##// END OF EJS Templates
Rev 3.0.0.4...
paul -
r212:273ce8305308 R3
parent child
Show More
@@ -1,54 +1,57
1 1 #ifndef FSW_MISC_H_INCLUDED
2 2 #define FSW_MISC_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6 #include <grspw.h>
7 7 #include <grlib_regs.h>
8 8
9 9 #include "fsw_params.h"
10 10 #include "fsw_spacewire.h"
11 11 #include "lfr_cpu_usage_report.h"
12 12
13 13 rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
14 14 rtems_id HK_id; // id of the HK rate monotonic period
15 15
16 16 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
17 17 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
18 18 void timer_start( gptimer_regs_t *gptimer_regs, unsigned char timer );
19 19 void timer_stop( gptimer_regs_t *gptimer_regs, unsigned char timer );
20 20 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider);
21 21
22 22 // SERIAL LINK
23 23 int send_console_outputs_on_apbuart_port( void );
24 24 int enable_apbuart_transmitter( void );
25 25 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
26 26
27 27 // RTEMS TASKS
28 28 rtems_task stat_task( rtems_task_argument argument );
29 29 rtems_task hous_task( rtems_task_argument argument );
30 30 rtems_task dumb_task( rtems_task_argument unused );
31 31
32 32 void init_housekeeping_parameters( void );
33 33 void increment_seq_counter(unsigned short *packetSequenceControl);
34 34 void getTime( unsigned char *time);
35 35 unsigned long long int getTimeAsUnsignedLongLongInt( );
36 36 void send_dumb_hk( void );
37 37 void get_temperatures( unsigned char *temperatures );
38 38 void get_v_e1_e2_f3( unsigned char *spacecraft_potential );
39 39 void get_cpu_load( unsigned char *resource_statistics );
40 void set_hk_lfr_sc_potential_flag( bool state );
41 void set_hk_lfr_calib_enable( bool state );
42
40 43
41 44 extern int sched_yield( void );
42 45 extern void rtems_cpu_usage_reset();
43 46 extern ring_node *current_ring_node_f3;
44 47 extern ring_node *ring_node_to_send_cwf_f3;
45 48 extern ring_node waveform_ring_f3[];
46 49 extern unsigned short sequenceCounterHK;
47 50
48 51 extern unsigned char hk_lfr_q_sd_fifo_size_max;
49 52 extern unsigned char hk_lfr_q_rv_fifo_size_max;
50 53 extern unsigned char hk_lfr_q_p0_fifo_size_max;
51 54 extern unsigned char hk_lfr_q_p1_fifo_size_max;
52 55 extern unsigned char hk_lfr_q_p2_fifo_size_max;
53 56
54 57 #endif // FSW_MISC_H_INCLUDED
@@ -1,72 +1,71
1 1 #ifndef TC_HANDLER_H_INCLUDED
2 2 #define TC_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "tc_load_dump_parameters.h"
8 8 #include "tc_acceptance.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "wf_handler.h"
11 11 #include "fsw_processing.h"
12 12
13 13 #include "lfr_cpu_usage_report.h"
14 14
15 15 //****
16 16 // ISR
17 17 rtems_isr commutation_isr1( rtems_vector_number vector );
18 18 rtems_isr commutation_isr2( rtems_vector_number vector );
19 19
20 20 //***********
21 21 // RTEMS TASK
22 22 rtems_task actn_task( rtems_task_argument unused );
23 23
24 24 //***********
25 25 // TC ACTIONS
26 26 int action_reset( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
27 27 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
28 28 int action_update_info( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
29 29 int action_enable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
30 30 int action_disable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
31 31 int action_update_time( ccsdsTelecommandPacket_t *TC);
32 32
33 33 // mode transition
34 34 int check_mode_value( unsigned char requestedMode );
35 35 int check_mode_transition( unsigned char requestedMode );
36 36 int check_transition_date( unsigned int transitionCoarseTime );
37 37 int stop_current_mode( void );
38 38 int enter_mode( unsigned char mode , unsigned int transitionCoarseTime );
39 39 int restart_science_tasks( unsigned char lfrRequestedMode );
40 40 int suspend_science_tasks();
41 41 void launch_waveform_picker( unsigned char mode , unsigned int transitionCoarseTime );
42 42 void launch_spectral_matrix( void );
43 43 void launch_spectral_matrix_simu( void );
44 44 void set_sm_irq_onNewMatrix( unsigned char value );
45 45 void set_sm_irq_onError( unsigned char value );
46 46
47 47 // other functions
48 48 void updateLFRCurrentMode();
49 49 void set_lfr_soft_reset( unsigned char value );
50 50 void reset_lfr( void );
51 51 // CALIBRATION
52 52 void setCalibrationPrescaler( unsigned int prescaler );
53 53 void setCalibrationDivisor( unsigned int divisionFactor );
54 54 void setCalibrationData( void );
55 55 void setCalibrationReload( bool state);
56 56 void setCalibrationEnable( bool state );
57 57 void setCalibrationInterleaved( bool state );
58 58 void setCalibration( bool state );
59 void set_hk_lfr_calib_enable( bool state );
60 59 void configureCalibration( bool interleaved );
61 60 //
62 61 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC , unsigned char *time );
63 62 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC , unsigned char *time );
64 63 void close_action( ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
65 64
66 65 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
67 66 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
68 67
69 68 #endif // TC_HANDLER_H_INCLUDED
70 69
71 70
72 71
@@ -1,530 +1,551
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29 29
30 30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 31 if (status!=RTEMS_SUCCESSFUL)
32 32 {
33 33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 34 }
35 35
36 36 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
37 37 }
38 38
39 39 void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
40 40 {
41 41 /** This function starts a GPTIMER timer.
42 42 *
43 43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 45 *
46 46 */
47 47
48 48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 53 }
54 54
55 55 void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
56 56 {
57 57 /** This function stops a GPTIMER timer.
58 58 *
59 59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 61 *
62 62 */
63 63
64 64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 67 }
68 68
69 69 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
70 70 {
71 71 /** This function sets the clock divider of a GPTIMER timer.
72 72 *
73 73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 76 *
77 77 */
78 78
79 79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 80 }
81 81
82 82 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
83 83 {
84 84 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
85 85
86 86 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
87 87
88 88 return 0;
89 89 }
90 90
91 91 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
92 92 {
93 93 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
94 94
95 95 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
96 96
97 97 return 0;
98 98 }
99 99
100 100 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
101 101 {
102 102 /** This function sets the scaler reload register of the apbuart module
103 103 *
104 104 * @param regs is the address of the apbuart registers in memory
105 105 * @param value is the value that will be stored in the scaler register
106 106 *
107 107 * The value shall be set by the software to get data on the serial interface.
108 108 *
109 109 */
110 110
111 111 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
112 112
113 113 apbuart_regs->scaler = value;
114 114 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
115 115 }
116 116
117 117 //************
118 118 // RTEMS TASKS
119 119
120 120 rtems_task stat_task(rtems_task_argument argument)
121 121 {
122 122 int i;
123 123 int j;
124 124 i = 0;
125 125 j = 0;
126 126 BOOT_PRINTF("in STAT *** \n")
127 127 while(1){
128 128 rtems_task_wake_after(1000);
129 129 PRINTF1("%d\n", j)
130 130 if (i == CPU_USAGE_REPORT_PERIOD) {
131 131 // #ifdef PRINT_TASK_STATISTICS
132 132 // rtems_cpu_usage_report();
133 133 // rtems_cpu_usage_reset();
134 134 // #endif
135 135 i = 0;
136 136 }
137 137 else i++;
138 138 j++;
139 139 }
140 140 }
141 141
142 142 rtems_task hous_task(rtems_task_argument argument)
143 143 {
144 144 rtems_status_code status;
145 145 rtems_status_code spare_status;
146 146 rtems_id queue_id;
147 147 rtems_rate_monotonic_period_status period_status;
148 148
149 149 status = get_message_queue_id_send( &queue_id );
150 150 if (status != RTEMS_SUCCESSFUL)
151 151 {
152 152 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
153 153 }
154 154
155 155 BOOT_PRINTF("in HOUS ***\n")
156 156
157 157 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
158 158 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
159 159 if( status != RTEMS_SUCCESSFUL ) {
160 160 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
161 161 }
162 162 }
163 163
164 164 status = rtems_rate_monotonic_cancel(HK_id);
165 165 if( status != RTEMS_SUCCESSFUL ) {
166 166 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
167 167 }
168 168 else {
169 169 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
170 170 }
171 171
172 172 // startup phase
173 173 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
174 174 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
175 175 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
176 176 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
177 177 {
178 178 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
179 179 {
180 180 break; // break if LFR is synchronized
181 181 }
182 182 else
183 183 {
184 184 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
185 185 // sched_yield();
186 186 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
187 187 }
188 188 }
189 189 status = rtems_rate_monotonic_cancel(HK_id);
190 190 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
191 191
192 192 while(1){ // launch the rate monotonic task
193 193 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
194 194 if ( status != RTEMS_SUCCESSFUL ) {
195 195 PRINTF1( "in HOUS *** ERR period: %d\n", status);
196 196 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
197 197 }
198 198 else {
199 199 housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
200 200 housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
201 201 increment_seq_counter( &sequenceCounterHK );
202 202
203 203 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
204 204 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
205 205 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
206 206 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
207 207 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
208 208 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
209 209
210 210 spacewire_update_statistics();
211 211
212 212 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
213 213 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
214 214 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
215 215 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
216 216 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
217 217
218 218 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
219 219 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
220 220 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
221 221 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
222 222 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
223 223
224 224 // SEND PACKET
225 225 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
226 226 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
227 227 if (status != RTEMS_SUCCESSFUL) {
228 228 PRINTF1("in HOUS *** ERR send: %d\n", status)
229 229 }
230 230 }
231 231 }
232 232
233 233 PRINTF("in HOUS *** deleting task\n")
234 234
235 235 status = rtems_task_delete( RTEMS_SELF ); // should not return
236 236 printf( "rtems_task_delete returned with status of %d.\n", status );
237 237 return;
238 238 }
239 239
240 240 rtems_task dumb_task( rtems_task_argument unused )
241 241 {
242 242 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
243 243 *
244 244 * @param unused is the starting argument of the RTEMS task
245 245 *
246 246 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
247 247 *
248 248 */
249 249
250 250 unsigned int i;
251 251 unsigned int intEventOut;
252 252 unsigned int coarse_time = 0;
253 253 unsigned int fine_time = 0;
254 254 rtems_event_set event_out;
255 255
256 256 char *DumbMessages[12] = {"in DUMB *** default", // RTEMS_EVENT_0
257 257 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
258 258 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
259 259 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
260 260 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
261 261 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
262 262 "VHDL SM *** two buffers f0 ready", // RTEMS_EVENT_6
263 263 "ready for dump", // RTEMS_EVENT_7
264 264 "VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
265 265 "tick", // RTEMS_EVENT_9
266 266 "VHDL ERR *** waveform picker", // RTEMS_EVENT_10
267 267 "VHDL ERR *** unexpected ready matrix values" // RTEMS_EVENT_11
268 268 };
269 269
270 270 BOOT_PRINTF("in DUMB *** \n")
271 271
272 272 while(1){
273 273 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
274 274 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
275 275 | RTEMS_EVENT_8 | RTEMS_EVENT_9,
276 276 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
277 277 intEventOut = (unsigned int) event_out;
278 278 for ( i=0; i<32; i++)
279 279 {
280 280 if ( ((intEventOut >> i) & 0x0001) != 0)
281 281 {
282 282 coarse_time = time_management_regs->coarse_time;
283 283 fine_time = time_management_regs->fine_time;
284 284 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
285 285 if (i==8)
286 286 {
287 287 }
288 288 if (i==10)
289 289 {
290 290 }
291 291 }
292 292 }
293 293 }
294 294 }
295 295
296 296 //*****************************
297 297 // init housekeeping parameters
298 298
299 299 void init_housekeeping_parameters( void )
300 300 {
301 301 /** This function initialize the housekeeping_packet global variable with default values.
302 302 *
303 303 */
304 304
305 305 unsigned int i = 0;
306 306 unsigned char *parameters;
307 307 unsigned char sizeOfHK;
308 308
309 309 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
310 310
311 311 parameters = (unsigned char*) &housekeeping_packet;
312 312
313 313 for(i = 0; i< sizeOfHK; i++)
314 314 {
315 315 parameters[i] = 0x00;
316 316 }
317 317
318 318 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
319 319 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
320 320 housekeeping_packet.reserved = DEFAULT_RESERVED;
321 321 housekeeping_packet.userApplication = CCSDS_USER_APP;
322 322 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
323 323 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
324 324 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
325 325 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
326 326 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
327 327 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
328 328 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
329 329 housekeeping_packet.serviceType = TM_TYPE_HK;
330 330 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
331 331 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
332 332 housekeeping_packet.sid = SID_HK;
333 333
334 334 // init status word
335 335 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
336 336 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
337 337 // init software version
338 338 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
339 339 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
340 340 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
341 341 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
342 342 // init fpga version
343 343 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
344 344 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
345 345 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
346 346 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
347 347
348 348 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
349 349 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
350 350 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
351 351 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
352 352 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
353 353 }
354 354
355 355 void increment_seq_counter( unsigned short *packetSequenceControl )
356 356 {
357 357 /** This function increment the sequence counter passes in argument.
358 358 *
359 359 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
360 360 *
361 361 */
362 362
363 363 unsigned short segmentation_grouping_flag;
364 364 unsigned short sequence_cnt;
365 365
366 366 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
367 367 sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111]
368 368
369 369 if ( sequence_cnt < SEQ_CNT_MAX)
370 370 {
371 371 sequence_cnt = sequence_cnt + 1;
372 372 }
373 373 else
374 374 {
375 375 sequence_cnt = 0;
376 376 }
377 377
378 378 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
379 379 }
380 380
381 381 void getTime( unsigned char *time)
382 382 {
383 383 /** This function write the current local time in the time buffer passed in argument.
384 384 *
385 385 */
386 386
387 387 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
388 388 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
389 389 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
390 390 time[3] = (unsigned char) (time_management_regs->coarse_time);
391 391 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
392 392 time[5] = (unsigned char) (time_management_regs->fine_time);
393 393 }
394 394
395 395 unsigned long long int getTimeAsUnsignedLongLongInt( )
396 396 {
397 397 /** This function write the current local time in the time buffer passed in argument.
398 398 *
399 399 */
400 400 unsigned long long int time;
401 401
402 402 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
403 403 + time_management_regs->fine_time;
404 404
405 405 return time;
406 406 }
407 407
408 408 void send_dumb_hk( void )
409 409 {
410 410 Packet_TM_LFR_HK_t dummy_hk_packet;
411 411 unsigned char *parameters;
412 412 unsigned int i;
413 413 rtems_id queue_id;
414 414
415 415 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
416 416 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
417 417 dummy_hk_packet.reserved = DEFAULT_RESERVED;
418 418 dummy_hk_packet.userApplication = CCSDS_USER_APP;
419 419 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
420 420 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
421 421 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
422 422 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
423 423 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
424 424 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
425 425 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
426 426 dummy_hk_packet.serviceType = TM_TYPE_HK;
427 427 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
428 428 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
429 429 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
430 430 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
431 431 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
432 432 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
433 433 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
434 434 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
435 435 dummy_hk_packet.sid = SID_HK;
436 436
437 437 // init status word
438 438 dummy_hk_packet.lfr_status_word[0] = 0xff;
439 439 dummy_hk_packet.lfr_status_word[1] = 0xff;
440 440 // init software version
441 441 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
442 442 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
443 443 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
444 444 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
445 445 // init fpga version
446 446 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
447 447 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
448 448 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
449 449 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
450 450
451 451 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
452 452
453 453 for (i=0; i<100; i++)
454 454 {
455 455 parameters[i] = 0xff;
456 456 }
457 457
458 458 get_message_queue_id_send( &queue_id );
459 459
460 460 rtems_message_queue_send( queue_id, &dummy_hk_packet,
461 461 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
462 462 }
463 463
464 464 void get_temperatures( unsigned char *temperatures )
465 465 {
466 466 unsigned char* temp_scm_ptr;
467 467 unsigned char* temp_pcb_ptr;
468 468 unsigned char* temp_fpga_ptr;
469 469
470 470 // SEL1 SEL0
471 471 // 0 0 => PCB
472 472 // 0 1 => FPGA
473 473 // 1 0 => SCM
474 474
475 475 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
476 476 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
477 477 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
478 478
479 479 temperatures[0] = temp_scm_ptr[2];
480 480 temperatures[1] = temp_scm_ptr[3];
481 481 temperatures[2] = temp_pcb_ptr[2];
482 482 temperatures[3] = temp_pcb_ptr[3];
483 483 temperatures[4] = temp_fpga_ptr[2];
484 484 temperatures[5] = temp_fpga_ptr[3];
485 485 }
486 486
487 487 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
488 488 {
489 489 unsigned char* v_ptr;
490 490 unsigned char* e1_ptr;
491 491 unsigned char* e2_ptr;
492 492
493 493 v_ptr = (unsigned char *) &waveform_picker_regs->v;
494 494 e1_ptr = (unsigned char *) &waveform_picker_regs->e1;
495 495 e2_ptr = (unsigned char *) &waveform_picker_regs->e2;
496 496
497 497 spacecraft_potential[0] = v_ptr[2];
498 498 spacecraft_potential[1] = v_ptr[3];
499 499 spacecraft_potential[2] = e1_ptr[2];
500 500 spacecraft_potential[3] = e1_ptr[3];
501 501 spacecraft_potential[4] = e2_ptr[2];
502 502 spacecraft_potential[5] = e2_ptr[3];
503 503 }
504 504
505 505 void get_cpu_load( unsigned char *resource_statistics )
506 506 {
507 507 unsigned char cpu_load;
508 508
509 509 cpu_load = lfr_rtems_cpu_usage_report();
510 510
511 511 // HK_LFR_CPU_LOAD
512 512 resource_statistics[0] = cpu_load;
513 513
514 514 // HK_LFR_CPU_LOAD_MAX
515 515 if (cpu_load > resource_statistics[1])
516 516 {
517 517 resource_statistics[1] = cpu_load;
518 518 }
519 519
520 520 // CPU_LOAD_AVE
521 521 resource_statistics[2] = 0;
522 522
523 523 #ifndef PRINT_TASK_STATISTICS
524 524 rtems_cpu_usage_reset();
525 525 #endif
526 526
527 527 }
528 528
529 void set_hk_lfr_sc_potential_flag( bool state )
530 {
531 if (state == true)
532 {
533 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x40; // [0100 0000]
534 }
535 else
536 {
537 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xbf; // [1011 1111]
538 }
539 }
529 540
530
541 void set_hk_lfr_calib_enable( bool state )
542 {
543 if (state == true)
544 {
545 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x08; // [0000 1000]
546 }
547 else
548 {
549 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xf7; // [1111 0111]
550 }
551 }
@@ -1,1174 +1,1164
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14 #include "math.h"
15 15
16 16 //***********
17 17 // RTEMS TASK
18 18
19 19 rtems_task actn_task( rtems_task_argument unused )
20 20 {
21 21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 22 *
23 23 * @param unused is the starting argument of the RTEMS task
24 24 *
25 25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 26 * on the incoming TeleCommand.
27 27 *
28 28 */
29 29
30 30 int result;
31 31 rtems_status_code status; // RTEMS status code
32 32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
33 33 size_t size; // size of the incoming TC packet
34 34 unsigned char subtype; // subtype of the current TC packet
35 35 unsigned char time[6];
36 36 rtems_id queue_rcv_id;
37 37 rtems_id queue_snd_id;
38 38
39 39 status = get_message_queue_id_recv( &queue_rcv_id );
40 40 if (status != RTEMS_SUCCESSFUL)
41 41 {
42 42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
43 43 }
44 44
45 45 status = get_message_queue_id_send( &queue_snd_id );
46 46 if (status != RTEMS_SUCCESSFUL)
47 47 {
48 48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
49 49 }
50 50
51 51 result = LFR_SUCCESSFUL;
52 52 subtype = 0; // subtype of the current TC packet
53 53
54 54 BOOT_PRINTF("in ACTN *** \n")
55 55
56 56 while(1)
57 57 {
58 58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
59 59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
60 60 getTime( time ); // set time to the current time
61 61 if (status!=RTEMS_SUCCESSFUL)
62 62 {
63 63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
64 64 }
65 65 else
66 66 {
67 67 subtype = TC.serviceSubType;
68 68 switch(subtype)
69 69 {
70 70 case TC_SUBTYPE_RESET:
71 71 result = action_reset( &TC, queue_snd_id, time );
72 72 close_action( &TC, result, queue_snd_id );
73 73 break;
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 case TC_SUBTYPE_LOAD_NORM:
79 79 result = action_load_normal_par( &TC, queue_snd_id, time );
80 80 close_action( &TC, result, queue_snd_id );
81 81 break;
82 82 case TC_SUBTYPE_LOAD_BURST:
83 83 result = action_load_burst_par( &TC, queue_snd_id, time );
84 84 close_action( &TC, result, queue_snd_id );
85 85 break;
86 86 case TC_SUBTYPE_LOAD_SBM1:
87 87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
88 88 close_action( &TC, result, queue_snd_id );
89 89 break;
90 90 case TC_SUBTYPE_LOAD_SBM2:
91 91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
92 92 close_action( &TC, result, queue_snd_id );
93 93 break;
94 94 case TC_SUBTYPE_DUMP:
95 95 result = action_dump_par( queue_snd_id );
96 96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 case TC_SUBTYPE_ENTER:
99 99 result = action_enter_mode( &TC, queue_snd_id );
100 100 close_action( &TC, result, queue_snd_id );
101 101 break;
102 102 case TC_SUBTYPE_UPDT_INFO:
103 103 result = action_update_info( &TC, queue_snd_id );
104 104 close_action( &TC, result, queue_snd_id );
105 105 break;
106 106 case TC_SUBTYPE_EN_CAL:
107 107 result = action_enable_calibration( &TC, queue_snd_id, time );
108 108 close_action( &TC, result, queue_snd_id );
109 109 break;
110 110 case TC_SUBTYPE_DIS_CAL:
111 111 result = action_disable_calibration( &TC, queue_snd_id, time );
112 112 close_action( &TC, result, queue_snd_id );
113 113 break;
114 114 case TC_SUBTYPE_LOAD_K:
115 115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 case TC_SUBTYPE_DUMP_K:
119 119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
120 120 close_action( &TC, result, queue_snd_id );
121 121 break;
122 122 case TC_SUBTYPE_LOAD_FBINS:
123 123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
124 124 close_action( &TC, result, queue_snd_id );
125 125 break;
126 126 case TC_SUBTYPE_UPDT_TIME:
127 127 result = action_update_time( &TC );
128 128 close_action( &TC, result, queue_snd_id );
129 129 break;
130 130 default:
131 131 break;
132 132 }
133 133 }
134 134 }
135 135 }
136 136
137 137 //***********
138 138 // TC ACTIONS
139 139
140 140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
141 141 {
142 142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
143 143 *
144 144 * @param TC points to the TeleCommand packet that is being processed
145 145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
146 146 *
147 147 */
148 148
149 149 printf("this is the end!!!\n");
150 150 exit(0);
151 151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
152 152 return LFR_DEFAULT;
153 153 }
154 154
155 155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
156 156 {
157 157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
158 158 *
159 159 * @param TC points to the TeleCommand packet that is being processed
160 160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
161 161 *
162 162 */
163 163
164 164 rtems_status_code status;
165 165 unsigned char requestedMode;
166 166 unsigned int *transitionCoarseTime_ptr;
167 167 unsigned int transitionCoarseTime;
168 168 unsigned char * bytePosPtr;
169 169
170 170 bytePosPtr = (unsigned char *) &TC->packetID;
171 171
172 172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
173 173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
174 174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
175 175
176 176 status = check_mode_value( requestedMode );
177 177
178 178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
179 179 {
180 180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
181 181 }
182 182 else // the mode value is consistent, check the transition
183 183 {
184 184 status = check_mode_transition(requestedMode);
185 185 if (status != LFR_SUCCESSFUL)
186 186 {
187 187 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
188 188 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
189 189 }
190 190 }
191 191
192 192 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
193 193 {
194 194 status = check_transition_date( transitionCoarseTime );
195 195 if (status != LFR_SUCCESSFUL)
196 196 {
197 197 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
198 198 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
199 199 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
200 200 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
201 201 }
202 202 }
203 203
204 204 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
205 205 {
206 206 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
207 207 status = enter_mode( requestedMode, transitionCoarseTime );
208 208 }
209 209
210 210 return status;
211 211 }
212 212
213 213 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
214 214 {
215 215 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
216 216 *
217 217 * @param TC points to the TeleCommand packet that is being processed
218 218 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
219 219 *
220 220 * @return LFR directive status code:
221 221 * - LFR_DEFAULT
222 222 * - LFR_SUCCESSFUL
223 223 *
224 224 */
225 225
226 226 unsigned int val;
227 227 int result;
228 228 unsigned int status;
229 229 unsigned char mode;
230 230 unsigned char * bytePosPtr;
231 231
232 232 bytePosPtr = (unsigned char *) &TC->packetID;
233 233
234 234 // check LFR mode
235 235 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
236 236 status = check_update_info_hk_lfr_mode( mode );
237 237 if (status == LFR_SUCCESSFUL) // check TDS mode
238 238 {
239 239 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
240 240 status = check_update_info_hk_tds_mode( mode );
241 241 }
242 242 if (status == LFR_SUCCESSFUL) // check THR mode
243 243 {
244 244 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
245 245 status = check_update_info_hk_thr_mode( mode );
246 246 }
247 247 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
248 248 {
249 249 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
250 250 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
251 251 val++;
252 252 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
253 253 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
254 254 }
255 255
256 256 result = status;
257 257
258 258 return result;
259 259 }
260 260
261 261 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
262 262 {
263 263 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
264 264 *
265 265 * @param TC points to the TeleCommand packet that is being processed
266 266 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
267 267 *
268 268 */
269 269
270 270 int result;
271 271
272 272 result = LFR_DEFAULT;
273 273
274 274 setCalibration( true );
275 275
276 276 result = LFR_SUCCESSFUL;
277 277
278 278 return result;
279 279 }
280 280
281 281 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
282 282 {
283 283 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
284 284 *
285 285 * @param TC points to the TeleCommand packet that is being processed
286 286 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
287 287 *
288 288 */
289 289
290 290 int result;
291 291
292 292 result = LFR_DEFAULT;
293 293
294 294 setCalibration( false );
295 295
296 296 result = LFR_SUCCESSFUL;
297 297
298 298 return result;
299 299 }
300 300
301 301 int action_update_time(ccsdsTelecommandPacket_t *TC)
302 302 {
303 303 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
304 304 *
305 305 * @param TC points to the TeleCommand packet that is being processed
306 306 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
307 307 *
308 308 * @return LFR_SUCCESSFUL
309 309 *
310 310 */
311 311
312 312 unsigned int val;
313 313
314 314 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
315 315 + (TC->dataAndCRC[1] << 16)
316 316 + (TC->dataAndCRC[2] << 8)
317 317 + TC->dataAndCRC[3];
318 318
319 319 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
320 320 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
321 321 val++;
322 322 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
323 323 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
324 324
325 325 return LFR_SUCCESSFUL;
326 326 }
327 327
328 328 //*******************
329 329 // ENTERING THE MODES
330 330 int check_mode_value( unsigned char requestedMode )
331 331 {
332 332 int status;
333 333
334 334 if ( (requestedMode != LFR_MODE_STANDBY)
335 335 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
336 336 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
337 337 {
338 338 status = LFR_DEFAULT;
339 339 }
340 340 else
341 341 {
342 342 status = LFR_SUCCESSFUL;
343 343 }
344 344
345 345 return status;
346 346 }
347 347
348 348 int check_mode_transition( unsigned char requestedMode )
349 349 {
350 350 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
351 351 *
352 352 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
353 353 *
354 354 * @return LFR directive status codes:
355 355 * - LFR_SUCCESSFUL - the transition is authorized
356 356 * - LFR_DEFAULT - the transition is not authorized
357 357 *
358 358 */
359 359
360 360 int status;
361 361
362 362 switch (requestedMode)
363 363 {
364 364 case LFR_MODE_STANDBY:
365 365 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
366 366 status = LFR_DEFAULT;
367 367 }
368 368 else
369 369 {
370 370 status = LFR_SUCCESSFUL;
371 371 }
372 372 break;
373 373 case LFR_MODE_NORMAL:
374 374 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
375 375 status = LFR_DEFAULT;
376 376 }
377 377 else {
378 378 status = LFR_SUCCESSFUL;
379 379 }
380 380 break;
381 381 case LFR_MODE_BURST:
382 382 if ( lfrCurrentMode == LFR_MODE_BURST ) {
383 383 status = LFR_DEFAULT;
384 384 }
385 385 else {
386 386 status = LFR_SUCCESSFUL;
387 387 }
388 388 break;
389 389 case LFR_MODE_SBM1:
390 390 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
391 391 status = LFR_DEFAULT;
392 392 }
393 393 else {
394 394 status = LFR_SUCCESSFUL;
395 395 }
396 396 break;
397 397 case LFR_MODE_SBM2:
398 398 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
399 399 status = LFR_DEFAULT;
400 400 }
401 401 else {
402 402 status = LFR_SUCCESSFUL;
403 403 }
404 404 break;
405 405 default:
406 406 status = LFR_DEFAULT;
407 407 break;
408 408 }
409 409
410 410 return status;
411 411 }
412 412
413 413 int check_transition_date( unsigned int transitionCoarseTime )
414 414 {
415 415 int status;
416 416 unsigned int localCoarseTime;
417 417 unsigned int deltaCoarseTime;
418 418
419 419 status = LFR_SUCCESSFUL;
420 420
421 421 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
422 422 {
423 423 status = LFR_SUCCESSFUL;
424 424 }
425 425 else
426 426 {
427 427 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
428 428
429 429 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime)
430 430
431 431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
432 432 {
433 433 status = LFR_DEFAULT;
434 434 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n")
435 435 }
436 436
437 437 if (status == LFR_SUCCESSFUL)
438 438 {
439 439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
440 440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
441 441 {
442 442 status = LFR_DEFAULT;
443 443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
444 444 }
445 445 }
446 446 }
447 447
448 448 return status;
449 449 }
450 450
451 451 int stop_current_mode( void )
452 452 {
453 453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
454 454 *
455 455 * @return RTEMS directive status codes:
456 456 * - RTEMS_SUCCESSFUL - task restarted successfully
457 457 * - RTEMS_INVALID_ID - task id invalid
458 458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
459 459 *
460 460 */
461 461
462 462 rtems_status_code status;
463 463
464 464 status = RTEMS_SUCCESSFUL;
465 465
466 466 // (1) mask interruptions
467 467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
468 468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
469 469
470 470 // (2) reset waveform picker registers
471 471 reset_wfp_burst_enable(); // reset burst and enable bits
472 472 reset_wfp_status(); // reset all the status bits
473 473
474 474 // (3) reset spectral matrices registers
475 475 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
476 476 reset_sm_status();
477 477
478 478 // reset lfr VHDL module
479 479 reset_lfr();
480 480
481 481 reset_extractSWF(); // reset the extractSWF flag to false
482 482
483 483 // (4) clear interruptions
484 484 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
485 485 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
486 486
487 487 // <Spectral Matrices simulator>
488 488 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
489 489 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
490 490 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
491 491 // </Spectral Matrices simulator>
492 492
493 493 // suspend several tasks
494 494 if (lfrCurrentMode != LFR_MODE_STANDBY) {
495 495 status = suspend_science_tasks();
496 496 }
497 497
498 498 if (status != RTEMS_SUCCESSFUL)
499 499 {
500 500 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
501 501 }
502 502
503 503 return status;
504 504 }
505 505
506 506 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
507 507 {
508 508 /** This function is launched after a mode transition validation.
509 509 *
510 510 * @param mode is the mode in which LFR will be put.
511 511 *
512 512 * @return RTEMS directive status codes:
513 513 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
514 514 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
515 515 *
516 516 */
517 517
518 518 rtems_status_code status;
519 519
520 520 //**********************
521 521 // STOP THE CURRENT MODE
522 522 status = stop_current_mode();
523 523 if (status != RTEMS_SUCCESSFUL)
524 524 {
525 525 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
526 526 }
527 527
528 528 //*************************
529 529 // ENTER THE REQUESTED MODE
530 530 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
531 531 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
532 532 {
533 533 #ifdef PRINT_TASK_STATISTICS
534 534 rtems_cpu_usage_reset();
535 535 #endif
536 536 status = restart_science_tasks( mode );
537 537 launch_spectral_matrix( );
538 538 launch_waveform_picker( mode, transitionCoarseTime );
539 539 // launch_spectral_matrix_simu( );
540 540 }
541 541 else if ( mode == LFR_MODE_STANDBY )
542 542 {
543 543 #ifdef PRINT_TASK_STATISTICS
544 544 rtems_cpu_usage_report();
545 545 #endif
546 546
547 547 #ifdef PRINT_STACK_REPORT
548 548 PRINTF("stack report selected\n")
549 549 rtems_stack_checker_report_usage();
550 550 #endif
551 551 }
552 552 else
553 553 {
554 554 status = RTEMS_UNSATISFIED;
555 555 }
556 556
557 557 if (status != RTEMS_SUCCESSFUL)
558 558 {
559 559 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
560 560 status = RTEMS_UNSATISFIED;
561 561 }
562 562
563 563 return status;
564 564 }
565 565
566 566 int restart_science_tasks(unsigned char lfrRequestedMode )
567 567 {
568 568 /** This function is used to restart all science tasks.
569 569 *
570 570 * @return RTEMS directive status codes:
571 571 * - RTEMS_SUCCESSFUL - task restarted successfully
572 572 * - RTEMS_INVALID_ID - task id invalid
573 573 * - RTEMS_INCORRECT_STATE - task never started
574 574 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
575 575 *
576 576 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
577 577 *
578 578 */
579 579
580 580 rtems_status_code status[10];
581 581 rtems_status_code ret;
582 582
583 583 ret = RTEMS_SUCCESSFUL;
584 584
585 585 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
586 586 if (status[0] != RTEMS_SUCCESSFUL)
587 587 {
588 588 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
589 589 }
590 590
591 591 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
592 592 if (status[1] != RTEMS_SUCCESSFUL)
593 593 {
594 594 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
595 595 }
596 596
597 597 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
598 598 if (status[2] != RTEMS_SUCCESSFUL)
599 599 {
600 600 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
601 601 }
602 602
603 603 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
604 604 if (status[3] != RTEMS_SUCCESSFUL)
605 605 {
606 606 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
607 607 }
608 608
609 609 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
610 610 if (status[4] != RTEMS_SUCCESSFUL)
611 611 {
612 612 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
613 613 }
614 614
615 615 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
616 616 if (status[5] != RTEMS_SUCCESSFUL)
617 617 {
618 618 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
619 619 }
620 620
621 621 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
622 622 if (status[6] != RTEMS_SUCCESSFUL)
623 623 {
624 624 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
625 625 }
626 626
627 627 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
628 628 if (status[7] != RTEMS_SUCCESSFUL)
629 629 {
630 630 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
631 631 }
632 632
633 633 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
634 634 if (status[8] != RTEMS_SUCCESSFUL)
635 635 {
636 636 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
637 637 }
638 638
639 639 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
640 640 if (status[9] != RTEMS_SUCCESSFUL)
641 641 {
642 642 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
643 643 }
644 644
645 645 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
646 646 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
647 647 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
648 648 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
649 649 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
650 650 {
651 651 ret = RTEMS_UNSATISFIED;
652 652 }
653 653
654 654 return ret;
655 655 }
656 656
657 657 int suspend_science_tasks()
658 658 {
659 659 /** This function suspends the science tasks.
660 660 *
661 661 * @return RTEMS directive status codes:
662 662 * - RTEMS_SUCCESSFUL - task restarted successfully
663 663 * - RTEMS_INVALID_ID - task id invalid
664 664 * - RTEMS_ALREADY_SUSPENDED - task already suspended
665 665 *
666 666 */
667 667
668 668 rtems_status_code status;
669 669
670 670 printf("in suspend_science_tasks\n");
671 671
672 672 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
673 673 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
674 674 {
675 675 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
676 676 }
677 677 else
678 678 {
679 679 status = RTEMS_SUCCESSFUL;
680 680 }
681 681 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
682 682 {
683 683 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
684 684 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
685 685 {
686 686 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
687 687 }
688 688 else
689 689 {
690 690 status = RTEMS_SUCCESSFUL;
691 691 }
692 692 }
693 693 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
694 694 {
695 695 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
696 696 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
697 697 {
698 698 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
699 699 }
700 700 else
701 701 {
702 702 status = RTEMS_SUCCESSFUL;
703 703 }
704 704 }
705 705 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
706 706 {
707 707 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
708 708 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
709 709 {
710 710 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
711 711 }
712 712 else
713 713 {
714 714 status = RTEMS_SUCCESSFUL;
715 715 }
716 716 }
717 717 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
718 718 {
719 719 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
720 720 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
721 721 {
722 722 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
723 723 }
724 724 else
725 725 {
726 726 status = RTEMS_SUCCESSFUL;
727 727 }
728 728 }
729 729 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
730 730 {
731 731 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
732 732 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
733 733 {
734 734 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
735 735 }
736 736 else
737 737 {
738 738 status = RTEMS_SUCCESSFUL;
739 739 }
740 740 }
741 741 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
742 742 {
743 743 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
744 744 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
745 745 {
746 746 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
747 747 }
748 748 else
749 749 {
750 750 status = RTEMS_SUCCESSFUL;
751 751 }
752 752 }
753 753 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
754 754 {
755 755 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
756 756 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
757 757 {
758 758 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
759 759 }
760 760 else
761 761 {
762 762 status = RTEMS_SUCCESSFUL;
763 763 }
764 764 }
765 765 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
766 766 {
767 767 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
768 768 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
769 769 {
770 770 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
771 771 }
772 772 else
773 773 {
774 774 status = RTEMS_SUCCESSFUL;
775 775 }
776 776 }
777 777 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
778 778 {
779 779 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
780 780 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
781 781 {
782 782 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
783 783 }
784 784 else
785 785 {
786 786 status = RTEMS_SUCCESSFUL;
787 787 }
788 788 }
789 789
790 790 return status;
791 791 }
792 792
793 793 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
794 794 {
795 795 WFP_reset_current_ring_nodes();
796 796
797 797 reset_waveform_picker_regs();
798 798
799 799 set_wfp_burst_enable_register( mode );
800 800
801 801 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
802 802 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
803 803
804 804 if (transitionCoarseTime == 0)
805 805 {
806 806 waveform_picker_regs->start_date = time_management_regs->coarse_time;
807 807 }
808 808 else
809 809 {
810 810 waveform_picker_regs->start_date = transitionCoarseTime;
811 811 }
812 812
813 813 }
814 814
815 815 void launch_spectral_matrix( void )
816 816 {
817 817 SM_reset_current_ring_nodes();
818 818
819 819 reset_spectral_matrix_regs();
820 820
821 821 reset_nb_sm();
822 822
823 823 set_sm_irq_onNewMatrix( 1 );
824 824
825 825 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
826 826 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
827 827
828 828 }
829 829
830 830 void launch_spectral_matrix_simu( void )
831 831 {
832 832 SM_reset_current_ring_nodes();
833 833 reset_spectral_matrix_regs();
834 834 reset_nb_sm();
835 835
836 836 // Spectral Matrices simulator
837 837 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
838 838 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
839 839 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
840 840 }
841 841
842 842 void set_sm_irq_onNewMatrix( unsigned char value )
843 843 {
844 844 if (value == 1)
845 845 {
846 846 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
847 847 }
848 848 else
849 849 {
850 850 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
851 851 }
852 852 }
853 853
854 854 void set_sm_irq_onError( unsigned char value )
855 855 {
856 856 if (value == 1)
857 857 {
858 858 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
859 859 }
860 860 else
861 861 {
862 862 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
863 863 }
864 864 }
865 865
866 866 //*****************************
867 867 // CONFIGURE CALIBRATION SIGNAL
868 868 void setCalibrationPrescaler( unsigned int prescaler )
869 869 {
870 870 // prescaling of the master clock (25 MHz)
871 871 // master clock is divided by 2^prescaler
872 872 time_management_regs->calPrescaler = prescaler;
873 873 }
874 874
875 875 void setCalibrationDivisor( unsigned int divisionFactor )
876 876 {
877 877 // division of the prescaled clock by the division factor
878 878 time_management_regs->calDivisor = divisionFactor;
879 879 }
880 880
881 881 void setCalibrationData( void ){
882 882 unsigned int k;
883 883 unsigned short data;
884 884 float val;
885 885 float f0;
886 886 float f1;
887 887 float fs;
888 888 float Ts;
889 889 float scaleFactor;
890 890
891 891 f0 = 625;
892 892 f1 = 10000;
893 893 fs = 160256.410;
894 894 Ts = 1. / fs;
895 895 scaleFactor = 0.125 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 250 mVpp each, amplitude = 125 mV
896 896
897 897 time_management_regs->calDataPtr = 0x00;
898 898
899 899 // build the signal for the SCM calibration
900 900 for (k=0; k<256; k++)
901 901 {
902 902 val = sin( 2 * pi * f0 * k * Ts )
903 903 + sin( 2 * pi * f1 * k * Ts );
904 904 data = (unsigned short) ((val * scaleFactor) + 2048);
905 905 time_management_regs->calData = data & 0xfff;
906 906 }
907 907 }
908 908
909 909 void setCalibrationDataInterleaved( void ){
910 910 unsigned int k;
911 911 float val;
912 912 float f0;
913 913 float f1;
914 914 float fs;
915 915 float Ts;
916 916 unsigned short data[384];
917 917 unsigned char *dataPtr;
918 918
919 919 f0 = 625;
920 920 f1 = 10000;
921 921 fs = 240384.615;
922 922 Ts = 1. / fs;
923 923
924 924 time_management_regs->calDataPtr = 0x00;
925 925
926 926 // build the signal for the SCM calibration
927 927 for (k=0; k<384; k++)
928 928 {
929 929 val = sin( 2 * pi * f0 * k * Ts )
930 930 + sin( 2 * pi * f1 * k * Ts );
931 931 data[k] = (unsigned short) (val * 512 + 2048);
932 932 }
933 933
934 934 // write the signal in interleaved mode
935 935 for (k=0; k<128; k++)
936 936 {
937 937 dataPtr = (unsigned char*) &data[k*3 + 2];
938 938 time_management_regs->calData = (data[k*3] & 0xfff)
939 939 + ( (dataPtr[0] & 0x3f) << 12);
940 940 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
941 941 + ( (dataPtr[1] & 0x3f) << 12);
942 942 }
943 943 }
944 944
945 945 void setCalibrationReload( bool state)
946 946 {
947 947 if (state == true)
948 948 {
949 949 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
950 950 }
951 951 else
952 952 {
953 953 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
954 954 }
955 955 }
956 956
957 957 void setCalibrationEnable( bool state )
958 958 {
959 959 // this bit drives the multiplexer
960 960 if (state == true)
961 961 {
962 962 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
963 963 }
964 964 else
965 965 {
966 966 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
967 967 }
968 968 }
969 969
970 970 void setCalibrationInterleaved( bool state )
971 971 {
972 972 // this bit drives the multiplexer
973 973 if (state == true)
974 974 {
975 975 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
976 976 }
977 977 else
978 978 {
979 979 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
980 980 }
981 981 }
982 982
983 983 void setCalibration( bool state )
984 984 {
985 985 if (state == true)
986 986 {
987 987 setCalibrationEnable( true );
988 988 setCalibrationReload( false );
989 989 set_hk_lfr_calib_enable( true );
990 990 }
991 991 else
992 992 {
993 993 setCalibrationEnable( false );
994 994 setCalibrationReload( true );
995 995 set_hk_lfr_calib_enable( false );
996 996 }
997 997 }
998 998
999 void set_hk_lfr_calib_enable( bool state )
1000 {
1001 if (state == true)
1002 {
1003 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | 0x08; // [0000 1000]
1004 }
1005 else
1006 {
1007 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] & 0xf7; // [1111 0111]
1008 }
1009 }
1010
1011 999 void configureCalibration( bool interleaved )
1012 1000 {
1013 1001 setCalibration( false );
1014 1002 if ( interleaved == true )
1015 1003 {
1016 1004 setCalibrationInterleaved( true );
1017 1005 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1018 1006 setCalibrationDivisor( 26 ); // => 240 384
1019 1007 setCalibrationDataInterleaved();
1020 1008 }
1021 1009 else
1022 1010 {
1023 1011 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1024 1012 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1025 1013 setCalibrationData();
1026 1014 }
1027 1015 }
1028 1016
1029 1017 //****************
1030 1018 // CLOSING ACTIONS
1031 1019 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1032 1020 {
1033 1021 /** This function is used to update the HK packets statistics after a successful TC execution.
1034 1022 *
1035 1023 * @param TC points to the TC being processed
1036 1024 * @param time is the time used to date the TC execution
1037 1025 *
1038 1026 */
1039 1027
1040 1028 unsigned int val;
1041 1029
1042 1030 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1043 1031 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1044 1032 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1045 1033 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1046 1034 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1047 1035 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1048 1036 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1049 1037 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1050 1038 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1051 1039 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1052 1040 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1053 1041 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1054 1042
1055 1043 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1056 1044 val++;
1057 1045 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1058 1046 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1059 1047 }
1060 1048
1061 1049 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1062 1050 {
1063 1051 /** This function is used to update the HK packets statistics after a TC rejection.
1064 1052 *
1065 1053 * @param TC points to the TC being processed
1066 1054 * @param time is the time used to date the TC rejection
1067 1055 *
1068 1056 */
1069 1057
1070 1058 unsigned int val;
1071 1059
1072 1060 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1073 1061 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1074 1062 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1075 1063 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1076 1064 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1077 1065 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1078 1066 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1079 1067 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1080 1068 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1081 1069 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1082 1070 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1083 1071 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1084 1072
1085 1073 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1086 1074 val++;
1087 1075 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1088 1076 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1089 1077 }
1090 1078
1091 1079 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1092 1080 {
1093 1081 /** This function is the last step of the TC execution workflow.
1094 1082 *
1095 1083 * @param TC points to the TC being processed
1096 1084 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1097 1085 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1098 1086 * @param time is the time used to date the TC execution
1099 1087 *
1100 1088 */
1101 1089
1102 1090 unsigned char requestedMode;
1103 1091
1104 1092 if (result == LFR_SUCCESSFUL)
1105 1093 {
1106 1094 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1107 1095 &
1108 1096 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1109 1097 )
1110 1098 {
1111 1099 send_tm_lfr_tc_exe_success( TC, queue_id );
1112 1100 }
1113 1101 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1114 1102 {
1115 1103 //**********************************
1116 1104 // UPDATE THE LFRMODE LOCAL VARIABLE
1117 1105 requestedMode = TC->dataAndCRC[1];
1118 1106 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1119 1107 updateLFRCurrentMode();
1120 1108 }
1121 1109 }
1122 1110 else if (result == LFR_EXE_ERROR)
1123 1111 {
1124 1112 send_tm_lfr_tc_exe_error( TC, queue_id );
1125 1113 }
1126 1114 }
1127 1115
1128 1116 //***************************
1129 1117 // Interrupt Service Routines
1130 1118 rtems_isr commutation_isr1( rtems_vector_number vector )
1131 1119 {
1132 1120 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1133 1121 printf("In commutation_isr1 *** Error sending event to DUMB\n");
1134 1122 }
1135 1123 }
1136 1124
1137 1125 rtems_isr commutation_isr2( rtems_vector_number vector )
1138 1126 {
1139 1127 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1140 1128 printf("In commutation_isr2 *** Error sending event to DUMB\n");
1141 1129 }
1142 1130 }
1143 1131
1144 1132 //****************
1145 1133 // OTHER FUNCTIONS
1146 1134 void updateLFRCurrentMode()
1147 1135 {
1148 1136 /** This function updates the value of the global variable lfrCurrentMode.
1149 1137 *
1150 1138 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1151 1139 *
1152 1140 */
1153 1141 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1154 1142 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
1155 1143 }
1156 1144
1157 1145 void set_lfr_soft_reset( unsigned char value )
1158 1146 {
1159 1147 if (value == 1)
1160 1148 {
1161 1149 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1162 1150 }
1163 1151 else
1164 1152 {
1165 1153 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1166 1154 }
1167 1155 }
1168 1156
1169 1157 void reset_lfr( void )
1170 1158 {
1171 1159 set_lfr_soft_reset( 1 );
1172 1160
1173 1161 set_lfr_soft_reset( 0 );
1162
1163 set_hk_lfr_sc_potential_flag( true );
1174 1164 }
General Comments 0
You need to be logged in to leave comments. Login now