##// END OF EJS Templates
cpu_load added to the housekeeping packets
paul -
r134:25c2cda0d9a4 VHDLib206
parent child
Show More
@@ -0,0 +1,6
1 #ifndef LFR_CPU_USAGE_REPORT_H
2 #define LFR_CPU_USAGE_REPORT_H
3
4 unsigned char lfr_rtems_cpu_usage_report( void );
5
6 #endif // LFR_CPU_USAGE_REPORT_H
@@ -1,268 +1,273
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Thu May 15 08:30:40 2014
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Fri May 16 07:58:47 2014
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=7 -DPRINT_MESSAGES_ON_CONSOLE -DPRINT_TASK_STATISTICS
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=7 -DPRINT_MESSAGES_ON_CONSOLE
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../header/processing -I../src/basic_parameters
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_misc.c \
49 49 ../src/fsw_init.c \
50 50 ../src/fsw_globals.c \
51 51 ../src/fsw_spacewire.c \
52 52 ../src/tc_load_dump_parameters.c \
53 53 ../src/tm_lfr_tc_exe.c \
54 54 ../src/tc_acceptance.c \
55 55 ../src/basic_parameters/basic_parameters.c \
56 56 ../src/processing/fsw_processing.c \
57 57 ../src/processing/avf0_prc0.c \
58 58 ../src/processing/avf1_prc1.c \
59 ../src/processing/avf2_prc2.c
59 ../src/processing/avf2_prc2.c \
60 ../src/lfr_cpu_usage_report.c
60 61 OBJECTS = obj/wf_handler.o \
61 62 obj/tc_handler.o \
62 63 obj/fsw_misc.o \
63 64 obj/fsw_init.o \
64 65 obj/fsw_globals.o \
65 66 obj/fsw_spacewire.o \
66 67 obj/tc_load_dump_parameters.o \
67 68 obj/tm_lfr_tc_exe.o \
68 69 obj/tc_acceptance.o \
69 70 obj/basic_parameters.o \
70 71 obj/fsw_processing.o \
71 72 obj/avf0_prc0.o \
72 73 obj/avf1_prc1.o \
73 obj/avf2_prc2.o
74 obj/avf2_prc2.o \
75 obj/lfr_cpu_usage_report.o
74 76 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
75 77 /usr/lib64/qt4/mkspecs/common/linux.conf \
76 78 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
77 79 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
78 80 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
79 81 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
80 82 /usr/lib64/qt4/mkspecs/qconfig.pri \
81 83 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
82 84 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
83 85 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
84 86 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
85 87 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
86 88 sparc.pri \
87 89 /usr/lib64/qt4/mkspecs/features/release.prf \
88 90 /usr/lib64/qt4/mkspecs/features/default_post.prf \
89 91 /usr/lib64/qt4/mkspecs/features/shared.prf \
90 92 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
91 93 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
92 94 /usr/lib64/qt4/mkspecs/features/resources.prf \
93 95 /usr/lib64/qt4/mkspecs/features/uic.prf \
94 96 /usr/lib64/qt4/mkspecs/features/yacc.prf \
95 97 /usr/lib64/qt4/mkspecs/features/lex.prf \
96 98 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
97 99 fsw-qt.pro
98 100 QMAKE_TARGET = fsw
99 101 DESTDIR = bin/
100 102 TARGET = bin/fsw
101 103
102 104 first: all
103 105 ####### Implicit rules
104 106
105 107 .SUFFIXES: .o .c .cpp .cc .cxx .C
106 108
107 109 .cpp.o:
108 110 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
109 111
110 112 .cc.o:
111 113 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
112 114
113 115 .cxx.o:
114 116 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
115 117
116 118 .C.o:
117 119 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
118 120
119 121 .c.o:
120 122 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
121 123
122 124 ####### Build rules
123 125
124 126 all: Makefile $(TARGET)
125 127
126 128 $(TARGET): $(OBJECTS)
127 129 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
128 130 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
129 131
130 132 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
131 133 /usr/lib64/qt4/mkspecs/common/linux.conf \
132 134 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
133 135 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
134 136 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
135 137 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
136 138 /usr/lib64/qt4/mkspecs/qconfig.pri \
137 139 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
138 140 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
139 141 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
140 142 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
141 143 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
142 144 sparc.pri \
143 145 /usr/lib64/qt4/mkspecs/features/release.prf \
144 146 /usr/lib64/qt4/mkspecs/features/default_post.prf \
145 147 /usr/lib64/qt4/mkspecs/features/shared.prf \
146 148 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
147 149 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
148 150 /usr/lib64/qt4/mkspecs/features/resources.prf \
149 151 /usr/lib64/qt4/mkspecs/features/uic.prf \
150 152 /usr/lib64/qt4/mkspecs/features/yacc.prf \
151 153 /usr/lib64/qt4/mkspecs/features/lex.prf \
152 154 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
153 155 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
154 156 /usr/lib64/qt4/mkspecs/common/unix.conf:
155 157 /usr/lib64/qt4/mkspecs/common/linux.conf:
156 158 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
157 159 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
158 160 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
159 161 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
160 162 /usr/lib64/qt4/mkspecs/qconfig.pri:
161 163 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
162 164 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
163 165 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
164 166 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
165 167 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
166 168 sparc.pri:
167 169 /usr/lib64/qt4/mkspecs/features/release.prf:
168 170 /usr/lib64/qt4/mkspecs/features/default_post.prf:
169 171 /usr/lib64/qt4/mkspecs/features/shared.prf:
170 172 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
171 173 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
172 174 /usr/lib64/qt4/mkspecs/features/resources.prf:
173 175 /usr/lib64/qt4/mkspecs/features/uic.prf:
174 176 /usr/lib64/qt4/mkspecs/features/yacc.prf:
175 177 /usr/lib64/qt4/mkspecs/features/lex.prf:
176 178 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
177 179 qmake: FORCE
178 180 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
179 181
180 182 dist:
181 183 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
182 184 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
183 185
184 186
185 187 clean:compiler_clean
186 188 -$(DEL_FILE) $(OBJECTS)
187 189 -$(DEL_FILE) *~ core *.core
188 190
189 191
190 192 ####### Sub-libraries
191 193
192 194 distclean: clean
193 195 -$(DEL_FILE) $(TARGET)
194 196 -$(DEL_FILE) Makefile
195 197
196 198
197 199 grmon:
198 200 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
199 201
200 202 check: first
201 203
202 204 compiler_rcc_make_all:
203 205 compiler_rcc_clean:
204 206 compiler_uic_make_all:
205 207 compiler_uic_clean:
206 208 compiler_image_collection_make_all: qmake_image_collection.cpp
207 209 compiler_image_collection_clean:
208 210 -$(DEL_FILE) qmake_image_collection.cpp
209 211 compiler_yacc_decl_make_all:
210 212 compiler_yacc_decl_clean:
211 213 compiler_yacc_impl_make_all:
212 214 compiler_yacc_impl_clean:
213 215 compiler_lex_make_all:
214 216 compiler_lex_clean:
215 217 compiler_clean:
216 218
217 219 ####### Compile
218 220
219 221 obj/wf_handler.o: ../src/wf_handler.c
220 222 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
221 223
222 224 obj/tc_handler.o: ../src/tc_handler.c
223 225 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
224 226
225 227 obj/fsw_misc.o: ../src/fsw_misc.c
226 228 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
227 229
228 230 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
229 231 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
230 232
231 233 obj/fsw_globals.o: ../src/fsw_globals.c
232 234 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
233 235
234 236 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
235 237 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
236 238
237 239 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
238 240 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
239 241
240 242 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
241 243 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
242 244
243 245 obj/tc_acceptance.o: ../src/tc_acceptance.c
244 246 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
245 247
246 248 obj/basic_parameters.o: ../src/basic_parameters/basic_parameters.c ../src/basic_parameters/basic_parameters.h
247 249 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../src/basic_parameters/basic_parameters.c
248 250
249 251 obj/fsw_processing.o: ../src/processing/fsw_processing.c
250 252 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/processing/fsw_processing.c
251 253
252 254 obj/avf0_prc0.o: ../src/processing/avf0_prc0.c
253 255 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf0_prc0.o ../src/processing/avf0_prc0.c
254 256
255 257 obj/avf1_prc1.o: ../src/processing/avf1_prc1.c
256 258 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf1_prc1.o ../src/processing/avf1_prc1.c
257 259
258 260 obj/avf2_prc2.o: ../src/processing/avf2_prc2.c
259 261 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf2_prc2.o ../src/processing/avf2_prc2.c
260 262
263 obj/lfr_cpu_usage_report.o: ../src/lfr_cpu_usage_report.c
264 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/lfr_cpu_usage_report.o ../src/lfr_cpu_usage_report.c
265
261 266 ####### Install
262 267
263 268 install: FORCE
264 269
265 270 uninstall: FORCE
266 271
267 272 FORCE:
268 273
@@ -1,92 +1,94
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
4 CONFIG += console verbose cpu_usage_report
4 CONFIG += console verbose
5 5 CONFIG -= qt
6 6
7 7 include(./sparc.pri)
8 8
9 9 # flight software version
10 10 SWVERSION=-1-0
11 11 DEFINES += SW_VERSION_N1=1 # major
12 12 DEFINES += SW_VERSION_N2=0 # minor
13 13 DEFINES += SW_VERSION_N3=0 # patch
14 14 DEFINES += SW_VERSION_N4=7 # internal
15 15
16 16 contains( CONFIG, debug_tch ) {
17 17 DEFINES += DEBUG_TCH
18 18 }
19 19
20 20 contains( CONFIG, vhdl_dev ) {
21 21 DEFINES += VHDL_DEV
22 22 }
23 23
24 24 contains( CONFIG, verbose ) {
25 25 DEFINES += PRINT_MESSAGES_ON_CONSOLE
26 26 }
27 27
28 28 contains( CONFIG, debug_messages ) {
29 29 DEFINES += DEBUG_MESSAGES
30 30 }
31 31
32 32 contains( CONFIG, cpu_usage_report ) {
33 33 DEFINES += PRINT_TASK_STATISTICS
34 34 }
35 35
36 36 contains( CONFIG, stack_report ) {
37 37 DEFINES += PRINT_STACK_REPORT
38 38 }
39 39
40 40 contains( CONFIG, boot_messages ) {
41 41 DEFINES += BOOT_MESSAGES
42 42 }
43 43
44 44 #doxygen.target = doxygen
45 45 #doxygen.commands = doxygen ../doc/Doxyfile
46 46 #QMAKE_EXTRA_TARGETS += doxygen
47 47
48 48 TARGET = fsw
49 49
50 50 INCLUDEPATH += \
51 51 ../src \
52 52 ../header \
53 53 ../header/processing \
54 54 ../src/basic_parameters
55 55
56 56 SOURCES += \
57 57 ../src/wf_handler.c \
58 58 ../src/tc_handler.c \
59 59 ../src/fsw_misc.c \
60 60 ../src/fsw_init.c \
61 61 ../src/fsw_globals.c \
62 62 ../src/fsw_spacewire.c \
63 63 ../src/tc_load_dump_parameters.c \
64 64 ../src/tm_lfr_tc_exe.c \
65 65 ../src/tc_acceptance.c \
66 66 ../src/basic_parameters/basic_parameters.c \
67 67 ../src/processing/fsw_processing.c \
68 68 ../src/processing/avf0_prc0.c \
69 69 ../src/processing/avf1_prc1.c \
70 ../src/processing/avf2_prc2.c
70 ../src/processing/avf2_prc2.c \
71 ../src/lfr_cpu_usage_report.c
71 72
72 73 HEADERS += \
73 74 ../header/wf_handler.h \
74 75 ../header/tc_handler.h \
75 76 ../header/grlib_regs.h \
76 77 ../header/fsw_params.h \
77 78 ../header/fsw_misc.h \
78 79 ../header/fsw_init.h \
79 80 ../header/ccsds_types.h \
80 81 ../header/fsw_spacewire.h \
81 82 ../header/tc_load_dump_parameters.h \
82 83 ../header/tm_lfr_tc_exe.h \
83 84 ../header/tc_acceptance.h \
84 85 ../header/fsw_params_nb_bytes.h \
85 86 ../src/basic_parameters/basic_parameters.h \
86 87 ../header/fsw_params_processing.h \
87 88 ../header/processing/fsw_processing.h \
88 89 ../header/processing/avf0_prc0.h \
89 90 ../header/processing/avf1_prc1.h \
90 91 ../header/processing/avf2_prc2.h \
91 ../header/fsw_params_wf_handler.h
92 ../header/fsw_params_wf_handler.h \
93 ../header/lfr_cpu_usage_report.h
92 94
@@ -1,201 +1,201
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.1, 2014-05-15T06:56:44. -->
3 <!-- Written by QtCreator 3.0.1, 2014-05-16T15:09:51. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">0</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
55 55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
56 56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 72 </valuemap>
73 73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 79 <value type="QString">-w</value>
80 80 <value type="QString">-r</value>
81 81 </valuelist>
82 82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 85 </valuemap>
86 86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 90 </valuemap>
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 98 <value type="QString">-w</value>
99 99 <value type="QString">-r</value>
100 100 </valuelist>
101 101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 104 </valuemap>
105 105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 109 </valuemap>
110 110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 118 </valuemap>
119 119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 126 </valuemap>
127 127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 131 </valuemap>
132 132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 153 <value type="int">0</value>
154 154 <value type="int">1</value>
155 155 <value type="int">2</value>
156 156 <value type="int">3</value>
157 157 <value type="int">4</value>
158 158 <value type="int">5</value>
159 159 <value type="int">6</value>
160 160 <value type="int">7</value>
161 161 <value type="int">8</value>
162 162 <value type="int">9</value>
163 163 <value type="int">10</value>
164 164 <value type="int">11</value>
165 165 <value type="int">12</value>
166 166 <value type="int">13</value>
167 167 <value type="int">14</value>
168 168 </valuelist>
169 169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 180 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
181 181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
182 182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 185 </valuemap>
186 186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 187 </valuemap>
188 188 </data>
189 189 <data>
190 190 <variable>ProjectExplorer.Project.TargetCount</variable>
191 191 <value type="int">1</value>
192 192 </data>
193 193 <data>
194 194 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
195 195 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
196 196 </data>
197 197 <data>
198 198 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
199 199 <value type="int">15</value>
200 200 </data>
201 201 </qtcreator>
@@ -1,665 +1,665
1 1 #ifndef CCSDS_TYPES_H_INCLUDED
2 2 #define CCSDS_TYPES_H_INCLUDED
3 3
4 4 #include "fsw_params_processing.h"
5 5
6 6 #define CCSDS_PROTOCOLE_EXTRA_BYTES 4
7 7 #define CCSDS_TC_TM_PACKET_OFFSET 7
8 8 #define CCSDS_TELEMETRY_HEADER_LENGTH 16+4
9 9 #define CCSDS_TM_PKT_MAX_SIZE 4412
10 10 #define CCSDS_TELECOMMAND_HEADER_LENGTH 10+4
11 11 #define CCSDS_TC_PKT_MAX_SIZE 256
12 12 #define CCSDS_TC_PKT_MIN_SIZE 16
13 13 #define CCSDS_PROCESS_ID 76
14 14 #define CCSDS_PACKET_CATEGORY 12
15 15 #define CCSDS_NODE_ADDRESS 0xfe
16 16 #define CCSDS_USER_APP 0x00
17 17
18 18 #define DEFAULT_SPARE1_PUSVERSION_SPARE2 0x10
19 19 #define DEFAULT_RESERVED 0x00
20 20 #define DEFAULT_HKBIA 0x1e // 0001 1110
21 21
22 22 // PACKET ID
23 23 #define APID_TM_TC_EXE 0x0cc1 // PID 76 CAT 1
24 24 #define APID_TM_HK 0x0cc4 // PID 76 CAT 4
25 25 #define APID_TM_PARAMETER_DUMP 0x0cc9 // PID 76 CAT 9
26 26 #define APID_TM_SCIENCE_NORMAL_BURST 0x0ccc // PID 76 CAT 12
27 27 #define APID_TM_SCIENCE_SBM1_SBM2 0x0cfc // PID 79 CAT 12
28 28 #define TM_PACKET_PID_DEFAULT 76
29 29 #define TM_PACKET_PID_BURST_SBM1_SBM2 79
30 30 #define TM_PACKET_CAT_TC_EXE 1
31 31 #define TM_PACKET_CAT_HK 4
32 32 #define TM_PACKET_CAT_PARAMETER_DUMP 9
33 33 #define TM_PACKET_CAT_SCIENCE 12
34 34 #define TC_PACKET_CAT 12
35 35
36 36 // PACKET SEQUENCE CONTROL
37 37 #define TM_PACKET_SEQ_CTRL_CONTINUATION 0x00 // [0000 0000]
38 38 #define TM_PACKET_SEQ_CTRL_FIRST 0x40 // [0100 0000]
39 39 #define TM_PACKET_SEQ_CTRL_LAST 0x80 // [1000 0000]
40 40 #define TM_PACKET_SEQ_CTRL_STANDALONE 0xc0 // [1100 0000]
41 41 #define TM_PACKET_SEQ_CNT_DEFAULT 0x00 // [0000 0000]
42 42
43 43 // DESTINATION ID
44 44 #define TM_DESTINATION_ID_GROUND 0
45 45 #define TM_DESTINATION_ID_MISSION_TIMELINE 110
46 46 #define TM_DESTINATION_ID_TC_SEQUENCES 111
47 47 #define TM_DESTINATION_ID_RECOVERY_ACTION_COMMAND 112
48 48 #define TM_DESTINATION_ID_BACKUP_MISSION_TIMELINE 113
49 49 #define TM_DESTINATION_ID_DIRECT_CMD 120
50 50 #define TM_DESTINATION_ID_SPARE_GRD_SRC1 121
51 51 #define TM_DESTINATION_ID_SPARE_GRD_SRC2 122
52 52 #define TM_DESTINATION_ID_OBCP 15
53 53 #define TM_DESTINATION_ID_SYSTEM_CONTROL 14
54 54 #define TM_DESTINATION_ID_AOCS 11
55 55
56 56 #define CCSDS_DESTINATION_ID 0x01
57 57 #define CCSDS_PROTOCOLE_ID 0x02
58 58 #define CCSDS_RESERVED 0x00
59 59 #define CCSDS_USER_APP 0x00
60 60
61 61 #define SIZE_TM_LFR_TC_EXE_NOT_IMPLEMENTED 24
62 62 #define SIZE_TM_LFR_TC_EXE_CORRUPTED 32
63 63 #define SIZE_HK_PARAMETERS 112
64 64
65 65 // TC TYPES
66 66 #define TC_TYPE_GEN 181
67 67 #define TC_TYPE_TIME 9
68 68
69 69 // TC SUBTYPES
70 70 #define TC_SUBTYPE_RESET 1
71 71 #define TC_SUBTYPE_LOAD_COMM 11
72 72 #define TC_SUBTYPE_LOAD_NORM 13
73 73 #define TC_SUBTYPE_LOAD_BURST 19
74 74 #define TC_SUBTYPE_LOAD_SBM1 25
75 75 #define TC_SUBTYPE_LOAD_SBM2 27
76 76 #define TC_SUBTYPE_DUMP 31
77 77 #define TC_SUBTYPE_ENTER 41
78 78 #define TC_SUBTYPE_UPDT_INFO 51
79 79 #define TC_SUBTYPE_EN_CAL 61
80 80 #define TC_SUBTYPE_DIS_CAL 63
81 81 #define TC_SUBTYPE_UPDT_TIME 129
82 82
83 83 // TC LEN
84 84 #define TC_LEN_RESET 12
85 85 #define TC_LEN_LOAD_COMM 14
86 86 #define TC_LEN_LOAD_NORM 22
87 87 #define TC_LEN_LOAD_BURST 14
88 88 #define TC_LEN_LOAD_SBM1 14
89 89 #define TC_LEN_LOAD_SBM2 14
90 90 #define TC_LEN_DUMP 12
91 91 #define TC_LEN_ENTER 20
92 92 #define TC_LEN_UPDT_INFO 46
93 93 #define TC_LEN_EN_CAL 12
94 94 #define TC_LEN_DIS_CAL 12
95 95 #define TC_LEN_UPDT_TIME 18
96 96
97 97 // TM TYPES
98 98 #define TM_TYPE_TC_EXE 1
99 99 #define TM_TYPE_HK 3
100 100 #define TM_TYPE_PARAMETER_DUMP 3
101 101 #define TM_TYPE_LFR_SCIENCE 21
102 102
103 103 // TM SUBTYPES
104 104 #define TM_SUBTYPE_EXE_OK 7
105 105 #define TM_SUBTYPE_EXE_NOK 8
106 106 #define TM_SUBTYPE_HK 25
107 107 #define TM_SUBTYPE_PARAMETER_DUMP 25
108 108 #define TM_SUBTYPE_SCIENCE 3
109 109 #define TM_SUBTYPE_LFR_SCIENCE 3
110 110
111 111 // FAILURE CODES
112 112 #define ILLEGAL_APID 0
113 113 #define WRONG_LEN_PKT 1
114 114 #define INCOR_CHECKSUM 2
115 115 #define ILL_TYPE 3
116 116 #define ILL_SUBTYPE 4
117 117 #define WRONG_APP_DATA 5 // 0x00 0x05
118 118 #define TC_NOT_EXE 42000 // 0xa4 0x10
119 119 #define WRONG_SRC_ID 42001 // 0xa4 0x11
120 120 #define FUNCT_NOT_IMPL 42002 // 0xa4 0x12
121 121 #define FAIL_DETECTED 42003 // 0xa4 0x13
122 122 #define NOT_ALLOWED 42004 // 0xa4 0x14
123 123 #define CORRUPTED 42005 // 0xa4 0x15
124 124 #define CCSDS_TM_VALID 7
125 125
126 126 // TC SID
127 127 #define SID_TC_GROUND 0
128 128 #define SID_TC_MISSION_TIMELINE 110
129 129 #define SID_TC_TC_SEQUENCES 111
130 130 #define SID_TC_RECOVERY_ACTION_CMD 112
131 131 #define SID_TC_BACKUP_MISSION_TIMELINE 113
132 132 #define SID_TC_DIRECT_CMD 120
133 133 #define SID_TC_SPARE_GRD_SRC1 121
134 134 #define SID_TC_SPARE_GRD_SRC2 122
135 135 #define SID_TC_OBCP 15
136 136 #define SID_TC_SYSTEM_CONTROL 14
137 137 #define SID_TC_AOCS 11
138 138 #define SID_TC_RPW_INTERNAL 254
139 139
140 140 enum apid_destid{
141 141 GROUND,
142 142 MISSION_TIMELINE,
143 143 TC_SEQUENCES,
144 144 RECOVERY_ACTION_CMD,
145 145 BACKUP_MISSION_TIMELINE,
146 146 DIRECT_CMD,
147 147 SPARE_GRD_SRC1,
148 148 SPARE_GRD_SRC2,
149 149 OBCP,
150 150 SYSTEM_CONTROL,
151 151 AOCS,
152 152 RPW_INTERNAL
153 153 };
154 154 // SEQUENCE COUNTERS
155 155 #define SEQ_CNT_MAX 16383
156 156 #define SEQ_CNT_NB_DEST_ID 12
157 157
158 158 // TM SID
159 159 #define SID_HK 1
160 160 #define SID_PARAMETER_DUMP 10
161 161
162 162 #define SID_NORM_SWF_F0 3
163 163 #define SID_NORM_SWF_F1 4
164 164 #define SID_NORM_SWF_F2 5
165 165 #define SID_NORM_CWF_F3 1
166 166 #define SID_BURST_CWF_F2 2
167 167 #define SID_SBM1_CWF_F1 24
168 168 #define SID_SBM2_CWF_F2 25
169 169 #define SID_NORM_ASM_F0 11
170 170 #define SID_NORM_ASM_F1 12
171 171 #define SID_NORM_ASM_F2 13
172 172 #define SID_NORM_BP1_F0 14
173 173 #define SID_NORM_BP1_F1 15
174 174 #define SID_NORM_BP1_F2 16
175 175 #define SID_NORM_BP2_F0 19
176 176 #define SID_NORM_BP2_F1 20
177 177 #define SID_NORM_BP2_F2 21
178 178 #define SID_BURST_BP1_F0 17
179 179 #define SID_BURST_BP2_F0 22
180 180 #define SID_BURST_BP1_F1 18
181 181 #define SID_BURST_BP2_F1 23
182 182 #define SID_SBM1_BP1_F0 28
183 183 #define SID_SBM1_BP2_F0 31
184 184 #define SID_SBM2_BP1_F0 29
185 185 #define SID_SBM2_BP2_F0 32
186 186 #define SID_SBM2_BP1_F1 30
187 187 #define SID_SBM2_BP2_F1 33
188 188 #define SID_NORM_CWF_LONG_F3 34
189 189
190 190 // LENGTH (BYTES)
191 191 #define LENGTH_TM_LFR_TC_EXE_MAX 32
192 192 #define LENGTH_TM_LFR_HK 126
193 193
194 194 // HEADER_LENGTH
195 195 #define TM_HEADER_LEN 16
196 196 #define HEADER_LENGTH_TM_LFR_SCIENCE_ASM 28
197 197 // PACKET_LENGTH
198 198 #define PACKET_LENGTH_TC_EXE_SUCCESS (20 - CCSDS_TC_TM_PACKET_OFFSET)
199 199 #define PACKET_LENGTH_TC_EXE_INCONSISTENT (26 - CCSDS_TC_TM_PACKET_OFFSET)
200 200 #define PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE (26 - CCSDS_TC_TM_PACKET_OFFSET)
201 201 #define PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED (24 - CCSDS_TC_TM_PACKET_OFFSET)
202 202 #define PACKET_LENGTH_TC_EXE_ERROR (24 - CCSDS_TC_TM_PACKET_OFFSET)
203 203 #define PACKET_LENGTH_TC_EXE_CORRUPTED (32 - CCSDS_TC_TM_PACKET_OFFSET)
204 204 #define PACKET_LENGTH_HK (124 - CCSDS_TC_TM_PACKET_OFFSET)
205 205 #define PACKET_LENGTH_PARAMETER_DUMP (36 - CCSDS_TC_TM_PACKET_OFFSET)
206 206 #define PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0 (2228 - CCSDS_TC_TM_PACKET_OFFSET) // 44 * 25 * 2 + 28
207 207 #define PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1 (2628 - CCSDS_TC_TM_PACKET_OFFSET) // 52 * 25 * 2 + 28
208 208 #define PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2 (2428 - CCSDS_TC_TM_PACKET_OFFSET) // 48 * 25 * 2 + 28
209 209 #define PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 (126 - CCSDS_TC_TM_PACKET_OFFSET) // 11 * 9 + 27
210 210 #define PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 (356 - CCSDS_TC_TM_PACKET_OFFSET) // 11 * 30 + 26
211 211 #define PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 (144 - CCSDS_TC_TM_PACKET_OFFSET) // 13 * 9 + 27
212 212 #define PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 (416 - CCSDS_TC_TM_PACKET_OFFSET) // 13 * 30 + 26
213 213 #define PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 (134 - CCSDS_TC_TM_PACKET_OFFSET) // 12 * 9 + 26
214 214 #define PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 (386 - CCSDS_TC_TM_PACKET_OFFSET) // 12 * 30 + 26
215 215 #define PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 (224 - CCSDS_TC_TM_PACKET_OFFSET) // 22 * 9 + 26
216 216 #define PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 (686 - CCSDS_TC_TM_PACKET_OFFSET) // 22 * 30 + 26
217 217 #define PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 (260 - CCSDS_TC_TM_PACKET_OFFSET) // 26 * 9 + 26
218 218 #define PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 (806 - CCSDS_TC_TM_PACKET_OFFSET) // 26 * 30 + 26
219 219
220 220 #define PACKET_LENGTH_DELTA 11 // 7 + 4
221 221
222 222 #define SPARE1_PUSVERSION_SPARE2 0x10
223 223
224 224 // R1
225 225 #define TM_LEN_SCI_SWF_340 4101 // 340 * 12 + 10 + 12 - 1
226 226 #define TM_LEN_SCI_SWF_8 117 // 8 * 12 + 10 + 12 - 1
227 227 #define TM_LEN_SCI_CWF_340 4099 // 340 * 12 + 10 + 10 - 1
228 228 #define TM_LEN_SCI_CWF_8 115 // 8 * 12 + 10 + 10 - 1
229 229 #define TM_LEN_SCI_CWF3_LIGHT_340 2059 // 340 * 6 + 10 + 10 - 1
230 230 #define TM_LEN_SCI_CWF3_LIGHT_8 67 // 8 * 6 + 10 + 10 - 1
231 231 // R2
232 232 #define TM_LEN_SCI_SWF_304 3669 // 304 * 12 + 10 + 12 - 1
233 233 #define TM_LEN_SCI_SWF_224 2709 // 224 * 12 + 10 + 12 - 1
234 234 #define TM_LEN_SCI_CWF_336 4051 // 336 * 12 + 10 + 10 - 1
235 235 #define TM_LEN_SCI_CWF_672 4051 // 672 * 6 + 10 + 10 - 1
236 236 //
237 237 #define DEFAULT_PKTCNT 0x07
238 238 #define BLK_NR_304 0x0130
239 239 #define BLK_NR_224 0x00e0
240 240 #define BLK_NR_CWF 0x0150 // 336
241 241 #define BLK_NR_CWF_SHORT_F3 0x02a0 // 672
242 242
243 243 enum TM_TYPE{
244 244 TM_LFR_TC_EXE_OK,
245 245 TM_LFR_TC_EXE_ERR,
246 246 TM_LFR_HK,
247 247 TM_LFR_SCI,
248 248 TM_LFR_SCI_SBM,
249 249 TM_LFR_PAR_DUMP
250 250 };
251 251
252 252 typedef struct {
253 253 unsigned char targetLogicalAddress;
254 254 unsigned char protocolIdentifier;
255 255 unsigned char reserved;
256 256 unsigned char userApplication;
257 257 // PACKET HEADER
258 258 unsigned char packetID[2];
259 259 unsigned char packetSequenceControl[2];
260 260 unsigned char packetLength[2];
261 261 // DATA FIELD HEADER
262 262 unsigned char spare1_pusVersion_spare2;
263 263 unsigned char serviceType;
264 264 unsigned char serviceSubType;
265 265 unsigned char destinationID;
266 266 unsigned char time[6];
267 267 //
268 268 unsigned char telecommand_pkt_id[2];
269 269 unsigned char pkt_seq_control[2];
270 270 } Packet_TM_LFR_TC_EXE_SUCCESS_t;
271 271
272 272 typedef struct {
273 273 unsigned char targetLogicalAddress;
274 274 unsigned char protocolIdentifier;
275 275 unsigned char reserved;
276 276 unsigned char userApplication;
277 277 // PACKET HEADER
278 278 unsigned char packetID[2];
279 279 unsigned char packetSequenceControl[2];
280 280 unsigned char packetLength[2];
281 281 // DATA FIELD HEADER
282 282 unsigned char spare1_pusVersion_spare2;
283 283 unsigned char serviceType;
284 284 unsigned char serviceSubType;
285 285 unsigned char destinationID;
286 286 unsigned char time[6];
287 287 //
288 288 unsigned char tc_failure_code[2];
289 289 unsigned char telecommand_pkt_id[2];
290 290 unsigned char pkt_seq_control[2];
291 291 unsigned char tc_service;
292 292 unsigned char tc_subtype;
293 293 unsigned char byte_position;
294 294 unsigned char rcv_value;
295 295 } Packet_TM_LFR_TC_EXE_INCONSISTENT_t;
296 296
297 297 typedef struct {
298 298 unsigned char targetLogicalAddress;
299 299 unsigned char protocolIdentifier;
300 300 unsigned char reserved;
301 301 unsigned char userApplication;
302 302 // PACKET HEADER
303 303 unsigned char packetID[2];
304 304 unsigned char packetSequenceControl[2];
305 305 unsigned char packetLength[2];
306 306 // DATA FIELD HEADER
307 307 unsigned char spare1_pusVersion_spare2;
308 308 unsigned char serviceType;
309 309 unsigned char serviceSubType;
310 310 unsigned char destinationID;
311 311 unsigned char time[6];
312 312 //
313 313 unsigned char tc_failure_code[2];
314 314 unsigned char telecommand_pkt_id[2];
315 315 unsigned char pkt_seq_control[2];
316 316 unsigned char tc_service;
317 317 unsigned char tc_subtype;
318 318 unsigned char lfr_status_word[2];
319 319 } Packet_TM_LFR_TC_EXE_NOT_EXECUTABLE_t;
320 320
321 321 typedef struct {
322 322 unsigned char targetLogicalAddress;
323 323 unsigned char protocolIdentifier;
324 324 unsigned char reserved;
325 325 unsigned char userApplication;
326 326 // PACKET HEADER
327 327 unsigned char packetID[2];
328 328 unsigned char packetSequenceControl[2];
329 329 unsigned char packetLength[2];
330 330 // DATA FIELD HEADER
331 331 unsigned char spare1_pusVersion_spare2;
332 332 unsigned char serviceType;
333 333 unsigned char serviceSubType;
334 334 unsigned char destinationID;
335 335 unsigned char time[6];
336 336 //
337 337 unsigned char tc_failure_code[2];
338 338 unsigned char telecommand_pkt_id[2];
339 339 unsigned char pkt_seq_control[2];
340 340 unsigned char tc_service;
341 341 unsigned char tc_subtype;
342 342 } Packet_TM_LFR_TC_EXE_NOT_IMPLEMENTED_t;
343 343
344 344 typedef struct {
345 345 unsigned char targetLogicalAddress;
346 346 unsigned char protocolIdentifier;
347 347 unsigned char reserved;
348 348 unsigned char userApplication;
349 349 // PACKET HEADER
350 350 unsigned char packetID[2];
351 351 unsigned char packetSequenceControl[2];
352 352 unsigned char packetLength[2];
353 353 // DATA FIELD HEADER
354 354 unsigned char spare1_pusVersion_spare2;
355 355 unsigned char serviceType;
356 356 unsigned char serviceSubType;
357 357 unsigned char destinationID;
358 358 unsigned char time[6];
359 359 //
360 360 unsigned char tc_failure_code[2];
361 361 unsigned char telecommand_pkt_id[2];
362 362 unsigned char pkt_seq_control[2];
363 363 unsigned char tc_service;
364 364 unsigned char tc_subtype;
365 365 } Packet_TM_LFR_TC_EXE_ERROR_t;
366 366
367 367 typedef struct {
368 368 unsigned char targetLogicalAddress;
369 369 unsigned char protocolIdentifier;
370 370 unsigned char reserved;
371 371 unsigned char userApplication;
372 372 // PACKET HEADER
373 373 unsigned char packetID[2];
374 374 unsigned char packetSequenceControl[2];
375 375 unsigned char packetLength[2];
376 376 // DATA FIELD HEADER
377 377 unsigned char spare1_pusVersion_spare2;
378 378 unsigned char serviceType;
379 379 unsigned char serviceSubType;
380 380 unsigned char destinationID;
381 381 unsigned char time[6];
382 382 //
383 383 unsigned char tc_failure_code[2];
384 384 unsigned char telecommand_pkt_id[2];
385 385 unsigned char pkt_seq_control[2];
386 386 unsigned char tc_service;
387 387 unsigned char tc_subtype;
388 388 unsigned char pkt_len_rcv_value[2];
389 389 unsigned char pkt_datafieldsize_cnt[2];
390 390 unsigned char rcv_crc[2];
391 391 unsigned char computed_crc[2];
392 392 } Packet_TM_LFR_TC_EXE_CORRUPTED_t;
393 393
394 394 typedef struct {
395 395 unsigned char targetLogicalAddress;
396 396 unsigned char protocolIdentifier;
397 397 unsigned char reserved;
398 398 unsigned char userApplication;
399 399 unsigned char packetID[2];
400 400 unsigned char packetSequenceControl[2];
401 401 unsigned char packetLength[2];
402 402 // DATA FIELD HEADER
403 403 unsigned char spare1_pusVersion_spare2;
404 404 unsigned char serviceType;
405 405 unsigned char serviceSubType;
406 406 unsigned char destinationID;
407 407 unsigned char time[6];
408 408 // AUXILIARY HEADER
409 409 unsigned char sid;
410 410 unsigned char hkBIA;
411 411 unsigned char pktCnt;
412 412 unsigned char pktNr;
413 413 unsigned char acquisitionTime[6];
414 414 unsigned char blkNr[2];
415 415 } Header_TM_LFR_SCIENCE_SWF_t;
416 416
417 417 typedef struct {
418 418 unsigned char targetLogicalAddress;
419 419 unsigned char protocolIdentifier;
420 420 unsigned char reserved;
421 421 unsigned char userApplication;
422 422 unsigned char packetID[2];
423 423 unsigned char packetSequenceControl[2];
424 424 unsigned char packetLength[2];
425 425 // DATA FIELD HEADER
426 426 unsigned char spare1_pusVersion_spare2;
427 427 unsigned char serviceType;
428 428 unsigned char serviceSubType;
429 429 unsigned char destinationID;
430 430 unsigned char time[6];
431 431 // AUXILIARY DATA HEADER
432 432 unsigned char sid;
433 433 unsigned char hkBIA;
434 434 unsigned char acquisitionTime[6];
435 435 unsigned char blkNr[2];
436 436 } Header_TM_LFR_SCIENCE_CWF_t;
437 437
438 438 typedef struct {
439 439 unsigned char targetLogicalAddress;
440 440 unsigned char protocolIdentifier;
441 441 unsigned char reserved;
442 442 unsigned char userApplication;
443 443 unsigned char packetID[2];
444 444 unsigned char packetSequenceControl[2];
445 445 unsigned char packetLength[2];
446 446 // DATA FIELD HEADER
447 447 unsigned char spare1_pusVersion_spare2;
448 448 unsigned char serviceType;
449 449 unsigned char serviceSubType;
450 450 unsigned char destinationID;
451 451 unsigned char time[6];
452 452 // AUXILIARY HEADER
453 453 unsigned char sid;
454 454 unsigned char biaStatusInfo;
455 455 unsigned char pa_lfr_pkt_cnt_asm;
456 456 unsigned char pa_lfr_pkt_nr_asm;
457 457 unsigned char acquisitionTime[6];
458 458 unsigned char pa_lfr_asm_blk_nr[2];
459 459 } Header_TM_LFR_SCIENCE_ASM_t;
460 460
461 461 typedef struct {
462 462 unsigned char targetLogicalAddress;
463 463 unsigned char protocolIdentifier;
464 464 unsigned char reserved;
465 465 unsigned char userApplication;
466 466 unsigned char packetID[2];
467 467 unsigned char packetSequenceControl[2];
468 468 unsigned char packetLength[2];
469 469 // DATA FIELD HEADER
470 470 unsigned char spare1_pusVersion_spare2;
471 471 unsigned char serviceType;
472 472 unsigned char serviceSubType;
473 473 unsigned char destinationID;
474 474 unsigned char time[6];
475 475 // AUXILIARY HEADER
476 476 unsigned char sid;
477 477 unsigned char biaStatusInfo;
478 478 unsigned char acquisitionTime[6];
479 unsigned char source_data_spare[2];
479 unsigned char source_data_spare;
480 480 unsigned char pa_lfr_bp_blk_nr[2];
481 481 } Header_TM_LFR_SCIENCE_BP_with_spare_t;
482 482
483 483 typedef struct {
484 484 unsigned char targetLogicalAddress;
485 485 unsigned char protocolIdentifier;
486 486 unsigned char reserved;
487 487 unsigned char userApplication;
488 488 unsigned char packetID[2];
489 489 unsigned char packetSequenceControl[2];
490 490 unsigned char packetLength[2];
491 491 // DATA FIELD HEADER
492 492 unsigned char spare1_pusVersion_spare2;
493 493 unsigned char serviceType;
494 494 unsigned char serviceSubType;
495 495 unsigned char destinationID;
496 496 unsigned char time[6];
497 497 // AUXILIARY HEADER
498 498 unsigned char sid;
499 499 unsigned char biaStatusInfo;
500 500 unsigned char acquisitionTime[6];
501 501 unsigned char pa_lfr_bp_blk_nr[2];
502 502 } Header_TM_LFR_SCIENCE_BP_t;
503 503
504 504 typedef struct {
505 505 //targetLogicalAddress is removed by the grspw module
506 506 unsigned char protocolIdentifier;
507 507 unsigned char reserved;
508 508 unsigned char userApplication;
509 509 unsigned char packetID[2];
510 510 unsigned char packetSequenceControl[2];
511 511 unsigned char packetLength[2];
512 512 // DATA FIELD HEADER
513 513 unsigned char headerFlag_pusVersion_Ack;
514 514 unsigned char serviceType;
515 515 unsigned char serviceSubType;
516 516 unsigned char sourceID;
517 517 unsigned char dataAndCRC[CCSDS_TC_PKT_MAX_SIZE-10];
518 518 } ccsdsTelecommandPacket_t;
519 519
520 520 typedef struct {
521 521 unsigned char targetLogicalAddress;
522 522 unsigned char protocolIdentifier;
523 523 unsigned char reserved;
524 524 unsigned char userApplication;
525 525 unsigned char packetID[2];
526 526 unsigned char packetSequenceControl[2];
527 527 unsigned char packetLength[2];
528 528 unsigned char spare1_pusVersion_spare2;
529 529 unsigned char serviceType;
530 530 unsigned char serviceSubType;
531 531 unsigned char destinationID;
532 532 unsigned char time[6];
533 533 unsigned char sid;
534 534
535 535 //**************
536 536 // HK PARAMETERS
537 537 unsigned char lfr_status_word[2];
538 538 unsigned char lfr_sw_version[4];
539 539 unsigned char lfr_fpga_version[3];
540 540 // ressource statistics
541 541 unsigned char hk_lfr_cpu_load;
542 unsigned char hk_lfr_load_max;
543 unsigned char hk_lfr_load_aver;
542 unsigned char hk_lfr_cpu_load_max;
543 unsigned char hk_lfr_cpu_load_aver;
544 544 // tc statistics
545 545 unsigned char hk_lfr_update_info_tc_cnt[2];
546 546 unsigned char hk_lfr_update_time_tc_cnt[2];
547 547 unsigned char hk_lfr_exe_tc_cnt[2];
548 548 unsigned char hk_lfr_rej_tc_cnt[2];
549 549 unsigned char hk_lfr_last_exe_tc_id[2];
550 550 unsigned char hk_lfr_last_exe_tc_type[2];
551 551 unsigned char hk_lfr_last_exe_tc_subtype[2];
552 552 unsigned char hk_lfr_last_exe_tc_time[6];
553 553 unsigned char hk_lfr_last_rej_tc_id[2];
554 554 unsigned char hk_lfr_last_rej_tc_type[2];
555 555 unsigned char hk_lfr_last_rej_tc_subtype[2];
556 556 unsigned char hk_lfr_last_rej_tc_time[6];
557 557 // anomaly statistics
558 558 unsigned char hk_lfr_le_cnt[2];
559 559 unsigned char hk_lfr_me_cnt[2];
560 560 unsigned char hk_lfr_he_cnt[2];
561 561 unsigned char hk_lfr_last_er_rid[2];
562 562 unsigned char hk_lfr_last_er_code;
563 563 unsigned char hk_lfr_last_er_time[6];
564 564 // vhdl_blk_status
565 565 unsigned char hk_lfr_vhdl_aa_sm;
566 566 unsigned char hk_lfr_vhdl_fft_sr;
567 567 unsigned char hk_lfr_vhdl_cic_hk;
568 568 unsigned char hk_lfr_vhdl_iir_cal;
569 569 // spacewire_if_statistics
570 570 unsigned char hk_lfr_dpu_spw_pkt_rcv_cnt[2];
571 571 unsigned char hk_lfr_dpu_spw_pkt_sent_cnt[2];
572 572 unsigned char hk_lfr_dpu_spw_tick_out_cnt;
573 573 unsigned char hk_lfr_dpu_spw_last_timc;
574 574 // ahb error statistics
575 575 unsigned char hk_lfr_last_fail_addr[4];
576 576 // temperatures
577 577 unsigned char hk_lfr_temp_scm[2];
578 578 unsigned char hk_lfr_temp_pcb[2];
579 579 unsigned char hk_lfr_temp_fpga[2];
580 580 // spacecraft potential
581 581 unsigned char hk_lfr_sc_v_f3[2];
582 582 unsigned char hk_lfr_sc_e1_f3[2];
583 583 unsigned char hk_lfr_sc_e2_f3[2];
584 584 // error counters
585 585 unsigned char hk_lfr_dpu_spw_parity;
586 586 unsigned char hk_lfr_dpu_spw_disconnect;
587 587 unsigned char hk_lfr_dpu_spw_escape;
588 588 unsigned char hk_lfr_dpu_spw_credit;
589 589 unsigned char hk_lfr_dpu_spw_write_sync;
590 590 unsigned char hk_lfr_dpu_spw_rx_ahb;
591 591 unsigned char hk_lfr_dpu_spw_tx_ahb;
592 592 unsigned char hk_lfr_dpu_spw_early_eop;
593 593 unsigned char hk_lfr_dpu_spw_invalid_addr;
594 594 unsigned char hk_lfr_dpu_spw_eep;
595 595 unsigned char hk_lfr_dpu_spw_rx_too_big;
596 596 // timecode
597 597 unsigned char hk_lfr_timecode_erroneous;
598 598 unsigned char hk_lfr_timecode_missing;
599 599 unsigned char hk_lfr_timecode_invalid;
600 600 // time
601 601 unsigned char hk_lfr_time_timecode_it;
602 602 unsigned char hk_lfr_time_not_synchro;
603 603 unsigned char hk_lfr_time_timecode_ctr;
604 604 // hk_lfr_buffer_dpu_
605 605 unsigned char hk_lfr_buffer_dpu_tc_fifo;
606 606 unsigned char hk_lfr_buffer_dpu_tm_fifo;
607 607 // hk_lfr_ahb_
608 608 unsigned char hk_lfr_ahb_correctable;
609 609 unsigned char hk_lfr_ahb_uncorrectable;
610 610 // spare
611 611 unsigned char parameters_spare;
612 612 } Packet_TM_LFR_HK_t;
613 613
614 614 typedef struct {
615 615 unsigned char targetLogicalAddress;
616 616 unsigned char protocolIdentifier;
617 617 unsigned char reserved;
618 618 unsigned char userApplication;
619 619 unsigned char packetID[2];
620 620 unsigned char packetSequenceControl[2];
621 621 unsigned char packetLength[2];
622 622 // DATA FIELD HEADER
623 623 unsigned char spare1_pusVersion_spare2;
624 624 unsigned char serviceType;
625 625 unsigned char serviceSubType;
626 626 unsigned char destinationID;
627 627 unsigned char time[6];
628 628 unsigned char sid;
629 629
630 630 //******************
631 631 // COMMON PARAMETERS
632 632 unsigned char unused0;
633 633 unsigned char bw_sp0_sp1_r0_r1;
634 634
635 635 //******************
636 636 // NORMAL PARAMETERS
637 637 unsigned char sy_lfr_n_swf_l[2];
638 638 unsigned char sy_lfr_n_swf_p[2];
639 639 unsigned char sy_lfr_n_asm_p[2];
640 640 unsigned char sy_lfr_n_bp_p0;
641 641 unsigned char sy_lfr_n_bp_p1;
642 642 unsigned char sy_lfr_n_cwf_long_f3;
643 643 unsigned char lfr_normal_parameters_spare;
644 644
645 645 //*****************
646 646 // BURST PARAMETERS
647 647 unsigned char sy_lfr_b_bp_p0;
648 648 unsigned char sy_lfr_b_bp_p1;
649 649
650 650 //****************
651 651 // SBM1 PARAMETERS
652 652 unsigned char sy_lfr_s1_bp_p0;
653 653 unsigned char sy_lfr_s1_bp_p1;
654 654
655 655 //****************
656 656 // SBM2 PARAMETERS
657 657 unsigned char sy_lfr_s2_bp_p0;
658 658 unsigned char sy_lfr_s2_bp_p1;
659 659
660 660 // SPARE
661 661 unsigned char source_data_spare;
662 662 } Packet_TM_LFR_PARAMETER_DUMP_t;
663 663
664 664
665 665 #endif // CCSDS_TYPES_H_INCLUDED
@@ -1,45 +1,48
1 1 #ifndef FSW_MISC_H_INCLUDED
2 2 #define FSW_MISC_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6 #include <grspw.h>
7 7
8 8 #include "fsw_params.h"
9 9 #include "fsw_spacewire.h"
10 #include "lfr_cpu_usage_report.h"
10 11
11 12 rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
12 13 rtems_id HK_id; // id of the HK rate monotonic period
13 14
14 15 //extern rtems_name misc_name[5];
15 16 //time_management_regs_t *time_management_regs;
16 17 //extern Packet_TM_LFR_HK_t housekeeping_packet;
17 18
18 19 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
19 20 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
20 21 void timer_start( gptimer_regs_t *gptimer_regs, unsigned char timer );
21 22 void timer_stop( gptimer_regs_t *gptimer_regs, unsigned char timer );
22 23 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider);
23 24
24 25 // SERIAL LINK
25 26 int send_console_outputs_on_apbuart_port( void );
26 27 int enable_apbuart_transmitter( void );
27 28 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
28 29
29 30 // RTEMS TASKS
30 31 rtems_task stat_task( rtems_task_argument argument );
31 32 rtems_task hous_task( rtems_task_argument argument );
32 33 rtems_task dumb_task( rtems_task_argument unused );
33 34
34 35 void init_housekeeping_parameters( void );
35 36 void increment_seq_counter( unsigned char *packet_sequence_control);
36 37 void getTime( unsigned char *time);
37 38 unsigned long long int getTimeAsUnsignedLongLongInt( );
38 39 void send_dumb_hk( void );
39 void get_v_e1_e2_f3 (unsigned char *v, unsigned char *e1, unsigned char *e2);
40 void get_v_e1_e2_f3 (unsigned char *spacecraft_potential);
41 void get_cpu_load( unsigned char *resource_statistics );
40 42
41 43 extern int sched_yield( void );
44 extern int rtems_cpu_usage_reset();
42 45 extern ring_node *current_ring_node_f3;
43 46 extern ring_node *ring_node_to_send_cwf_f3;
44 47
45 48 #endif // FSW_MISC_H_INCLUDED
@@ -1,60 +1,62
1 1 #ifndef TC_HANDLER_H_INCLUDED
2 2 #define TC_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "tc_load_dump_parameters.h"
8 8 #include "tc_acceptance.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "wf_handler.h"
11 11 #include "fsw_processing.h"
12 12
13 #include "lfr_cpu_usage_report.h"
14
13 15 // MODE PARAMETERS
14 16 extern unsigned int maxCount;
15 17
16 18 //****
17 19 // ISR
18 20 rtems_isr commutation_isr1( rtems_vector_number vector );
19 21 rtems_isr commutation_isr2( rtems_vector_number vector );
20 22
21 23 //***********
22 24 // RTEMS TASK
23 25 rtems_task actn_task( rtems_task_argument unused );
24 26
25 27 //***********
26 28 // TC ACTIONS
27 29 int action_reset( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
28 30 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
29 31 int action_update_info( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
30 32 int action_enable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
31 33 int action_disable_calibration( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time );
32 34 int action_update_time( ccsdsTelecommandPacket_t *TC);
33 35
34 36 // mode transition
35 37 int check_mode_value( unsigned char requestedMode );
36 38 int check_mode_transition( unsigned char requestedMode );
37 39 int check_transition_date( unsigned int transitionCoarseTime );
38 40 int stop_current_mode( void );
39 41 int enter_mode( unsigned char mode , unsigned int transitionCoarseTime );
40 42 int restart_science_tasks(unsigned char lfrRequestedMode );
41 43 int suspend_science_tasks();
42 44 void launch_waveform_picker(unsigned char mode , unsigned int transitionCoarseTime);
43 45 void launch_spectral_matrix( void );
44 46 void launch_spectral_matrix_simu( void );
45 47 void set_irq_on_new_ready_matrix(unsigned char value );
46 48 void set_run_matrix_spectral( unsigned char value );
47 49
48 50 // other functions
49 51 void updateLFRCurrentMode();
50 52 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC , unsigned char *time );
51 53 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC , unsigned char *time );
52 54 void close_action( ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id );
53 55
54 56 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
55 57 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
56 58
57 59 #endif // TC_HANDLER_H_INCLUDED
58 60
59 61
60 62
@@ -1,766 +1,768
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 36 #define CONFIGURE_MAXIMUM_PERIODS 5
37 37 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 38 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
39 39 #ifdef PRINT_STACK_REPORT
40 40 #define CONFIGURE_STACK_CHECKER_ENABLED
41 41 #endif
42 42
43 43 #include <rtems/confdefs.h>
44 44
45 45 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 46 #ifdef RTEMS_DRVMGR_STARTUP
47 47 #ifdef LEON3
48 48 /* Add Timer and UART Driver */
49 49 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 50 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 51 #endif
52 52 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 54 #endif
55 55 #endif
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 57 #include <drvmgr/drvmgr_confdefs.h>
58 58 #endif
59 59
60 60 #include "fsw_init.h"
61 61 #include "fsw_config.c"
62 62
63 63 rtems_task Init( rtems_task_argument ignored )
64 64 {
65 65 /** This is the RTEMS INIT taks, it the first task launched by the system.
66 66 *
67 67 * @param unused is the starting argument of the RTEMS task
68 68 *
69 69 * The INIT task create and run all other RTEMS tasks.
70 70 *
71 71 */
72 72
73 73 reset_local_time();
74 74
75 rtems_cpu_usage_reset();
76
75 77 rtems_status_code status;
76 78 rtems_status_code status_spw;
77 79 rtems_isr_entry old_isr_handler;
78 80
79 81 // UART settings
80 82 send_console_outputs_on_apbuart_port();
81 83 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
82 84 enable_apbuart_transmitter();
83 85 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
84 86
85 87 PRINTF("\n\n\n\n\n")
86 88 PRINTF("*************************\n")
87 89 PRINTF("** LFR Flight Software **\n")
88 90 PRINTF1("** %d.", SW_VERSION_N1)
89 91 PRINTF1("%d." , SW_VERSION_N2)
90 92 PRINTF1("%d." , SW_VERSION_N3)
91 93 PRINTF1("%d **\n", SW_VERSION_N4)
92 94 PRINTF("*************************\n")
93 95 PRINTF("\n\n")
94 96
95 97 init_parameter_dump();
96 98 init_local_mode_parameters();
97 99 init_housekeeping_parameters();
98 100
99 101 init_waveform_rings(); // initialize the waveform rings
100 102 SM_init_rings(); // initialize spectral matrices rings
101 103
102 104 reset_wfp_burst_enable();
103 105 reset_wfp_status();
104 106 set_wfp_data_shaping();
105 107
106 108 updateLFRCurrentMode();
107 109
108 110 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
109 111
110 112 create_names(); // create all names
111 113
112 114 status = create_message_queues(); // create message queues
113 115 if (status != RTEMS_SUCCESSFUL)
114 116 {
115 117 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
116 118 }
117 119
118 120 status = create_all_tasks(); // create all tasks
119 121 if (status != RTEMS_SUCCESSFUL)
120 122 {
121 123 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
122 124 }
123 125
124 126 // **************************
125 127 // <SPACEWIRE INITIALIZATION>
126 128 grspw_timecode_callback = &timecode_irq_handler;
127 129
128 130 status_spw = spacewire_open_link(); // (1) open the link
129 131 if ( status_spw != RTEMS_SUCCESSFUL )
130 132 {
131 133 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
132 134 }
133 135
134 136 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
135 137 {
136 138 status_spw = spacewire_configure_link( fdSPW );
137 139 if ( status_spw != RTEMS_SUCCESSFUL )
138 140 {
139 141 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
140 142 }
141 143 }
142 144
143 145 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
144 146 {
145 147 status_spw = spacewire_start_link( fdSPW );
146 148 if ( status_spw != RTEMS_SUCCESSFUL )
147 149 {
148 150 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
149 151 }
150 152 }
151 153 // </SPACEWIRE INITIALIZATION>
152 154 // ***************************
153 155
154 156 status = start_all_tasks(); // start all tasks
155 157 if (status != RTEMS_SUCCESSFUL)
156 158 {
157 159 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
158 160 }
159 161
160 162 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
161 163 status = start_recv_send_tasks();
162 164 if ( status != RTEMS_SUCCESSFUL )
163 165 {
164 166 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
165 167 }
166 168
167 169 // suspend science tasks, they will be restarted later depending on the mode
168 170 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
169 171 if (status != RTEMS_SUCCESSFUL)
170 172 {
171 173 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
172 174 }
173 175
174 176 //******************************
175 177 // <SPECTRAL MATRICES SIMULATOR>
176 178 LEON_Mask_interrupt( IRQ_SM_SIMULATOR );
177 179 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
178 180 IRQ_SPARC_SM_SIMULATOR, spectral_matrices_isr_simu );
179 181 // </SPECTRAL MATRICES SIMULATOR>
180 182 //*******************************
181 183
182 184 // configure IRQ handling for the waveform picker unit
183 185 status = rtems_interrupt_catch( waveforms_isr,
184 186 IRQ_SPARC_WAVEFORM_PICKER,
185 187 &old_isr_handler) ;
186 188 // configure IRQ handling for the spectral matrices unit
187 189 status = rtems_interrupt_catch( spectral_matrices_isr,
188 190 IRQ_SPARC_SPECTRAL_MATRIX,
189 191 &old_isr_handler) ;
190 192
191 193 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
192 194 if ( status_spw != RTEMS_SUCCESSFUL )
193 195 {
194 196 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
195 197 if ( status != RTEMS_SUCCESSFUL ) {
196 198 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
197 199 }
198 200 }
199 201
200 202 BOOT_PRINTF("delete INIT\n")
201 203
202 204 send_dumb_hk();
203 205
204 206 status = rtems_task_delete(RTEMS_SELF);
205 207
206 208 }
207 209
208 210 void init_local_mode_parameters( void )
209 211 {
210 212 /** This function initialize the param_local global variable with default values.
211 213 *
212 214 */
213 215
214 216 unsigned int i;
215 217
216 218 // LOCAL PARAMETERS
217 219
218 220 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
219 221 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
220 222 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
221 223
222 224 // init sequence counters
223 225
224 226 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
225 227 {
226 228 sequenceCounters_TC_EXE[i] = 0x00;
227 229 }
228 230 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
229 231 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
230 232 }
231 233
232 234 void reset_local_time( void )
233 235 {
234 236 time_management_regs->ctrl = 0x02; // software reset, coarse time = 0x80000000
235 237 }
236 238
237 239 void create_names( void ) // create all names for tasks and queues
238 240 {
239 241 /** This function creates all RTEMS names used in the software for tasks and queues.
240 242 *
241 243 * @return RTEMS directive status codes:
242 244 * - RTEMS_SUCCESSFUL - successful completion
243 245 *
244 246 */
245 247
246 248 // task names
247 249 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
248 250 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
249 251 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
250 252 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
251 253 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
252 254 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
253 255 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
254 256 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
255 257 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
256 258 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
257 259 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
258 260 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
259 261 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
260 262 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
261 263 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
262 264 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
263 265 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
264 266 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
265 267 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
266 268
267 269 // rate monotonic period names
268 270 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
269 271
270 272 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
271 273 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
272 274 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
273 275 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
274 276 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
275 277 }
276 278
277 279 int create_all_tasks( void ) // create all tasks which run in the software
278 280 {
279 281 /** This function creates all RTEMS tasks used in the software.
280 282 *
281 283 * @return RTEMS directive status codes:
282 284 * - RTEMS_SUCCESSFUL - task created successfully
283 285 * - RTEMS_INVALID_ADDRESS - id is NULL
284 286 * - RTEMS_INVALID_NAME - invalid task name
285 287 * - RTEMS_INVALID_PRIORITY - invalid task priority
286 288 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
287 289 * - RTEMS_TOO_MANY - too many tasks created
288 290 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
289 291 * - RTEMS_TOO_MANY - too many global objects
290 292 *
291 293 */
292 294
293 295 rtems_status_code status;
294 296
295 297 //**********
296 298 // SPACEWIRE
297 299 // RECV
298 300 status = rtems_task_create(
299 301 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
300 302 RTEMS_DEFAULT_MODES,
301 303 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
302 304 );
303 305 if (status == RTEMS_SUCCESSFUL) // SEND
304 306 {
305 307 status = rtems_task_create(
306 308 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
307 309 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
308 310 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
309 311 );
310 312 }
311 313 if (status == RTEMS_SUCCESSFUL) // WTDG
312 314 {
313 315 status = rtems_task_create(
314 316 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
315 317 RTEMS_DEFAULT_MODES,
316 318 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
317 319 );
318 320 }
319 321 if (status == RTEMS_SUCCESSFUL) // ACTN
320 322 {
321 323 status = rtems_task_create(
322 324 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
323 325 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
324 326 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
325 327 );
326 328 }
327 329 if (status == RTEMS_SUCCESSFUL) // SPIQ
328 330 {
329 331 status = rtems_task_create(
330 332 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
331 333 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
332 334 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
333 335 );
334 336 }
335 337
336 338 //******************
337 339 // SPECTRAL MATRICES
338 340 if (status == RTEMS_SUCCESSFUL) // AVF0
339 341 {
340 342 status = rtems_task_create(
341 343 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
342 344 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
343 345 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
344 346 );
345 347 }
346 348 if (status == RTEMS_SUCCESSFUL) // PRC0
347 349 {
348 350 status = rtems_task_create(
349 351 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * 2,
350 352 RTEMS_DEFAULT_MODES,
351 353 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
352 354 );
353 355 }
354 356 if (status == RTEMS_SUCCESSFUL) // AVF1
355 357 {
356 358 status = rtems_task_create(
357 359 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
358 360 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
359 361 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
360 362 );
361 363 }
362 364 if (status == RTEMS_SUCCESSFUL) // PRC1
363 365 {
364 366 status = rtems_task_create(
365 367 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * 2,
366 368 RTEMS_DEFAULT_MODES,
367 369 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
368 370 );
369 371 }
370 372 if (status == RTEMS_SUCCESSFUL) // AVF2
371 373 {
372 374 status = rtems_task_create(
373 375 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
374 376 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
375 377 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
376 378 );
377 379 }
378 380 if (status == RTEMS_SUCCESSFUL) // PRC2
379 381 {
380 382 status = rtems_task_create(
381 383 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * 2,
382 384 RTEMS_DEFAULT_MODES,
383 385 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
384 386 );
385 387 }
386 388
387 389 //****************
388 390 // WAVEFORM PICKER
389 391 if (status == RTEMS_SUCCESSFUL) // WFRM
390 392 {
391 393 status = rtems_task_create(
392 394 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
393 395 RTEMS_DEFAULT_MODES,
394 396 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
395 397 );
396 398 }
397 399 if (status == RTEMS_SUCCESSFUL) // CWF3
398 400 {
399 401 status = rtems_task_create(
400 402 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
401 403 RTEMS_DEFAULT_MODES,
402 404 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
403 405 );
404 406 }
405 407 if (status == RTEMS_SUCCESSFUL) // CWF2
406 408 {
407 409 status = rtems_task_create(
408 410 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
409 411 RTEMS_DEFAULT_MODES,
410 412 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
411 413 );
412 414 }
413 415 if (status == RTEMS_SUCCESSFUL) // CWF1
414 416 {
415 417 status = rtems_task_create(
416 418 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
417 419 RTEMS_DEFAULT_MODES,
418 420 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
419 421 );
420 422 }
421 423 if (status == RTEMS_SUCCESSFUL) // SWBD
422 424 {
423 425 status = rtems_task_create(
424 426 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
425 427 RTEMS_DEFAULT_MODES,
426 428 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
427 429 );
428 430 }
429 431
430 432 //*****
431 433 // MISC
432 434 if (status == RTEMS_SUCCESSFUL) // STAT
433 435 {
434 436 status = rtems_task_create(
435 437 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
436 438 RTEMS_DEFAULT_MODES,
437 439 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
438 440 );
439 441 }
440 442 if (status == RTEMS_SUCCESSFUL) // DUMB
441 443 {
442 444 status = rtems_task_create(
443 445 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
444 446 RTEMS_DEFAULT_MODES,
445 447 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
446 448 );
447 449 }
448 450 if (status == RTEMS_SUCCESSFUL) // HOUS
449 451 {
450 452 status = rtems_task_create(
451 453 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
452 454 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
453 455 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_HOUS]
454 456 );
455 457 }
456 458
457 459 return status;
458 460 }
459 461
460 462 int start_recv_send_tasks( void )
461 463 {
462 464 rtems_status_code status;
463 465
464 466 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
465 467 if (status!=RTEMS_SUCCESSFUL) {
466 468 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
467 469 }
468 470
469 471 if (status == RTEMS_SUCCESSFUL) // SEND
470 472 {
471 473 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
472 474 if (status!=RTEMS_SUCCESSFUL) {
473 475 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
474 476 }
475 477 }
476 478
477 479 return status;
478 480 }
479 481
480 482 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
481 483 {
482 484 /** This function starts all RTEMS tasks used in the software.
483 485 *
484 486 * @return RTEMS directive status codes:
485 487 * - RTEMS_SUCCESSFUL - ask started successfully
486 488 * - RTEMS_INVALID_ADDRESS - invalid task entry point
487 489 * - RTEMS_INVALID_ID - invalid task id
488 490 * - RTEMS_INCORRECT_STATE - task not in the dormant state
489 491 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
490 492 *
491 493 */
492 494 // starts all the tasks fot eh flight software
493 495
494 496 rtems_status_code status;
495 497
496 498 //**********
497 499 // SPACEWIRE
498 500 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
499 501 if (status!=RTEMS_SUCCESSFUL) {
500 502 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
501 503 }
502 504
503 505 if (status == RTEMS_SUCCESSFUL) // WTDG
504 506 {
505 507 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
506 508 if (status!=RTEMS_SUCCESSFUL) {
507 509 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
508 510 }
509 511 }
510 512
511 513 if (status == RTEMS_SUCCESSFUL) // ACTN
512 514 {
513 515 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
514 516 if (status!=RTEMS_SUCCESSFUL) {
515 517 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
516 518 }
517 519 }
518 520
519 521 //******************
520 522 // SPECTRAL MATRICES
521 523 if (status == RTEMS_SUCCESSFUL) // AVF0
522 524 {
523 525 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
524 526 if (status!=RTEMS_SUCCESSFUL) {
525 527 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
526 528 }
527 529 }
528 530 if (status == RTEMS_SUCCESSFUL) // PRC0
529 531 {
530 532 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
531 533 if (status!=RTEMS_SUCCESSFUL) {
532 534 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
533 535 }
534 536 }
535 537 if (status == RTEMS_SUCCESSFUL) // AVF1
536 538 {
537 539 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
538 540 if (status!=RTEMS_SUCCESSFUL) {
539 541 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
540 542 }
541 543 }
542 544 if (status == RTEMS_SUCCESSFUL) // PRC1
543 545 {
544 546 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
545 547 if (status!=RTEMS_SUCCESSFUL) {
546 548 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
547 549 }
548 550 }
549 551 if (status == RTEMS_SUCCESSFUL) // AVF2
550 552 {
551 553 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
552 554 if (status!=RTEMS_SUCCESSFUL) {
553 555 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
554 556 }
555 557 }
556 558 if (status == RTEMS_SUCCESSFUL) // PRC2
557 559 {
558 560 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
559 561 if (status!=RTEMS_SUCCESSFUL) {
560 562 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
561 563 }
562 564 }
563 565
564 566 //****************
565 567 // WAVEFORM PICKER
566 568 if (status == RTEMS_SUCCESSFUL) // WFRM
567 569 {
568 570 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
569 571 if (status!=RTEMS_SUCCESSFUL) {
570 572 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
571 573 }
572 574 }
573 575 if (status == RTEMS_SUCCESSFUL) // CWF3
574 576 {
575 577 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
576 578 if (status!=RTEMS_SUCCESSFUL) {
577 579 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
578 580 }
579 581 }
580 582 if (status == RTEMS_SUCCESSFUL) // CWF2
581 583 {
582 584 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
583 585 if (status!=RTEMS_SUCCESSFUL) {
584 586 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
585 587 }
586 588 }
587 589 if (status == RTEMS_SUCCESSFUL) // CWF1
588 590 {
589 591 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
590 592 if (status!=RTEMS_SUCCESSFUL) {
591 593 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
592 594 }
593 595 }
594 596 if (status == RTEMS_SUCCESSFUL) // SWBD
595 597 {
596 598 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
597 599 if (status!=RTEMS_SUCCESSFUL) {
598 600 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
599 601 }
600 602 }
601 603
602 604 //*****
603 605 // MISC
604 606 if (status == RTEMS_SUCCESSFUL) // HOUS
605 607 {
606 608 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
607 609 if (status!=RTEMS_SUCCESSFUL) {
608 610 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
609 611 }
610 612 }
611 613 if (status == RTEMS_SUCCESSFUL) // DUMB
612 614 {
613 615 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
614 616 if (status!=RTEMS_SUCCESSFUL) {
615 617 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
616 618 }
617 619 }
618 620 if (status == RTEMS_SUCCESSFUL) // STAT
619 621 {
620 622 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
621 623 if (status!=RTEMS_SUCCESSFUL) {
622 624 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
623 625 }
624 626 }
625 627
626 628 return status;
627 629 }
628 630
629 631 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
630 632 {
631 633 rtems_status_code status_recv;
632 634 rtems_status_code status_send;
633 635 rtems_status_code status_q_p0;
634 636 rtems_status_code status_q_p1;
635 637 rtems_status_code status_q_p2;
636 638 rtems_status_code ret;
637 639 rtems_id queue_id;
638 640
639 641 //****************************************
640 642 // create the queue for handling valid TCs
641 643 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
642 644 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
643 645 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
644 646 if ( status_recv != RTEMS_SUCCESSFUL ) {
645 647 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
646 648 }
647 649
648 650 //************************************************
649 651 // create the queue for handling TM packet sending
650 652 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
651 653 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
652 654 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
653 655 if ( status_send != RTEMS_SUCCESSFUL ) {
654 656 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
655 657 }
656 658
657 659 //*****************************************************************************
658 660 // create the queue for handling averaged spectral matrices for processing @ f0
659 661 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
660 662 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
661 663 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
662 664 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
663 665 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
664 666 }
665 667
666 668 //*****************************************************************************
667 669 // create the queue for handling averaged spectral matrices for processing @ f1
668 670 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
669 671 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
670 672 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
671 673 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
672 674 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
673 675 }
674 676
675 677 //*****************************************************************************
676 678 // create the queue for handling averaged spectral matrices for processing @ f2
677 679 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
678 680 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
679 681 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
680 682 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
681 683 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
682 684 }
683 685
684 686 if ( status_recv != RTEMS_SUCCESSFUL )
685 687 {
686 688 ret = status_recv;
687 689 }
688 690 else if( status_send != RTEMS_SUCCESSFUL )
689 691 {
690 692 ret = status_send;
691 693 }
692 694 else if( status_q_p0 != RTEMS_SUCCESSFUL )
693 695 {
694 696 ret = status_q_p0;
695 697 }
696 698 else if( status_q_p1 != RTEMS_SUCCESSFUL )
697 699 {
698 700 ret = status_q_p1;
699 701 }
700 702 else
701 703 {
702 704 ret = status_q_p2;
703 705 }
704 706
705 707 return ret;
706 708 }
707 709
708 710 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
709 711 {
710 712 rtems_status_code status;
711 713 rtems_name queue_name;
712 714
713 715 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
714 716
715 717 status = rtems_message_queue_ident( queue_name, 0, queue_id );
716 718
717 719 return status;
718 720 }
719 721
720 722 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
721 723 {
722 724 rtems_status_code status;
723 725 rtems_name queue_name;
724 726
725 727 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
726 728
727 729 status = rtems_message_queue_ident( queue_name, 0, queue_id );
728 730
729 731 return status;
730 732 }
731 733
732 734 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
733 735 {
734 736 rtems_status_code status;
735 737 rtems_name queue_name;
736 738
737 739 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
738 740
739 741 status = rtems_message_queue_ident( queue_name, 0, queue_id );
740 742
741 743 return status;
742 744 }
743 745
744 746 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
745 747 {
746 748 rtems_status_code status;
747 749 rtems_name queue_name;
748 750
749 751 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
750 752
751 753 status = rtems_message_queue_ident( queue_name, 0, queue_id );
752 754
753 755 return status;
754 756 }
755 757
756 758 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
757 759 {
758 760 rtems_status_code status;
759 761 rtems_name queue_name;
760 762
761 763 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
762 764
763 765 status = rtems_message_queue_ident( queue_name, 0, queue_id );
764 766
765 767 return status;
766 768 }
@@ -1,501 +1,523
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29 29
30 30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 31 if (status!=RTEMS_SUCCESSFUL)
32 32 {
33 33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 34 }
35 35
36 36 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
37 37 }
38 38
39 39 void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
40 40 {
41 41 /** This function starts a GPTIMER timer.
42 42 *
43 43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 45 *
46 46 */
47 47
48 48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 53 }
54 54
55 55 void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
56 56 {
57 57 /** This function stops a GPTIMER timer.
58 58 *
59 59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 61 *
62 62 */
63 63
64 64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 67 }
68 68
69 69 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
70 70 {
71 71 /** This function sets the clock divider of a GPTIMER timer.
72 72 *
73 73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 76 *
77 77 */
78 78
79 79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 80 }
81 81
82 82 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
83 83 {
84 84 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
85 85
86 86 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
87 87
88 88 return 0;
89 89 }
90 90
91 91 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
92 92 {
93 93 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
94 94
95 95 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
96 96
97 97 return 0;
98 98 }
99 99
100 100 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
101 101 {
102 102 /** This function sets the scaler reload register of the apbuart module
103 103 *
104 104 * @param regs is the address of the apbuart registers in memory
105 105 * @param value is the value that will be stored in the scaler register
106 106 *
107 107 * The value shall be set by the software to get data on the serial interface.
108 108 *
109 109 */
110 110
111 111 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
112 112
113 113 apbuart_regs->scaler = value;
114 114 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
115 115 }
116 116
117 117 //************
118 118 // RTEMS TASKS
119 119
120 120 rtems_task stat_task(rtems_task_argument argument)
121 121 {
122 122 int i;
123 123 int j;
124 124 i = 0;
125 125 j = 0;
126 126 BOOT_PRINTF("in STAT *** \n")
127 127 while(1){
128 128 rtems_task_wake_after(1000);
129 129 PRINTF1("%d\n", j)
130 130 if (i == CPU_USAGE_REPORT_PERIOD) {
131 131 // #ifdef PRINT_TASK_STATISTICS
132 132 // rtems_cpu_usage_report();
133 133 // rtems_cpu_usage_reset();
134 134 // #endif
135 135 i = 0;
136 136 }
137 137 else i++;
138 138 j++;
139 139 }
140 140 }
141 141
142 142 rtems_task hous_task(rtems_task_argument argument)
143 143 {
144 144 rtems_status_code status;
145 145 rtems_id queue_id;
146 146 rtems_rate_monotonic_period_status period_status;
147 147
148 148 status = get_message_queue_id_send( &queue_id );
149 149 if (status != RTEMS_SUCCESSFUL)
150 150 {
151 151 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
152 152 }
153 153
154 154 BOOT_PRINTF("in HOUS ***\n")
155 155
156 156 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
157 157 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
158 158 if( status != RTEMS_SUCCESSFUL ) {
159 159 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
160 160 }
161 161 }
162 162
163 163 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
164 164 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
165 165 housekeeping_packet.reserved = DEFAULT_RESERVED;
166 166 housekeeping_packet.userApplication = CCSDS_USER_APP;
167 167 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
168 168 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
169 169 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
170 170 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
171 171 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
172 172 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
173 173 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
174 174 housekeeping_packet.serviceType = TM_TYPE_HK;
175 175 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
176 176 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
177 177 housekeeping_packet.sid = SID_HK;
178 178
179 179 status = rtems_rate_monotonic_cancel(HK_id);
180 180 if( status != RTEMS_SUCCESSFUL ) {
181 181 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
182 182 }
183 183 else {
184 184 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
185 185 }
186 186
187 187 // startup phase
188 188 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
189 189 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
190 190 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
191 191 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
192 192 {
193 193 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
194 194 {
195 195 break; // break if LFR is synchronized
196 196 }
197 197 else
198 198 {
199 199 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
200 200 // sched_yield();
201 201 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
202 202 }
203 203 }
204 204 status = rtems_rate_monotonic_cancel(HK_id);
205 205 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
206 206
207 207 while(1){ // launch the rate monotonic task
208 208 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
209 209 if ( status != RTEMS_SUCCESSFUL ) {
210 210 PRINTF1( "in HOUS *** ERR period: %d\n", status);
211 211 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
212 212 }
213 213 else {
214 214 increment_seq_counter( housekeeping_packet.packetSequenceControl );
215 215 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
216 216 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
217 217 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
218 218 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
219 219 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
220 220 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
221 221
222 222 spacewire_update_statistics();
223 223
224 get_v_e1_e2_f3(
225 housekeeping_packet.hk_lfr_sc_v_f3, housekeeping_packet.hk_lfr_sc_e1_f3, housekeeping_packet.hk_lfr_sc_e2_f3 );
224 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
225 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
226 226
227 227 // SEND PACKET
228 228 status = rtems_message_queue_urgent( queue_id, &housekeeping_packet,
229 229 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
230 230 if (status != RTEMS_SUCCESSFUL) {
231 231 PRINTF1("in HOUS *** ERR send: %d\n", status)
232 232 }
233 233 }
234 234 }
235 235
236 236 PRINTF("in HOUS *** deleting task\n")
237 237
238 238 status = rtems_task_delete( RTEMS_SELF ); // should not return
239 239 printf( "rtems_task_delete returned with status of %d.\n", status );
240 240 return;
241 241 }
242 242
243 243 rtems_task dumb_task( rtems_task_argument unused )
244 244 {
245 245 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
246 246 *
247 247 * @param unused is the starting argument of the RTEMS task
248 248 *
249 249 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
250 250 *
251 251 */
252 252
253 253 unsigned int i;
254 254 unsigned int intEventOut;
255 255 unsigned int coarse_time = 0;
256 256 unsigned int fine_time = 0;
257 257 rtems_event_set event_out;
258 258
259 259 char *DumbMessages[10] = {"in DUMB *** default", // RTEMS_EVENT_0
260 260 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
261 261 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
262 262 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
263 263 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
264 264 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
265 265 "ERR HK", // RTEMS_EVENT_6
266 266 "ready for dump", // RTEMS_EVENT_7
267 267 "in DUMB *** spectral_matrices_isr", // RTEMS_EVENT_8
268 268 "tick" // RTEMS_EVENT_9
269 269 };
270 270
271 271 BOOT_PRINTF("in DUMB *** \n")
272 272
273 273 while(1){
274 274 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
275 275 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
276 276 | RTEMS_EVENT_8 | RTEMS_EVENT_9,
277 277 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
278 278 intEventOut = (unsigned int) event_out;
279 279 for ( i=0; i<32; i++)
280 280 {
281 281 if ( ((intEventOut >> i) & 0x0001) != 0)
282 282 {
283 283 coarse_time = time_management_regs->coarse_time;
284 284 fine_time = time_management_regs->fine_time;
285 285 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
286 286 }
287 287 }
288 288 }
289 289 }
290 290
291 291 //*****************************
292 292 // init housekeeping parameters
293 293
294 294 void init_housekeeping_parameters( void )
295 295 {
296 296 /** This function initialize the housekeeping_packet global variable with default values.
297 297 *
298 298 */
299 299
300 300 unsigned int i = 0;
301 301 unsigned char *parameters;
302 302
303 303 parameters = (unsigned char*) &housekeeping_packet.lfr_status_word;
304 304 for(i = 0; i< SIZE_HK_PARAMETERS; i++)
305 305 {
306 306 parameters[i] = 0x00;
307 307 }
308 308 // init status word
309 309 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
310 310 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
311 311 // init software version
312 312 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
313 313 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
314 314 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
315 315 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
316 316 // init fpga version
317 317 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
318 318 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
319 319 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
320 320 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
321 321 }
322 322
323 323 void increment_seq_counter( unsigned char *packet_sequence_control)
324 324 {
325 325 /** This function increment the sequence counter psased in argument.
326 326 *
327 327 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
328 328 *
329 329 */
330 330
331 331 unsigned short sequence_cnt;
332 332 unsigned short segmentation_grouping_flag;
333 333 unsigned short new_packet_sequence_control;
334 334
335 335 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
336 336 sequence_cnt = (unsigned short) (
337 337 ( (packet_sequence_control[0] & 0x3f) << 8 ) // keep bits 5 downto 0
338 338 + packet_sequence_control[1]
339 339 );
340 340
341 341 if ( sequence_cnt < SEQ_CNT_MAX)
342 342 {
343 343 sequence_cnt = sequence_cnt + 1;
344 344 }
345 345 else
346 346 {
347 347 sequence_cnt = 0;
348 348 }
349 349
350 350 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
351 351
352 352 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
353 353 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
354 354 }
355 355
356 356 void getTime( unsigned char *time)
357 357 {
358 358 /** This function write the current local time in the time buffer passed in argument.
359 359 *
360 360 */
361 361
362 362 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
363 363 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
364 364 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
365 365 time[3] = (unsigned char) (time_management_regs->coarse_time);
366 366 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
367 367 time[5] = (unsigned char) (time_management_regs->fine_time);
368 368 }
369 369
370 370 unsigned long long int getTimeAsUnsignedLongLongInt( )
371 371 {
372 372 /** This function write the current local time in the time buffer passed in argument.
373 373 *
374 374 */
375 375 unsigned long long int time;
376 376
377 377 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
378 378 + time_management_regs->fine_time;
379 379
380 380 return time;
381 381 }
382 382
383 383 void send_dumb_hk( void )
384 384 {
385 385 Packet_TM_LFR_HK_t dummy_hk_packet;
386 386 unsigned char *parameters;
387 387 unsigned int i;
388 388 rtems_id queue_id;
389 389
390 390 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
391 391 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
392 392 dummy_hk_packet.reserved = DEFAULT_RESERVED;
393 393 dummy_hk_packet.userApplication = CCSDS_USER_APP;
394 394 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
395 395 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
396 396 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
397 397 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
398 398 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
399 399 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
400 400 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
401 401 dummy_hk_packet.serviceType = TM_TYPE_HK;
402 402 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
403 403 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
404 404 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
405 405 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
406 406 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
407 407 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
408 408 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
409 409 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
410 410 dummy_hk_packet.sid = SID_HK;
411 411
412 412 // init status word
413 413 dummy_hk_packet.lfr_status_word[0] = 0xff;
414 414 dummy_hk_packet.lfr_status_word[1] = 0xff;
415 415 // init software version
416 416 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
417 417 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
418 418 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
419 419 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
420 420 // init fpga version
421 421 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
422 422 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
423 423 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
424 424 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
425 425
426 426 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
427 427
428 428 for (i=0; i<100; i++)
429 429 {
430 430 parameters[i] = 0xff;
431 431 }
432 432
433 433 get_message_queue_id_send( &queue_id );
434 434
435 435 rtems_message_queue_urgent( queue_id, &dummy_hk_packet,
436 436 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
437 437 }
438 438
439 void get_v_e1_e2_f3( unsigned char *v, unsigned char *e1, unsigned char *e2 )
439 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
440 440 {
441 441 unsigned int coarseTime;
442 442 unsigned int acquisitionTime;
443 443 unsigned int deltaT = 0;
444 444 unsigned char *bufferPtr;
445 445
446 446 unsigned int offset_in_samples;
447 447 unsigned int offset_in_bytes;
448 448 unsigned char f3 = 16; // v, e1 and e2 will be picked up each second, f3 = 16 Hz
449 449
450 450 if (lfrCurrentMode == LFR_MODE_STANDBY)
451 451 {
452 v[0] = 0x00;
453 v[1] = 0x00;
454 e1[0] = 0x00;
455 e1[1] = 0x00;
456 e2[0] = 0x00;
457 e2[1] = 0x00;
452 spacecraft_potential[0] = 0x00;
453 spacecraft_potential[1] = 0x00;
454 spacecraft_potential[2] = 0x00;
455 spacecraft_potential[3] = 0x00;
456 spacecraft_potential[4] = 0x00;
457 spacecraft_potential[5] = 0x00;
458 458 }
459 459 else
460 460 {
461 461 coarseTime = time_management_regs->coarse_time & 0x7fffffff;
462 462 bufferPtr = (unsigned char*) current_ring_node_f3->buffer_address;
463 463 acquisitionTime = (unsigned int) ( ( bufferPtr[2] & 0x7f ) << 24 )
464 464 + (unsigned int) ( bufferPtr[3] << 16 )
465 465 + (unsigned int) ( bufferPtr[0] << 8 )
466 466 + (unsigned int) ( bufferPtr[1] );
467 467 if ( coarseTime > acquisitionTime )
468 468 {
469 469 deltaT = coarseTime - acquisitionTime;
470 470 offset_in_samples = (deltaT-1) * f3 ;
471 471 }
472 472 else if( coarseTime == acquisitionTime )
473 473 {
474 474 bufferPtr = (unsigned char*) current_ring_node_f3->previous->buffer_address; // pick up v e1 and e2 in the previous f3 buffer
475 475 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT-1;
476 476 }
477 477 else
478 478 {
479 479 offset_in_samples = 0;
480 480 PRINTF2("ERR *** in get_v_e1_e2_f3 *** coarseTime = %x, acquisitionTime = %x\n", coarseTime, acquisitionTime)
481 481 }
482 482
483 483 if ( offset_in_samples > (NB_SAMPLES_PER_SNAPSHOT - 1) )
484 484 {
485 485 PRINTF1("ERR *** in get_v_e1_e2_f3 *** trying to read out of the buffer, counter = %d\n", offset_in_samples)
486 486 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT -1;
487 487 }
488 488 offset_in_bytes = TIME_OFFSET_IN_BYTES + offset_in_samples * NB_WORDS_SWF_BLK * 4;
489 v[0] = bufferPtr[ offset_in_bytes + 0];
490 v[1] = bufferPtr[ offset_in_bytes + 1];
491 e1[0] = bufferPtr[ offset_in_bytes + 2];
492 e1[1] = bufferPtr[ offset_in_bytes + 3];
493 e2[0] = bufferPtr[ offset_in_bytes + 4];
494 e2[1] = bufferPtr[ offset_in_bytes + 5];
489 spacecraft_potential[0] = bufferPtr[ offset_in_bytes + 0];
490 spacecraft_potential[1] = bufferPtr[ offset_in_bytes + 1];
491 spacecraft_potential[2] = bufferPtr[ offset_in_bytes + 2];
492 spacecraft_potential[3] = bufferPtr[ offset_in_bytes + 3];
493 spacecraft_potential[4] = bufferPtr[ offset_in_bytes + 4];
494 spacecraft_potential[5] = bufferPtr[ offset_in_bytes + 5];
495 495 }
496 496 }
497 497
498 void get_cpu_load( unsigned char *resource_statistics )
499 {
500 unsigned char cpu_load;
501
502 cpu_load = lfr_rtems_cpu_usage_report();
503
504 // HK_LFR_CPU_LOAD
505 resource_statistics[0] = cpu_load;
506
507 // HK_LFR_CPU_LOAD_MAX
508 if (cpu_load > resource_statistics[1])
509 {
510 resource_statistics[1] = cpu_load;
511 }
512
513 // CPU_LOAD_AVE
514 resource_statistics[2] = 0;
515
516 #ifndef PRINT_TASK_STATISTICS
517 rtems_cpu_usage_reset();
518 #endif
519
520 }
521
498 522
499 523
500
501
@@ -1,370 +1,370
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf0_prc0.h"
11 11 #include "fsw_processing.h"
12 12
13 13 nb_sm_before_bp_asm_f0 nb_sm_before_f0;
14 14
15 15 //***
16 16 // F0
17 17 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ];
18 18 ring_node_asm asm_ring_burst_sbm_f0[ NB_RING_NODES_ASM_BURST_SBM_F0 ];
19 19
20 20 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
21 21 char asm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
22 22 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0];
23 23 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ];
24 24 //unsigned char bp1_norm_f0 [ TOTAL_SIZE_BP1_NORM_F0 ];
25 25 //unsigned char bp1_sbm_f0 [ TOTAL_SIZE_BP1_SBM_F0 ];
26 26
27 27 //************
28 28 // RTEMS TASKS
29 29
30 30 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
31 31 {
32 32 int i;
33 33
34 34 rtems_event_set event_out;
35 35 rtems_status_code status;
36 36 rtems_id queue_id_prc0;
37 37 asm_msg msgForMATR;
38 38 ring_node_sm *ring_node_tab[8];
39 39 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
40 40 ring_node_asm *current_ring_node_asm_norm_f0;
41 41
42 42 unsigned int nb_norm_bp1;
43 43 unsigned int nb_norm_bp2;
44 44 unsigned int nb_norm_asm;
45 45 unsigned int nb_sbm_bp1;
46 46 unsigned int nb_sbm_bp2;
47 47
48 48 nb_norm_bp1 = 0;
49 49 nb_norm_bp2 = 0;
50 50 nb_norm_asm = 0;
51 51 nb_sbm_bp1 = 0;
52 52 nb_sbm_bp2 = 0;
53 53
54 54 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
55 55 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
56 56 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
57 57 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
58 58 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
59 59
60 60 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
61 61
62 62 status = get_message_queue_id_prc0( &queue_id_prc0 );
63 63 if (status != RTEMS_SUCCESSFUL)
64 64 {
65 65 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
66 66 }
67 67
68 68 while(1){
69 69 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
70 70 ring_node_tab[NB_SM_BEFORE_AVF0-1] = ring_node_for_averaging_sm_f0;
71 71 for ( i = 2; i < (NB_SM_BEFORE_AVF0+1); i++ )
72 72 {
73 73 ring_node_for_averaging_sm_f0 = ring_node_for_averaging_sm_f0->previous;
74 74 ring_node_tab[NB_SM_BEFORE_AVF0-i] = ring_node_for_averaging_sm_f0;
75 75 }
76 76
77 77 // compute the average and store it in the averaged_sm_f1 buffer
78 78 SM_average( current_ring_node_asm_norm_f0->matrix,
79 79 current_ring_node_asm_burst_sbm_f0->matrix,
80 80 ring_node_tab,
81 81 nb_norm_bp1, nb_sbm_bp1 );
82 82
83 83 // update nb_average
84 84 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0;
85 85 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0;
86 86 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0;
87 87 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0;
88 88 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0;
89 89
90 90 //****************************************
91 91 // initialize the mesage for the MATR task
92 92 msgForMATR.event = 0x00; // this composite event will be sent to the MATR task
93 93 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f0;
94 94 msgForMATR.norm = current_ring_node_asm_norm_f0;
95 95 // msgForMATR.coarseTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[0];
96 96 // msgForMATR.fineTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[1];
97 97 msgForMATR.coarseTime = time_management_regs->coarse_time;
98 98 msgForMATR.fineTime = time_management_regs->fine_time;
99 99
100 100 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
101 101 {
102 102 nb_sbm_bp1 = 0;
103 103 // set another ring for the ASM storage
104 104 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
105 105 if ( (lfrCurrentMode == LFR_MODE_BURST)
106 106 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
107 107 {
108 108 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP1_F0;
109 109 }
110 110 }
111 111
112 112 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
113 113 {
114 114 nb_sbm_bp2 = 0;
115 115 if ( (lfrCurrentMode == LFR_MODE_BURST)
116 116 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
117 117 {
118 118 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP2_F0;
119 119 }
120 120 }
121 121
122 122 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
123 123 {
124 124 nb_norm_bp1 = 0;
125 125 // set another ring for the ASM storage
126 126 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
127 127 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
128 128 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
129 129 {
130 130 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F0;
131 131 }
132 132 }
133 133
134 134 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
135 135 {
136 136 nb_norm_bp2 = 0;
137 137 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
138 138 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
139 139 {
140 140 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F0;
141 141 }
142 142 }
143 143
144 144 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
145 145 {
146 146 nb_norm_asm = 0;
147 147 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
148 148 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
149 149 {
150 150 // PRINTF1("%lld\n", localTime)
151 151 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F0;
152 152 }
153 153 }
154 154
155 155 //*************************
156 156 // send the message to MATR
157 157 if (msgForMATR.event != 0x00)
158 158 {
159 159 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
160 160 }
161 161
162 162 if (status != RTEMS_SUCCESSFUL) {
163 163 printf("in AVF0 *** Error sending message to MATR, code %d\n", status);
164 164 }
165 165 }
166 166 }
167 167
168 168 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
169 169 {
170 170 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
171 171 size_t size; // size of the incoming TC packet
172 172 asm_msg *incomingMsg;
173 173 //
174 174 spw_ioctl_pkt_send spw_ioctl_send_ASM;
175 175 rtems_status_code status;
176 176 rtems_id queue_id;
177 177 rtems_id queue_id_q_p0;
178 178 Header_TM_LFR_SCIENCE_ASM_t headerASM;
179 179 bp_packet_with_spare packet_norm_bp1_f0;
180 180 bp_packet packet_norm_bp2_f0;
181 181 bp_packet packet_sbm_bp1_f0;
182 182 bp_packet packet_sbm_bp2_f0;
183 183
184 184 unsigned long long int localTime;
185 185
186 186 ASM_init_header( &headerASM );
187 187
188 188 //*************
189 189 // NORM headers
190 190 BP_init_header_with_spare( &packet_norm_bp1_f0.header,
191 191 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
192 192 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
193 193 BP_init_header( &packet_norm_bp2_f0.header,
194 194 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
195 195 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
196 196
197 197 //****************************
198 198 // BURST SBM1 and SBM2 headers
199 199 if ( lfrRequestedMode == LFR_MODE_BURST )
200 200 {
201 201 BP_init_header( &packet_sbm_bp1_f0.header,
202 202 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
203 203 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
204 204 BP_init_header( &packet_sbm_bp2_f0.header,
205 205 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
206 206 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
207 207 }
208 208 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
209 209 {
210 210 BP_init_header( &packet_sbm_bp1_f0.header,
211 211 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
212 212 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
213 213 BP_init_header( &packet_sbm_bp2_f0.header,
214 214 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
215 215 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
216 216 }
217 217 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
218 218 {
219 219 BP_init_header( &packet_sbm_bp1_f0.header,
220 220 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
221 221 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
222 222 BP_init_header( &packet_sbm_bp2_f0.header,
223 223 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
224 224 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
225 225 }
226 226 else
227 227 {
228 228 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
229 229 }
230 230
231 231 status = get_message_queue_id_send( &queue_id );
232 232 if (status != RTEMS_SUCCESSFUL)
233 233 {
234 234 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
235 235 }
236 236 status = get_message_queue_id_prc0( &queue_id_q_p0);
237 237 if (status != RTEMS_SUCCESSFUL)
238 238 {
239 239 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
240 240 }
241 241
242 242 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
243 243
244 244 while(1){
245 245 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
246 246 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
247 247
248 248 incomingMsg = (asm_msg*) incomingData;
249 249
250 250 localTime = getTimeAsUnsignedLongLongInt( );
251 251 //****************
252 252 //****************
253 253 // BURST SBM1 SBM2
254 254 //****************
255 255 //****************
256 256 if (incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP1_F0 )
257 257 {
258 258 // 1) compress the matrix for Basic Parameters calculation
259 259 ASM_compress_reorganize_and_divide( incomingMsg->burst_sbm->matrix, compressed_sm_sbm_f0,
260 260 nb_sm_before_f0.burst_sbm_bp1,
261 261 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
262 262 ASM_F0_INDICE_START);
263 263 // 2) compute the BP1 set
264 264 // BP1_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, bp1_sbm_f0 );
265 265 // 3) send the BP1 set
266 266 set_time( packet_sbm_bp1_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
267 set_time( packet_sbm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
267 set_time( packet_sbm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
268 268 BP_send( (char *) &packet_sbm_bp1_f0, queue_id,
269 269 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
270 270 SID_SBM1_BP1_F0);
271 271 // 4) compute the BP2 set if needed
272 272 if ( incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP2_F0 )
273 273 {
274 274 // 1) compute the BP2 set
275 275
276 276 // 2) send the BP2 set
277 277 set_time( packet_sbm_bp2_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
278 set_time( packet_sbm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
278 set_time( packet_sbm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
279 279 BP_send( (char *) &packet_sbm_bp2_f0, queue_id,
280 280 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
281 281 SID_SBM1_BP2_F0);
282 282 }
283 283 }
284 284
285 285 //*****
286 286 //*****
287 287 // NORM
288 288 //*****
289 289 //*****
290 290 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
291 291 {
292 292 // 1) compress the matrix for Basic Parameters calculation
293 293 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f0,
294 294 nb_sm_before_f0.norm_bp1,
295 295 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
296 296 ASM_F0_INDICE_START );
297 297 // 2) compute the BP1 set
298 298 // BP1_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, bp1_norm_f0 );
299 299 // 3) send the BP1 set
300 300 set_time( packet_norm_bp1_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
301 set_time( packet_norm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
301 set_time( packet_norm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
302 302 BP_send( (char *) &packet_norm_bp1_f0, queue_id,
303 303 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
304 304 SID_NORM_BP1_F0 );
305 305 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
306 306 {
307 307 // 1) compute the BP2 set using the same ASM as the one used for BP1
308 308
309 309 // 2) send the BP2 set
310 310 set_time( packet_norm_bp2_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
311 set_time( packet_norm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
311 set_time( packet_norm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
312 312 BP_send( (char *) &packet_norm_bp2_f0, queue_id,
313 313 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
314 314 SID_NORM_BP2_F0);
315 315 }
316 316 }
317 317
318 318 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
319 319 {
320 320 // 1) reorganize the ASM and divide
321 321 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
322 322 asm_f0_reorganized,
323 323 nb_sm_before_f0.norm_bp1 );
324 324 // 2) convert the float array in a char array
325 325 ASM_convert( asm_f0_reorganized, asm_f0_char);
326 326 // 3) send the spectral matrix packets
327 327 set_time( headerASM.time , (unsigned char *) &incomingMsg->coarseTime );
328 328 set_time( headerASM.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
329 329 ASM_send( &headerASM, asm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
330 330 }
331 331
332 332 }
333 333 }
334 334
335 335 //**********
336 336 // FUNCTIONS
337 337
338 338 void reset_nb_sm_f0( unsigned char lfrMode )
339 339 {
340 340 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 96;
341 341 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 96;
342 342 nb_sm_before_f0.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 96;
343 343 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * 24;
344 344 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * 96;
345 345 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 96;
346 346 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 96;
347 347 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 96;
348 348 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 96;
349 349
350 350 if (lfrMode == LFR_MODE_SBM1)
351 351 {
352 352 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
353 353 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
354 354 }
355 355 else if (lfrMode == LFR_MODE_SBM2)
356 356 {
357 357 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
358 358 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
359 359 }
360 360 else if (lfrMode == LFR_MODE_BURST)
361 361 {
362 362 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
363 363 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
364 364 }
365 365 else
366 366 {
367 367 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
368 368 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
369 369 }
370 370 }
@@ -1,349 +1,349
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf1_prc1.h"
11 11
12 12 nb_sm_before_bp_asm_f1 nb_sm_before_f1;
13 13
14 14 //***
15 15 // F1
16 16 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ];
17 17 ring_node_asm asm_ring_burst_sbm_f1[ NB_RING_NODES_ASM_BURST_SBM_F1 ];
18 18
19 19 float asm_f1_reorganized [ TOTAL_SIZE_SM ];
20 20 char asm_f1_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
21 21 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1];
22 22 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ];
23 23
24 24 //************
25 25 // RTEMS TASKS
26 26
27 27 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
28 28 {
29 29 int i;
30 30
31 31 rtems_event_set event_out;
32 32 rtems_status_code status;
33 33 rtems_id queue_id_prc1;
34 34 asm_msg msgForMATR;
35 35 ring_node_sm *ring_node_tab[8];
36 36 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
37 37 ring_node_asm *current_ring_node_asm_norm_f1;
38 38
39 39 unsigned int nb_norm_bp1;
40 40 unsigned int nb_norm_bp2;
41 41 unsigned int nb_norm_asm;
42 42 unsigned int nb_sbm_bp1;
43 43 unsigned int nb_sbm_bp2;
44 44
45 45 nb_norm_bp1 = 0;
46 46 nb_norm_bp2 = 0;
47 47 nb_norm_asm = 0;
48 48 nb_sbm_bp1 = 0;
49 49 nb_sbm_bp2 = 0;
50 50
51 51 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
52 52 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
53 53 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
54 54 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
55 55 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
56 56
57 57 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
58 58
59 59 status = get_message_queue_id_prc1( &queue_id_prc1 );
60 60 if (status != RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
63 63 }
64 64
65 65 while(1){
66 66 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
67 67 ring_node_tab[NB_SM_BEFORE_AVF1-1] = ring_node_for_averaging_sm_f1;
68 68 for ( i = 2; i < (NB_SM_BEFORE_AVF1+1); i++ )
69 69 {
70 70 ring_node_for_averaging_sm_f1 = ring_node_for_averaging_sm_f1->previous;
71 71 ring_node_tab[NB_SM_BEFORE_AVF1-i] = ring_node_for_averaging_sm_f1;
72 72 }
73 73
74 74 // compute the average and store it in the averaged_sm_f1 buffer
75 75 SM_average( current_ring_node_asm_norm_f1->matrix,
76 76 current_ring_node_asm_burst_sbm_f1->matrix,
77 77 ring_node_tab,
78 78 nb_norm_bp1, nb_sbm_bp1 );
79 79
80 80 // update nb_average
81 81 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF1;
82 82 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF1;
83 83 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF1;
84 84 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF1;
85 85 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF1;
86 86
87 87 //****************************************
88 88 // initialize the mesage for the MATR task
89 89 msgForMATR.event = 0x00; // this composite event will be sent to the PRC1 task
90 90 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f1;
91 91 msgForMATR.norm = current_ring_node_asm_norm_f1;
92 92 // msgForMATR.coarseTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[0];
93 93 // msgForMATR.fineTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[1];
94 94 msgForMATR.coarseTime = time_management_regs->coarse_time;
95 95 msgForMATR.fineTime = time_management_regs->fine_time;
96 96
97 97 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
98 98 {
99 99 nb_sbm_bp1 = 0;
100 100 // set another ring for the ASM storage
101 101 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
102 102 if ( (lfrCurrentMode == LFR_MODE_BURST) || (lfrCurrentMode == LFR_MODE_SBM2) )
103 103 {
104 104 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP1_F1;
105 105 }
106 106 }
107 107
108 108 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
109 109 {
110 110 nb_sbm_bp2 = 0;
111 111 if ( (lfrCurrentMode == LFR_MODE_BURST) || (lfrCurrentMode == LFR_MODE_SBM2) )
112 112 {
113 113 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP2_F1;
114 114 }
115 115 }
116 116
117 117 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
118 118 {
119 119 nb_norm_bp1 = 0;
120 120 // set another ring for the ASM storage
121 121 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
122 122 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
123 123 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
124 124 {
125 125 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F1;
126 126 }
127 127 }
128 128
129 129 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
130 130 {
131 131 nb_norm_bp2 = 0;
132 132 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
133 133 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
134 134 {
135 135 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F1;
136 136 }
137 137 }
138 138
139 139 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
140 140 {
141 141 nb_norm_asm = 0;
142 142 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
143 143 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
144 144 {
145 145 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F1;
146 146 }
147 147 }
148 148
149 149 //*************************
150 150 // send the message to MATR
151 151 if (msgForMATR.event != 0x00)
152 152 {
153 153 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC1);
154 154 }
155 155
156 156 if (status != RTEMS_SUCCESSFUL) {
157 157 printf("in AVF1 *** Error sending message to PRC1, code %d\n", status);
158 158 }
159 159 }
160 160 }
161 161
162 162 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
163 163 {
164 164 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
165 165 size_t size; // size of the incoming TC packet
166 166 asm_msg *incomingMsg;
167 167 //
168 168 spw_ioctl_pkt_send spw_ioctl_send_ASM;
169 169 rtems_status_code status;
170 170 rtems_id queue_id_send;
171 171 rtems_id queue_id_q_p1;
172 172 Header_TM_LFR_SCIENCE_ASM_t headerASM;
173 173 bp_packet_with_spare packet_norm_bp1;
174 174 bp_packet packet_norm_bp2;
175 175 bp_packet packet_sbm_bp1;
176 176 bp_packet packet_sbm_bp2;
177 177
178 178 unsigned long long int localTime;
179 179
180 180 ASM_init_header( &headerASM );
181 181
182 182 //*************
183 183 // NORM headers
184 184 BP_init_header_with_spare( &packet_norm_bp1.header,
185 185 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
186 186 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
187 187 BP_init_header( &packet_norm_bp2.header,
188 188 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
189 189 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
190 190
191 191 //***********************
192 192 // BURST and SBM2 headers
193 193 if ( lfrRequestedMode == LFR_MODE_BURST )
194 194 {
195 195 BP_init_header( &packet_sbm_bp1.header,
196 196 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
197 197 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F1);
198 198 BP_init_header( &packet_sbm_bp2.header,
199 199 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
200 200 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F1);
201 201 }
202 202 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
203 203 {
204 204 BP_init_header( &packet_sbm_bp1.header,
205 205 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
206 206 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
207 207 BP_init_header( &packet_sbm_bp2.header,
208 208 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
209 209 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
210 210 }
211 211 else
212 212 {
213 213 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
214 214 }
215 215
216 216 status = get_message_queue_id_send( &queue_id_send );
217 217 if (status != RTEMS_SUCCESSFUL)
218 218 {
219 219 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
220 220 }
221 221 status = get_message_queue_id_prc1( &queue_id_q_p1);
222 222 if (status != RTEMS_SUCCESSFUL)
223 223 {
224 224 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
225 225 }
226 226
227 227 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
228 228
229 229 while(1){
230 230 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
231 231 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
232 232
233 233 incomingMsg = (asm_msg*) incomingData;
234 234
235 235 localTime = getTimeAsUnsignedLongLongInt( );
236 236 //***********
237 237 //***********
238 238 // BURST SBM2
239 239 //***********
240 240 //***********
241 241 if (incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP1_F1 )
242 242 {
243 243 // 1) compress the matrix for Basic Parameters calculation
244 244 ASM_compress_reorganize_and_divide( incomingMsg->burst_sbm->matrix, compressed_sm_sbm_f1,
245 245 nb_sm_before_f1.burst_sbm_bp1,
246 246 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
247 247 ASM_F1_INDICE_START);
248 248 // 2) compute the BP1 set
249 249
250 250 // 3) send the BP1 set
251 251 set_time( packet_sbm_bp1.header.time, (unsigned char *) &incomingMsg->coarseTime );
252 set_time( packet_sbm_bp1.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
252 set_time( packet_sbm_bp1.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
253 253 BP_send( (char *) &packet_sbm_bp1, queue_id_send,
254 254 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA,
255 255 SID_SBM2_BP1_F1 );
256 256 // 4) compute the BP2 set if needed
257 257 if ( incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP2_F1 )
258 258 {
259 259 // 1) compute the BP2 set
260 260
261 261 // 2) send the BP2 set
262 262 set_time( packet_sbm_bp2.header.time, (unsigned char *) &incomingMsg->coarseTime );
263 set_time( packet_sbm_bp2.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
263 set_time( packet_sbm_bp2.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
264 264 BP_send( (char *) &packet_sbm_bp2, queue_id_send,
265 265 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA,
266 266 SID_SBM2_BP2_F1 );
267 267 }
268 268 }
269 269
270 270 //*****
271 271 //*****
272 272 // NORM
273 273 //*****
274 274 //*****
275 275 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
276 276 {
277 277 // 1) compress the matrix for Basic Parameters calculation
278 278 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f1,
279 279 nb_sm_before_f1.norm_bp1,
280 280 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
281 281 ASM_F0_INDICE_START );
282 282 // 2) compute the BP1 set
283 283
284 284 // 3) send the BP1 set
285 285 set_time( packet_norm_bp1.header.time, (unsigned char *) &incomingMsg->coarseTime );
286 286 set_time( packet_norm_bp1.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
287 287 BP_send( (char *) &packet_norm_bp1, queue_id_send,
288 288 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA,
289 289 SID_NORM_BP1_F1 );
290 290 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
291 291 {
292 292 // 1) compute the BP2 set
293 293
294 294 // 2) send the BP2 set
295 295 set_time( packet_norm_bp2.header.time, (unsigned char *) &incomingMsg->coarseTime );
296 set_time( packet_norm_bp2.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
296 set_time( packet_norm_bp2.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
297 297 BP_send( (char *) &packet_norm_bp2, queue_id_send,
298 298 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA,
299 299 SID_NORM_BP2_F1 );
300 300 }
301 301 }
302 302
303 303 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
304 304 {
305 305 // 1) reorganize the ASM and divide
306 306 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
307 307 asm_f1_reorganized,
308 308 nb_sm_before_f1.norm_bp1 );
309 309 // 2) convert the float array in a char array
310 310 ASM_convert( asm_f1_reorganized, asm_f1_char);
311 311 // 3) send the spectral matrix packets
312 312 set_time( headerASM.time , (unsigned char *) &incomingMsg->coarseTime );
313 313 set_time( headerASM.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
314 314 ASM_send( &headerASM, asm_f1_char, SID_NORM_ASM_F1, &spw_ioctl_send_ASM, queue_id_send);
315 315 }
316 316
317 317 }
318 318 }
319 319
320 320 //**********
321 321 // FUNCTIONS
322 322
323 323 void reset_nb_sm_f1( unsigned char lfrMode )
324 324 {
325 325 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 16;
326 326 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 16;
327 327 nb_sm_before_f1.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 16;
328 328 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 16;
329 329 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 16;
330 330 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 16;
331 331 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 16;
332 332
333 333 if (lfrMode == LFR_MODE_SBM2)
334 334 {
335 335 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
336 336 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
337 337 }
338 338 else if (lfrMode == LFR_MODE_BURST)
339 339 {
340 340 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
341 341 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
342 342 }
343 343 else
344 344 {
345 345 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
346 346 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
347 347 }
348 348 }
349 349
@@ -1,253 +1,253
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf2_prc2.h"
11 11
12 12 nb_sm_before_bp_asm_f2 nb_sm_before_f2;
13 13
14 14 //***
15 15 // F2
16 16 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ];
17 17 ring_node_asm asm_ring_burst_sbm_f2[ NB_RING_NODES_ASM_BURST_SBM_F2 ];
18 18
19 19 float asm_f2_reorganized [ TOTAL_SIZE_SM ];
20 20 char asm_f2_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
21 21 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2];
22 22 float compressed_sm_sbm_f2 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F2 ];
23 23
24 24 //************
25 25 // RTEMS TASKS
26 26
27 27 //***
28 28 // F2
29 29 rtems_task avf2_task( rtems_task_argument argument )
30 30 {
31 31 rtems_event_set event_out;
32 32 rtems_status_code status;
33 33 rtems_id queue_id_prc2;
34 34 asm_msg msgForMATR;
35 35 ring_node_asm *current_ring_node_asm_norm_f2;
36 36
37 37 unsigned int nb_norm_bp1;
38 38 unsigned int nb_norm_bp2;
39 39 unsigned int nb_norm_asm;
40 40
41 41 nb_norm_bp1 = 0;
42 42 nb_norm_bp2 = 0;
43 43 nb_norm_asm = 0;
44 44
45 45 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
46 46 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
47 47 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
48 48
49 49 BOOT_PRINTF("in AVF2 ***\n")
50 50
51 51 status = get_message_queue_id_prc2( &queue_id_prc2 );
52 52 if (status != RTEMS_SUCCESSFUL)
53 53 {
54 54 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
55 55 }
56 56
57 57 while(1){
58 58 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
59 59
60 60 // compute the average and store it in the averaged_sm_f2 buffer
61 61 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
62 62 ring_node_for_averaging_sm_f2,
63 63 nb_norm_bp1 );
64 64
65 65 // update nb_average
66 66 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
67 67 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
68 68 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
69 69
70 70 //****************************************
71 71 // initialize the mesage for the MATR task
72 72 msgForMATR.event = 0x00; // this composite event will be sent to the MATR task
73 73 msgForMATR.burst_sbm = NULL;
74 74 msgForMATR.norm = current_ring_node_asm_norm_f2;
75 75 // msgForMATR.coarseTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[0];
76 76 // msgForMATR.fineTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[1];
77 77 msgForMATR.coarseTime = time_management_regs->coarse_time;
78 78 msgForMATR.fineTime = time_management_regs->fine_time;
79 79
80 80 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
81 81 {
82 82 nb_norm_bp1 = 0;
83 83 // set another ring for the ASM storage
84 84 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
85 85 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
86 86 || (lfrCurrentMode == LFR_MODE_SBM2) )
87 87 {
88 88 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F2;
89 89 }
90 90 }
91 91
92 92 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
93 93 {
94 94 nb_norm_bp2 = 0;
95 95 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
96 96 || (lfrCurrentMode == LFR_MODE_SBM2) )
97 97 {
98 98 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F2;
99 99 }
100 100 }
101 101
102 102 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
103 103 {
104 104 nb_norm_asm = 0;
105 105 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
106 106 || (lfrCurrentMode == LFR_MODE_SBM2) )
107 107 {
108 108 // PRINTF1("%lld\n", localTime)
109 109 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F2;
110 110 }
111 111 }
112 112
113 113 //*************************
114 114 // send the message to MATR
115 115 if (msgForMATR.event != 0x00)
116 116 {
117 117 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
118 118 }
119 119
120 120 if (status != RTEMS_SUCCESSFUL) {
121 121 printf("in AVF2 *** Error sending message to MATR, code %d\n", status);
122 122 }
123 123 }
124 124 }
125 125
126 126 rtems_task prc2_task( rtems_task_argument argument )
127 127 {
128 128 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
129 129 size_t size; // size of the incoming TC packet
130 130 asm_msg *incomingMsg;
131 131 //
132 132 spw_ioctl_pkt_send spw_ioctl_send_ASM;
133 133 rtems_status_code status;
134 134 rtems_id queue_id;
135 135 rtems_id queue_id_q_p2;
136 136 Header_TM_LFR_SCIENCE_ASM_t headerASM;
137 137 bp_packet packet_norm_bp1_f2;
138 138 bp_packet packet_norm_bp2_f2;
139 139
140 140 unsigned long long int localTime;
141 141
142 142 ASM_init_header( &headerASM );
143 143
144 144 //*************
145 145 // NORM headers
146 146 BP_init_header( &packet_norm_bp1_f2.header,
147 147 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
148 148 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
149 149 BP_init_header( &packet_norm_bp2_f2.header,
150 150 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
151 151 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
152 152
153 153 status = get_message_queue_id_send( &queue_id );
154 154 if (status != RTEMS_SUCCESSFUL)
155 155 {
156 156 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
157 157 }
158 158 status = get_message_queue_id_prc2( &queue_id_q_p2);
159 159 if (status != RTEMS_SUCCESSFUL)
160 160 {
161 161 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
162 162 }
163 163
164 164 BOOT_PRINTF("in PRC2 ***\n")
165 165
166 166 while(1){
167 167 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
168 168 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
169 169
170 170 incomingMsg = (asm_msg*) incomingData;
171 171
172 172 localTime = getTimeAsUnsignedLongLongInt( );
173 173
174 174 //*****
175 175 //*****
176 176 // NORM
177 177 //*****
178 178 //*****
179 179 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
180 180 {
181 181 // 1) compress the matrix for Basic Parameters calculation
182 182 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f2,
183 183 nb_sm_before_f2.norm_bp1,
184 184 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
185 185 ASM_F2_INDICE_START );
186 186 // 2) compute the BP1 set
187 187
188 188 // 3) send the BP1 set
189 189 set_time( packet_norm_bp1_f2.header.time, (unsigned char *) &incomingMsg->coarseTime );
190 set_time( packet_norm_bp1_f2.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
190 set_time( packet_norm_bp1_f2.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
191 191 BP_send( (char *) &packet_norm_bp1_f2, queue_id,
192 192 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
193 193 SID_NORM_BP1_F2 );
194 194 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
195 195 {
196 196 // 1) compute the BP2 set using the same ASM as the one used for BP1
197 197
198 198 // 2) send the BP2 set
199 199 set_time( packet_norm_bp2_f2.header.time, (unsigned char *) &incomingMsg->coarseTime );
200 set_time( packet_norm_bp2_f2.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
200 set_time( packet_norm_bp2_f2.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
201 201 BP_send( (char *) &packet_norm_bp2_f2, queue_id,
202 202 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
203 203 SID_NORM_BP2_F2 );
204 204 }
205 205 }
206 206
207 207 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
208 208 {
209 209 // 1) reorganize the ASM and divide
210 210 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
211 211 asm_f2_reorganized,
212 212 nb_sm_before_f2.norm_bp1 );
213 213 // 2) convert the float array in a char array
214 214 ASM_convert( asm_f2_reorganized, asm_f2_char);
215 215 // 3) send the spectral matrix packets
216 216 set_time( headerASM.time , (unsigned char *) &incomingMsg->coarseTime );
217 217 set_time( headerASM.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
218 218 ASM_send( &headerASM, asm_f2_char, SID_NORM_ASM_F2, &spw_ioctl_send_ASM, queue_id);
219 219 }
220 220
221 221 }
222 222 }
223 223
224 224 //**********
225 225 // FUNCTIONS
226 226
227 227 void reset_nb_sm_f2( void )
228 228 {
229 229 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
230 230 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
231 231 nb_sm_before_f2.norm_asm = parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1];
232 232 }
233 233
234 234 void SM_average_f2( float *averaged_spec_mat_f2,
235 235 ring_node_sm *ring_node,
236 236 unsigned int nbAverageNormF2 )
237 237 {
238 238 float sum;
239 239 unsigned int i;
240 240
241 241 for(i=0; i<TOTAL_SIZE_SM; i++)
242 242 {
243 243 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
244 244 if ( (nbAverageNormF2 == 0) )
245 245 {
246 246 averaged_spec_mat_f2[ i ] = sum;
247 247 }
248 248 else
249 249 {
250 250 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
251 251 }
252 252 }
253 253 }
@@ -1,458 +1,459
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "fsw_processing.h"
11 11 #include "fsw_processing_globals.c"
12 12
13 13 unsigned int nb_sm_f0;
14 14 unsigned int nb_sm_f0_aux_f1;
15 15 unsigned int nb_sm_f1;
16 16 unsigned int nb_sm_f0_aux_f2;
17 17
18 18 //************************
19 19 // spectral matrices rings
20 20 ring_node_sm sm_ring_f0[ NB_RING_NODES_SM_F0 ];
21 21 ring_node_sm sm_ring_f1[ NB_RING_NODES_SM_F1 ];
22 22 ring_node_sm sm_ring_f2[ NB_RING_NODES_SM_F2 ];
23 23 ring_node_sm *current_ring_node_sm_f0;
24 24 ring_node_sm *current_ring_node_sm_f1;
25 25 ring_node_sm *current_ring_node_sm_f2;
26 26 ring_node_sm *ring_node_for_averaging_sm_f0;
27 27 ring_node_sm *ring_node_for_averaging_sm_f1;
28 28 ring_node_sm *ring_node_for_averaging_sm_f2;
29 29
30 30 //***********************************************************
31 31 // Interrupt Service Routine for spectral matrices processing
32 32
33 33 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
34 34 {
35 35 // ring_node_sm *previous_ring_node_sm_f0;
36 36
37 37 //// rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
38 38
39 39 // previous_ring_node_sm_f0 = current_ring_node_sm_f0;
40 40
41 41 // if ( (spectral_matrix_regs->status & 0x2) == 0x02) // check ready matrix bit f0_1
42 42 // {
43 43 // current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
44 44 // spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
45 45 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // 1101
46 46 // nb_sm_f0 = nb_sm_f0 + 1;
47 47 // }
48 48
49 49 // //************************
50 50 // // reset status error bits
51 51 // if ( (spectral_matrix_regs->status & 0x30) != 0x00)
52 52 // {
53 53 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
54 54 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // 1100 1111
55 55 // }
56 56
57 57 // //**************************************
58 58 // // reset ready matrix bits for f0_0, f1 and f2
59 59 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff2; // 0010
60 60
61 61 // if (nb_sm_f0 == NB_SM_BEFORE_AVF0)
62 62 // {
63 63 // ring_node_for_averaging_sm_f0 = previous_ring_node_sm_f0;
64 64 // if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
65 65 // {
66 66 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
67 67 // }
68 68 // nb_sm_f0 = 0;
69 69 // }
70 70
71 71 }
72 72
73 73 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
74 74 {
75 75 //***
76 76 // F0
77 77 nb_sm_f0 = nb_sm_f0 + 1;
78 78 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
79 79 {
80 80 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
81 81 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
82 82 {
83 83 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
84 84 }
85 85 nb_sm_f0 = 0;
86 86 }
87 87
88 88 //***
89 89 // F1
90 90 nb_sm_f0_aux_f1 = nb_sm_f0_aux_f1 + 1;
91 91 if (nb_sm_f0_aux_f1 == 6)
92 92 {
93 93 nb_sm_f0_aux_f1 = 0;
94 94 nb_sm_f1 = nb_sm_f1 + 1;
95 95 }
96 96 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
97 97 {
98 98 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
99 99 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
100 100 {
101 101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
102 102 }
103 103 nb_sm_f1 = 0;
104 104 }
105 105
106 106 //***
107 107 // F2
108 108 nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
109 109 if (nb_sm_f0_aux_f2 == 96)
110 110 {
111 111 nb_sm_f0_aux_f2 = 0;
112 112 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
113 113 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
114 114 {
115 115 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
116 116 }
117 117 }
118 118 }
119 119
120 120 //******************
121 121 // Spectral Matrices
122 122
123 123 void reset_nb_sm( void )
124 124 {
125 125 nb_sm_f0 = 0;
126 126 nb_sm_f0_aux_f1 = 0;
127 127 nb_sm_f0_aux_f2 = 0;
128 128
129 129 nb_sm_f1 = 0;
130 130 }
131 131
132 132 void SM_init_rings( void )
133 133 {
134 134 unsigned char i;
135 135
136 136 // F0 RING
137 137 sm_ring_f0[0].next = (ring_node_sm*) &sm_ring_f0[1];
138 138 sm_ring_f0[0].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-1];
139 139 sm_ring_f0[0].buffer_address =
140 140 (int) &sm_f0[ 0 ];
141 141
142 142 sm_ring_f0[NB_RING_NODES_SM_F0-1].next = (ring_node_sm*) &sm_ring_f0[0];
143 143 sm_ring_f0[NB_RING_NODES_SM_F0-1].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-2];
144 144 sm_ring_f0[NB_RING_NODES_SM_F0-1].buffer_address =
145 145 (int) &sm_f0[ (NB_RING_NODES_SM_F0-1) * TOTAL_SIZE_SM ];
146 146
147 147 for(i=1; i<NB_RING_NODES_SM_F0-1; i++)
148 148 {
149 149 sm_ring_f0[i].next = (ring_node_sm*) &sm_ring_f0[i+1];
150 150 sm_ring_f0[i].previous = (ring_node_sm*) &sm_ring_f0[i-1];
151 151 sm_ring_f0[i].buffer_address =
152 152 (int) &sm_f0[ i * TOTAL_SIZE_SM ];
153 153 }
154 154
155 155 // F1 RING
156 156 sm_ring_f1[0].next = (ring_node_sm*) &sm_ring_f1[1];
157 157 sm_ring_f1[0].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-1];
158 158 sm_ring_f1[0].buffer_address =
159 159 (int) &sm_f1[ 0 ];
160 160
161 161 sm_ring_f1[NB_RING_NODES_SM_F1-1].next = (ring_node_sm*) &sm_ring_f1[0];
162 162 sm_ring_f1[NB_RING_NODES_SM_F1-1].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-2];
163 163 sm_ring_f1[NB_RING_NODES_SM_F1-1].buffer_address =
164 164 (int) &sm_f1[ (NB_RING_NODES_SM_F1-1) * TOTAL_SIZE_SM ];
165 165
166 166 for(i=1; i<NB_RING_NODES_SM_F1-1; i++)
167 167 {
168 168 sm_ring_f1[i].next = (ring_node_sm*) &sm_ring_f1[i+1];
169 169 sm_ring_f1[i].previous = (ring_node_sm*) &sm_ring_f1[i-1];
170 170 sm_ring_f1[i].buffer_address =
171 171 (int) &sm_f1[ i * TOTAL_SIZE_SM ];
172 172 }
173 173
174 174 // F2 RING
175 175 sm_ring_f2[0].next = (ring_node_sm*) &sm_ring_f2[1];
176 176 sm_ring_f2[0].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-1];
177 177 sm_ring_f2[0].buffer_address =
178 178 (int) &sm_f2[ 0 ];
179 179
180 180 sm_ring_f2[NB_RING_NODES_SM_F2-1].next = (ring_node_sm*) &sm_ring_f2[0];
181 181 sm_ring_f2[NB_RING_NODES_SM_F2-1].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-2];
182 182 sm_ring_f2[NB_RING_NODES_SM_F2-1].buffer_address =
183 183 (int) &sm_f2[ (NB_RING_NODES_SM_F2-1) * TOTAL_SIZE_SM ];
184 184
185 185 for(i=1; i<NB_RING_NODES_SM_F2-1; i++)
186 186 {
187 187 sm_ring_f2[i].next = (ring_node_sm*) &sm_ring_f2[i+1];
188 188 sm_ring_f2[i].previous = (ring_node_sm*) &sm_ring_f2[i-1];
189 189 sm_ring_f2[i].buffer_address =
190 190 (int) &sm_f2[ i * TOTAL_SIZE_SM ];
191 191 }
192 192
193 193 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
194 194 DEBUG_PRINTF1("asm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
195 195 DEBUG_PRINTF1("asm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
196 196
197 197 spectral_matrix_regs->matrixF0_Address0 = sm_ring_f0[0].buffer_address;
198 198 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->matrixF0_Address0)
199 199 }
200 200
201 201 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
202 202 {
203 203 unsigned char i;
204 204
205 205 ring[ nbNodes - 1 ].next
206 206 = (ring_node_asm*) &ring[ 0 ];
207 207
208 208 for(i=0; i<nbNodes-1; i++)
209 209 {
210 210 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
211 211 }
212 212 }
213 213
214 214 void SM_reset_current_ring_nodes( void )
215 215 {
216 216 current_ring_node_sm_f0 = sm_ring_f0;
217 217 current_ring_node_sm_f1 = sm_ring_f1;
218 218 current_ring_node_sm_f2 = sm_ring_f2;
219 219
220 220 ring_node_for_averaging_sm_f0 = sm_ring_f0;
221 221 ring_node_for_averaging_sm_f1 = sm_ring_f1;
222 222 ring_node_for_averaging_sm_f2 = sm_ring_f2;
223 223 }
224 224
225 225 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header)
226 226 {
227 227 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
228 228 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
229 229 header->reserved = 0x00;
230 230 header->userApplication = CCSDS_USER_APP;
231 231 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
232 232 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
233 233 header->packetSequenceControl[0] = 0xc0;
234 234 header->packetSequenceControl[1] = 0x00;
235 235 header->packetLength[0] = 0x00;
236 236 header->packetLength[1] = 0x00;
237 237 // DATA FIELD HEADER
238 238 header->spare1_pusVersion_spare2 = 0x10;
239 239 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
240 240 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
241 241 header->destinationID = TM_DESTINATION_ID_GROUND;
242 242 // AUXILIARY DATA HEADER
243 243 header->sid = 0x00;
244 244 header->biaStatusInfo = 0x00;
245 245 header->pa_lfr_pkt_cnt_asm = 0x00;
246 246 header->pa_lfr_pkt_nr_asm = 0x00;
247 247 header->time[0] = 0x00;
248 248 header->time[0] = 0x00;
249 249 header->time[0] = 0x00;
250 250 header->time[0] = 0x00;
251 251 header->time[0] = 0x00;
252 252 header->time[0] = 0x00;
253 253 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
254 254 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
255 255 }
256 256
257 257 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
258 258 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
259 259 {
260 260 unsigned int i;
261 261 unsigned int length = 0;
262 262 rtems_status_code status;
263 263
264 264 for (i=0; i<2; i++)
265 265 {
266 266 // (1) BUILD THE DATA
267 267 switch(sid)
268 268 {
269 269 case SID_NORM_ASM_F0:
270 270 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; // 2 packets will be sent
271 271 spw_ioctl_send->data = &spectral_matrix[
272 272 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
273 273 ];
274 274 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
275 275 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
276 276 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
277 277 break;
278 278 case SID_NORM_ASM_F1:
279 279 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F1_IN_BYTES / 2; // 2 packets will be sent
280 280 spw_ioctl_send->data = &spectral_matrix[
281 281 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1) ) * NB_VALUES_PER_SM ) * 2
282 282 ];
283 283 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1;
284 284 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1) >> 8 ); // BLK_NR MSB
285 285 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1); // BLK_NR LSB
286 286 break;
287 287 case SID_NORM_ASM_F2:
288 288 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F2_IN_BYTES / 2; // 2 packets will be sent
289 289 spw_ioctl_send->data = &spectral_matrix[
290 290 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM ) * 2
291 291 ];
292 292 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
293 293 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
294 294 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
295 295 break;
296 296 default:
297 297 PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
298 298 break;
299 299 }
300 300 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
301 301 spw_ioctl_send->hdr = (char *) header;
302 302 spw_ioctl_send->options = 0;
303 303
304 304 // (2) BUILD THE HEADER
305 305 increment_seq_counter_source_id( header->packetSequenceControl, sid );
306 306 header->packetLength[0] = (unsigned char) (length>>8);
307 307 header->packetLength[1] = (unsigned char) (length);
308 308 header->sid = (unsigned char) sid; // SID
309 309 header->pa_lfr_pkt_cnt_asm = 2;
310 310 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
311 311
312 312 // (3) SET PACKET TIME
313 313 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
314 314 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
315 315 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
316 316 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
317 317 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
318 318 header->time[5] = (unsigned char) (time_management_regs->fine_time);
319 319 //
320 header->acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
321 header->acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
322 header->acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
323 header->acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
324 header->acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
325 header->acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
320 header->acquisitionTime[0] = header->time[0];
321 header->acquisitionTime[1] = header->time[1];
322 header->acquisitionTime[2] = header->time[2];
323 header->acquisitionTime[3] = header->time[3];
324 header->acquisitionTime[4] = header->time[4];
325 header->acquisitionTime[5] = header->time[5];
326 326
327 327 // (4) SEND PACKET
328 328 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
329 329 if (status != RTEMS_SUCCESSFUL) {
330 330 printf("in ASM_send *** ERR %d\n", (int) status);
331 331 }
332 332 }
333 333 }
334 334
335 335 //*****************
336 336 // Basic Parameters
337 337
338 338 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
339 339 unsigned int apid, unsigned char sid,
340 340 unsigned int packetLength, unsigned char blkNr )
341 341 {
342 342 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
343 343 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
344 344 header->reserved = 0x00;
345 345 header->userApplication = CCSDS_USER_APP;
346 346 header->packetID[0] = (unsigned char) (apid >> 8);
347 347 header->packetID[1] = (unsigned char) (apid);
348 348 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
349 349 header->packetSequenceControl[1] = 0x00;
350 350 header->packetLength[0] = (unsigned char) (packetLength >> 8);
351 351 header->packetLength[1] = (unsigned char) (packetLength);
352 352 // DATA FIELD HEADER
353 353 header->spare1_pusVersion_spare2 = 0x10;
354 354 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
355 355 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
356 356 header->destinationID = TM_DESTINATION_ID_GROUND;
357 357 // AUXILIARY DATA HEADER
358 358 header->sid = sid;
359 359 header->biaStatusInfo = 0x00;
360 360 header->time[0] = 0x00;
361 361 header->time[0] = 0x00;
362 362 header->time[0] = 0x00;
363 363 header->time[0] = 0x00;
364 364 header->time[0] = 0x00;
365 365 header->time[0] = 0x00;
366 366 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
367 367 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
368 368 }
369 369
370 370 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
371 371 unsigned int apid, unsigned char sid,
372 372 unsigned int packetLength , unsigned char blkNr)
373 373 {
374 374 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
375 375 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
376 376 header->reserved = 0x00;
377 377 header->userApplication = CCSDS_USER_APP;
378 378 header->packetID[0] = (unsigned char) (apid >> 8);
379 379 header->packetID[1] = (unsigned char) (apid);
380 380 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
381 381 header->packetSequenceControl[1] = 0x00;
382 382 header->packetLength[0] = (unsigned char) (packetLength >> 8);
383 383 header->packetLength[1] = (unsigned char) (packetLength);
384 384 // DATA FIELD HEADER
385 385 header->spare1_pusVersion_spare2 = 0x10;
386 386 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
387 387 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
388 388 header->destinationID = TM_DESTINATION_ID_GROUND;
389 389 // AUXILIARY DATA HEADER
390 390 header->sid = sid;
391 391 header->biaStatusInfo = 0x00;
392 392 header->time[0] = 0x00;
393 393 header->time[0] = 0x00;
394 394 header->time[0] = 0x00;
395 395 header->time[0] = 0x00;
396 396 header->time[0] = 0x00;
397 397 header->time[0] = 0x00;
398 header->source_data_spare = 0x00;
398 399 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
399 400 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
400 401 }
401 402
402 403 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
403 404 {
404 405 rtems_status_code status;
405 406
406 407 // SET THE SEQUENCE_CNT PARAMETER
407 408 increment_seq_counter_source_id( (unsigned char*) &data[ PACKET_POS_SEQUENCE_CNT ], sid );
408 409 // SEND PACKET
409 410 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
410 411 if (status != RTEMS_SUCCESSFUL)
411 412 {
412 413 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
413 414 }
414 415 }
415 416
416 417 //******************
417 418 // general functions
418 419
419 420 void reset_spectral_matrix_regs( void )
420 421 {
421 422 /** This function resets the spectral matrices module registers.
422 423 *
423 424 * The registers affected by this function are located at the following offset addresses:
424 425 *
425 426 * - 0x00 config
426 427 * - 0x04 status
427 428 * - 0x08 matrixF0_Address0
428 429 * - 0x10 matrixFO_Address1
429 430 * - 0x14 matrixF1_Address
430 431 * - 0x18 matrixF2_Address
431 432 *
432 433 */
433 434
434 435 spectral_matrix_regs->config = 0x00;
435 436 spectral_matrix_regs->status = 0x00;
436 437
437 438 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
438 439 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
439 440 spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
440 441 spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
441 442 }
442 443
443 444 void set_time( unsigned char *time, unsigned char * timeInBuffer )
444 445 {
445 446 // time[0] = timeInBuffer[2];
446 447 // time[1] = timeInBuffer[3];
447 448 // time[2] = timeInBuffer[0];
448 449 // time[3] = timeInBuffer[1];
449 450 // time[4] = timeInBuffer[6];
450 451 // time[5] = timeInBuffer[7];
451 452
452 453 time[0] = timeInBuffer[0];
453 454 time[1] = timeInBuffer[1];
454 455 time[2] = timeInBuffer[2];
455 456 time[3] = timeInBuffer[3];
456 457 time[4] = timeInBuffer[6];
457 458 time[5] = timeInBuffer[7];
458 459 }
@@ -1,949 +1,949
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14
15 15 //***********
16 16 // RTEMS TASK
17 17
18 18 rtems_task actn_task( rtems_task_argument unused )
19 19 {
20 20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 21 *
22 22 * @param unused is the starting argument of the RTEMS task
23 23 *
24 24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 25 * on the incoming TeleCommand.
26 26 *
27 27 */
28 28
29 29 int result;
30 30 rtems_status_code status; // RTEMS status code
31 31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 32 size_t size; // size of the incoming TC packet
33 33 unsigned char subtype; // subtype of the current TC packet
34 34 unsigned char time[6];
35 35 rtems_id queue_rcv_id;
36 36 rtems_id queue_snd_id;
37 37
38 38 status = get_message_queue_id_recv( &queue_rcv_id );
39 39 if (status != RTEMS_SUCCESSFUL)
40 40 {
41 41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 42 }
43 43
44 44 status = get_message_queue_id_send( &queue_snd_id );
45 45 if (status != RTEMS_SUCCESSFUL)
46 46 {
47 47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 48 }
49 49
50 50 result = LFR_SUCCESSFUL;
51 51 subtype = 0; // subtype of the current TC packet
52 52
53 53 BOOT_PRINTF("in ACTN *** \n")
54 54
55 55 while(1)
56 56 {
57 57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 59 getTime( time ); // set time to the current time
60 60 if (status!=RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 63 }
64 64 else
65 65 {
66 66 subtype = TC.serviceSubType;
67 67 switch(subtype)
68 68 {
69 69 case TC_SUBTYPE_RESET:
70 70 result = action_reset( &TC, queue_snd_id, time );
71 71 close_action( &TC, result, queue_snd_id );
72 72 break;
73 73 //
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 //
79 79 case TC_SUBTYPE_LOAD_NORM:
80 80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 81 close_action( &TC, result, queue_snd_id );
82 82 break;
83 83 //
84 84 case TC_SUBTYPE_LOAD_BURST:
85 85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 86 close_action( &TC, result, queue_snd_id );
87 87 break;
88 88 //
89 89 case TC_SUBTYPE_LOAD_SBM1:
90 90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 91 close_action( &TC, result, queue_snd_id );
92 92 break;
93 93 //
94 94 case TC_SUBTYPE_LOAD_SBM2:
95 95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 //
99 99 case TC_SUBTYPE_DUMP:
100 100 result = action_dump_par( queue_snd_id );
101 101 close_action( &TC, result, queue_snd_id );
102 102 break;
103 103 //
104 104 case TC_SUBTYPE_ENTER:
105 105 result = action_enter_mode( &TC, queue_snd_id );
106 106 close_action( &TC, result, queue_snd_id );
107 107 break;
108 108 //
109 109 case TC_SUBTYPE_UPDT_INFO:
110 110 result = action_update_info( &TC, queue_snd_id );
111 111 close_action( &TC, result, queue_snd_id );
112 112 break;
113 113 //
114 114 case TC_SUBTYPE_EN_CAL:
115 115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 //
119 119 case TC_SUBTYPE_DIS_CAL:
120 120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 121 close_action( &TC, result, queue_snd_id );
122 122 break;
123 123 //
124 124 case TC_SUBTYPE_UPDT_TIME:
125 125 result = action_update_time( &TC );
126 126 close_action( &TC, result, queue_snd_id );
127 127 break;
128 128 //
129 129 default:
130 130 break;
131 131 }
132 132 }
133 133 }
134 134 }
135 135
136 136 //***********
137 137 // TC ACTIONS
138 138
139 139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 140 {
141 141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 142 *
143 143 * @param TC points to the TeleCommand packet that is being processed
144 144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 145 *
146 146 */
147 147
148 148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 149 return LFR_DEFAULT;
150 150 }
151 151
152 152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
153 153 {
154 154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 158 *
159 159 */
160 160
161 161 rtems_status_code status;
162 162 unsigned char requestedMode;
163 163 unsigned int *transitionCoarseTime_ptr;
164 164 unsigned int transitionCoarseTime;
165 165 unsigned char * bytePosPtr;
166 166
167 167 bytePosPtr = (unsigned char *) &TC->packetID;
168 168
169 169 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
170 170 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
171 171 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
172 172
173 173 status = check_mode_value( requestedMode );
174 174
175 175 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
176 176 {
177 177 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
178 178 }
179 179 else // the mode value is consistent, check the transition
180 180 {
181 181 status = check_mode_transition(requestedMode);
182 182 if (status != LFR_SUCCESSFUL)
183 183 {
184 184 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
185 185 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
186 186 }
187 187 }
188 188
189 189 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
190 190 {
191 191 status = check_transition_date( transitionCoarseTime );
192 192 if (status != LFR_SUCCESSFUL)
193 193 {
194 194 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
195 195 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
196 196 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
197 197 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
198 198 }
199 199 }
200 200
201 201 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
202 202 {
203 203 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
204 204 status = enter_mode( requestedMode, transitionCoarseTime );
205 205 }
206 206
207 207 return status;
208 208 }
209 209
210 210 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
211 211 {
212 212 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
213 213 *
214 214 * @param TC points to the TeleCommand packet that is being processed
215 215 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
216 216 *
217 217 * @return LFR directive status code:
218 218 * - LFR_DEFAULT
219 219 * - LFR_SUCCESSFUL
220 220 *
221 221 */
222 222
223 223 unsigned int val;
224 224 int result;
225 225 unsigned int status;
226 226 unsigned char mode;
227 227 unsigned char * bytePosPtr;
228 228
229 229 bytePosPtr = (unsigned char *) &TC->packetID;
230 230
231 231 // check LFR mode
232 232 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
233 233 status = check_update_info_hk_lfr_mode( mode );
234 234 if (status == LFR_SUCCESSFUL) // check TDS mode
235 235 {
236 236 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
237 237 status = check_update_info_hk_tds_mode( mode );
238 238 }
239 239 if (status == LFR_SUCCESSFUL) // check THR mode
240 240 {
241 241 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
242 242 status = check_update_info_hk_thr_mode( mode );
243 243 }
244 244 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
245 245 {
246 246 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
247 247 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
248 248 val++;
249 249 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
250 250 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
251 251 }
252 252
253 253 result = status;
254 254
255 255 return result;
256 256 }
257 257
258 258 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
259 259 {
260 260 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
261 261 *
262 262 * @param TC points to the TeleCommand packet that is being processed
263 263 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
264 264 *
265 265 */
266 266
267 267 int result;
268 268 unsigned char lfrMode;
269 269
270 270 result = LFR_DEFAULT;
271 271 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
272 272
273 273 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
274 274 result = LFR_DEFAULT;
275 275
276 276 return result;
277 277 }
278 278
279 279 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
280 280 {
281 281 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
282 282 *
283 283 * @param TC points to the TeleCommand packet that is being processed
284 284 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
285 285 *
286 286 */
287 287
288 288 int result;
289 289 unsigned char lfrMode;
290 290
291 291 result = LFR_DEFAULT;
292 292 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
293 293
294 294 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
295 295 result = LFR_DEFAULT;
296 296
297 297 return result;
298 298 }
299 299
300 300 int action_update_time(ccsdsTelecommandPacket_t *TC)
301 301 {
302 302 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
303 303 *
304 304 * @param TC points to the TeleCommand packet that is being processed
305 305 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
306 306 *
307 307 * @return LFR_SUCCESSFUL
308 308 *
309 309 */
310 310
311 311 unsigned int val;
312 312
313 313 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
314 314 + (TC->dataAndCRC[1] << 16)
315 315 + (TC->dataAndCRC[2] << 8)
316 316 + TC->dataAndCRC[3];
317 317
318 318 PRINTF1("time received: %x\n", time_management_regs->coarse_time_load)
319 319
320 320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
321 321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
322 322 val++;
323 323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
324 324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
325 325 // time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
326 326
327 327 return LFR_SUCCESSFUL;
328 328 }
329 329
330 330 //*******************
331 331 // ENTERING THE MODES
332 332 int check_mode_value( unsigned char requestedMode )
333 333 {
334 334 int status;
335 335
336 336 if ( (requestedMode != LFR_MODE_STANDBY)
337 337 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
338 338 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
339 339 {
340 340 status = LFR_DEFAULT;
341 341 }
342 342 else
343 343 {
344 344 status = LFR_SUCCESSFUL;
345 345 }
346 346
347 347 return status;
348 348 }
349 349
350 350 int check_mode_transition( unsigned char requestedMode )
351 351 {
352 352 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
353 353 *
354 354 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
355 355 *
356 356 * @return LFR directive status codes:
357 357 * - LFR_SUCCESSFUL - the transition is authorized
358 358 * - LFR_DEFAULT - the transition is not authorized
359 359 *
360 360 */
361 361
362 362 int status;
363 363
364 364 switch (requestedMode)
365 365 {
366 366 case LFR_MODE_STANDBY:
367 367 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
368 368 status = LFR_DEFAULT;
369 369 }
370 370 else
371 371 {
372 372 status = LFR_SUCCESSFUL;
373 373 }
374 374 break;
375 375 case LFR_MODE_NORMAL:
376 376 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
377 377 status = LFR_DEFAULT;
378 378 }
379 379 else {
380 380 status = LFR_SUCCESSFUL;
381 381 }
382 382 break;
383 383 case LFR_MODE_BURST:
384 384 if ( lfrCurrentMode == LFR_MODE_BURST ) {
385 385 status = LFR_DEFAULT;
386 386 }
387 387 else {
388 388 status = LFR_SUCCESSFUL;
389 389 }
390 390 break;
391 391 case LFR_MODE_SBM1:
392 392 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
393 393 status = LFR_DEFAULT;
394 394 }
395 395 else {
396 396 status = LFR_SUCCESSFUL;
397 397 }
398 398 break;
399 399 case LFR_MODE_SBM2:
400 400 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
401 401 status = LFR_DEFAULT;
402 402 }
403 403 else {
404 404 status = LFR_SUCCESSFUL;
405 405 }
406 406 break;
407 407 default:
408 408 status = LFR_DEFAULT;
409 409 break;
410 410 }
411 411
412 412 return status;
413 413 }
414 414
415 415 int check_transition_date( unsigned int transitionCoarseTime )
416 416 {
417 417 int status;
418 418 unsigned int localCoarseTime;
419 419 unsigned int deltaCoarseTime;
420 420
421 421 status = LFR_SUCCESSFUL;
422 422
423 423 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
424 424 {
425 425 status = LFR_SUCCESSFUL;
426 426 }
427 427 else
428 428 {
429 429 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
430 430
431 431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
432 432 {
433 433 status = LFR_DEFAULT;
434 434 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
435 435 }
436 436
437 437 if (status == LFR_SUCCESSFUL)
438 438 {
439 439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
440 440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
441 441 {
442 442 status = LFR_DEFAULT;
443 443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
444 444 }
445 445 }
446 446 }
447 447
448 448 return status;
449 449 }
450 450
451 451 int stop_current_mode( void )
452 452 {
453 453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
454 454 *
455 455 * @return RTEMS directive status codes:
456 456 * - RTEMS_SUCCESSFUL - task restarted successfully
457 457 * - RTEMS_INVALID_ID - task id invalid
458 458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
459 459 *
460 460 */
461 461
462 462 rtems_status_code status;
463 463
464 464 status = RTEMS_SUCCESSFUL;
465 465
466 466 // (1) mask interruptions
467 467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
468 468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
469 469
470 470 // (2) clear interruptions
471 471 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
472 472 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
473 473
474 474 // (3) reset waveform picker registers
475 475 reset_wfp_burst_enable(); // reset burst and enable bits
476 476 reset_wfp_status(); // reset all the status bits
477 477
478 478 // (4) reset spectral matrices registers
479 479 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
480 480 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
481 481 reset_extractSWF(); // reset the extractSWF flag to false
482 482
483 483 // <Spectral Matrices simulator>
484 484 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
485 485 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
486 486 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
487 487 // </Spectral Matrices simulator>
488 488
489 489 // suspend several tasks
490 490 if (lfrCurrentMode != LFR_MODE_STANDBY) {
491 491 status = suspend_science_tasks();
492 492 }
493 493
494 494 if (status != RTEMS_SUCCESSFUL)
495 495 {
496 496 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
497 497 }
498 498
499 499 return status;
500 500 }
501 501
502 502 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
503 503 {
504 504 /** This function is launched after a mode transition validation.
505 505 *
506 506 * @param mode is the mode in which LFR will be put.
507 507 *
508 508 * @return RTEMS directive status codes:
509 509 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
510 510 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
511 511 *
512 512 */
513 513
514 514 rtems_status_code status;
515 515
516 516 //**********************
517 517 // STOP THE CURRENT MODE
518 518 status = stop_current_mode();
519 519 if (status != RTEMS_SUCCESSFUL)
520 520 {
521 521 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
522 522 }
523 523
524 524 //*************************
525 525 // ENTER THE REQUESTED MODE
526 526 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
527 527 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
528 528 {
529 529 #ifdef PRINT_TASK_STATISTICS
530 530 rtems_cpu_usage_reset();
531 531 maxCount = 0;
532 532 #endif
533 533 status = restart_science_tasks( mode );
534 534 launch_waveform_picker( mode, transitionCoarseTime );
535 // launch_spectral_matrix( );
535 launch_spectral_matrix( );
536 536 launch_spectral_matrix_simu( );
537 537 }
538 538 else if ( mode == LFR_MODE_STANDBY )
539 539 {
540 540 #ifdef PRINT_TASK_STATISTICS
541 541 rtems_cpu_usage_report();
542 542 #endif
543 543
544 544 #ifdef PRINT_STACK_REPORT
545 545 PRINTF("stack report selected\n")
546 546 rtems_stack_checker_report_usage();
547 547 #endif
548 548 PRINTF1("maxCount = %d\n", maxCount)
549 549 }
550 550 else
551 551 {
552 552 status = RTEMS_UNSATISFIED;
553 553 }
554 554
555 555 if (status != RTEMS_SUCCESSFUL)
556 556 {
557 557 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
558 558 status = RTEMS_UNSATISFIED;
559 559 }
560 560
561 561 return status;
562 562 }
563 563
564 564 int restart_science_tasks(unsigned char lfrRequestedMode )
565 565 {
566 566 /** This function is used to restart all science tasks.
567 567 *
568 568 * @return RTEMS directive status codes:
569 569 * - RTEMS_SUCCESSFUL - task restarted successfully
570 570 * - RTEMS_INVALID_ID - task id invalid
571 571 * - RTEMS_INCORRECT_STATE - task never started
572 572 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
573 573 *
574 574 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
575 575 *
576 576 */
577 577
578 578 rtems_status_code status[10];
579 579 rtems_status_code ret;
580 580
581 581 ret = RTEMS_SUCCESSFUL;
582 582
583 583 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
584 584 if (status[0] != RTEMS_SUCCESSFUL)
585 585 {
586 586 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
587 587 }
588 588
589 589 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
590 590 if (status[1] != RTEMS_SUCCESSFUL)
591 591 {
592 592 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
593 593 }
594 594
595 595 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
596 596 if (status[2] != RTEMS_SUCCESSFUL)
597 597 {
598 598 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
599 599 }
600 600
601 601 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
602 602 if (status[3] != RTEMS_SUCCESSFUL)
603 603 {
604 604 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
605 605 }
606 606
607 607 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
608 608 if (status[4] != RTEMS_SUCCESSFUL)
609 609 {
610 610 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
611 611 }
612 612
613 613 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
614 614 if (status[5] != RTEMS_SUCCESSFUL)
615 615 {
616 616 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
617 617 }
618 618
619 619 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
620 620 if (status[6] != RTEMS_SUCCESSFUL)
621 621 {
622 622 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
623 623 }
624 624
625 625 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
626 626 if (status[7] != RTEMS_SUCCESSFUL)
627 627 {
628 628 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
629 629 }
630 630
631 631 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
632 632 if (status[8] != RTEMS_SUCCESSFUL)
633 633 {
634 634 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
635 635 }
636 636
637 637 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
638 638 if (status[9] != RTEMS_SUCCESSFUL)
639 639 {
640 640 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
641 641 }
642 642
643 643 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
644 644 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
645 645 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
646 646 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
647 647 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
648 648 {
649 649 ret = RTEMS_UNSATISFIED;
650 650 }
651 651
652 652 return ret;
653 653 }
654 654
655 655 int suspend_science_tasks()
656 656 {
657 657 /** This function suspends the science tasks.
658 658 *
659 659 * @return RTEMS directive status codes:
660 660 * - RTEMS_SUCCESSFUL - task restarted successfully
661 661 * - RTEMS_INVALID_ID - task id invalid
662 662 * - RTEMS_ALREADY_SUSPENDED - task already suspended
663 663 *
664 664 */
665 665
666 666 rtems_status_code status;
667 667
668 668 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
669 669 if (status != RTEMS_SUCCESSFUL)
670 670 {
671 671 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
672 672 }
673 673 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
674 674 {
675 675 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
676 676 if (status != RTEMS_SUCCESSFUL)
677 677 {
678 678 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
679 679 }
680 680 }
681 681 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
682 682 {
683 683 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
684 684 if (status != RTEMS_SUCCESSFUL)
685 685 {
686 686 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
687 687 }
688 688 }
689 689 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
690 690 {
691 691 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
692 692 if (status != RTEMS_SUCCESSFUL)
693 693 {
694 694 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
695 695 }
696 696 }
697 697 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
698 698 {
699 699 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
700 700 if (status != RTEMS_SUCCESSFUL)
701 701 {
702 702 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
703 703 }
704 704 }
705 705 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
706 706 {
707 707 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
708 708 if (status != RTEMS_SUCCESSFUL)
709 709 {
710 710 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
711 711 }
712 712 }
713 713 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
714 714 {
715 715 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
716 716 if (status != RTEMS_SUCCESSFUL)
717 717 {
718 718 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
719 719 }
720 720 }
721 721 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
722 722 {
723 723 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
724 724 if (status != RTEMS_SUCCESSFUL)
725 725 {
726 726 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
727 727 }
728 728 }
729 729 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
730 730 {
731 731 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
732 732 if (status != RTEMS_SUCCESSFUL)
733 733 {
734 734 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
735 735 }
736 736 }
737 737 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
738 738 {
739 739 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
740 740 if (status != RTEMS_SUCCESSFUL)
741 741 {
742 742 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
743 743 }
744 744 }
745 745
746 746 return status;
747 747 }
748 748
749 749 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
750 750 {
751 751 reset_current_ring_nodes();
752 752 reset_waveform_picker_regs();
753 753 set_wfp_burst_enable_register( mode );
754 754
755 755 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
756 756 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
757 757
758 758 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
759 759 if (transitionCoarseTime == 0)
760 760 {
761 761 waveform_picker_regs->start_date = time_management_regs->coarse_time;
762 762 }
763 763 else
764 764 {
765 765 waveform_picker_regs->start_date = transitionCoarseTime;
766 766 }
767 767 }
768 768
769 769 void launch_spectral_matrix( void )
770 770 {
771 771 SM_reset_current_ring_nodes();
772 772 reset_spectral_matrix_regs();
773 773 reset_nb_sm();
774 774
775 775 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
776 776 grgpio_regs->io_port_direction_register =
777 777 grgpio_regs->io_port_direction_register | 0x01; // [0000 0001], 0 = output disabled, 1 = output enabled
778 778 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfffffffe; // set the bit 0 to 0
779 779 set_irq_on_new_ready_matrix( 1 );
780 780 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
781 781 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
782 782 set_run_matrix_spectral( 1 );
783 783
784 784 }
785 785
786 786 void launch_spectral_matrix_simu( void )
787 787 {
788 788 SM_reset_current_ring_nodes();
789 789 reset_spectral_matrix_regs();
790 790 reset_nb_sm();
791 791
792 792 // Spectral Matrices simulator
793 793 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
794 794 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
795 795 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
796 796 }
797 797
798 798 void set_irq_on_new_ready_matrix( unsigned char value )
799 799 {
800 800 if (value == 1)
801 801 {
802 802 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
803 803 }
804 804 else
805 805 {
806 806 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
807 807 }
808 808 }
809 809
810 810 void set_run_matrix_spectral( unsigned char value )
811 811 {
812 812 if (value == 1)
813 813 {
814 814 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // [0100] set run_matrix spectral to 1
815 815 }
816 816 else
817 817 {
818 818 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // [1011] set run_matrix spectral to 0
819 819 }
820 820 }
821 821
822 822 //****************
823 823 // CLOSING ACTIONS
824 824 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
825 825 {
826 826 /** This function is used to update the HK packets statistics after a successful TC execution.
827 827 *
828 828 * @param TC points to the TC being processed
829 829 * @param time is the time used to date the TC execution
830 830 *
831 831 */
832 832
833 833 unsigned int val;
834 834
835 835 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
836 836 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
837 837 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
838 838 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
839 839 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
840 840 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
841 841 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
842 842 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
843 843 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
844 844 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
845 845 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
846 846 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
847 847
848 848 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
849 849 val++;
850 850 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
851 851 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
852 852 }
853 853
854 854 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
855 855 {
856 856 /** This function is used to update the HK packets statistics after a TC rejection.
857 857 *
858 858 * @param TC points to the TC being processed
859 859 * @param time is the time used to date the TC rejection
860 860 *
861 861 */
862 862
863 863 unsigned int val;
864 864
865 865 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
866 866 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
867 867 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
868 868 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
869 869 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
870 870 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
871 871 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
872 872 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
873 873 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
874 874 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
875 875 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
876 876 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
877 877
878 878 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
879 879 val++;
880 880 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
881 881 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
882 882 }
883 883
884 884 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
885 885 {
886 886 /** This function is the last step of the TC execution workflow.
887 887 *
888 888 * @param TC points to the TC being processed
889 889 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
890 890 * @param queue_id is the id of the RTEMS message queue used to send TM packets
891 891 * @param time is the time used to date the TC execution
892 892 *
893 893 */
894 894
895 895 unsigned char requestedMode;
896 896
897 897 if (result == LFR_SUCCESSFUL)
898 898 {
899 899 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
900 900 &
901 901 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
902 902 )
903 903 {
904 904 send_tm_lfr_tc_exe_success( TC, queue_id );
905 905 }
906 906 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
907 907 {
908 908 //**********************************
909 909 // UPDATE THE LFRMODE LOCAL VARIABLE
910 910 requestedMode = TC->dataAndCRC[1];
911 911 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
912 912 updateLFRCurrentMode();
913 913 }
914 914 }
915 915 else if (result == LFR_EXE_ERROR)
916 916 {
917 917 send_tm_lfr_tc_exe_error( TC, queue_id );
918 918 }
919 919 }
920 920
921 921 //***************************
922 922 // Interrupt Service Routines
923 923 rtems_isr commutation_isr1( rtems_vector_number vector )
924 924 {
925 925 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
926 926 printf("In commutation_isr1 *** Error sending event to DUMB\n");
927 927 }
928 928 }
929 929
930 930 rtems_isr commutation_isr2( rtems_vector_number vector )
931 931 {
932 932 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
933 933 printf("In commutation_isr2 *** Error sending event to DUMB\n");
934 934 }
935 935 }
936 936
937 937 //****************
938 938 // OTHER FUNCTIONS
939 939 void updateLFRCurrentMode()
940 940 {
941 941 /** This function updates the value of the global variable lfrCurrentMode.
942 942 *
943 943 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
944 944 *
945 945 */
946 946 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
947 947 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
948 948 }
949 949
General Comments 0
You need to be logged in to leave comments. Login now