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
839 839 *
840 840 * @param waveform points to the buffer containing the data that will be send.
841 841 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
842 842 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
843 843 * contain information to setup the transmission of the data packets.
844 844 *
845 845 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
846 846 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
847 847 *
848 848 */
849 849
850 850 unsigned int i;
851 851 int ret;
852 852 rtems_status_code status;
853 853 spw_ioctl_pkt_send spw_ioctl_send_CWF;
854 854 char *sample;
855 855
856 856 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
857 857 spw_ioctl_send_CWF.options = 0;
858 858
859 859 ret = LFR_DEFAULT;
860 860
861 861 //**********************
862 862 // BUILD CWF3_light DATA
863 863 for ( i=0; i< 2048; i++)
864 864 {
865 865 sample = (char*) &waveform[ i * NB_WORDS_SWF_BLK ];
866 866 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
867 867 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
868 868 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
869 869 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
870 870 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
871 871 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
872 872 }
873 873
874 874 //*********************
875 875 // SEND CWF3_light DATA
876 876
877 877 for (i=0; i<7; i++) // send waveform
878 878 {
879 879 int coarseTime = 0x00;
880 880 int fineTime = 0x00;
881 881 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * 340 * NB_BYTES_CWF3_LIGHT_BLK) ];
882 882 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
883 883 // BUILD THE DATA
884 884 if ( i == WFRM_INDEX_OF_LAST_PACKET ) {
885 885 spw_ioctl_send_CWF.dlen = 8 * NB_BYTES_CWF3_LIGHT_BLK;
886 886 }
887 887 else {
888 888 spw_ioctl_send_CWF.dlen = 340 * NB_BYTES_CWF3_LIGHT_BLK;
889 889 }
890 890 // SET PACKET TIME
891 891 coarseTime = time_management_regs->coarse_time;
892 892 fineTime = time_management_regs->fine_time;
893 893 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
894 894 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
895 895 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
896 896 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
897 897 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
898 898 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
899 899 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
900 900 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
901 901 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
902 902 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
903 903 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
904 904 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
905 905 // SEND PACKET
906 906 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
907 907 if (status != RTEMS_SUCCESSFUL) {
908 908 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
909 909 ret = LFR_DEFAULT;
910 910 }
911 911 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
912 912 }
913 913
914 914 return ret;
915 915 }
916 916
917 917
918 918 //**************
919 919 // wfp registers
920 920 void set_wfp_data_shaping()
921 921 {
922 922 /** This function sets the data_shaping register of the waveform picker module.
923 923 *
924 924 * The value is read from one field of the parameter_dump_packet structure:\n
925 925 * bw_sp0_sp1_r0_r1
926 926 *
927 927 */
928 928
929 929 unsigned char data_shaping;
930 930
931 931 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
932 932 // waveform picker : [R1 R0 SP1 SP0 BW]
933 933
934 934 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
935 935
936 936 #ifdef GSA
937 937 #else
938 938 waveform_picker_regs->data_shaping =
939 939 ( (data_shaping & 0x10) >> 4 ) // BW
940 940 + ( (data_shaping & 0x08) >> 2 ) // SP0
941 941 + ( (data_shaping & 0x04) ) // SP1
942 942 + ( (data_shaping & 0x02) << 2 ) // R0
943 943 + ( (data_shaping & 0x01) << 4 ); // R1
944 944 #endif
945 945 }
946 946
947 947 char set_wfp_delta_snapshot()
948 948 {
949 949 /** This function sets the delta_snapshot register of the waveform picker module.
950 950 *
951 951 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
952 952 * - sy_lfr_n_swf_p[0]
953 953 * - sy_lfr_n_swf_p[1]
954 954 *
955 955 */
956 956
957 957 char ret;
958 958 unsigned int delta_snapshot;
959 959 unsigned int aux;
960 960
961 961 aux = 0;
962 962 ret = LFR_DEFAULT;
963 963
964 964 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
965 965 + parameter_dump_packet.sy_lfr_n_swf_p[1];
966 966
967 967 #ifdef GSA
968 968 #else
969 969 if ( delta_snapshot < MIN_DELTA_SNAPSHOT )
970 970 {
971 971 aux = MIN_DELTA_SNAPSHOT;
972 972 ret = LFR_DEFAULT;
973 973 }
974 974 else
975 975 {
976 976 aux = delta_snapshot ;
977 977 ret = LFR_SUCCESSFUL;
978 978 }
979 979 waveform_picker_regs->delta_snapshot = aux - 1; // max 2 bytes
980 980 #endif
981 981
982 982 return ret;
983 983 }
984 984
985 985 void set_wfp_burst_enable_register( unsigned char mode)
986 986 {
987 987 /** This function sets the waveform picker burst_enable register depending on the mode.
988 988 *
989 989 * @param mode is the LFR mode to launch.
990 990 *
991 991 * The burst bits shall be before the enable bits.
992 992 *
993 993 */
994 994
995 995 #ifdef GSA
996 996 #else
997 997 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
998 998 // the burst bits shall be set first, before the enable bits
999 999 switch(mode) {
1000 1000 case(LFR_MODE_NORMAL):
1001 1001 waveform_picker_regs->burst_enable = 0x00; // [0000 0000] no burst enable
1002 1002 waveform_picker_regs->burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1003 1003 break;
1004 1004 case(LFR_MODE_BURST):
1005 1005 waveform_picker_regs->burst_enable = 0x40; // [0100 0000] f2 burst enabled
1006 1006 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x04; // [0100] enable f2
1007 1007 break;
1008 1008 case(LFR_MODE_SBM1):
1009 1009 waveform_picker_regs->burst_enable = 0x20; // [0010 0000] f1 burst enabled
1010 1010 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1011 1011 break;
1012 1012 case(LFR_MODE_SBM2):
1013 1013 waveform_picker_regs->burst_enable = 0x40; // [0100 0000] f2 burst enabled
1014 1014 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1015 1015 break;
1016 1016 default:
1017 1017 waveform_picker_regs->burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1018 1018 break;
1019 1019 }
1020 1020 #endif
1021 1021 }
1022 1022
1023 1023 void reset_wfp_burst_enable()
1024 1024 {
1025 1025 /** This function resets the waveform picker burst_enable register.
1026 1026 *
1027 1027 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1028 1028 *
1029 1029 */
1030 1030
1031 1031 #ifdef GSA
1032 1032 #else
1033 1033 waveform_picker_regs->burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1034 1034 #endif
1035 1035 }
1036 1036
1037 1037 void reset_wfp_status()
1038 1038 {
1039 1039 /** This function resets the waveform picker status register.
1040 1040 *
1041 1041 * All status bits are set to 0 [new_err full_err full].
1042 1042 *
1043 1043 */
1044 1044
1045 1045 #ifdef GSA
1046 1046 #else
1047 1047 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1048 1048 #endif
1049 1049 }
1050 1050
1051 1051 void reset_waveform_picker_regs()
1052 1052 {
1053 1053 /** This function resets the waveform picker module registers.
1054 1054 *
1055 1055 * The registers affected by this function are located at the following offset addresses:
1056 1056 * - 0x00 data_shaping
1057 1057 * - 0x04 burst_enable
1058 1058 * - 0x08 addr_data_f0
1059 1059 * - 0x0C addr_data_f1
1060 1060 * - 0x10 addr_data_f2
1061 1061 * - 0x14 addr_data_f3
1062 1062 * - 0x18 status
1063 1063 * - 0x1C delta_snapshot
1064 1064 * - 0x20 delta_f2_f1
1065 1065 * - 0x24 delta_f2_f0
1066 1066 * - 0x28 nb_burst
1067 1067 * - 0x2C nb_snapshot
1068 1068 *
1069 1069 */
1070 1070
1071 1071 #ifdef GSA
1072 1072 #else
1073 1073 reset_wfp_burst_enable();
1074 1074 reset_wfp_status();
1075 1075 // set buffer addresses
1076 1076 waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0); //
1077 1077 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1); //
1078 1078 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2); //
1079 1079 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3); //
1080 1080 // set other parameters
1081 1081 set_wfp_data_shaping();
1082 1082 set_wfp_delta_snapshot(); // time in seconds between two snapshots
1083 1083 waveform_picker_regs->delta_f2_f1 = 0xffff; // 0x16800 => 92160 (max 4 bytes)
1084 1084 waveform_picker_regs->delta_f2_f0 = 0x17c00; // 97 280 (max 5 bytes)
1085 1085 waveform_picker_regs->nb_burst_available = 0x180; // max 3 bytes, size of the buffer in burst (1 burst = 16 x 4 octets)
1086 1086 waveform_picker_regs->nb_snapshot_param = 0x7ff; // max 3 octets, 2048 - 1
1087 1087 #endif
1088 1088 }
1089 1089
1090 void reset_waveform_picker_regs_alt()
1091 {
1092 waveform_picker_regs_alt->data_shaping = 0x01; // 0x00 00 *** R1 R0 SP1 SP0 BW
1093 waveform_picker_regs_alt->run_burst_enable = 0x00; // 0x04 01 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1094 waveform_picker_regs_alt->addr_data_f0 = (int) (wf_snap_f0); // 0x08
1095 waveform_picker_regs_alt->addr_data_f1 = (int) (wf_snap_f1); // 0x0c
1096 waveform_picker_regs_alt->addr_data_f2 = (int) (wf_snap_f2); // 0x10
1097 waveform_picker_regs_alt->addr_data_f3 = (int) (wf_cont_f3); // 0x14
1098 waveform_picker_regs_alt->status = 0x00; // 0x18
1099 waveform_picker_regs_alt->delta_snapshot = 0x12800; // 0x1c
1100 waveform_picker_regs_alt->delta_f0 = 0x3f5; // 0x20 *** 1013
1101 waveform_picker_regs_alt->delta_f0_2 = 0x7; // 0x24 *** 7
1102 waveform_picker_regs_alt->delta_f1 = 0x3c0; // 0x28 *** 960
1103 waveform_picker_regs_alt->delta_f2 = 0x12200; // 0x2c *** 74240
1104 waveform_picker_regs_alt->nb_data_by_buffer = 0x1802; // 0x30 *** 2048 * 3 + 2
1105 waveform_picker_regs_alt->snapshot_param = 0x7ff; // 0x34 *** 2048 -1
1106 waveform_picker_regs_alt->start_date = 0x00;
1107 }
1108
1109 1090 //*****************
1110 1091 // local parameters
1111 1092 void set_local_sbm1_nb_cwf_max()
1112 1093 {
1113 1094 /** This function sets the value of the sbm1_nb_cwf_max local parameter.
1114 1095 *
1115 1096 * The sbm1_nb_cwf_max parameter counts the number of CWF_F1 records that have been sent.\n
1116 1097 * This parameter is used to send CWF_F1 data as normal data when the SBM1 is active.\n\n
1117 1098 * (2 snapshots of 2048 points per seconds) * (period of the NORM snashots) - 8 s (duration of the f2 snapshot)
1118 1099 *
1119 1100 */
1120 1101 param_local.local_sbm1_nb_cwf_max = 2 *
1121 1102 (parameter_dump_packet.sy_lfr_n_swf_p[0] * 256
1122 1103 + parameter_dump_packet.sy_lfr_n_swf_p[1]) - 8; // 16 CWF1 parts during 1 SWF2
1123 1104 }
1124 1105
1125 1106 void set_local_sbm2_nb_cwf_max()
1126 1107 {
1127 1108 /** This function sets the value of the sbm1_nb_cwf_max local parameter.
1128 1109 *
1129 1110 * The sbm1_nb_cwf_max parameter counts the number of CWF_F1 records that have been sent.\n
1130 1111 * This parameter is used to send CWF_F2 data as normal data when the SBM2 is active.\n\n
1131 1112 * (period of the NORM snashots) / (8 seconds per snapshot at f2 = 256 Hz)
1132 1113 *
1133 1114 */
1134 1115
1135 1116 param_local.local_sbm2_nb_cwf_max = (parameter_dump_packet.sy_lfr_n_swf_p[0] * 256
1136 1117 + parameter_dump_packet.sy_lfr_n_swf_p[1]) / 8;
1137 1118 }
1138 1119
1139 1120 void set_local_nb_interrupt_f0_MAX()
1140 1121 {
1141 1122 /** This function sets the value of the nb_interrupt_f0_MAX local parameter.
1142 1123 *
1143 1124 * This parameter is used for the SM validation only.\n
1144 1125 * The software waits param_local.local_nb_interrupt_f0_MAX interruptions from the spectral matrices
1145 1126 * module before launching a basic processing.
1146 1127 *
1147 1128 */
1148 1129
1149 1130 param_local.local_nb_interrupt_f0_MAX = ( (parameter_dump_packet.sy_lfr_n_asm_p[0]) * 256
1150 1131 + parameter_dump_packet.sy_lfr_n_asm_p[1] ) * 100;
1151 1132 }
1152 1133
1153 1134 void reset_local_sbm1_nb_cwf_sent()
1154 1135 {
1155 1136 /** This function resets the value of the sbm1_nb_cwf_sent local parameter.
1156 1137 *
1157 1138 * The sbm1_nb_cwf_sent parameter counts the number of CWF_F1 records that have been sent.\n
1158 1139 * This parameter is used to send CWF_F1 data as normal data when the SBM1 is active.
1159 1140 *
1160 1141 */
1161 1142
1162 1143 param_local.local_sbm1_nb_cwf_sent = 0;
1163 1144 }
1164 1145
1165 1146 void reset_local_sbm2_nb_cwf_sent()
1166 1147 {
1167 1148 /** This function resets the value of the sbm2_nb_cwf_sent local parameter.
1168 1149 *
1169 1150 * The sbm2_nb_cwf_sent parameter counts the number of CWF_F2 records that have been sent.\n
1170 1151 * This parameter is used to send CWF_F2 data as normal data when the SBM2 mode is active.
1171 1152 *
1172 1153 */
1173 1154
1174 1155 param_local.local_sbm2_nb_cwf_sent = 0;
1175 1156 }
1176 1157
1177 1158 rtems_id get_pkts_queue_id( void )
1178 1159 {
1179 1160 rtems_id queue_id;
1180 1161 rtems_status_code status;
1181 1162 rtems_name queue_send_name;
1182 1163
1183 1164 queue_send_name = rtems_build_name( 'Q', '_', 'S', 'D' );
1184 1165
1185 1166 status = rtems_message_queue_ident( queue_send_name, 0, &queue_id );
1186 1167 if (status != RTEMS_SUCCESSFUL)
1187 1168 {
1188 1169 PRINTF1("in get_pkts_queue_id *** ERR %d\n", status)
1189 1170 }
1190 1171 return queue_id;
1191 1172 }
General Comments 0
You need to be logged in to leave comments. Login now