##// END OF EJS Templates
Sync
paul -
r95:2543157c542c VHDLib206
parent child
Show More
@@ -1,248 +1,253
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw-vhdl-dev
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Thu Feb 6 09:29:25 2014
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Thu Feb 13 07:43:27 2014
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=1 -DPRINT_MESSAGES_ON_CONSOLE -DDEBUG_MESSAGES -DVHDL_DEV
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=1 -DPRINT_MESSAGES_ON_CONSOLE -DDEBUG_MESSAGES -DPRINT_TASK_STATISTICS -DVHDL_DEV
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header
16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../../LFR_basic-parameters
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_processing.c \
49 49 ../src/fsw_misc.c \
50 50 ../src/fsw_init.c \
51 51 ../src/fsw_globals.c \
52 52 ../src/fsw_spacewire.c \
53 53 ../src/tc_load_dump_parameters.c \
54 54 ../src/tm_lfr_tc_exe.c \
55 ../src/tc_acceptance.c
55 ../src/tc_acceptance.c \
56 ../../LFR_basic-parameters/basic_parameters.c
56 57 OBJECTS = obj/wf_handler.o \
57 58 obj/tc_handler.o \
58 59 obj/fsw_processing.o \
59 60 obj/fsw_misc.o \
60 61 obj/fsw_init.o \
61 62 obj/fsw_globals.o \
62 63 obj/fsw_spacewire.o \
63 64 obj/tc_load_dump_parameters.o \
64 65 obj/tm_lfr_tc_exe.o \
65 obj/tc_acceptance.o
66 obj/tc_acceptance.o \
67 obj/basic_parameters.o
66 68 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
67 69 /usr/lib64/qt4/mkspecs/common/linux.conf \
68 70 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
69 71 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
70 72 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
71 73 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
72 74 /usr/lib64/qt4/mkspecs/qconfig.pri \
73 75 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
74 76 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
75 77 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
76 78 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
77 79 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
78 80 sparc.pri \
79 81 /usr/lib64/qt4/mkspecs/features/release.prf \
80 82 /usr/lib64/qt4/mkspecs/features/default_post.prf \
81 83 /usr/lib64/qt4/mkspecs/features/shared.prf \
82 84 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
83 85 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
84 86 /usr/lib64/qt4/mkspecs/features/resources.prf \
85 87 /usr/lib64/qt4/mkspecs/features/uic.prf \
86 88 /usr/lib64/qt4/mkspecs/features/yacc.prf \
87 89 /usr/lib64/qt4/mkspecs/features/lex.prf \
88 90 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
89 91 fsw-qt.pro
90 92 QMAKE_TARGET = fsw-vhdl-dev
91 93 DESTDIR = bin/
92 94 TARGET = bin/fsw-vhdl-dev
93 95
94 96 first: all
95 97 ####### Implicit rules
96 98
97 99 .SUFFIXES: .o .c .cpp .cc .cxx .C
98 100
99 101 .cpp.o:
100 102 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
101 103
102 104 .cc.o:
103 105 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
104 106
105 107 .cxx.o:
106 108 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
107 109
108 110 .C.o:
109 111 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
110 112
111 113 .c.o:
112 114 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
113 115
114 116 ####### Build rules
115 117
116 118 all: Makefile $(TARGET)
117 119
118 120 $(TARGET): $(OBJECTS)
119 121 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
120 122 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
121 123
122 124 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
123 125 /usr/lib64/qt4/mkspecs/common/linux.conf \
124 126 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
125 127 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
126 128 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
127 129 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
128 130 /usr/lib64/qt4/mkspecs/qconfig.pri \
129 131 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
130 132 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
131 133 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
132 134 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
133 135 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
134 136 sparc.pri \
135 137 /usr/lib64/qt4/mkspecs/features/release.prf \
136 138 /usr/lib64/qt4/mkspecs/features/default_post.prf \
137 139 /usr/lib64/qt4/mkspecs/features/shared.prf \
138 140 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
139 141 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
140 142 /usr/lib64/qt4/mkspecs/features/resources.prf \
141 143 /usr/lib64/qt4/mkspecs/features/uic.prf \
142 144 /usr/lib64/qt4/mkspecs/features/yacc.prf \
143 145 /usr/lib64/qt4/mkspecs/features/lex.prf \
144 146 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
145 147 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
146 148 /usr/lib64/qt4/mkspecs/common/unix.conf:
147 149 /usr/lib64/qt4/mkspecs/common/linux.conf:
148 150 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
149 151 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
150 152 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
151 153 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
152 154 /usr/lib64/qt4/mkspecs/qconfig.pri:
153 155 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
154 156 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
155 157 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
156 158 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
157 159 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
158 160 sparc.pri:
159 161 /usr/lib64/qt4/mkspecs/features/release.prf:
160 162 /usr/lib64/qt4/mkspecs/features/default_post.prf:
161 163 /usr/lib64/qt4/mkspecs/features/shared.prf:
162 164 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
163 165 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
164 166 /usr/lib64/qt4/mkspecs/features/resources.prf:
165 167 /usr/lib64/qt4/mkspecs/features/uic.prf:
166 168 /usr/lib64/qt4/mkspecs/features/yacc.prf:
167 169 /usr/lib64/qt4/mkspecs/features/lex.prf:
168 170 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
169 171 qmake: FORCE
170 172 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
171 173
172 174 dist:
173 175 @$(CHK_DIR_EXISTS) obj/fsw-vhdl-dev1.0.0 || $(MKDIR) obj/fsw-vhdl-dev1.0.0
174 176 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw-vhdl-dev1.0.0/ && (cd `dirname obj/fsw-vhdl-dev1.0.0` && $(TAR) fsw-vhdl-dev1.0.0.tar fsw-vhdl-dev1.0.0 && $(COMPRESS) fsw-vhdl-dev1.0.0.tar) && $(MOVE) `dirname obj/fsw-vhdl-dev1.0.0`/fsw-vhdl-dev1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw-vhdl-dev1.0.0
175 177
176 178
177 179 clean:compiler_clean
178 180 -$(DEL_FILE) $(OBJECTS)
179 181 -$(DEL_FILE) *~ core *.core
180 182
181 183
182 184 ####### Sub-libraries
183 185
184 186 distclean: clean
185 187 -$(DEL_FILE) $(TARGET)
186 188 -$(DEL_FILE) Makefile
187 189
188 190
189 191 grmon:
190 192 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
191 193
192 194 check: first
193 195
194 196 compiler_rcc_make_all:
195 197 compiler_rcc_clean:
196 198 compiler_uic_make_all:
197 199 compiler_uic_clean:
198 200 compiler_image_collection_make_all: qmake_image_collection.cpp
199 201 compiler_image_collection_clean:
200 202 -$(DEL_FILE) qmake_image_collection.cpp
201 203 compiler_yacc_decl_make_all:
202 204 compiler_yacc_decl_clean:
203 205 compiler_yacc_impl_make_all:
204 206 compiler_yacc_impl_clean:
205 207 compiler_lex_make_all:
206 208 compiler_lex_clean:
207 209 compiler_clean:
208 210
209 211 ####### Compile
210 212
211 213 obj/wf_handler.o: ../src/wf_handler.c
212 214 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
213 215
214 216 obj/tc_handler.o: ../src/tc_handler.c
215 217 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
216 218
217 219 obj/fsw_processing.o: ../src/fsw_processing.c ../src/fsw_processing_globals.c
218 220 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/fsw_processing.c
219 221
220 222 obj/fsw_misc.o: ../src/fsw_misc.c
221 223 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
222 224
223 225 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
224 226 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
225 227
226 228 obj/fsw_globals.o: ../src/fsw_globals.c
227 229 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
228 230
229 231 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
230 232 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
231 233
232 234 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
233 235 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
234 236
235 237 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
236 238 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
237 239
238 240 obj/tc_acceptance.o: ../src/tc_acceptance.c
239 241 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
240 242
243 obj/basic_parameters.o: ../../LFR_basic-parameters/basic_parameters.c ../../LFR_basic-parameters/basic_parameters.h
244 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../../LFR_basic-parameters/basic_parameters.c
245
241 246 ####### Install
242 247
243 248 install: FORCE
244 249
245 250 uninstall: FORCE
246 251
247 252 FORCE:
248 253
@@ -1,85 +1,88
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** gsa *** vhdl_dev
4 CONFIG += console verbose debug_messages vhdl_dev
4 CONFIG += console verbose debug_messages vhdl_dev cpu_usage_report
5 5 CONFIG -= qt
6 6
7 7 include(./sparc.pri)
8 8
9 9 # flight software version
10 10 SWVERSION=-1-0
11 11 DEFINES += SW_VERSION_N1=1 # major
12 12 DEFINES += SW_VERSION_N2=0 # minor
13 13 DEFINES += SW_VERSION_N3=0 # patch
14 14 DEFINES += SW_VERSION_N4=1 # internal
15 15
16 16 contains( CONFIG, verbose ) {
17 17 DEFINES += PRINT_MESSAGES_ON_CONSOLE
18 18 }
19 19
20 20 contains( CONFIG, debug_messages ) {
21 21 DEFINES += DEBUG_MESSAGES
22 22 }
23 23
24 24 contains( CONFIG, cpu_usage_report ) {
25 25 DEFINES += PRINT_TASK_STATISTICS
26 26 }
27 27
28 28 contains( CONFIG, stack_report ) {
29 29 DEFINES += PRINT_STACK_REPORT
30 30 }
31 31
32 32 contains( CONFIG, boot_messages ) {
33 33 DEFINES += BOOT_MESSAGES
34 34 }
35 35
36 36 #doxygen.target = doxygen
37 37 #doxygen.commands = doxygen ../doc/Doxyfile
38 38 #QMAKE_EXTRA_TARGETS += doxygen
39 39
40 40 TARGET = fsw
41 41 contains( CONFIG, gsa ) {
42 42 DEFINES += GSA
43 43 TARGET = fsw-gsa
44 44 }
45 45
46 46 TARGET = fsw
47 47 contains( CONFIG, vhdl_dev ) {
48 48 DEFINES += VHDL_DEV
49 49 TARGET = fsw-vhdl-dev
50 50 }
51 51
52 52 INCLUDEPATH += \
53 53 ../src \
54 ../header
54 ../header \
55 ../../LFR_basic-parameters
55 56
56 57 SOURCES += \
57 58 ../src/wf_handler.c \
58 59 ../src/tc_handler.c \
59 60 ../src/fsw_processing.c \
60 61 ../src/fsw_misc.c \
61 62 ../src/fsw_init.c \
62 63 ../src/fsw_globals.c \
63 64 ../src/fsw_spacewire.c \
64 65 ../src/tc_load_dump_parameters.c \
65 66 ../src/tm_lfr_tc_exe.c \
66 ../src/tc_acceptance.c
67 ../src/tc_acceptance.c \
68 ../../LFR_basic-parameters/basic_parameters.c
67 69
68 70
69 71 HEADERS += \
70 72 ../header/wf_handler.h \
71 73 ../header/tc_handler.h \
72 74 ../header/grlib_regs.h \
73 75 ../header/fsw_processing.h \
74 76 ../header/fsw_params.h \
75 77 ../header/fsw_misc.h \
76 78 ../header/fsw_init.h \
77 79 ../header/ccsds_types.h \
78 80 ../header/fsw_params_processing.h \
79 81 ../header/fsw_spacewire.h \
80 82 ../header/tm_byte_positions.h \
81 83 ../header/tc_load_dump_parameters.h \
82 84 ../header/tm_lfr_tc_exe.h \
83 85 ../header/tc_acceptance.h \
84 ../header/fsw_params_nb_bytes.h
86 ../header/fsw_params_nb_bytes.h \
87 ../../LFR_basic-parameters/basic_parameters.h
85 88
@@ -1,339 +1,339
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.0, 2014-02-06T15:45:54. -->
3 <!-- Written by QtCreator 3.0.0, 2014-02-13T07:01:15. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">1</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop</value>
55 55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop</value>
56 56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{e04e3924-0bd8-4708-be18-f1474e45608e}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 72 </valuemap>
73 73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 79 <value type="QString">-w</value>
80 80 <value type="QString">-r</value>
81 81 </valuelist>
82 82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 85 </valuemap>
86 86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 90 </valuemap>
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 98 <value type="QString">-w</value>
99 99 <value type="QString">-r</value>
100 100 </valuelist>
101 101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 104 </valuemap>
105 105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 109 </valuemap>
110 110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 118 </valuemap>
119 119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 126 </valuemap>
127 127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 131 </valuemap>
132 132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 153 <value type="int">0</value>
154 154 <value type="int">1</value>
155 155 <value type="int">2</value>
156 156 <value type="int">3</value>
157 157 <value type="int">4</value>
158 158 <value type="int">5</value>
159 159 <value type="int">6</value>
160 160 <value type="int">7</value>
161 161 <value type="int">8</value>
162 162 <value type="int">9</value>
163 163 <value type="int">10</value>
164 164 <value type="int">11</value>
165 165 <value type="int">12</value>
166 166 <value type="int">13</value>
167 167 <value type="int">14</value>
168 168 </valuelist>
169 169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 180 <value type="bool" key="RunConfiguration.UseCppDebugger">false</value>
181 181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">true</value>
182 182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 185 </valuemap>
186 186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 187 </valuemap>
188 188 </data>
189 189 <data>
190 190 <variable>ProjectExplorer.Project.Target.1</variable>
191 191 <valuemap type="QVariantMap">
192 192 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
193 193 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
194 194 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
195 195 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
196 196 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
197 197 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
198 198 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
199 199 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
200 200 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
201 201 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
202 202 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
203 203 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
204 204 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
205 205 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
206 206 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
207 207 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
208 208 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
209 209 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
210 210 </valuemap>
211 211 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
212 212 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
213 213 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
214 214 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
215 215 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
216 216 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
217 217 <value type="QString">-w</value>
218 218 <value type="QString">-r</value>
219 219 </valuelist>
220 220 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
221 221 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
222 222 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
223 223 </valuemap>
224 224 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
225 225 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
226 226 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
227 227 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
228 228 </valuemap>
229 229 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
230 230 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
231 231 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
232 232 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
233 233 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
234 234 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
235 235 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
236 236 <value type="QString">-w</value>
237 237 <value type="QString">-r</value>
238 238 </valuelist>
239 239 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
240 240 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
241 241 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
242 242 </valuemap>
243 243 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
244 244 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
245 245 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
246 246 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
247 247 </valuemap>
248 248 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
249 249 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
250 250 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
251 251 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
252 252 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
253 253 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
254 254 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
255 255 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
256 256 </valuemap>
257 257 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
258 258 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
259 259 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
260 260 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
261 261 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
262 262 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
263 263 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
264 264 </valuemap>
265 265 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
266 266 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
267 267 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
268 268 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
269 269 </valuemap>
270 270 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
271 271 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
272 272 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
273 273 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
274 274 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
275 275 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
276 276 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
277 277 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
278 278 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
279 279 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
280 280 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
281 281 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
282 282 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
283 283 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
284 284 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
285 285 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
286 286 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
287 287 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
288 288 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
289 289 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
290 290 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
291 291 <value type="int">0</value>
292 292 <value type="int">1</value>
293 293 <value type="int">2</value>
294 294 <value type="int">3</value>
295 295 <value type="int">4</value>
296 296 <value type="int">5</value>
297 297 <value type="int">6</value>
298 298 <value type="int">7</value>
299 299 <value type="int">8</value>
300 300 <value type="int">9</value>
301 301 <value type="int">10</value>
302 302 <value type="int">11</value>
303 303 <value type="int">12</value>
304 304 <value type="int">13</value>
305 305 <value type="int">14</value>
306 306 </valuelist>
307 307 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
308 308 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
309 309 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
310 310 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
311 311 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
312 312 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
313 313 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
314 314 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
315 315 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
316 316 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
317 317 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
318 318 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
319 319 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
320 320 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
321 321 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
322 322 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
323 323 </valuemap>
324 324 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
325 325 </valuemap>
326 326 </data>
327 327 <data>
328 328 <variable>ProjectExplorer.Project.TargetCount</variable>
329 329 <value type="int">2</value>
330 330 </data>
331 331 <data>
332 332 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
333 333 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
334 334 </data>
335 335 <data>
336 336 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
337 337 <value type="int">15</value>
338 338 </data>
339 339 </qtcreator>
@@ -1,222 +1,230
1 1 #ifndef FSW_PARAMS_H_INCLUDED
2 2 #define FSW_PARAMS_H_INCLUDED
3 3
4 4 #include "grlib_regs.h"
5 5 #include "fsw_params_processing.h"
6 6 #include "tm_byte_positions.h"
7 7 #include "ccsds_types.h"
8 8
9 9 #define GRSPW_DEVICE_NAME "/dev/grspw0"
10 10 #define UART_DEVICE_NAME "/dev/console"
11 11
12 12 typedef struct ring_node
13 13 {
14 14 struct ring_node *previous;
15 15 int buffer_address;
16 16 struct ring_node *next;
17 17 unsigned int status;
18 18 } ring_node;
19 19
20 typedef struct ring_node_sm
21 {
22 struct ring_node *previous;
23 volatile int *buffer_address;
24 struct ring_node *next;
25 unsigned int status;
26 } ring_node_sm;
27
20 28 //************************
21 29 // flight software version
22 30 // this parameters is handled by the Qt project options
23 31
24 32 //#define NB_SAMPLES_PER_SNAPSHOT 2048
25 33 #define NB_SAMPLES_PER_SNAPSHOT 2352 // 336 * 7 = 2352
26 34 #define TIME_OFFSET 2
27 35 #define TIME_OFFSET_IN_BYTES 8
28 36 #define WAVEFORM_EXTENDED_HEADER_OFFSET 22
29 37 #define NB_BYTES_SWF_BLK (2 * 6)
30 38 #define NB_WORDS_SWF_BLK 3
31 39 #define NB_BYTES_CWF3_LIGHT_BLK 6
32 40 #define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
33 41 #define NB_RING_NODES_F0 3 // AT LEAST 3
34 42 #define NB_RING_NODES_F1 5 // AT LEAST 3
35 43 #define NB_RING_NODES_F2 5 // AT LEAST 3
36 #define NB_RING_NODES_ASM_F0 8 // AT LEAST 3
44 #define NB_RING_NODES_ASM_F0 12 // AT LEAST 3
37 45 #define NB_RING_NODES_ASM_F1 2 // AT LEAST 3
38 46 #define NB_RING_NODES_ASM_F2 2 // AT LEAST 3
39 47
40 48 //**********
41 49 // LFR MODES
42 50 #define LFR_MODE_STANDBY 0
43 51 #define LFR_MODE_NORMAL 1
44 52 #define LFR_MODE_BURST 2
45 53 #define LFR_MODE_SBM1 3
46 54 #define LFR_MODE_SBM2 4
47 55 #define LFR_MODE_NORMAL_CWF_F3 5
48 56
49 57 #define RTEMS_EVENT_MODE_STANDBY RTEMS_EVENT_0
50 58 #define RTEMS_EVENT_MODE_NORMAL RTEMS_EVENT_1
51 59 #define RTEMS_EVENT_MODE_BURST RTEMS_EVENT_2
52 60 #define RTEMS_EVENT_MODE_SBM1 RTEMS_EVENT_3
53 61 #define RTEMS_EVENT_MODE_SBM2 RTEMS_EVENT_4
54 62 #define RTEMS_EVENT_MODE_SBM2_WFRM RTEMS_EVENT_5
55 63 #define RTEMS_EVENT_MODE_NORMAL_SWF_F0 RTEMS_EVENT_6
56 64 #define RTEMS_EVENT_MODE_NORMAL_SWF_F1 RTEMS_EVENT_7
57 65 #define RTEMS_EVENT_MODE_NORMAL_SWF_F2 RTEMS_EVENT_8
58 66
59 67 //****************************
60 68 // LFR DEFAULT MODE PARAMETERS
61 69 // COMMON
62 70 #define DEFAULT_SY_LFR_COMMON0 0x00
63 71 #define DEFAULT_SY_LFR_COMMON1 0x10 // default value 0 0 0 1 0 0 0 0
64 72 // NORM
65 73 #define SY_LFR_N_SWF_L 2048 // nb sample
66 74 #define SY_LFR_N_SWF_P 20 // sec
67 75 #define SY_LFR_N_ASM_P 3600 // sec
68 76 #define SY_LFR_N_BP_P0 4 // sec
69 77 #define SY_LFR_N_BP_P1 20 // sec
70 78 #define MIN_DELTA_SNAPSHOT 16 // sec
71 79 // BURST
72 80 #define DEFAULT_SY_LFR_B_BP_P0 1 // sec
73 81 #define DEFAULT_SY_LFR_B_BP_P1 5 // sec
74 82 // SBM1
75 83 #define DEFAULT_SY_LFR_S1_BP_P0 1 // sec
76 84 #define DEFAULT_SY_LFR_S1_BP_P1 1 // sec
77 85 // SBM2
78 86 #define DEFAULT_SY_LFR_S2_BP_P0 1 // sec
79 87 #define DEFAULT_SY_LFR_S2_BP_P1 5 // sec
80 88 // ADDITIONAL PARAMETERS
81 89 #define TIME_BETWEEN_TWO_SWF_PACKETS 30 // nb x 10 ms => 300 ms
82 90 #define TIME_BETWEEN_TWO_CWF3_PACKETS 1000 // nb x 10 ms => 10 s
83 91 // STATUS WORD
84 92 #define DEFAULT_STATUS_WORD_BYTE0 0x0d // [0000] [1] [101] mode 4 bits / SPW enabled 1 bit / state is run 3 bits
85 93 #define DEFAULT_STATUS_WORD_BYTE1 0x00
86 94 //
87 95 #define SY_LFR_DPU_CONNECT_TIMEOUT 100 // 100 * 10 ms = 1 s
88 96 #define SY_LFR_DPU_CONNECT_ATTEMPT 3
89 97 //****************************
90 98
91 99 //*****************************
92 100 // APB REGISTERS BASE ADDRESSES
93 101 #define REGS_ADDR_APBUART 0x80000100
94 102 #define REGS_ADDR_GPTIMER 0x80000300
95 103 #define REGS_ADDR_GRSPW 0x80000500
96 104 #define REGS_ADDR_TIME_MANAGEMENT 0x80000600
97 105 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
98 106
99 107 #ifdef GSA
100 108 #else
101 109 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f20
102 110 #endif
103 111
104 112 #define APBUART_CTRL_REG_MASK_DB 0xfffff7ff
105 113 #define APBUART_CTRL_REG_MASK_TE 0x00000002
106 114 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400 (0x50)
107 115
108 116 //**********
109 117 // IRQ LINES
110 118 #define IRQ_SM 9
111 119 #define IRQ_SPARC_SM 0x19 // see sparcv8.pdf p.76 for interrupt levels
112 120 #define IRQ_WF 10
113 121 #define IRQ_SPARC_WF 0x1a // see sparcv8.pdf p.76 for interrupt levels
114 122 #define IRQ_TIME1 12
115 123 #define IRQ_SPARC_TIME1 0x1c // see sparcv8.pdf p.76 for interrupt levels
116 124 #define IRQ_TIME2 13
117 125 #define IRQ_SPARC_TIME2 0x1d // see sparcv8.pdf p.76 for interrupt levels
118 126 #define IRQ_WAVEFORM_PICKER 14
119 127 #define IRQ_SPARC_WAVEFORM_PICKER 0x1e // see sparcv8.pdf p.76 for interrupt levels
120 128 #define IRQ_SPECTRAL_MATRIX 6
121 129 #define IRQ_SPARC_SPECTRAL_MATRIX 0x16 // see sparcv8.pdf p.76 for interrupt levels
122 130
123 131 //*****
124 132 // TIME
125 133 #define CLKDIV_SM_SIMULATOR (10000 - 1) // 10 ms
126 134 #define CLKDIV_WF_SIMULATOR (10000000 - 1) // 10 000 000 * 1 us = 10 s
127 135 #define TIMER_SM_SIMULATOR 1
128 136 #define TIMER_WF_SIMULATOR 2
129 137 #define HK_PERIOD 100 // 100 * 10ms => 1sec
130 138
131 139 //**********
132 140 // LPP CODES
133 141 #define LFR_SUCCESSFUL 0
134 142 #define LFR_DEFAULT 1
135 143
136 144 //******
137 145 // RTEMS
138 146 #define TASKID_RECV 1
139 147 #define TASKID_ACTN 2
140 148 #define TASKID_SPIQ 3
141 149 #define TASKID_SMIQ 4
142 150 #define TASKID_STAT 5
143 151 #define TASKID_AVF0 6
144 152 #define TASKID_BPF0 7
145 153 #define TASKID_WFRM 8
146 154 #define TASKID_DUMB 9
147 155 #define TASKID_HOUS 10
148 156 #define TASKID_MATR 11
149 157 #define TASKID_CWF3 12
150 158 #define TASKID_CWF2 13
151 159 #define TASKID_CWF1 14
152 160 #define TASKID_SEND 15
153 161 #define TASKID_WTDG 16
154 162
155 163 #define TASK_PRIORITY_SPIQ 5
156 164 #define TASK_PRIORITY_SMIQ 10
157 165 #define TASK_PRIORITY_WTDG 20
158 166 #define TASK_PRIORITY_HOUS 30
159 167 #define TASK_PRIORITY_CWF1 35 // CWF1 and CWF2 are never running together
160 168 #define TASK_PRIORITY_CWF2 35 //
161 169 #define TASK_PRIORITY_WFRM 40
162 170 #define TASK_PRIORITY_CWF3 40 // there is a printf in this function, be careful with its priority wrt CWF1
163 171 #define TASK_PRIORITY_SEND 45
164 172 #define TASK_PRIORITY_RECV 50
165 173 #define TASK_PRIORITY_ACTN 50
166 174 #define TASK_PRIORITY_AVF0 60
167 175 #define TASK_PRIORITY_BPF0 60
168 176 #define TASK_PRIORITY_MATR 100
169 177 #define TASK_PRIORITY_STAT 200
170 178 #define TASK_PRIORITY_DUMB 200
171 179
172 180 #define ACTION_MSG_QUEUE_COUNT 10
173 181 #define ACTION_MSG_PKTS_COUNT 50
174 182 #define ACTION_MSG_PKTS_MAX_SIZE (PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES)
175 183 #define ACTION_MSG_SPW_IOCTL_SEND_SIZE 24 // hlen *hdr dlen *data sent options
176 184
177 185 #define QUEUE_RECV 0
178 186 #define QUEUE_SEND 1
179 187
180 188 //*******
181 189 // MACROS
182 190 #ifdef PRINT_MESSAGES_ON_CONSOLE
183 191 #define PRINTF(x) printf(x);
184 192 #define PRINTF1(x,y) printf(x,y);
185 193 #define PRINTF2(x,y,z) printf(x,y,z);
186 194 #else
187 195 #define PRINTF(x) ;
188 196 #define PRINTF1(x,y) ;
189 197 #define PRINTF2(x,y,z) ;
190 198 #endif
191 199
192 200 #ifdef BOOT_MESSAGES
193 201 #define BOOT_PRINTF(x) printf(x);
194 202 #define BOOT_PRINTF1(x,y) printf(x,y);
195 203 #define BOOT_PRINTF2(x,y,z) printf(x,y,z);
196 204 #else
197 205 #define BOOT_PRINTF(x) ;
198 206 #define BOOT_PRINTF1(x,y) ;
199 207 #define BOOT_PRINTF2(x,y,z) ;
200 208 #endif
201 209
202 210 #ifdef DEBUG_MESSAGES
203 211 #define DEBUG_PRINTF(x) printf(x);
204 212 #define DEBUG_PRINTF1(x,y) printf(x,y);
205 213 #define DEBUG_PRINTF2(x,y,z) printf(x,y,z);
206 214 #else
207 215 #define DEBUG_PRINTF(x) ;
208 216 #define DEBUG_PRINTF1(x,y) ;
209 217 #define DEBUG_PRINTF2(x,y,z) ;
210 218 #endif
211 219
212 220 #define CPU_USAGE_REPORT_PERIOD 6 // * 10 s = period
213 221
214 222 struct param_local_str{
215 223 unsigned int local_sbm1_nb_cwf_sent;
216 224 unsigned int local_sbm1_nb_cwf_max;
217 225 unsigned int local_sbm2_nb_cwf_sent;
218 226 unsigned int local_sbm2_nb_cwf_max;
219 227 unsigned int local_nb_interrupt_f0_MAX;
220 228 };
221 229
222 230 #endif // FSW_PARAMS_H_INCLUDED
@@ -1,54 +1,56
1 1 #ifndef FSW_PROCESSING_H_INCLUDED
2 2 #define FSW_PROCESSING_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <math.h>
7 7 #include <stdlib.h> // abs() is in the stdlib
8 8 #include <stdio.h> // printf()
9 9 #include <math.h>
10 10
11 11 #include "fsw_params.h"
12 12 #include "fsw_spacewire.h"
13 #include "basic_parameters.h"
13 14
14 15 extern volatile int sm_f0[ ][ SM_HEADER + TOTAL_SIZE_SM ];
15 16 extern volatile int sm_f1[ ][ SM_HEADER + TOTAL_SIZE_SM ];
16 17 extern volatile int sm_f2[ ][ SM_HEADER + TOTAL_SIZE_SM ];
17 18
18 19 // parameters
19 20 extern struct param_local_str param_local;
20 21
21 22 // registers
22 23 extern time_management_regs_t *time_management_regs;
23 24 extern spectral_matrix_regs_t *spectral_matrix_regs;
24 25
25 26 extern rtems_name misc_name[5];
26 27 extern rtems_id Task_id[20]; /* array of task ids */
27 28
28 29 //
29 void init_asm_rings( void );
30 void init_sm_rings( void );
31 void reset_current_sm_ring_nodes( void );
30 32
31 33 // ISR
32 34 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
33 35 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
34 36
35 37 // RTEMS TASKS
36 38 rtems_task spw_bppr_task(rtems_task_argument argument);
37 39 rtems_task avf0_task(rtems_task_argument argument);
38 40 rtems_task bpf0_task(rtems_task_argument argument);
39 41 rtems_task smiq_task(rtems_task_argument argument); // added to test the spectral matrix simulator
40 42 rtems_task matr_task(rtems_task_argument argument);
41 43
42 44 void matrix_compression(volatile float *averaged_spec_mat, unsigned char fChannel, float *compressed_spec_mat);
43 45 void matrix_reset(volatile float *averaged_spec_mat);
44 void BP1_set(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * LFR_BP1);
45 void BP2_set(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat);
46 void BP1_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * LFR_BP1);
47 void BP2_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat);
46 48 //
47 49 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header);
48 50 void send_spectral_matrix(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
49 51 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id);
50 52 void convert_averaged_spectral_matrix(volatile float *input_matrix, char *output_matrix);
51 53 void fill_averaged_spectral_matrix( void );
52 54 void reset_spectral_matrix_regs();
53 55
54 56 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,58 +1,60
1 1 #ifndef TC_HANDLER_H_INCLUDED
2 2 #define TC_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <leon.h>
6 6
7 7 #include "tc_load_dump_parameters.h"
8 8 #include "tc_acceptance.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "wf_handler.h"
11 #include "fsw_processing.h"
11 12
12 13 // MODE PARAMETERS
13 14 extern unsigned int maxCount;
14 15
15 16 //****
16 17 // ISR
17 18 rtems_isr commutation_isr1( rtems_vector_number vector );
18 19 rtems_isr commutation_isr2( rtems_vector_number vector );
19 20
20 21 //***********
21 22 // RTEMS TASK
22 23 rtems_task actn_task( rtems_task_argument unused );
23 24
24 25 //***********
25 26 // TC ACTIONS
26 27 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
27 28 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
28 29 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id);
29 30 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
30 31 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
31 32 int action_update_time(ccsdsTelecommandPacket_t *TC);
32 33
33 34 // mode transition
34 35 int transition_validation(unsigned char requestedMode);
35 36 int stop_current_mode();
36 37 int enter_mode(unsigned char mode);
37 38 int enter_standby_mode();
38 39 int enter_normal_mode();
39 40 int enter_burst_mode();
40 41 int enter_sbm1_mode();
41 42 int enter_sbm2_mode();
42 43 int restart_science_tasks();
43 44 int suspend_science_tasks();
44 45 void launch_waveform_picker( unsigned char mode );
46 void launch_spectral_matrix( unsigned char mode );
45 47
46 48 // other functions
47 49 void updateLFRCurrentMode();
48 50 void update_last_TC_exe(ccsdsTelecommandPacket_t *TC, unsigned char *time);
49 51 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char *time);
50 52 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id, unsigned char *time);
51 53
52 54 extern rtems_status_code get_message_queue_id_send( rtems_id *queue_id );
53 55 extern rtems_status_code get_message_queue_id_recv( rtems_id *queue_id );
54 56
55 57 #endif // TC_HANDLER_H_INCLUDED
56 58
57 59
58 60
@@ -1,88 +1,92
1 1 #ifndef WF_HANDLER_H_INCLUDED
2 2 #define WF_HANDLER_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <stdio.h>
7 7 #include <math.h>
8 8
9 9 #include "fsw_params.h"
10 10 #include "fsw_spacewire.h"
11 11 #include "fsw_misc.h"
12 12
13 13 #define pi 3.1415
14 14
15 15 extern int fdSPW;
16 16
17 17 //*****************
18 18 // waveform buffers
19 19 // F0
20 20 //extern volatile int wf_snap_f0[ ];
21 21 // F1 F2
22 22 extern volatile int wf_snap_f0[ ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 46 ];
23 23 extern volatile int wf_snap_f1[ ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 46 ];
24 24 extern volatile int wf_snap_f2[ ][ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET + 46 ];
25 25 // F3
26 26 extern volatile int wf_cont_f3_a[ ];
27 27 extern volatile int wf_cont_f3_b[ ];
28 28 extern char wf_cont_f3_light[ ];
29 29
30 30 #ifdef VHDL_DEV
31 31 extern waveform_picker_regs_new_t *waveform_picker_regs;
32 32 #else
33 33 extern waveform_picker_regs_t *waveform_picker_regs;
34 34 #endif
35 35 extern time_management_regs_t *time_management_regs;
36 36 extern Packet_TM_LFR_HK_t housekeeping_packet;
37 37 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
38 38 extern struct param_local_str param_local;
39 39
40 40 extern unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
41 41 extern unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
42 42
43 43 extern rtems_id Task_id[20]; /* array of task ids */
44 44
45 45 extern unsigned char lfrCurrentMode;
46 46
47 47 rtems_isr waveforms_isr( rtems_vector_number vector );
48 rtems_isr waveforms_isr_alt( rtems_vector_number vector );
48 49 rtems_task wfrm_task( rtems_task_argument argument );
49 50 rtems_task cwf3_task( rtems_task_argument argument );
50 51 rtems_task cwf2_task( rtems_task_argument argument );
51 52 rtems_task cwf1_task( rtems_task_argument argument );
52 53
53 54 //******************
54 55 // general functions
55 56 void init_waveforms( void );
56 57 void init_waveform_rings( void );
57 58 void reset_current_ring_nodes( void );
58 59 //
59 60 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF );
60 61 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
61 62 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
62 63 //
63 64 int send_waveform_SWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id );
64 65 int send_waveform_CWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
65 66 int send_waveform_CWF3( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
66 67 int send_waveform_CWF3_light( volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
67 68 //
68 69 void compute_acquisition_time(unsigned int *coarseTime, unsigned int *fineTime, unsigned int sid, unsigned char pa_lfr_pkt_nr );
69 70 //
70 71 rtems_id get_pkts_queue_id( void );
71 72
72 73 //**************
73 74 // wfp registers
74 75 void set_wfp_data_shaping();
75 76 char set_wfp_delta_snapshot();
76 77 void set_wfp_burst_enable_register( unsigned char mode );
77 78 void reset_wfp_burst_enable();
78 79 void reset_wfp_status();
80 void reset_waveform_picker_regs_vhdl_dev();
81 void reset_waveform_picker_regs_vhdl_dev_debug();
82 void reset_waveform_picker_regs_vhdl_dev_debug_64();
79 83 void reset_waveform_picker_regs();
80 84 void reset_new_waveform_picker_regs();
81 85
82 86 //*****************
83 87 // local parameters
84 88 void set_local_nb_interrupt_f0_MAX( void );
85 89
86 90 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid );
87 91
88 92 #endif // WF_HANDLER_H_INCLUDED
@@ -1,609 +1,610
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 36 #define CONFIGURE_MAXIMUM_PERIODS 5
37 37 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 38 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 2
39 39 #ifdef PRINT_STACK_REPORT
40 40 #define CONFIGURE_STACK_CHECKER_ENABLED
41 41 #endif
42 42
43 43 #include <rtems/confdefs.h>
44 44
45 45 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 46 #ifdef RTEMS_DRVMGR_STARTUP
47 47 #ifdef LEON3
48 48 /* Add Timer and UART Driver */
49 49 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 50 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 51 #endif
52 52 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 54 #endif
55 55 #endif
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 57 #include <drvmgr/drvmgr_confdefs.h>
58 58 #endif
59 59
60 60 #include "fsw_init.h"
61 61 #include "fsw_config.c"
62 62
63 63 rtems_task Init( rtems_task_argument ignored )
64 64 {
65 65 /** This is the RTEMS INIT taks, it the first task launched by the system.
66 66 *
67 67 * @param unused is the starting argument of the RTEMS task
68 68 *
69 69 * The INIT task create and run all other RTEMS tasks.
70 70 *
71 71 */
72 72
73 73
74 74 rtems_status_code status;
75 75 rtems_status_code status_spw;
76 76 rtems_isr_entry old_isr_handler;
77 77
78 78 // UART settings
79 send_console_outputs_on_apbuart_port();
79 80 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
80 send_console_outputs_on_apbuart_port();
81 81 enable_apbuart_transmitter();
82 82 PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
83 83
84 84 BOOT_PRINTF("\n\n\n\n\n")
85 85 BOOT_PRINTF("***************************\n")
86 86 BOOT_PRINTF("** START Flight Software **\n")
87 87 #ifdef VHDL_DEV
88 88 PRINTF("/!\\ this is the VHDL_DEV flight software /!\\ \n")
89 89 #endif
90 90 BOOT_PRINTF("***************************\n")
91 91 BOOT_PRINTF("\n\n")
92 92
93 93 reset_wfp_burst_enable(); // stop the waveform picker if it was running
94 94 init_waveform_rings(); // initialize the waveform rings
95 init_sm_rings();
95 96
96 97 init_parameter_dump();
97 98 init_local_mode_parameters();
98 99 init_housekeeping_parameters();
99 100
100 101 updateLFRCurrentMode();
101 102
102 103 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
103 104
104 105 create_names(); // create all names
105 106
106 107 status = create_message_queues(); // create message queues
107 108 if (status != RTEMS_SUCCESSFUL)
108 109 {
109 110 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
110 111 }
111 112
112 113 status = create_all_tasks(); // create all tasks
113 114 if (status != RTEMS_SUCCESSFUL)
114 115 {
115 116 PRINTF1("in INIT *** ERR in create_all_tasks, code %d", status)
116 117 }
117 118
118 119 // **************************
119 120 // <SPACEWIRE INITIALIZATION>
120 121 grspw_timecode_callback = &timecode_irq_handler;
121 122
122 123 status_spw = spacewire_open_link(); // (1) open the link
123 124 if ( status_spw != RTEMS_SUCCESSFUL )
124 125 {
125 126 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
126 127 }
127 128
128 129 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
129 130 {
130 131 status_spw = spacewire_configure_link( fdSPW );
131 132 if ( status_spw != RTEMS_SUCCESSFUL )
132 133 {
133 134 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
134 135 }
135 136 }
136 137
137 138 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
138 139 {
139 140 status_spw = spacewire_start_link( fdSPW );
140 141 if ( status_spw != RTEMS_SUCCESSFUL )
141 142 {
142 143 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
143 144 }
144 145 }
145 146 // </SPACEWIRE INITIALIZATION>
146 147 // ***************************
147 148
148 149 status = start_all_tasks(); // start all tasks
149 150 if (status != RTEMS_SUCCESSFUL)
150 151 {
151 152 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
152 153 }
153 154
154 155 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
155 156 status = start_recv_send_tasks();
156 157 if ( status != RTEMS_SUCCESSFUL )
157 158 {
158 159 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
159 160 }
160 161
161 162 // suspend science tasks. they will be restarted later depending on the mode
162 163 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
163 164 if (status != RTEMS_SUCCESSFUL)
164 165 {
165 166 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
166 167 }
167 168
168 169
169 170 //******************************
170 171 // <SPECTRAL MATRICES SIMULATOR>
171 172 LEON_Mask_interrupt( IRQ_SM );
172 173 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
173 174 IRQ_SPARC_SM, spectral_matrices_isr_simu );
174 175 // </SPECTRAL MATRICES SIMULATOR>
175 176 //*******************************
176 177
177 178 // configure IRQ handling for the waveform picker unit
178 179 status = rtems_interrupt_catch( waveforms_isr,
179 180 IRQ_SPARC_WAVEFORM_PICKER,
180 181 &old_isr_handler) ;
181 182
182 183 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
183 184 if ( status_spw != RTEMS_SUCCESSFUL )
184 185 {
185 186 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
186 187 if ( status != RTEMS_SUCCESSFUL ) {
187 188 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
188 189 }
189 190 }
190 191
191 192 BOOT_PRINTF("delete INIT\n")
192 193
193 194 status = rtems_task_delete(RTEMS_SELF);
194 195
195 196 }
196 197
197 198 void init_local_mode_parameters( void )
198 199 {
199 200 /** This function initialize the param_local global variable with default values.
200 201 *
201 202 */
202 203
203 204 unsigned int i;
204 205
205 206 // LOCAL PARAMETERS
206 207 set_local_nb_interrupt_f0_MAX();
207 208
208 209 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
209 210 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
210 211 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
211 212
212 213 // init sequence counters
213 214
214 215 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
215 216 {
216 217 sequenceCounters_TC_EXE[i] = 0x00;
217 218 }
218 219 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
219 220 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
220 221 }
221 222
222 223 void create_names( void ) // create all names for tasks and queues
223 224 {
224 225 /** This function creates all RTEMS names used in the software for tasks and queues.
225 226 *
226 227 * @return RTEMS directive status codes:
227 228 * - RTEMS_SUCCESSFUL - successful completion
228 229 *
229 230 */
230 231
231 232 // task names
232 233 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
233 234 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
234 235 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
235 236 Task_name[TASKID_SMIQ] = rtems_build_name( 'S', 'M', 'I', 'Q' );
236 237 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
237 238 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
238 239 Task_name[TASKID_BPF0] = rtems_build_name( 'B', 'P', 'F', '0' );
239 240 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
240 241 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
241 242 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
242 243 Task_name[TASKID_MATR] = rtems_build_name( 'M', 'A', 'T', 'R' );
243 244 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
244 245 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
245 246 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
246 247 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
247 248 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
248 249
249 250 // rate monotonic period names
250 251 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
251 252
252 253 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
253 254 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
254 255 }
255 256
256 257 int create_all_tasks( void ) // create all tasks which run in the software
257 258 {
258 259 /** This function creates all RTEMS tasks used in the software.
259 260 *
260 261 * @return RTEMS directive status codes:
261 262 * - RTEMS_SUCCESSFUL - task created successfully
262 263 * - RTEMS_INVALID_ADDRESS - id is NULL
263 264 * - RTEMS_INVALID_NAME - invalid task name
264 265 * - RTEMS_INVALID_PRIORITY - invalid task priority
265 266 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
266 267 * - RTEMS_TOO_MANY - too many tasks created
267 268 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
268 269 * - RTEMS_TOO_MANY - too many global objects
269 270 *
270 271 */
271 272
272 273 rtems_status_code status;
273 274
274 275 // RECV
275 276 status = rtems_task_create(
276 277 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
277 278 RTEMS_DEFAULT_MODES,
278 279 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
279 280 );
280 281
281 282 if (status == RTEMS_SUCCESSFUL) // ACTN
282 283 {
283 284 status = rtems_task_create(
284 285 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
285 286 RTEMS_DEFAULT_MODES,
286 287 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
287 288 );
288 289 }
289 290 if (status == RTEMS_SUCCESSFUL) // SPIQ
290 291 {
291 292 status = rtems_task_create(
292 293 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
293 294 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
294 295 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
295 296 );
296 297 }
297 298 if (status == RTEMS_SUCCESSFUL) // SMIQ
298 299 {
299 300 status = rtems_task_create(
300 301 Task_name[TASKID_SMIQ], TASK_PRIORITY_SMIQ, RTEMS_MINIMUM_STACK_SIZE,
301 302 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
302 303 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SMIQ]
303 304 );
304 305 }
305 306 if (status == RTEMS_SUCCESSFUL) // STAT
306 307 {
307 308 status = rtems_task_create(
308 309 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
309 310 RTEMS_DEFAULT_MODES,
310 311 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
311 312 );
312 313 }
313 314 if (status == RTEMS_SUCCESSFUL) // AVF0
314 315 {
315 316 status = rtems_task_create(
316 317 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
317 318 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
318 319 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
319 320 );
320 321 }
321 322 if (status == RTEMS_SUCCESSFUL) // BPF0
322 323 {
323 324 status = rtems_task_create(
324 325 Task_name[TASKID_BPF0], TASK_PRIORITY_BPF0, RTEMS_MINIMUM_STACK_SIZE,
325 326 RTEMS_DEFAULT_MODES,
326 327 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_BPF0]
327 328 );
328 329 }
329 330 if (status == RTEMS_SUCCESSFUL) // WFRM
330 331 {
331 332 status = rtems_task_create(
332 333 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
333 334 RTEMS_DEFAULT_MODES,
334 335 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
335 336 );
336 337 }
337 338 if (status == RTEMS_SUCCESSFUL) // DUMB
338 339 {
339 340 status = rtems_task_create(
340 341 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
341 342 RTEMS_DEFAULT_MODES,
342 343 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
343 344 );
344 345 }
345 346 if (status == RTEMS_SUCCESSFUL) // HOUS
346 347 {
347 348 status = rtems_task_create(
348 349 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
349 350 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
350 351 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_HOUS]
351 352 );
352 353 }
353 354 if (status == RTEMS_SUCCESSFUL) // MATR
354 355 {
355 356 status = rtems_task_create(
356 357 Task_name[TASKID_MATR], TASK_PRIORITY_MATR, RTEMS_MINIMUM_STACK_SIZE,
357 358 RTEMS_DEFAULT_MODES,
358 359 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_MATR]
359 360 );
360 361 }
361 362 if (status == RTEMS_SUCCESSFUL) // CWF3
362 363 {
363 364 status = rtems_task_create(
364 365 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
365 366 RTEMS_DEFAULT_MODES,
366 367 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_CWF3]
367 368 );
368 369 }
369 370 if (status == RTEMS_SUCCESSFUL) // CWF2
370 371 {
371 372 status = rtems_task_create(
372 373 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
373 374 RTEMS_DEFAULT_MODES,
374 375 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_CWF2]
375 376 );
376 377 }
377 378 if (status == RTEMS_SUCCESSFUL) // CWF1
378 379 {
379 380 status = rtems_task_create(
380 381 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
381 382 RTEMS_DEFAULT_MODES,
382 383 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_CWF1]
383 384 );
384 385 }
385 386 if (status == RTEMS_SUCCESSFUL) // SEND
386 387 {
387 388 status = rtems_task_create(
388 389 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
389 390 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
390 391 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
391 392 );
392 393 }
393 394 if (status == RTEMS_SUCCESSFUL) // WTDG
394 395 {
395 396 status = rtems_task_create(
396 397 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
397 398 RTEMS_DEFAULT_MODES,
398 399 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
399 400 );
400 401 }
401 402
402 403 return status;
403 404 }
404 405
405 406 int start_recv_send_tasks( void )
406 407 {
407 408 rtems_status_code status;
408 409
409 410 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
410 411 if (status!=RTEMS_SUCCESSFUL) {
411 412 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
412 413 }
413 414
414 415 if (status == RTEMS_SUCCESSFUL) // SEND
415 416 {
416 417 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
417 418 if (status!=RTEMS_SUCCESSFUL) {
418 419 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
419 420 }
420 421 }
421 422
422 423 return status;
423 424 }
424 425
425 426 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
426 427 {
427 428 /** This function starts all RTEMS tasks used in the software.
428 429 *
429 430 * @return RTEMS directive status codes:
430 431 * - RTEMS_SUCCESSFUL - ask started successfully
431 432 * - RTEMS_INVALID_ADDRESS - invalid task entry point
432 433 * - RTEMS_INVALID_ID - invalid task id
433 434 * - RTEMS_INCORRECT_STATE - task not in the dormant state
434 435 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
435 436 *
436 437 */
437 438 // starts all the tasks fot eh flight software
438 439
439 440 rtems_status_code status;
440 441
441 442 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
442 443 if (status!=RTEMS_SUCCESSFUL) {
443 444 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
444 445 }
445 446
446 447 if (status == RTEMS_SUCCESSFUL) // WTDG
447 448 {
448 449 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
449 450 if (status!=RTEMS_SUCCESSFUL) {
450 451 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
451 452 }
452 453 }
453 454
454 455 if (status == RTEMS_SUCCESSFUL) // SMIQ
455 456 {
456 457 status = rtems_task_start( Task_id[TASKID_SMIQ], smiq_task, 1 );
457 458 if (status!=RTEMS_SUCCESSFUL) {
458 459 BOOT_PRINTF("in INIT *** Error starting TASK_BPPR\n")
459 460 }
460 461 }
461 462
462 463 if (status == RTEMS_SUCCESSFUL) // ACTN
463 464 {
464 465 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
465 466 if (status!=RTEMS_SUCCESSFUL) {
466 467 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
467 468 }
468 469 }
469 470
470 471 if (status == RTEMS_SUCCESSFUL) // STAT
471 472 {
472 473 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
473 474 if (status!=RTEMS_SUCCESSFUL) {
474 475 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
475 476 }
476 477 }
477 478
478 479 if (status == RTEMS_SUCCESSFUL) // AVF0
479 480 {
480 481 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, 1 );
481 482 if (status!=RTEMS_SUCCESSFUL) {
482 483 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
483 484 }
484 485 }
485 486
486 487 if (status == RTEMS_SUCCESSFUL) // BPF0
487 488 {
488 489 status = rtems_task_start( Task_id[TASKID_BPF0], bpf0_task, 1 );
489 490 if (status!=RTEMS_SUCCESSFUL) {
490 491 BOOT_PRINTF("in INIT *** Error starting TASK_BPF0\n")
491 492 }
492 493 }
493 494
494 495 if (status == RTEMS_SUCCESSFUL) // WFRM
495 496 {
496 497 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
497 498 if (status!=RTEMS_SUCCESSFUL) {
498 499 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
499 500 }
500 501 }
501 502
502 503 if (status == RTEMS_SUCCESSFUL) // DUMB
503 504 {
504 505 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
505 506 if (status!=RTEMS_SUCCESSFUL) {
506 507 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
507 508 }
508 509 }
509 510
510 511 if (status == RTEMS_SUCCESSFUL) // HOUS
511 512 {
512 513 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
513 514 if (status!=RTEMS_SUCCESSFUL) {
514 515 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
515 516 }
516 517 }
517 518
518 519 if (status == RTEMS_SUCCESSFUL) // MATR
519 520 {
520 521 status = rtems_task_start( Task_id[TASKID_MATR], matr_task, 1 );
521 522 if (status!=RTEMS_SUCCESSFUL) {
522 523 BOOT_PRINTF("in INIT *** Error starting TASK_MATR\n")
523 524 }
524 525 }
525 526
526 527 if (status == RTEMS_SUCCESSFUL) // CWF3
527 528 {
528 529 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
529 530 if (status!=RTEMS_SUCCESSFUL) {
530 531 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
531 532 }
532 533 }
533 534
534 535 if (status == RTEMS_SUCCESSFUL) // CWF2
535 536 {
536 537 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
537 538 if (status!=RTEMS_SUCCESSFUL) {
538 539 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
539 540 }
540 541 }
541 542
542 543 if (status == RTEMS_SUCCESSFUL) // CWF1
543 544 {
544 545 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
545 546 if (status!=RTEMS_SUCCESSFUL) {
546 547 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
547 548 }
548 549 }
549 550 return status;
550 551 }
551 552
552 553 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
553 554 {
554 555 rtems_status_code status_recv;
555 556 rtems_status_code status_send;
556 557 rtems_status_code ret;
557 558 rtems_id queue_id;
558 559
559 560 // create the queue for handling valid TCs
560 561 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
561 562 ACTION_MSG_QUEUE_COUNT, CCSDS_TC_PKT_MAX_SIZE,
562 563 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
563 564 if ( status_recv != RTEMS_SUCCESSFUL ) {
564 565 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
565 566 }
566 567
567 568 // create the queue for handling TM packet sending
568 569 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
569 570 ACTION_MSG_PKTS_COUNT, ACTION_MSG_PKTS_MAX_SIZE,
570 571 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
571 572 if ( status_send != RTEMS_SUCCESSFUL ) {
572 573 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
573 574 }
574 575
575 576 if ( status_recv != RTEMS_SUCCESSFUL )
576 577 {
577 578 ret = status_recv;
578 579 }
579 580 else
580 581 {
581 582 ret = status_send;
582 583 }
583 584
584 585 return ret;
585 586 }
586 587
587 588 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
588 589 {
589 590 rtems_status_code status;
590 591 rtems_name queue_name;
591 592
592 593 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
593 594
594 595 status = rtems_message_queue_ident( queue_name, 0, queue_id );
595 596
596 597 return status;
597 598 }
598 599
599 600 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
600 601 {
601 602 rtems_status_code status;
602 603 rtems_name queue_name;
603 604
604 605 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
605 606
606 607 status = rtems_message_queue_ident( queue_name, 0, queue_id );
607 608
608 609 return status;
609 610 }
@@ -1,341 +1,341
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 28 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
29 29 if (status!=RTEMS_SUCCESSFUL)
30 30 {
31 31 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
32 32 }
33 33
34 34 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
35 35 }
36 36
37 37 void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
38 38 {
39 39 /** This function starts a GPTIMER timer.
40 40 *
41 41 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
42 42 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
43 43 *
44 44 */
45 45
46 46 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
47 47 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
48 48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
49 49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
50 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
51 51 }
52 52
53 53 void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
54 54 {
55 55 /** This function stops a GPTIMER timer.
56 56 *
57 57 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
58 58 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
59 59 *
60 60 */
61 61
62 62 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
63 63 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
64 64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
65 65 }
66 66
67 67 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
68 68 {
69 69 /** This function sets the clock divider of a GPTIMER timer.
70 70 *
71 71 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
72 72 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
73 73 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
74 74 *
75 75 */
76 76
77 77 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
78 78 }
79 79
80 80 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
81 81 {
82 82 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
83 83
84 apbuart_regs->ctrl = apbuart_regs->ctrl & APBUART_CTRL_REG_MASK_DB;
84 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
85 85
86 86 return 0;
87 87 }
88 88
89 89 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
90 90 {
91 91 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
92 92
93 93 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
94 94
95 95 return 0;
96 96 }
97 97
98 98 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
99 99 {
100 100 /** This function sets the scaler reload register of the apbuart module
101 101 *
102 102 * @param regs is the address of the apbuart registers in memory
103 103 * @param value is the value that will be stored in the scaler register
104 104 *
105 105 * The value shall be set by the software to get data on the serial interface.
106 106 *
107 107 */
108 108
109 109 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
110 110
111 111 apbuart_regs->scaler = value;
112 112 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
113 113 }
114 114
115 115 //************
116 116 // RTEMS TASKS
117 117
118 118 rtems_task stat_task(rtems_task_argument argument)
119 119 {
120 120 int i;
121 121 int j;
122 122 i = 0;
123 123 j = 0;
124 124 BOOT_PRINTF("in STAT *** \n")
125 125 while(1){
126 126 rtems_task_wake_after(1000);
127 127 PRINTF1("%d\n", j)
128 128 if (i == CPU_USAGE_REPORT_PERIOD) {
129 129 // #ifdef PRINT_TASK_STATISTICS
130 130 // rtems_cpu_usage_report();
131 131 // rtems_cpu_usage_reset();
132 132 // #endif
133 133 i = 0;
134 134 }
135 135 else i++;
136 136 j++;
137 137 }
138 138 }
139 139
140 140 rtems_task hous_task(rtems_task_argument argument)
141 141 {
142 142 rtems_status_code status;
143 143 rtems_id queue_id;
144 144
145 145 status = get_message_queue_id_send( &queue_id );
146 146 if (status != RTEMS_SUCCESSFUL)
147 147 {
148 148 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
149 149 }
150 150
151 151 BOOT_PRINTF("in HOUS ***\n")
152 152
153 153 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
154 154 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
155 155 if( status != RTEMS_SUCCESSFUL ) {
156 156 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
157 157 }
158 158 }
159 159
160 160 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
161 161 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
162 162 housekeeping_packet.reserved = DEFAULT_RESERVED;
163 163 housekeeping_packet.userApplication = CCSDS_USER_APP;
164 164 housekeeping_packet.packetID[0] = (unsigned char) (TM_PACKET_ID_HK >> 8);
165 165 housekeeping_packet.packetID[1] = (unsigned char) (TM_PACKET_ID_HK);
166 166 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
167 167 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
168 168 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
169 169 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
170 170 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
171 171 housekeeping_packet.serviceType = TM_TYPE_HK;
172 172 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
173 173 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
174 174 housekeeping_packet.sid = SID_HK;
175 175
176 176 status = rtems_rate_monotonic_cancel(HK_id);
177 177 if( status != RTEMS_SUCCESSFUL ) {
178 178 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
179 179 }
180 180 else {
181 181 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
182 182 }
183 183
184 184 while(1){ // launch the rate monotonic task
185 185 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
186 186 if ( status != RTEMS_SUCCESSFUL ) {
187 187 PRINTF1( "in HOUS *** ERR period: %d\n", status);
188 188 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
189 189 }
190 190 else {
191 191 increment_seq_counter( housekeeping_packet.packetSequenceControl );
192 192 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
193 193 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
194 194 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
195 195 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
196 196 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
197 197 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
198 198
199 199 spacewire_update_statistics();
200 200
201 201 // SEND PACKET
202 202 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
203 203 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
204 204 if (status != RTEMS_SUCCESSFUL) {
205 205 PRINTF1("in HOUS *** ERR send: %d\n", status)
206 206 }
207 207 }
208 208 }
209 209
210 210 PRINTF("in HOUS *** deleting task\n")
211 211
212 212 status = rtems_task_delete( RTEMS_SELF ); // should not return
213 213 printf( "rtems_task_delete returned with status of %d.\n", status );
214 214 return;
215 215 }
216 216
217 217 rtems_task dumb_task( rtems_task_argument unused )
218 218 {
219 219 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
220 220 *
221 221 * @param unused is the starting argument of the RTEMS task
222 222 *
223 223 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
224 224 *
225 225 */
226 226
227 227 unsigned int i;
228 228 unsigned int intEventOut;
229 229 unsigned int coarse_time = 0;
230 230 unsigned int fine_time = 0;
231 231 rtems_event_set event_out;
232 232
233 233 char *DumbMessages[8] = {"in DUMB *** default", // RTEMS_EVENT_0
234 234 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
235 235 "in DUMB *** waveforms_isr", // RTEMS_EVENT_2
236 236 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
237 237 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
238 238 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
239 239 "ERR HK", // RTEMS_EVENT_6
240 240 "ready for dump" // RTEMS_EVENT_7
241 241 };
242 242
243 243 BOOT_PRINTF("in DUMB *** \n")
244 244
245 245 while(1){
246 246 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
247 247 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7,
248 248 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
249 249 intEventOut = (unsigned int) event_out;
250 250 for ( i=0; i<32; i++)
251 251 {
252 252 if ( ((intEventOut >> i) & 0x0001) != 0)
253 253 {
254 254 coarse_time = time_management_regs->coarse_time;
255 255 fine_time = time_management_regs->fine_time;
256 256 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
257 257 PRINTF1("status = %x\n", waveform_picker_regs->status)
258 258 }
259 259 }
260 260 }
261 261 }
262 262
263 263 //*****************************
264 264 // init housekeeping parameters
265 265
266 266 void init_housekeeping_parameters( void )
267 267 {
268 268 /** This function initialize the housekeeping_packet global variable with default values.
269 269 *
270 270 */
271 271
272 272 unsigned int i = 0;
273 273 unsigned char *parameters;
274 274
275 275 parameters = (unsigned char*) &housekeeping_packet.lfr_status_word;
276 276 for(i = 0; i< SIZE_HK_PARAMETERS; i++)
277 277 {
278 278 parameters[i] = 0x00;
279 279 }
280 280 // init status word
281 281 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
282 282 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
283 283 // init software version
284 284 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
285 285 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
286 286 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
287 287 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
288 288 // init fpga version
289 289 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xd0);
290 290 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
291 291 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
292 292 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
293 293 }
294 294
295 295 void increment_seq_counter( unsigned char *packet_sequence_control)
296 296 {
297 297 /** This function increment the sequence counter psased in argument.
298 298 *
299 299 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
300 300 *
301 301 */
302 302
303 303 unsigned short sequence_cnt;
304 304 unsigned short segmentation_grouping_flag;
305 305 unsigned short new_packet_sequence_control;
306 306
307 307 segmentation_grouping_flag = (unsigned short) ( (packet_sequence_control[0] & 0xc0) << 8 ); // keep bits 7 downto 6
308 308 sequence_cnt = (unsigned short) (
309 309 ( (packet_sequence_control[0] & 0x3f) << 8 ) // keep bits 5 downto 0
310 310 + packet_sequence_control[1]
311 311 );
312 312
313 313 if ( sequence_cnt < SEQ_CNT_MAX)
314 314 {
315 315 sequence_cnt = sequence_cnt + 1;
316 316 }
317 317 else
318 318 {
319 319 sequence_cnt = 0;
320 320 }
321 321
322 322 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
323 323
324 324 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
325 325 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
326 326 }
327 327
328 328 void getTime( unsigned char *time)
329 329 {
330 330 /** This function write the current local time in the time buffer passed in argument.
331 331 *
332 332 */
333 333
334 334 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
335 335 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
336 336 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
337 337 time[3] = (unsigned char) (time_management_regs->coarse_time);
338 338 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
339 339 time[5] = (unsigned char) (time_management_regs->fine_time);
340 340 }
341 341
@@ -1,646 +1,658
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include <fsw_processing.h>
11 11
12 12 #include "fsw_processing_globals.c"
13 13
14 14 //************************
15 15 // spectral matrices rings
16 16 ring_node sm_ring_f0[NB_RING_NODES_ASM_F0];
17 17 ring_node sm_ring_f1[NB_RING_NODES_ASM_F1];
18 18 ring_node sm_ring_f2[NB_RING_NODES_ASM_F2];
19 19 ring_node *current_ring_node_sm_f0;
20 ring_node *ring_node_for_averaging_sm_f0;
20 21 ring_node *current_ring_node_sm_f1;
21 22 ring_node *current_ring_node_sm_f2;
22 23
23 24 BP1_t data_BP1[ NB_BINS_COMPRESSED_SM_F0 ];
24 25 float averaged_sm_f0[ TOTAL_SIZE_SM ];
25 26 char averaged_sm_f0_char[ TOTAL_SIZE_SM * 2 ];
26 27 float compressed_sm_f0[ TOTAL_SIZE_COMPRESSED_MATRIX_f0 ];
27 28
28 void init_asm_rings( void )
29 void init_sm_rings( void )
29 30 {
30 31 unsigned char i;
31 32
32 33 // F0 RING
33 34 sm_ring_f0[0].next = (ring_node*) &sm_ring_f0[1];
34 35 sm_ring_f0[0].previous = (ring_node*) &sm_ring_f0[NB_RING_NODES_ASM_F0-1];
35 36 sm_ring_f0[0].buffer_address = (int) &sm_f0[0][0];
36 37
37 38 sm_ring_f0[NB_RING_NODES_ASM_F0-1].next = (ring_node*) &sm_ring_f0[0];
38 39 sm_ring_f0[NB_RING_NODES_ASM_F0-1].previous = (ring_node*) &sm_ring_f0[NB_RING_NODES_ASM_F0-2];
39 40 sm_ring_f0[NB_RING_NODES_ASM_F0-1].buffer_address = (int) &sm_f0[NB_RING_NODES_ASM_F0-1][0];
40 41
41 42 for(i=1; i<NB_RING_NODES_ASM_F0-1; i++)
42 43 {
43 44 sm_ring_f0[i].next = (ring_node*) &sm_ring_f0[i+1];
44 45 sm_ring_f0[i].previous = (ring_node*) &sm_ring_f0[i-1];
45 46 sm_ring_f0[i].buffer_address = (int) &sm_f0[i][0];
46 47 }
47 48
48 49 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
49 50
50 51 }
51 52
52 53 void reset_current_sm_ring_nodes( void )
53 54 {
54 current_ring_node_sm_f0 = sm_ring_f0;
55 current_ring_node_sm_f0 = sm_ring_f0;
56 ring_node_for_averaging_sm_f0 = sm_ring_f0;
55 57 }
56 58
57 59 //***********************************************************
58 60 // Interrupt Service Routine for spectral matrices processing
59 61 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
60 62 {
61 63 unsigned char status;
62 64 unsigned char i;
65 static unsigned int nb_interrupt_f0 = 0;
63 66
64 67 status = spectral_matrix_regs->status; //[f2 f1 f0_1 f0_0]
65 68 for (i=0; i<4; i++)
66 69 {
67 70 if ( ( (status >> i) & 0x01) == 1) // (1) buffer rotation
68 71 {
69 72 switch(i)
70 73 {
71 74 case 0:
72 75 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
73 76 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
74 77 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe;
78 nb_interrupt_f0 = nb_interrupt_f0 + 1;
79 if (nb_interrupt_f0 == NB_SM_TO_RECEIVE_BEFORE_AVF0 ){
80 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
81 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
82 {
83 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
84 }
85 nb_interrupt_f0 = 0;
86 }
75 87 break;
76 88 case 1:
77 89 break;
78 90 case 2:
79 91 break;
80 92 default:
81 93 break;
82 94 }
83 95 }
84 96 }
85 97
86 98 // reset error codes to 0
87 99 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // [1100 1111]
88
89 if (rtems_event_send( Task_id[TASKID_SMIQ], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
90 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_4 );
91 }
92 100 }
93 101
94 102 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
95 103 {
96 if (rtems_event_send( Task_id[TASKID_SMIQ], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
97 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_4 );
104 static unsigned int nb_interrupt_f0 = 0;
105
106 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
107 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
108 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe;
109 nb_interrupt_f0 = nb_interrupt_f0 + 1;
110 if (nb_interrupt_f0 == NB_SM_TO_RECEIVE_BEFORE_AVF0 )
111 {
112 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
113 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
114 {
115 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
116 }
117 nb_interrupt_f0 = 0;
98 118 }
99 119 }
100 120
101 121 //************
102 122 // RTEMS TASKS
103 123
104 124 rtems_task smiq_task(rtems_task_argument argument) // process the Spectral Matrices IRQ
105 125 {
106 126 rtems_event_set event_out;
107 unsigned int nb_interrupt_f0 = 0;
108 127
109 128 BOOT_PRINTF("in SMIQ *** \n")
110 129
111 130 while(1){
112 131 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
113 nb_interrupt_f0 = nb_interrupt_f0 + 1;
114 if (nb_interrupt_f0 == NB_SM_TO_RECEIVE_BEFORE_AVF0 ){
115 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
116 {
117 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
118 }
119 nb_interrupt_f0 = 0;
120 }
121 132 }
122 133 }
123 134
124 135 rtems_task spw_bppr_task(rtems_task_argument argument)
125 136 {
126 137 rtems_status_code status;
127 138 rtems_event_set event_out;
128 139
129 140 BOOT_PRINTF("in BPPR ***\n");
130 141
131 142 while( true ){ // wait for an event to begin with the processing
132 143 status = rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out);
133 144 }
134 145 }
135 146
136 147 rtems_task avf0_task(rtems_task_argument argument)
137 148 {
138 149 int i;
139 150 static int nb_average;
140 151 rtems_event_set event_out;
141 152 rtems_status_code status;
142 153
143 154 nb_average = 0;
144 155
145 156 BOOT_PRINTF("in AVFO *** \n")
146 157
147 158 while(1){
148 159 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
160 for (i=0; i<NB_SM_TO_RECEIVE_BEFORE_AVF0; i++)
161 {
162 ring_node_for_averaging_sm_f0 = ring_node_for_averaging_sm_f0->previous;
163 }
149 164 for(i=0; i<TOTAL_SIZE_SM; i++){
150 averaged_sm_f0[i] = current_ring_node_sm_f0[0].buffer_address
151 + current_ring_node_sm_f0[1].buffer_address
152 + current_ring_node_sm_f0[2].buffer_address
153 + current_ring_node_sm_f0[3].buffer_address
154 + current_ring_node_sm_f0[4].buffer_address
155 + current_ring_node_sm_f0[5].buffer_address
156 + current_ring_node_sm_f0[6].buffer_address
157 + current_ring_node_sm_f0[7].buffer_address;
165 averaged_sm_f0[i] = ( (int *) (ring_node_for_averaging_sm_f0[0].buffer_address) )[i]
166 + ( (int *) (ring_node_for_averaging_sm_f0[1].buffer_address) )[i]
167 + ( (int *) (ring_node_for_averaging_sm_f0[2].buffer_address) )[i]
168 + ( (int *) (ring_node_for_averaging_sm_f0[3].buffer_address) )[i]
169 + ( (int *) (ring_node_for_averaging_sm_f0[4].buffer_address) )[i]
170 + ( (int *) (ring_node_for_averaging_sm_f0[5].buffer_address) )[i]
171 + ( (int *) (ring_node_for_averaging_sm_f0[6].buffer_address) )[i]
172 + ( (int *) (ring_node_for_averaging_sm_f0[7].buffer_address) )[i];
158 173 }
159 174 nb_average = nb_average + NB_SM_TO_RECEIVE_BEFORE_AVF0;
160 175 if (nb_average == NB_AVERAGE_NORMAL_f0) {
161 176 nb_average = 0;
162 177 status = rtems_event_send( Task_id[TASKID_MATR], RTEMS_EVENT_0 ); // sending an event to the task 7, BPF0
163 178 if (status != RTEMS_SUCCESSFUL) {
164 179 printf("in AVF0 *** Error sending RTEMS_EVENT_0, code %d\n", status);
165 180 }
166 181 }
167 182 }
168 183 }
169 184
170 185 rtems_task bpf0_task(rtems_task_argument argument)
171 186 {
172 187 rtems_event_set event_out;
173 188 static unsigned char LFR_BP1_F0[ NB_BINS_COMPRESSED_SM_F0 * 9 ];
174 189
175 190 BOOT_PRINTF("in BPFO *** \n")
176 191
177 192 while(1){
178 193 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
179 194 matrix_compression(averaged_sm_f0, 0, compressed_sm_f0);
180 195 BP1_set(compressed_sm_f0, NB_BINS_COMPRESSED_SM_F0, LFR_BP1_F0);
181 196 }
182 197 }
183 198
184 199 rtems_task matr_task(rtems_task_argument argument)
185 200 {
186 201 spw_ioctl_pkt_send spw_ioctl_send_ASM;
187 202 rtems_event_set event_out;
188 203 rtems_status_code status;
189 204 rtems_id queue_id;
190 205 Header_TM_LFR_SCIENCE_ASM_t headerASM;
191 206
192 207 init_header_asm( &headerASM );
193 208
194 209 status = get_message_queue_id_send( &queue_id );
195 210 if (status != RTEMS_SUCCESSFUL)
196 211 {
197 212 PRINTF1("in MATR *** ERR get_message_queue_id_send %d\n", status)
198 213 }
199 214
200 215 BOOT_PRINTF("in MATR *** \n")
201 216
202 217 fill_averaged_spectral_matrix( );
203 218
204 219 while(1){
205 220 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
206 221 // 1) convert the float array in a char array
207 222 convert_averaged_spectral_matrix( averaged_sm_f0, averaged_sm_f0_char);
208 223 // 2) send the spectral matrix packets
209 224 send_spectral_matrix( &headerASM, averaged_sm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
210 225 }
211 226 }
212 227
213 228 //*****************************
214 229 // Spectral matrices processing
215 230
216 231 void matrix_reset(volatile float *averaged_spec_mat)
217 232 {
218 233 int i;
219 234 for(i=0; i<TOTAL_SIZE_SM; i++){
220 235 averaged_spec_mat[i] = 0;
221 236 }
222 237 }
223 238
224 239 void matrix_compression(volatile float *averaged_spec_mat, unsigned char fChannel, float *compressed_spec_mat)
225 240 {
226 241 int i;
227 242 int j;
228 243 switch (fChannel){
229 244 case 0:
230 245 for(i=0;i<NB_BINS_COMPRESSED_SM_F0;i++){
231 246 j = 17 + (i * 8);
232 247 compressed_spec_mat[i] = (averaged_spec_mat[j]
233 248 + averaged_spec_mat[j+1]
234 249 + averaged_spec_mat[j+2]
235 250 + averaged_spec_mat[j+3]
236 251 + averaged_spec_mat[j+4]
237 252 + averaged_spec_mat[j+5]
238 253 + averaged_spec_mat[j+6]
239 254 + averaged_spec_mat[j+7])/(8*NB_AVERAGE_NORMAL_f0);
240 255 }
241 256 break;
242 257 case 1:
243 258 // case fChannel = f1 to be completed later
244 259 break;
245 260 case 2:
246 261 // case fChannel = f1 to be completed later
247 262 break;
248 263 default:
249 264 break;
250 265 }
251 266 }
252 267
253 void BP1_set(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * LFR_BP1){
268 void BP1_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * LFR_BP1){
254 269 int i;
255 270 int j;
256 271 unsigned char tmp_u_char;
257 272 unsigned char * pt_char = NULL;
258 273 float PSDB, PSDE;
259 274 float NVEC_V0;
260 275 float NVEC_V1;
261 276 float NVEC_V2;
262 277 //float significand;
263 278 //int exponent;
264 279 float aux;
265 280 float tr_SB_SB;
266 281 float tmp;
267 282 float sx_re;
268 283 float sx_im;
269 284 float nebx_re = 0;
270 285 float nebx_im = 0;
271 286 float ny = 0;
272 287 float nz = 0;
273 288 float bx_bx_star = 0;
274 289 for(i=0; i<nb_bins_compressed_spec_mat; i++){
275 290 //==============================================
276 291 // BP1 PSD == B PAR_LFR_SC_BP1_PE_FL0 == 16 bits
277 292 PSDB = compressed_spec_mat[i*30] // S11
278 293 + compressed_spec_mat[(i*30) + 10] // S22
279 294 + compressed_spec_mat[(i*30) + 18]; // S33
280 295 //significand = frexp(PSDB, &exponent);
281 296 pt_char = (unsigned char*) &PSDB;
282 297 LFR_BP1[(i*9) + 2] = pt_char[0]; // bits 31 downto 24 of the float
283 298 LFR_BP1[(i*9) + 3] = pt_char[1]; // bits 23 downto 16 of the float
284 299 //==============================================
285 300 // BP1 PSD == E PAR_LFR_SC_BP1_PB_FL0 == 16 bits
286 301 PSDE = compressed_spec_mat[(i*30) + 24] * K44_pe // S44
287 302 + compressed_spec_mat[(i*30) + 28] * K55_pe // S55
288 303 + compressed_spec_mat[(i*30) + 26] * K45_pe_re // S45
289 304 - compressed_spec_mat[(i*30) + 27] * K45_pe_im; // S45
290 305 pt_char = (unsigned char*) &PSDE;
291 306 LFR_BP1[(i*9) + 0] = pt_char[0]; // bits 31 downto 24 of the float
292 307 LFR_BP1[(i*9) + 1] = pt_char[1]; // bits 23 downto 16 of the float
293 308 //==============================================================================
294 309 // BP1 normal wave vector == PAR_LFR_SC_BP1_NVEC_V0_F0 == 8 bits
295 310 // == PAR_LFR_SC_BP1_NVEC_V1_F0 == 8 bits
296 311 // == PAR_LFR_SC_BP1_NVEC_V2_F0 == 1 bits
297 312 tmp = sqrt(
298 313 compressed_spec_mat[(i*30) + 3]*compressed_spec_mat[(i*30) + 3] //Im S12
299 314 +compressed_spec_mat[(i*30) + 5]*compressed_spec_mat[(i*30) + 5] //Im S13
300 315 +compressed_spec_mat[(i*30) + 13]*compressed_spec_mat[(i*30) + 13] //Im S23
301 316 );
302 317 NVEC_V0 = compressed_spec_mat[(i*30) + 13] / tmp; // Im S23
303 318 NVEC_V1 = -compressed_spec_mat[(i*30) + 5] / tmp; // Im S13
304 319 NVEC_V2 = compressed_spec_mat[(i*30) + 3] / tmp; // Im S12
305 320 LFR_BP1[(i*9) + 4] = (char) (NVEC_V0*127);
306 321 LFR_BP1[(i*9) + 5] = (char) (NVEC_V1*127);
307 322 pt_char = (unsigned char*) &NVEC_V2;
308 323 LFR_BP1[(i*9) + 6] = pt_char[0] & 0x80; // extract the sign of NVEC_V2
309 324 //=======================================================
310 325 // BP1 ellipticity == PAR_LFR_SC_BP1_ELLIP_F0 == 4 bits
311 326 aux = 2*tmp / PSDB; // compute the ellipticity
312 327 tmp_u_char = (unsigned char) (aux*(16-1)); // convert the ellipticity
313 328 LFR_BP1[i*9+6] = LFR_BP1[i*9+6] | ((tmp_u_char&0x0f)<<3); // keeps 4 bits of the resulting unsigned char
314 329 //==============================================================
315 330 // BP1 degree of polarization == PAR_LFR_SC_BP1_DOP_F0 == 3 bits
316 331 for(j = 0; j<NB_VALUES_PER_SM;j++){
317 332 tr_SB_SB = compressed_spec_mat[i*30] * compressed_spec_mat[i*30]
318 333 + compressed_spec_mat[(i*30) + 10] * compressed_spec_mat[(i*30) + 10]
319 334 + compressed_spec_mat[(i*30) + 18] * compressed_spec_mat[(i*30) + 18]
320 335 + 2 * compressed_spec_mat[(i*30) + 2] * compressed_spec_mat[(i*30) + 2]
321 336 + 2 * compressed_spec_mat[(i*30) + 3] * compressed_spec_mat[(i*30) + 3]
322 337 + 2 * compressed_spec_mat[(i*30) + 4] * compressed_spec_mat[(i*30) + 4]
323 338 + 2 * compressed_spec_mat[(i*30) + 5] * compressed_spec_mat[(i*30) + 5]
324 339 + 2 * compressed_spec_mat[(i*30) + 12] * compressed_spec_mat[(i*30) + 12]
325 340 + 2 * compressed_spec_mat[(i*30) + 13] * compressed_spec_mat[(i*30) + 13];
326 341 }
327 342 aux = PSDB*PSDB;
328 343 tmp = sqrt( abs( ( 3*tr_SB_SB - aux ) / ( 2 * aux ) ) );
329 344 tmp_u_char = (unsigned char) (NVEC_V0*(8-1));
330 345 LFR_BP1[(i*9) + 6] = LFR_BP1[(i*9) + 6] | (tmp_u_char & 0x07); // keeps 3 bits of the resulting unsigned char
331 346 //=======================================================================================
332 347 // BP1 x-component of the normalized Poynting flux == PAR_LFR_SC_BP1_SZ_F0 == 8 bits (7+1)
333 348 sx_re = compressed_spec_mat[(i*30) + 20] * K34_sx_re
334 349 + compressed_spec_mat[(i*30) + 6] * K14_sx_re
335 350 + compressed_spec_mat[(i*30) + 8] * K15_sx_re
336 351 + compressed_spec_mat[(i*30) + 14] * K24_sx_re
337 352 + compressed_spec_mat[(i*30) + 16] * K25_sx_re
338 353 + compressed_spec_mat[(i*30) + 22] * K35_sx_re;
339 354 sx_im = compressed_spec_mat[(i*30) + 21] * K34_sx_im
340 355 + compressed_spec_mat[(i*30) + 7] * K14_sx_im
341 356 + compressed_spec_mat[(i*30) + 9] * K15_sx_im
342 357 + compressed_spec_mat[(i*30) + 15] * K24_sx_im
343 358 + compressed_spec_mat[(i*30) + 17] * K25_sx_im
344 359 + compressed_spec_mat[(i*30) + 23] * K35_sx_im;
345 360 LFR_BP1[(i*9) + 7] = ((unsigned char) (sx_re * 128)) & 0x7f; // cf DOC for the compression
346 361 if ( abs(sx_re) > abs(sx_im) ) {
347 362 LFR_BP1[(i*9) + 7] = LFR_BP1[(i*9) + 1] | (0x80); // extract the sector of sx
348 363 }
349 364 else {
350 365 LFR_BP1[(i*9) + 7] = LFR_BP1[(i*9) + 1] & (0x7f); // extract the sector of sx
351 366 }
352 367 //======================================================================
353 368 // BP1 phase velocity estimator == PAR_LFR_SC_BP1_VPHI_F0 == 8 bits (7+1)
354 369 ny = sin(Alpha_M)*NVEC_V1 + cos(Alpha_M)*NVEC_V2;
355 370 nz = NVEC_V0;
356 371 bx_bx_star = cos(Alpha_M) * cos(Alpha_M) * compressed_spec_mat[i*30+10] // re S22
357 372 + sin(Alpha_M) * sin(Alpha_M) * compressed_spec_mat[i*30+18] // re S33
358 373 - 2 * sin(Alpha_M) * cos(Alpha_M) * compressed_spec_mat[i*30+12]; // re S23
359 374 nebx_re = ny * (compressed_spec_mat[(i*30) + 14] * K24_ny_re
360 375 +compressed_spec_mat[(i*30) + 16] * K25_ny_re
361 376 +compressed_spec_mat[(i*30) + 20] * K34_ny_re
362 377 +compressed_spec_mat[(i*30) + 22] * K35_ny_re)
363 378 + nz * (compressed_spec_mat[(i*30) + 14] * K24_nz_re
364 379 +compressed_spec_mat[(i*30) + 16] * K25_nz_re
365 380 +compressed_spec_mat[(i*30) + 20] * K34_nz_re
366 381 +compressed_spec_mat[(i*30) + 22] * K35_nz_re);
367 382 nebx_im = ny * (compressed_spec_mat[(i*30) + 15]*K24_ny_re
368 383 +compressed_spec_mat[(i*30) + 17] * K25_ny_re
369 384 +compressed_spec_mat[(i*30) + 21] * K34_ny_re
370 385 +compressed_spec_mat[(i*30) + 23] * K35_ny_re)
371 386 + nz * (compressed_spec_mat[(i*30) + 15] * K24_nz_im
372 387 +compressed_spec_mat[(i*30) + 17] * K25_nz_im
373 388 +compressed_spec_mat[(i*30) + 21] * K34_nz_im
374 389 +compressed_spec_mat[(i*30) + 23] * K35_nz_im);
375 390 tmp = nebx_re / bx_bx_star;
376 391 LFR_BP1[(i*9) + 8] = ((unsigned char) (tmp * 128)) & 0x7f; // cf DOC for the compression
377 392 if ( abs(nebx_re) > abs(nebx_im) ) {
378 393 LFR_BP1[(i*9) + 8] = LFR_BP1[(i*9) + 8] | (0x80); // extract the sector of nebx
379 394 }
380 395 else {
381 396 LFR_BP1[(i*9) + 8] = LFR_BP1[(i*9) + 8] & (0x7f); // extract the sector of nebx
382 397 }
383 398 }
384 399
385 400 }
386 401
387 void BP2_set(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat){
402 void BP2_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat){
388 403 // BP2 autocorrelation
389 404 int i;
390 405 int aux = 0;
391 406
392 407 for(i = 0; i<nb_bins_compressed_spec_mat; i++){
393 408 // S12
394 409 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 10]);
395 410 compressed_spec_mat[(i*30) + 2] = compressed_spec_mat[(i*30) + 2] / aux;
396 411 compressed_spec_mat[(i*30) + 3] = compressed_spec_mat[(i*30) + 3] / aux;
397 412 // S13
398 413 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 18]);
399 414 compressed_spec_mat[(i*30) + 4] = compressed_spec_mat[(i*30) + 4] / aux;
400 415 compressed_spec_mat[(i*30) + 5] = compressed_spec_mat[(i*30) + 5] / aux;
401 416 // S23
402 417 aux = sqrt(compressed_spec_mat[i*30+12]*compressed_spec_mat[(i*30) + 18]);
403 418 compressed_spec_mat[(i*30) + 12] = compressed_spec_mat[(i*30) + 12] / aux;
404 419 compressed_spec_mat[(i*30) + 13] = compressed_spec_mat[(i*30) + 13] / aux;
405 420 // S45
406 421 aux = sqrt(compressed_spec_mat[i*30+24]*compressed_spec_mat[(i*30) + 28]);
407 422 compressed_spec_mat[(i*30) + 26] = compressed_spec_mat[(i*30) + 26] / aux;
408 423 compressed_spec_mat[(i*30) + 27] = compressed_spec_mat[(i*30) + 27] / aux;
409 424 // S14
410 425 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) +24]);
411 426 compressed_spec_mat[(i*30) + 6] = compressed_spec_mat[(i*30) + 6] / aux;
412 427 compressed_spec_mat[(i*30) + 7] = compressed_spec_mat[(i*30) + 7] / aux;
413 428 // S15
414 429 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 28]);
415 430 compressed_spec_mat[(i*30) + 8] = compressed_spec_mat[(i*30) + 8] / aux;
416 431 compressed_spec_mat[(i*30) + 9] = compressed_spec_mat[(i*30) + 9] / aux;
417 432 // S24
418 433 aux = sqrt(compressed_spec_mat[i*10]*compressed_spec_mat[(i*30) + 24]);
419 434 compressed_spec_mat[(i*30) + 14] = compressed_spec_mat[(i*30) + 14] / aux;
420 435 compressed_spec_mat[(i*30) + 15] = compressed_spec_mat[(i*30) + 15] / aux;
421 436 // S25
422 437 aux = sqrt(compressed_spec_mat[i*10]*compressed_spec_mat[(i*30) + 28]);
423 438 compressed_spec_mat[(i*30) + 16] = compressed_spec_mat[(i*30) + 16] / aux;
424 439 compressed_spec_mat[(i*30) + 17] = compressed_spec_mat[(i*30) + 17] / aux;
425 440 // S34
426 441 aux = sqrt(compressed_spec_mat[i*18]*compressed_spec_mat[(i*30) + 24]);
427 442 compressed_spec_mat[(i*30) + 20] = compressed_spec_mat[(i*30) + 20] / aux;
428 443 compressed_spec_mat[(i*30) + 21] = compressed_spec_mat[(i*30) + 21] / aux;
429 444 // S35
430 445 aux = sqrt(compressed_spec_mat[i*18]*compressed_spec_mat[(i*30) + 28]);
431 446 compressed_spec_mat[(i*30) + 22] = compressed_spec_mat[(i*30) + 22] / aux;
432 447 compressed_spec_mat[(i*30) + 23] = compressed_spec_mat[(i*30) + 23] / aux;
433 448 }
434 449 }
435 450
436 451 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header)
437 452 {
438 453 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
439 454 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
440 455 header->reserved = 0x00;
441 456 header->userApplication = CCSDS_USER_APP;
442 457 header->packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
443 458 header->packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
444 459 header->packetSequenceControl[0] = 0xc0;
445 460 header->packetSequenceControl[1] = 0x00;
446 461 header->packetLength[0] = 0x00;
447 462 header->packetLength[1] = 0x00;
448 463 // DATA FIELD HEADER
449 464 header->spare1_pusVersion_spare2 = 0x10;
450 465 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
451 466 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
452 467 header->destinationID = TM_DESTINATION_ID_GROUND;
453 468 // AUXILIARY DATA HEADER
454 469 header->sid = 0x00;
455 470 header->biaStatusInfo = 0x00;
456 471 header->cntASM = 0x00;
457 472 header->nrASM = 0x00;
458 473 header->time[0] = 0x00;
459 474 header->time[0] = 0x00;
460 475 header->time[0] = 0x00;
461 476 header->time[0] = 0x00;
462 477 header->time[0] = 0x00;
463 478 header->time[0] = 0x00;
464 479 header->blkNr[0] = 0x00; // BLK_NR MSB
465 480 header->blkNr[1] = 0x00; // BLK_NR LSB
466 481 }
467 482
468 483 void send_spectral_matrix(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
469 484 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
470 485 {
471 486 unsigned int i;
472 487 unsigned int length = 0;
473 488 rtems_status_code status;
474 489
475 490 header->sid = (unsigned char) sid;
476 491
477 492 for (i=0; i<2; i++)
478 493 {
479 494 // BUILD THE DATA
480 495 spw_ioctl_send->dlen = TOTAL_SIZE_SM;
481 496 spw_ioctl_send->data = &spectral_matrix[ i * TOTAL_SIZE_SM];
482 497 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
483 498 spw_ioctl_send->hdr = (char *) header;
484 499 spw_ioctl_send->options = 0;
485 500
486 501 // BUILD THE HEADER
487 502 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM;
488 503 header->packetLength[0] = (unsigned char) (length>>8);
489 504 header->packetLength[1] = (unsigned char) (length);
490 505 header->sid = (unsigned char) sid; // SID
491 506 header->cntASM = 2;
492 507 header->nrASM = (unsigned char) (i+1);
493 508 header->blkNr[0] =(unsigned char) ( (NB_BINS_PER_SM/2) >> 8 ); // BLK_NR MSB
494 509 header->blkNr[1] = (unsigned char) (NB_BINS_PER_SM/2); // BLK_NR LSB
495 510 // SET PACKET TIME
496 511 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
497 512 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
498 513 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
499 514 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
500 515 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
501 516 header->time[5] = (unsigned char) (time_management_regs->fine_time);
502 517 header->acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
503 518 header->acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
504 519 header->acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
505 520 header->acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
506 521 header->acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
507 522 header->acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
508 523 // SEND PACKET
509 524 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
510 525 if (status != RTEMS_SUCCESSFUL) {
511 526 printf("in send_spectral_matrix *** ERR %d\n", (int) status);
512 527 }
513 528 }
514 529 }
515 530
516 531 void convert_averaged_spectral_matrix( volatile float *input_matrix, char *output_matrix)
517 532 {
518 533 unsigned int i;
519 534 unsigned int j;
520 535 char * pt_char_input;
521 536 char * pt_char_output;
522 537
523 538 pt_char_input = NULL;
524 539 pt_char_output = NULL;
525 540
526 541 for( i=0; i<NB_BINS_PER_SM; i++)
527 542 {
528 543 for ( j=0; j<NB_VALUES_PER_SM; j++)
529 544 {
530 545 pt_char_input = (char*) &input_matrix [ (i*NB_VALUES_PER_SM) + j ];
531 546 pt_char_output = (char*) &output_matrix[ 2 * ( (i*NB_VALUES_PER_SM) + j ) ];
532 547 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
533 548 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
534 549 }
535 550 }
536 551 }
537 552
538 553 void fill_averaged_spectral_matrix(void)
539 554 {
540 555 /** This function fills spectral matrices related buffers with arbitrary data.
541 556 *
542 557 * This function is for testing purpose only.
543 558 *
544 559 */
545 560
546 561 float offset;
547 562 float coeff;
548 563
549 564 offset = 10.;
550 565 coeff = 100000.;
551 566 averaged_sm_f0[ 0 + 25 * 0 ] = 0. + offset;
552 567 averaged_sm_f0[ 0 + 25 * 1 ] = 1. + offset;
553 568 averaged_sm_f0[ 0 + 25 * 2 ] = 2. + offset;
554 569 averaged_sm_f0[ 0 + 25 * 3 ] = 3. + offset;
555 570 averaged_sm_f0[ 0 + 25 * 4 ] = 4. + offset;
556 571 averaged_sm_f0[ 0 + 25 * 5 ] = 5. + offset;
557 572 averaged_sm_f0[ 0 + 25 * 6 ] = 6. + offset;
558 573 averaged_sm_f0[ 0 + 25 * 7 ] = 7. + offset;
559 574 averaged_sm_f0[ 0 + 25 * 8 ] = 8. + offset;
560 575 averaged_sm_f0[ 0 + 25 * 9 ] = 9. + offset;
561 576 averaged_sm_f0[ 0 + 25 * 10 ] = 10. + offset;
562 577 averaged_sm_f0[ 0 + 25 * 11 ] = 11. + offset;
563 578 averaged_sm_f0[ 0 + 25 * 12 ] = 12. + offset;
564 579 averaged_sm_f0[ 0 + 25 * 13 ] = 13. + offset;
565 580 averaged_sm_f0[ 0 + 25 * 14 ] = 14. + offset;
566 581 averaged_sm_f0[ 9 + 25 * 0 ] = -(0. + offset)* coeff;
567 582 averaged_sm_f0[ 9 + 25 * 1 ] = -(1. + offset)* coeff;
568 583 averaged_sm_f0[ 9 + 25 * 2 ] = -(2. + offset)* coeff;
569 584 averaged_sm_f0[ 9 + 25 * 3 ] = -(3. + offset)* coeff;
570 585 averaged_sm_f0[ 9 + 25 * 4 ] = -(4. + offset)* coeff;
571 586 averaged_sm_f0[ 9 + 25 * 5 ] = -(5. + offset)* coeff;
572 587 averaged_sm_f0[ 9 + 25 * 6 ] = -(6. + offset)* coeff;
573 588 averaged_sm_f0[ 9 + 25 * 7 ] = -(7. + offset)* coeff;
574 589 averaged_sm_f0[ 9 + 25 * 8 ] = -(8. + offset)* coeff;
575 590 averaged_sm_f0[ 9 + 25 * 9 ] = -(9. + offset)* coeff;
576 591 averaged_sm_f0[ 9 + 25 * 10 ] = -(10. + offset)* coeff;
577 592 averaged_sm_f0[ 9 + 25 * 11 ] = -(11. + offset)* coeff;
578 593 averaged_sm_f0[ 9 + 25 * 12 ] = -(12. + offset)* coeff;
579 594 averaged_sm_f0[ 9 + 25 * 13 ] = -(13. + offset)* coeff;
580 595 averaged_sm_f0[ 9 + 25 * 14 ] = -(14. + offset)* coeff;
581 596
582 597 offset = 10000000;
583 598 averaged_sm_f0[ 16 + 25 * 0 ] = (0. + offset)* coeff;
584 599 averaged_sm_f0[ 16 + 25 * 1 ] = (1. + offset)* coeff;
585 600 averaged_sm_f0[ 16 + 25 * 2 ] = (2. + offset)* coeff;
586 601 averaged_sm_f0[ 16 + 25 * 3 ] = (3. + offset)* coeff;
587 602 averaged_sm_f0[ 16 + 25 * 4 ] = (4. + offset)* coeff;
588 603 averaged_sm_f0[ 16 + 25 * 5 ] = (5. + offset)* coeff;
589 604 averaged_sm_f0[ 16 + 25 * 6 ] = (6. + offset)* coeff;
590 605 averaged_sm_f0[ 16 + 25 * 7 ] = (7. + offset)* coeff;
591 606 averaged_sm_f0[ 16 + 25 * 8 ] = (8. + offset)* coeff;
592 607 averaged_sm_f0[ 16 + 25 * 9 ] = (9. + offset)* coeff;
593 608 averaged_sm_f0[ 16 + 25 * 10 ] = (10. + offset)* coeff;
594 609 averaged_sm_f0[ 16 + 25 * 11 ] = (11. + offset)* coeff;
595 610 averaged_sm_f0[ 16 + 25 * 12 ] = (12. + offset)* coeff;
596 611 averaged_sm_f0[ 16 + 25 * 13 ] = (13. + offset)* coeff;
597 612 averaged_sm_f0[ 16 + 25 * 14 ] = (14. + offset)* coeff;
598 613
599 614 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 0 ] = averaged_sm_f0[ 0 ];
600 615 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 1 ] = averaged_sm_f0[ 1 ];
601 616 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 2 ] = averaged_sm_f0[ 2 ];
602 617 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 3 ] = averaged_sm_f0[ 3 ];
603 618 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 4 ] = averaged_sm_f0[ 4 ];
604 619 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 5 ] = averaged_sm_f0[ 5 ];
605 620 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 6 ] = averaged_sm_f0[ 6 ];
606 621 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 7 ] = averaged_sm_f0[ 7 ];
607 622 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 8 ] = averaged_sm_f0[ 8 ];
608 623 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 9 ] = averaged_sm_f0[ 9 ];
609 624 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 10 ] = averaged_sm_f0[ 10 ];
610 625 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 11 ] = averaged_sm_f0[ 11 ];
611 626 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 12 ] = averaged_sm_f0[ 12 ];
612 627 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 13 ] = averaged_sm_f0[ 13 ];
613 628 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 14 ] = averaged_sm_f0[ 14 ];
614 629 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 15 ] = averaged_sm_f0[ 15 ];
615 630 }
616 631
617 632 void reset_spectral_matrix_regs()
618 633 {
619 634 /** This function resets the spectral matrices module registers.
620 635 *
621 636 * The registers affected by this function are located at the following offset addresses:
622 637 *
623 638 * - 0x00 config
624 639 * - 0x04 status
625 640 * - 0x08 matrixF0_Address0
626 641 * - 0x10 matrixFO_Address1
627 642 * - 0x14 matrixF1_Address
628 643 * - 0x18 matrixF2_Address
629 644 *
630 645 */
631 646
632 #ifdef GSA
633 #else
634 647 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
635 648 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
636 649 spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
637 650 spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
638 #endif
639 651 }
640 652
641 653 //******************
642 654 // general functions
643 655
644 656
645 657
646 658
@@ -1,833 +1,837
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14
15 15 //***********
16 16 // RTEMS TASK
17 17
18 18 rtems_task actn_task( rtems_task_argument unused )
19 19 {
20 20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 21 *
22 22 * @param unused is the starting argument of the RTEMS task
23 23 *
24 24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 25 * on the incoming TeleCommand.
26 26 *
27 27 */
28 28
29 29 int result;
30 30 rtems_status_code status; // RTEMS status code
31 31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 32 size_t size; // size of the incoming TC packet
33 33 unsigned char subtype; // subtype of the current TC packet
34 34 unsigned char time[6];
35 35 rtems_id queue_rcv_id;
36 36 rtems_id queue_snd_id;
37 37
38 38 status = get_message_queue_id_recv( &queue_rcv_id );
39 39 if (status != RTEMS_SUCCESSFUL)
40 40 {
41 41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 42 }
43 43
44 44 status = get_message_queue_id_send( &queue_snd_id );
45 45 if (status != RTEMS_SUCCESSFUL)
46 46 {
47 47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 48 }
49 49
50 50 result = LFR_SUCCESSFUL;
51 51 subtype = 0; // subtype of the current TC packet
52 52
53 53 BOOT_PRINTF("in ACTN *** \n")
54 54
55 55 while(1)
56 56 {
57 57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 59 getTime( time ); // set time to the current time
60 60 if (status!=RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 63 }
64 64 else
65 65 {
66 66 subtype = TC.serviceSubType;
67 67 switch(subtype)
68 68 {
69 69 case TC_SUBTYPE_RESET:
70 70 result = action_reset( &TC, queue_snd_id, time );
71 71 close_action( &TC, result, queue_snd_id, time );
72 72 break;
73 73 //
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id, time );
77 77 break;
78 78 //
79 79 case TC_SUBTYPE_LOAD_NORM:
80 80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 81 close_action( &TC, result, queue_snd_id, time );
82 82 break;
83 83 //
84 84 case TC_SUBTYPE_LOAD_BURST:
85 85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 86 close_action( &TC, result, queue_snd_id, time );
87 87 break;
88 88 //
89 89 case TC_SUBTYPE_LOAD_SBM1:
90 90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 91 close_action( &TC, result, queue_snd_id, time );
92 92 break;
93 93 //
94 94 case TC_SUBTYPE_LOAD_SBM2:
95 95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 96 close_action( &TC, result, queue_snd_id, time );
97 97 break;
98 98 //
99 99 case TC_SUBTYPE_DUMP:
100 100 result = action_dump_par( queue_snd_id );
101 101 close_action( &TC, result, queue_snd_id, time );
102 102 break;
103 103 //
104 104 case TC_SUBTYPE_ENTER:
105 105 result = action_enter_mode( &TC, queue_snd_id, time );
106 106 close_action( &TC, result, queue_snd_id, time );
107 107 break;
108 108 //
109 109 case TC_SUBTYPE_UPDT_INFO:
110 110 result = action_update_info( &TC, queue_snd_id );
111 111 close_action( &TC, result, queue_snd_id, time );
112 112 break;
113 113 //
114 114 case TC_SUBTYPE_EN_CAL:
115 115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id, time );
117 117 break;
118 118 //
119 119 case TC_SUBTYPE_DIS_CAL:
120 120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 121 close_action( &TC, result, queue_snd_id, time );
122 122 break;
123 123 //
124 124 case TC_SUBTYPE_UPDT_TIME:
125 125 result = action_update_time( &TC );
126 126 close_action( &TC, result, queue_snd_id, time );
127 127 break;
128 128 //
129 129 default:
130 130 break;
131 131 }
132 132 }
133 133 }
134 134 }
135 135
136 136 //***********
137 137 // TC ACTIONS
138 138
139 139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 140 {
141 141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 142 *
143 143 * @param TC points to the TeleCommand packet that is being processed
144 144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 145 *
146 146 */
147 147
148 148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 149 return LFR_DEFAULT;
150 150 }
151 151
152 152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
153 153 {
154 154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 158 *
159 159 */
160 160
161 161 rtems_status_code status;
162 162 unsigned char requestedMode;
163 163
164 164 requestedMode = TC->dataAndCRC[1];
165 165
166 166 if ( (requestedMode != LFR_MODE_STANDBY)
167 167 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
168 168 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
169 169 {
170 170 status = RTEMS_UNSATISFIED;
171 171 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_LFR_MODE, requestedMode, time );
172 172 }
173 173 else
174 174 {
175 175 printf("in action_enter_mode *** enter mode %d\n", requestedMode);
176 176
177 177 #ifdef PRINT_TASK_STATISTICS
178 178 if (requestedMode != LFR_MODE_STANDBY)
179 179 {
180 180 rtems_cpu_usage_reset();
181 181 maxCount = 0;
182 182 }
183 183 #endif
184 184
185 185 status = transition_validation(requestedMode);
186 186
187 187 if ( status == LFR_SUCCESSFUL ) {
188 188 if ( lfrCurrentMode != LFR_MODE_STANDBY)
189 189 {
190 190 status = stop_current_mode();
191 191 }
192 192 if (status != RTEMS_SUCCESSFUL)
193 193 {
194 194 PRINTF("ERR *** in action_enter *** stop_current_mode\n")
195 195 }
196 196 status = enter_mode( requestedMode );
197 197 }
198 198 else
199 199 {
200 200 PRINTF("ERR *** in action_enter *** transition rejected\n")
201 201 send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
202 202 }
203 203 }
204 204
205 205 return status;
206 206 }
207 207
208 208 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
209 209 {
210 210 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
211 211 *
212 212 * @param TC points to the TeleCommand packet that is being processed
213 213 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
214 214 *
215 215 * @return LFR directive status code:
216 216 * - LFR_DEFAULT
217 217 * - LFR_SUCCESSFUL
218 218 *
219 219 */
220 220
221 221 unsigned int val;
222 222 int result;
223 223
224 224 result = LFR_SUCCESSFUL;
225 225
226 226 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
227 227 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
228 228 val++;
229 229 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
230 230 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
231 231
232 232 return result;
233 233 }
234 234
235 235 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
236 236 {
237 237 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
238 238 *
239 239 * @param TC points to the TeleCommand packet that is being processed
240 240 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
241 241 *
242 242 */
243 243
244 244 int result;
245 245 unsigned char lfrMode;
246 246
247 247 result = LFR_DEFAULT;
248 248 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
249 249
250 250 if ( (lfrMode == LFR_MODE_STANDBY) || (lfrMode == LFR_MODE_BURST) || (lfrMode == LFR_MODE_SBM2) ) {
251 251 send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
252 252 result = LFR_DEFAULT;
253 253 }
254 254 else {
255 255 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
256 256 result = LFR_DEFAULT;
257 257 }
258 258 return result;
259 259 }
260 260
261 261 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
262 262 {
263 263 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
264 264 *
265 265 * @param TC points to the TeleCommand packet that is being processed
266 266 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
267 267 *
268 268 */
269 269
270 270 int result;
271 271 unsigned char lfrMode;
272 272
273 273 result = LFR_DEFAULT;
274 274 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
275 275
276 276 if ( (lfrMode == LFR_MODE_STANDBY) || (lfrMode == LFR_MODE_BURST) || (lfrMode == LFR_MODE_SBM2) ) {
277 277 send_tm_lfr_tc_exe_not_executable( TC, queue_id, time );
278 278 result = LFR_DEFAULT;
279 279 }
280 280 else {
281 281 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
282 282 result = LFR_DEFAULT;
283 283 }
284 284 return result;
285 285 }
286 286
287 287 int action_update_time(ccsdsTelecommandPacket_t *TC)
288 288 {
289 289 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
290 290 *
291 291 * @param TC points to the TeleCommand packet that is being processed
292 292 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
293 293 *
294 294 * @return LFR_SUCCESSFUL
295 295 *
296 296 */
297 297
298 298 unsigned int val;
299 299
300 300 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
301 301 + (TC->dataAndCRC[1] << 16)
302 302 + (TC->dataAndCRC[2] << 8)
303 303 + TC->dataAndCRC[3];
304 304 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
305 305 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
306 306 val++;
307 307 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
308 308 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
309 309 time_management_regs->ctrl = time_management_regs->ctrl | 1;
310 310
311 311 return LFR_SUCCESSFUL;
312 312 }
313 313
314 314 //*******************
315 315 // ENTERING THE MODES
316 316
317 317 int transition_validation(unsigned char requestedMode)
318 318 {
319 319 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
320 320 *
321 321 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
322 322 *
323 323 * @return LFR directive status codes:
324 324 * - LFR_SUCCESSFUL - the transition is authorized
325 325 * - LFR_DEFAULT - the transition is not authorized
326 326 *
327 327 */
328 328
329 329 int status;
330 330
331 331 switch (requestedMode)
332 332 {
333 333 case LFR_MODE_STANDBY:
334 334 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
335 335 status = LFR_DEFAULT;
336 336 }
337 337 else
338 338 {
339 339 status = LFR_SUCCESSFUL;
340 340 }
341 341 break;
342 342 case LFR_MODE_NORMAL:
343 343 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
344 344 status = LFR_DEFAULT;
345 345 }
346 346 else {
347 347 status = LFR_SUCCESSFUL;
348 348 }
349 349 break;
350 350 case LFR_MODE_BURST:
351 351 if ( lfrCurrentMode == LFR_MODE_BURST ) {
352 352 status = LFR_DEFAULT;
353 353 }
354 354 else {
355 355 status = LFR_SUCCESSFUL;
356 356 }
357 357 break;
358 358 case LFR_MODE_SBM1:
359 359 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
360 360 status = LFR_DEFAULT;
361 361 }
362 362 else {
363 363 status = LFR_SUCCESSFUL;
364 364 }
365 365 break;
366 366 case LFR_MODE_SBM2:
367 367 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
368 368 status = LFR_DEFAULT;
369 369 }
370 370 else {
371 371 status = LFR_SUCCESSFUL;
372 372 }
373 373 break;
374 374 default:
375 375 status = LFR_DEFAULT;
376 376 break;
377 377 }
378 378
379 379 return status;
380 380 }
381 381
382 382 int stop_current_mode()
383 383 {
384 384 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
385 385 *
386 386 * @return RTEMS directive status codes:
387 387 * - RTEMS_SUCCESSFUL - task restarted successfully
388 388 * - RTEMS_INVALID_ID - task id invalid
389 389 * - RTEMS_ALREADY_SUSPENDED - task already suspended
390 390 *
391 391 */
392 392
393 393 rtems_status_code status;
394 394
395 395 status = RTEMS_SUCCESSFUL;
396 396
397 397 // mask interruptions
398 398 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
399 399 //LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
400 400 LEON_Mask_interrupt( IRQ_SM ); // mask spectral matrix interrupt simulator
401 401 // reset registers
402 402 reset_wfp_burst_enable(); // reset burst and enable bits
403 403 reset_wfp_status(); // reset all the status bits
404 404 // clear interruptions
405 405 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
406 406 //LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
407 407 LEON_Clear_interrupt( IRQ_SM ); // clear spectral matrix interrupt simulator
408 408 //**********************
409 409 // suspend several tasks
410 410 if (lfrCurrentMode != LFR_MODE_STANDBY) {
411 411 status = suspend_science_tasks();
412 412 }
413 413
414 414 if (status != RTEMS_SUCCESSFUL)
415 415 {
416 416 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
417 417 }
418 418
419 419 return status;
420 420 }
421 421
422 422 int enter_mode(unsigned char mode )
423 423 {
424 424 /** This function is launched after a mode transition validation.
425 425 *
426 426 * @param mode is the mode in which LFR will be put.
427 427 *
428 428 * @return RTEMS directive status codes:
429 429 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
430 430 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
431 431 *
432 432 */
433 433
434 434 rtems_status_code status;
435 435
436 436 status = RTEMS_UNSATISFIED;
437 437
438 438 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((mode << 4) + 0x0d);
439 439 updateLFRCurrentMode();
440 440
441 441 switch(mode){
442 442 case LFR_MODE_STANDBY:
443 443 status = enter_standby_mode( );
444 444 break;
445 445 case LFR_MODE_NORMAL:
446 446 status = enter_normal_mode( );
447 447 break;
448 448 case LFR_MODE_BURST:
449 449 status = enter_burst_mode( );
450 450 break;
451 451 case LFR_MODE_SBM1:
452 452 status = enter_sbm1_mode( );
453 453 break;
454 454 case LFR_MODE_SBM2:
455 455 status = enter_sbm2_mode( );
456 456 break;
457 457 default:
458 458 status = RTEMS_UNSATISFIED;
459 459 }
460 460
461 461 if (status != RTEMS_SUCCESSFUL)
462 462 {
463 463 PRINTF("in enter_mode *** ERR\n")
464 464 status = RTEMS_UNSATISFIED;
465 465 }
466 466
467 467 return status;
468 468 }
469 469
470 470 int enter_standby_mode()
471 471 {
472 472 /** This function is used to enter the STANDBY mode.
473 473 *
474 474 * @return RTEMS directive status codes:
475 475 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
476 476 *
477 477 */
478 478
479 479 PRINTF1("maxCount = %d\n", maxCount)
480 480
481 481 #ifdef PRINT_TASK_STATISTICS
482 482 rtems_cpu_usage_report();
483 483 #endif
484 484
485 485 #ifdef PRINT_STACK_REPORT
486 486 rtems_stack_checker_report_usage();
487 487 #endif
488 488
489 489 return LFR_SUCCESSFUL;
490 490 }
491 491
492 492 int enter_normal_mode()
493 493 {
494 494 rtems_status_code status;
495 495
496 496 status = restart_science_tasks();
497 497
498 // Spectral Matrices simulator
499 // timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
500 // set_local_nb_interrupt_f0_MAX();
501 // LEON_Clear_interrupt( IRQ_SM );
502 // LEON_Unmask_interrupt( IRQ_SM );
503
504 498 launch_waveform_picker( LFR_MODE_NORMAL );
499 // launch_spectral_matrix( LFR_MODE_NORMAL );
505 500
506 501 return status;
507 502 }
508 503
509 504 int enter_burst_mode()
510 505 {
511 506 /** This function is used to enter the STANDBY mode.
512 507 *
513 508 * @return RTEMS directive status codes:
514 509 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
515 510 * - RTEMS_INVALID_ID - task id invalid
516 511 * - RTEMS_INCORRECT_STATE - task never started
517 512 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
518 513 *
519 514 */
520 515
521 516 rtems_status_code status;
522 517
523 518 status = restart_science_tasks();
524 519
525 520 launch_waveform_picker( LFR_MODE_BURST );
526 521
527 522 return status;
528 523 }
529 524
530 525 int enter_sbm1_mode()
531 526 {
532 527 /** This function is used to enter the SBM1 mode.
533 528 *
534 529 * @return RTEMS directive status codes:
535 530 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
536 531 * - RTEMS_INVALID_ID - task id invalid
537 532 * - RTEMS_INCORRECT_STATE - task never started
538 533 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
539 534 *
540 535 */
541 536
542 537 rtems_status_code status;
543 538
544 539 status = restart_science_tasks();
545 540
546 541 launch_waveform_picker( LFR_MODE_SBM1 );
547 542
548 543 return status;
549 544 }
550 545
551 546 int enter_sbm2_mode()
552 547 {
553 548 /** This function is used to enter the SBM2 mode.
554 549 *
555 550 * @return RTEMS directive status codes:
556 551 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
557 552 * - RTEMS_INVALID_ID - task id invalid
558 553 * - RTEMS_INCORRECT_STATE - task never started
559 554 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
560 555 *
561 556 */
562 557
563 558 rtems_status_code status;
564 559
565 560 status = restart_science_tasks();
566 561
567 562 launch_waveform_picker( LFR_MODE_SBM2 );
568 563
569 564 return status;
570 565 }
571 566
572 567 int restart_science_tasks()
573 568 {
574 569 /** This function is used to restart all science tasks.
575 570 *
576 571 * @return RTEMS directive status codes:
577 572 * - RTEMS_SUCCESSFUL - task restarted successfully
578 573 * - RTEMS_INVALID_ID - task id invalid
579 574 * - RTEMS_INCORRECT_STATE - task never started
580 575 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
581 576 *
582 577 * Science tasks are AVF0, BPF0, WFRM, CWF3, CW2, CWF1
583 578 *
584 579 */
585 580
586 581 rtems_status_code status[6];
587 582 rtems_status_code ret;
588 583
589 584 ret = RTEMS_SUCCESSFUL;
590 585
591 586 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], 1 );
592 587 if (status[0] != RTEMS_SUCCESSFUL)
593 588 {
594 589 PRINTF1("in restart_science_task *** 0 ERR %d\n", status[0])
595 590 }
596 591
597 592 status[1] = rtems_task_restart( Task_id[TASKID_BPF0],1 );
598 593 if (status[1] != RTEMS_SUCCESSFUL)
599 594 {
600 595 PRINTF1("in restart_science_task *** 1 ERR %d\n", status[1])
601 596 }
602 597
603 598 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
604 599 if (status[2] != RTEMS_SUCCESSFUL)
605 600 {
606 601 PRINTF1("in restart_science_task *** 2 ERR %d\n", status[2])
607 602 }
608 603
609 604 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
610 605 if (status[3] != RTEMS_SUCCESSFUL)
611 606 {
612 607 PRINTF1("in restart_science_task *** 3 ERR %d\n", status[3])
613 608 }
614 609
615 610 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
616 611 if (status[4] != RTEMS_SUCCESSFUL)
617 612 {
618 613 PRINTF1("in restart_science_task *** 4 ERR %d\n", status[4])
619 614 }
620 615
621 616 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
622 617 if (status[5] != RTEMS_SUCCESSFUL)
623 618 {
624 619 PRINTF1("in restart_science_task *** 5 ERR %d\n", status[5])
625 620 }
626 621
627 622 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) || (status[2] != RTEMS_SUCCESSFUL) ||
628 623 (status[3] != RTEMS_SUCCESSFUL) || (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
629 624 {
630 625 ret = RTEMS_UNSATISFIED;
631 626 }
632 627
633 628 return ret;
634 629 }
635 630
636 631 int suspend_science_tasks()
637 632 {
638 633 /** This function suspends the science tasks.
639 634 *
640 635 * @return RTEMS directive status codes:
641 636 * - RTEMS_SUCCESSFUL - task restarted successfully
642 637 * - RTEMS_INVALID_ID - task id invalid
643 638 * - RTEMS_ALREADY_SUSPENDED - task already suspended
644 639 *
645 640 */
646 641
647 642 rtems_status_code status;
648 643
649 644 status = rtems_task_suspend( Task_id[TASKID_AVF0] );
650 645 if (status != RTEMS_SUCCESSFUL)
651 646 {
652 647 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
653 648 }
654 649
655 650 if (status == RTEMS_SUCCESSFUL) // suspend BPF0
656 651 {
657 652 status = rtems_task_suspend( Task_id[TASKID_BPF0] );
658 653 if (status != RTEMS_SUCCESSFUL)
659 654 {
660 655 PRINTF1("in suspend_science_task *** BPF0 ERR %d\n", status)
661 656 }
662 657 }
663 658
664 659 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
665 660 {
666 661 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
667 662 if (status != RTEMS_SUCCESSFUL)
668 663 {
669 664 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
670 665 }
671 666 }
672 667
673 668 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
674 669 {
675 670 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
676 671 if (status != RTEMS_SUCCESSFUL)
677 672 {
678 673 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
679 674 }
680 675 }
681 676
682 677 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
683 678 {
684 679 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
685 680 if (status != RTEMS_SUCCESSFUL)
686 681 {
687 682 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
688 683 }
689 684 }
690 685
691 686 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
692 687 {
693 688 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
694 689 if (status != RTEMS_SUCCESSFUL)
695 690 {
696 691 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
697 692 }
698 693 }
699 694
700 695 return status;
701 696 }
702 697
703 698 void launch_waveform_picker( unsigned char mode )
704 699 {
705 700 int startDate;
706 701
707 702 reset_current_ring_nodes();
708 reset_waveform_picker_regs();
703 reset_waveform_picker_regs_vhdl_dev_debug_64();
709 704 set_wfp_burst_enable_register( mode );
710 705 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
711 706 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
712 #ifdef VHDL_DEV
713 707 startDate = time_management_regs->coarse_time + 2;
714 708 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
715 709 waveform_picker_regs->start_date = startDate;
716 #endif
710 }
711
712 void launch_spectral_matrix( unsigned char mode )
713 {
714 reset_current_sm_ring_nodes();
715 reset_spectral_matrix_regs();
716 // Spectral Matrices simulator
717 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
718 set_local_nb_interrupt_f0_MAX();
719 LEON_Clear_interrupt( IRQ_SM );
720 LEON_Unmask_interrupt( IRQ_SM );
717 721 }
718 722
719 723 //****************
720 724 // CLOSING ACTIONS
721 725 void update_last_TC_exe(ccsdsTelecommandPacket_t *TC, unsigned char *time)
722 726 {
723 727 /** This function is used to update the HK packets statistics after a successful TC execution.
724 728 *
725 729 * @param TC points to the TC being processed
726 730 * @param time is the time used to date the TC execution
727 731 *
728 732 */
729 733
730 734 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
731 735 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
732 736 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
733 737 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
734 738 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
735 739 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
736 740 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
737 741 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
738 742 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
739 743 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
740 744 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
741 745 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
742 746 }
743 747
744 748 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char *time)
745 749 {
746 750 /** This function is used to update the HK packets statistics after a TC rejection.
747 751 *
748 752 * @param TC points to the TC being processed
749 753 * @param time is the time used to date the TC rejection
750 754 *
751 755 */
752 756
753 757 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
754 758 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
755 759 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
756 760 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
757 761 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
758 762 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
759 763 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
760 764 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
761 765 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
762 766 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
763 767 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
764 768 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
765 769 }
766 770
767 771 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id, unsigned char *time)
768 772 {
769 773 /** This function is the last step of the TC execution workflow.
770 774 *
771 775 * @param TC points to the TC being processed
772 776 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
773 777 * @param queue_id is the id of the RTEMS message queue used to send TM packets
774 778 * @param time is the time used to date the TC execution
775 779 *
776 780 */
777 781
778 782 unsigned int val = 0;
779 783
780 784 if (result == LFR_SUCCESSFUL)
781 785 {
782 786 if ( !( (TC->serviceType==TC_TYPE_TIME) && (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
783 787 &&
784 788 !( (TC->serviceType==TC_TYPE_GEN) && (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
785 789 )
786 790 {
787 791 send_tm_lfr_tc_exe_success( TC, queue_id, time );
788 792 }
789 793 update_last_TC_exe( TC, time );
790 794 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
791 795 val++;
792 796 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
793 797 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
794 798 }
795 799 else
796 800 {
797 801 update_last_TC_rej( TC, time );
798 802 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
799 803 val++;
800 804 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
801 805 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
802 806 }
803 807 }
804 808
805 809 //***************************
806 810 // Interrupt Service Routines
807 811 rtems_isr commutation_isr1( rtems_vector_number vector )
808 812 {
809 813 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
810 814 printf("In commutation_isr1 *** Error sending event to DUMB\n");
811 815 }
812 816 }
813 817
814 818 rtems_isr commutation_isr2( rtems_vector_number vector )
815 819 {
816 820 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
817 821 printf("In commutation_isr2 *** Error sending event to DUMB\n");
818 822 }
819 823 }
820 824
821 825 //****************
822 826 // OTHER FUNCTIONS
823 827 void updateLFRCurrentMode()
824 828 {
825 829 /** This function updates the value of the global variable lfrCurrentMode.
826 830 *
827 831 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
828 832 *
829 833 */
830 834 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
831 835 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
832 836 }
833 837
@@ -1,1261 +1,1519
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //*****************
13 13 // waveform headers
14 14 // SWF
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
16 16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
17 17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
18 18 // CWF
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[7];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[7];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[7];
22 22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[7];
23 23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[7];
24 24
25 25 //**************
26 26 // waveform ring
27 27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
28 28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
29 29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
30 30 ring_node *current_ring_node_f0;
31 31 ring_node *ring_node_to_send_swf_f0;
32 32 ring_node *current_ring_node_f1;
33 33 ring_node *ring_node_to_send_swf_f1;
34 34 ring_node *ring_node_to_send_cwf_f1;
35 35 ring_node *current_ring_node_f2;
36 36 ring_node *ring_node_to_send_swf_f2;
37 37 ring_node *ring_node_to_send_cwf_f2;
38 38
39 39 rtems_isr waveforms_isr( rtems_vector_number vector )
40 40 {
41 41 /** This is the interrupt sub routine called by the waveform picker core.
42 42 *
43 43 * This ISR launch different actions depending mainly on two pieces of information:
44 44 * 1. the values read in the registers of the waveform picker.
45 45 * 2. the current LFR mode.
46 46 *
47 47 */
48 48
49 static unsigned char nb_swf = 0;
50
49 51 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
50 52 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
51 53 { // in modes other than STANDBY and BURST, send the CWF_F3 data
52 54 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
53 55 // (1) change the receiving buffer for the waveform picker
54 56 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
55 57 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_b);
56 58 }
57 59 else {
58 60 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a);
59 61 }
60 62 // (2) send an event for the waveforms transmission
61 63 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
62 64 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
63 65 }
64 66 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
65 67 }
66 68 }
67 69
68 70 switch(lfrCurrentMode)
69 71 {
70 72 //********
71 73 // STANDBY
72 74 case(LFR_MODE_STANDBY):
73 75 break;
74 76
75 77 //******
76 78 // NORMAL
77 79 case(LFR_MODE_NORMAL):
78 80 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
79 81 {
80 82 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
81 83 }
82 84 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
83 85 {
84 86 // change F0 ring node
85 87 ring_node_to_send_swf_f0 = current_ring_node_f0;
86 88 current_ring_node_f0 = current_ring_node_f0->next;
87 89 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
88 90 // change F1 ring node
89 91 ring_node_to_send_swf_f1 = current_ring_node_f1;
90 92 current_ring_node_f1 = current_ring_node_f1->next;
91 93 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
92 94 // change F2 ring node
93 95 ring_node_to_send_swf_f2 = current_ring_node_f2;
94 96 current_ring_node_f2 = current_ring_node_f2->next;
95 97 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
96 98 //
99 if (nb_swf < 2)
100 // if (true)
101 {
102 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
103 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
104 }
105 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
106 nb_swf = nb_swf + 1;
107 }
108 else
109 {
110 reset_wfp_burst_enable();
111 nb_swf = 0;
112 }
113
114 }
115
116 break;
117
118 //******
119 // BURST
120 case(LFR_MODE_BURST):
121 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
122 // (1) change the receiving buffer for the waveform picker
123 ring_node_to_send_cwf_f2 = current_ring_node_f2;
124 current_ring_node_f2 = current_ring_node_f2->next;
125 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
126 // (2) send an event for the waveforms transmission
127 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
128 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
129 }
130 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
131 }
132 break;
133
134 //*****
135 // SBM1
136 case(LFR_MODE_SBM1):
137 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
138 // (1) change the receiving buffer for the waveform picker
139 ring_node_to_send_cwf_f1 = current_ring_node_f1;
140 current_ring_node_f1 = current_ring_node_f1->next;
141 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
142 // (2) send an event for the waveforms transmission
143 if (rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 ) != RTEMS_SUCCESSFUL) {
144 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
145 }
146 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bit = 0
147 }
148 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
149 ring_node_to_send_swf_f1 = current_ring_node_f1->previous;
150 }
151 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
152 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
153 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
154 }
155 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2 and f0 bits = 0
156 }
157 break;
158
159 //*****
160 // SBM2
161 case(LFR_MODE_SBM2):
162 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
163 // (1) change the receiving buffer for the waveform picker
164 ring_node_to_send_cwf_f2 = current_ring_node_f2;
165 current_ring_node_f2 = current_ring_node_f2->next;
166 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
167 // (2) send an event for the waveforms transmission
168 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
169 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
170 }
171 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
172 }
173 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
174 ring_node_to_send_swf_f2 = current_ring_node_f2->previous;
175 }
176 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
97 177 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
98 178 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
99 179 }
100 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
180 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
181 }
182 break;
183
184 //********
185 // DEFAULT
186 default:
187 break;
188 }
189 }
190
191 rtems_isr waveforms_isr_alt( rtems_vector_number vector )
192 {
193 /** This is the interrupt sub routine called by the waveform picker core.
194 *
195 * This ISR launch different actions depending mainly on two pieces of information:
196 * 1. the values read in the registers of the waveform picker.
197 * 2. the current LFR mode.
198 *
199 */
200
201 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
202 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
203 { // in modes other than STANDBY and BURST, send the CWF_F3 data
204 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
205 // (1) change the receiving buffer for the waveform picker
206 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
207 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_b);
208 }
209 else {
210 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a);
211 }
212 // (2) send an event for the waveforms transmission
213 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
214 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
215 }
216 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
101 217 }
218 }
102 219
220 switch(lfrCurrentMode)
221 {
222 //********
223 // STANDBY
224 case(LFR_MODE_STANDBY):
225 break;
226
227 //******
228 // NORMAL
229 case(LFR_MODE_NORMAL):
230 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
231 {
232 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
233 }
234 if ( (waveform_picker_regs->status & 0x01) == 0x01) // [0001] check the f0 full bit
235 {
236 // change F0 ring node
237 ring_node_to_send_swf_f0 = current_ring_node_f0;
238 current_ring_node_f0 = current_ring_node_f0->next;
239 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
240 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1110 1110 1110]
241 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL_SWF_F0 ) != RTEMS_SUCCESSFUL) {
242 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
243 }
244 }
245 if ( (waveform_picker_regs->status & 0x02) == 0x02) // [0010] check the f1 full bit
246 {
247 // change F1 ring node
248 ring_node_to_send_swf_f1 = current_ring_node_f1;
249 current_ring_node_f1 = current_ring_node_f1->next;
250 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
251 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1101 1101 1101]
252 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL_SWF_F1 ) != RTEMS_SUCCESSFUL) {
253 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
254 }
255 }
256 if ( (waveform_picker_regs->status & 0x04) == 0x04) // [0100] check the f2 full bit
257 {
258 // change F2 ring node
259 ring_node_to_send_swf_f2 = current_ring_node_f2;
260 current_ring_node_f2 = current_ring_node_f2->next;
261 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
262 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1011 1011 1011]
263 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL_SWF_F2 ) != RTEMS_SUCCESSFUL) {
264 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
265 }
266 }
103 267 break;
104 268
105 269 //******
106 270 // BURST
107 271 case(LFR_MODE_BURST):
108 272 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
109 273 // (1) change the receiving buffer for the waveform picker
110 274 ring_node_to_send_cwf_f2 = current_ring_node_f2;
111 275 current_ring_node_f2 = current_ring_node_f2->next;
112 276 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
113 277 // (2) send an event for the waveforms transmission
114 278 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
115 279 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
116 280 }
117 281 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
118 282 }
119 283 break;
120 284
121 285 //*****
122 286 // SBM1
123 287 case(LFR_MODE_SBM1):
124 288 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
125 289 // (1) change the receiving buffer for the waveform picker
126 290 ring_node_to_send_cwf_f1 = current_ring_node_f1;
127 291 current_ring_node_f1 = current_ring_node_f1->next;
128 292 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
129 293 // (2) send an event for the waveforms transmission
130 294 if (rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 ) != RTEMS_SUCCESSFUL) {
131 295 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
132 296 }
133 297 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bit = 0
134 298 }
135 299 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
136 300 ring_node_to_send_swf_f1 = current_ring_node_f1->previous;
137 301 }
138 302 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
139 303 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
140 304 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
141 305 }
142 306 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2 and f0 bits = 0
143 307 }
144 308 break;
145 309
146 310 //*****
147 311 // SBM2
148 312 case(LFR_MODE_SBM2):
149 313 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
150 314 // (1) change the receiving buffer for the waveform picker
151 315 ring_node_to_send_cwf_f2 = current_ring_node_f2;
152 316 current_ring_node_f2 = current_ring_node_f2->next;
153 317 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
154 318 // (2) send an event for the waveforms transmission
155 319 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
156 320 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
157 321 }
158 322 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
159 323 }
160 324 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
161 325 ring_node_to_send_swf_f2 = current_ring_node_f2->previous;
162 326 }
163 327 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
164 328 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
165 329 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
166 330 }
167 331 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
168 332 }
169 333 break;
170 334
171 335 //********
172 336 // DEFAULT
173 337 default:
174 338 break;
175 339 }
176 340 }
177 341
178 342 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
179 343 {
180 344 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
181 345 *
182 346 * @param unused is the starting argument of the RTEMS task
183 347 *
184 348 * The following data packets are sent by this task:
185 349 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
186 350 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
187 351 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
188 352 *
189 353 */
190 354
191 355 rtems_event_set event_out;
192 356 rtems_id queue_id;
193 357 rtems_status_code status;
194 358
195 359 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
196 360 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
197 361 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
198 362
199 363 init_waveforms();
200 364
201 365 status = get_message_queue_id_send( &queue_id );
202 366 if (status != RTEMS_SUCCESSFUL)
203 367 {
204 368 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
205 369 }
206 370
207 371 BOOT_PRINTF("in WFRM ***\n")
208 372
209 373 while(1){
210 374 // wait for an RTEMS_EVENT
211 375 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
212 376 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM
213 377 | RTEMS_EVENT_MODE_NORMAL_SWF_F0
214 378 | RTEMS_EVENT_MODE_NORMAL_SWF_F1
215 379 | RTEMS_EVENT_MODE_NORMAL_SWF_F2,
216 380 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
217 381 if (event_out == RTEMS_EVENT_MODE_NORMAL)
218 382 {
219 383 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
220 384 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
221 385 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
222 386 }
223 387 if ( (event_out & RTEMS_EVENT_MODE_NORMAL_SWF_F0) == RTEMS_EVENT_MODE_NORMAL_SWF_F0)
224 388 {
225 389 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
226 390 }
227 391 if ( (event_out & RTEMS_EVENT_MODE_NORMAL_SWF_F1) == RTEMS_EVENT_MODE_NORMAL_SWF_F1)
228 392 {
229 393 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
230 394 }
231 395 if ( (event_out & RTEMS_EVENT_MODE_NORMAL_SWF_F2) == RTEMS_EVENT_MODE_NORMAL_SWF_F2)
232 396 {
233 397 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
234 398 }
235 399 }
236 400 }
237 401
238 402 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
239 403 {
240 404 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
241 405 *
242 406 * @param unused is the starting argument of the RTEMS task
243 407 *
244 408 * The following data packet is sent by this task:
245 409 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
246 410 *
247 411 */
248 412
249 413 rtems_event_set event_out;
250 414 rtems_id queue_id;
251 415 rtems_status_code status;
252 416
253 417 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
254 418 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
255 419
256 420 status = get_message_queue_id_send( &queue_id );
257 421 if (status != RTEMS_SUCCESSFUL)
258 422 {
259 423 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
260 424 }
261 425
262 426 BOOT_PRINTF("in CWF3 ***\n")
263 427
264 428 while(1){
265 429 // wait for an RTEMS_EVENT
266 430 rtems_event_receive( RTEMS_EVENT_0,
267 431 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
268 432 PRINTF("send CWF F3 \n")
269 433 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
270 434 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
271 435 {
272 436 send_waveform_CWF( wf_cont_f3_b, SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
273 437 }
274 438 else
275 439 {
276 440 send_waveform_CWF3_light( wf_cont_f3_b, headerCWF_F3_light, queue_id );
277 441 }
278 442 }
279 443 else
280 444 {
281 445 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x00)
282 446 {
283 447 send_waveform_CWF( wf_cont_f3_a, SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
284 448 }
285 449 else
286 450 {
287 451 send_waveform_CWF3_light( wf_cont_f3_a, headerCWF_F3_light, queue_id );
288 452 }
289 453
290 454 }
291 455 }
292 456 }
293 457
294 458 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
295 459 {
296 460 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
297 461 *
298 462 * @param unused is the starting argument of the RTEMS task
299 463 *
300 464 * The following data packet is sent by this function:
301 465 * - TM_LFR_SCIENCE_BURST_CWF_F2
302 466 * - TM_LFR_SCIENCE_SBM2_CWF_F2
303 467 *
304 468 */
305 469
306 470 rtems_event_set event_out;
307 471 rtems_id queue_id;
308 472 rtems_status_code status;
309 473
310 474 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
311 475 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
312 476
313 477 status = get_message_queue_id_send( &queue_id );
314 478 if (status != RTEMS_SUCCESSFUL)
315 479 {
316 480 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
317 481 }
318 482
319 483 BOOT_PRINTF("in CWF2 ***\n")
320 484
321 485 while(1){
322 486 // wait for an RTEMS_EVENT
323 487 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
324 488 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
325 489 if (event_out == RTEMS_EVENT_MODE_BURST)
326 490 {
327 491 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
328 492 }
329 493 if (event_out == RTEMS_EVENT_MODE_SBM2)
330 494 {
331 495 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
332 496 }
333 497 }
334 498 }
335 499
336 500 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
337 501 {
338 502 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
339 503 *
340 504 * @param unused is the starting argument of the RTEMS task
341 505 *
342 506 * The following data packet is sent by this function:
343 507 * - TM_LFR_SCIENCE_SBM1_CWF_F1
344 508 *
345 509 */
346 510
347 511 rtems_event_set event_out;
348 512 rtems_id queue_id;
349 513 rtems_status_code status;
350 514
351 515 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
352 516
353 517 status = get_message_queue_id_send( &queue_id );
354 518 if (status != RTEMS_SUCCESSFUL)
355 519 {
356 520 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
357 521 }
358 522
359 523 BOOT_PRINTF("in CWF1 ***\n")
360 524
361 525 while(1){
362 526 // wait for an RTEMS_EVENT
363 527 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
364 528 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
365 529 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
366 530 }
367 531 }
368 532
369 533 //******************
370 534 // general functions
371 535 void init_waveforms( void )
372 536 {
373 537 int i = 0;
374 538
375 539 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
376 540 {
377 541 //***
378 542 // F0
379 543 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x88887777; //
380 544 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111; //
381 545 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0x44443333; //
382 546
383 547 //***
384 548 // F1
385 549 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x22221111;
386 550 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x44443333;
387 551 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
388 552
389 553 //***
390 554 // F2
391 555 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x44443333;
392 556 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111;
393 557 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
394 558
395 559 //***
396 560 // F3
397 561 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 0 ] = val1;
398 562 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 1 ] = val2;
399 563 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 2 ] = 0xaaaa0000;
400 564 }
401 565 }
402 566
403 567 void init_waveform_rings( void )
404 568 {
405 569 unsigned char i;
406 570
407 571 // F0 RING
408 572 waveform_ring_f0[0].next = (ring_node*) &waveform_ring_f0[1];
409 573 waveform_ring_f0[0].previous = (ring_node*) &waveform_ring_f0[NB_RING_NODES_F0-1];
410 574 waveform_ring_f0[0].buffer_address = (int) &wf_snap_f0[0][0];
411 575
412 576 waveform_ring_f0[NB_RING_NODES_F0-1].next = (ring_node*) &waveform_ring_f0[0];
413 577 waveform_ring_f0[NB_RING_NODES_F0-1].previous = (ring_node*) &waveform_ring_f0[NB_RING_NODES_F0-2];
414 578 waveform_ring_f0[NB_RING_NODES_F0-1].buffer_address = (int) &wf_snap_f0[NB_RING_NODES_F0-1][0];
415 579
416 580 for(i=1; i<NB_RING_NODES_F0-1; i++)
417 581 {
418 582 waveform_ring_f0[i].next = (ring_node*) &waveform_ring_f0[i+1];
419 583 waveform_ring_f0[i].previous = (ring_node*) &waveform_ring_f0[i-1];
420 584 waveform_ring_f0[i].buffer_address = (int) &wf_snap_f0[i][0];
421 585 }
422 586
423 587 // F1 RING
424 588 waveform_ring_f1[0].next = (ring_node*) &waveform_ring_f1[1];
425 589 waveform_ring_f1[0].previous = (ring_node*) &waveform_ring_f1[NB_RING_NODES_F1-1];
426 590 waveform_ring_f1[0].buffer_address = (int) &wf_snap_f1[0][0];
427 591
428 592 waveform_ring_f1[NB_RING_NODES_F1-1].next = (ring_node*) &waveform_ring_f1[0];
429 593 waveform_ring_f1[NB_RING_NODES_F1-1].previous = (ring_node*) &waveform_ring_f1[NB_RING_NODES_F1-2];
430 594 waveform_ring_f1[NB_RING_NODES_F1-1].buffer_address = (int) &wf_snap_f1[NB_RING_NODES_F1-1][0];
431 595
432 596 for(i=1; i<NB_RING_NODES_F1-1; i++)
433 597 {
434 598 waveform_ring_f1[i].next = (ring_node*) &waveform_ring_f1[i+1];
435 599 waveform_ring_f1[i].previous = (ring_node*) &waveform_ring_f1[i-1];
436 600 waveform_ring_f1[i].buffer_address = (int) &wf_snap_f1[i][0];
437 601 }
438 602
439 603 // F2 RING
440 604 waveform_ring_f2[0].next = (ring_node*) &waveform_ring_f2[1];
441 605 waveform_ring_f2[0].previous = (ring_node*) &waveform_ring_f2[NB_RING_NODES_F2-1];
442 606 waveform_ring_f2[0].buffer_address = (int) &wf_snap_f2[0][0];
443 607
444 608 waveform_ring_f2[NB_RING_NODES_F2-1].next = (ring_node*) &waveform_ring_f2[0];
445 609 waveform_ring_f2[NB_RING_NODES_F2-1].previous = (ring_node*) &waveform_ring_f2[NB_RING_NODES_F2-2];
446 610 waveform_ring_f2[NB_RING_NODES_F2-1].buffer_address = (int) &wf_snap_f2[NB_RING_NODES_F2-1][0];
447 611
448 612 for(i=1; i<NB_RING_NODES_F2-1; i++)
449 613 {
450 614 waveform_ring_f2[i].next = (ring_node*) &waveform_ring_f2[i+1];
451 615 waveform_ring_f2[i].previous = (ring_node*) &waveform_ring_f2[i-1];
452 616 waveform_ring_f2[i].buffer_address = (int) &wf_snap_f2[i][0];
453 617 }
454 618
455 619 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
456 620 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
457 621 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
458 622
459 623 }
460 624
461 625 void reset_current_ring_nodes( void )
462 626 {
463 627 current_ring_node_f0 = waveform_ring_f0;
464 628 ring_node_to_send_swf_f0 = waveform_ring_f0;
465 629
466 630 current_ring_node_f1 = waveform_ring_f1;
467 631 ring_node_to_send_cwf_f1 = waveform_ring_f1;
468 632 ring_node_to_send_swf_f1 = waveform_ring_f1;
469 633
470 634 current_ring_node_f2 = waveform_ring_f2;
471 635 ring_node_to_send_cwf_f2 = waveform_ring_f2;
472 636 ring_node_to_send_swf_f2 = waveform_ring_f2;
473 637 }
474 638
475 639 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
476 640 {
477 641 unsigned char i;
478 642
479 643 for (i=0; i<7; i++)
480 644 {
481 645 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
482 646 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
483 647 headerSWF[ i ].reserved = DEFAULT_RESERVED;
484 648 headerSWF[ i ].userApplication = CCSDS_USER_APP;
485 649 headerSWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
486 650 headerSWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
487 651 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
488 652 if (i == 6)
489 653 {
490 654 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
491 655 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
492 656 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
493 657 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
494 658 }
495 659 else
496 660 {
497 661 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
498 662 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
499 663 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
500 664 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
501 665 }
502 666 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
503 667 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
504 668 headerSWF[ i ].pktNr = i+1; // PKT_NR
505 669 // DATA FIELD HEADER
506 670 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
507 671 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
508 672 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
509 673 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
510 674 // AUXILIARY DATA HEADER
511 675 headerSWF[ i ].time[0] = 0x00;
512 676 headerSWF[ i ].time[0] = 0x00;
513 677 headerSWF[ i ].time[0] = 0x00;
514 678 headerSWF[ i ].time[0] = 0x00;
515 679 headerSWF[ i ].time[0] = 0x00;
516 680 headerSWF[ i ].time[0] = 0x00;
517 681 headerSWF[ i ].sid = sid;
518 682 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
519 683 }
520 684 return LFR_SUCCESSFUL;
521 685 }
522 686
523 687 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
524 688 {
525 689 unsigned int i;
526 690
527 691 for (i=0; i<7; i++)
528 692 {
529 693 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
530 694 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
531 695 headerCWF[ i ].reserved = DEFAULT_RESERVED;
532 696 headerCWF[ i ].userApplication = CCSDS_USER_APP;
533 697 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
534 698 {
535 699 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2 >> 8);
536 700 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2);
537 701 }
538 702 else
539 703 {
540 704 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
541 705 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
542 706 }
543 707 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
544 708 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
545 709 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
546 710 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
547 711 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
548 712 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
549 713 // DATA FIELD HEADER
550 714 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
551 715 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
552 716 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
553 717 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
554 718 // AUXILIARY DATA HEADER
555 719 headerCWF[ i ].sid = sid;
556 720 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
557 721 headerCWF[ i ].time[0] = 0x00;
558 722 headerCWF[ i ].time[0] = 0x00;
559 723 headerCWF[ i ].time[0] = 0x00;
560 724 headerCWF[ i ].time[0] = 0x00;
561 725 headerCWF[ i ].time[0] = 0x00;
562 726 headerCWF[ i ].time[0] = 0x00;
563 727 }
564 728 return LFR_SUCCESSFUL;
565 729 }
566 730
567 731 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
568 732 {
569 733 unsigned int i;
570 734
571 735 for (i=0; i<7; i++)
572 736 {
573 737 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
574 738 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
575 739 headerCWF[ i ].reserved = DEFAULT_RESERVED;
576 740 headerCWF[ i ].userApplication = CCSDS_USER_APP;
577 741
578 742 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
579 743 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
580 744
581 745 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
582 746 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
583 747 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
584 748 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
585 749 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
586 750
587 751 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
588 752 // DATA FIELD HEADER
589 753 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
590 754 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
591 755 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
592 756 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
593 757 // AUXILIARY DATA HEADER
594 758 headerCWF[ i ].sid = SID_NORM_CWF_F3;
595 759 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
596 760 headerCWF[ i ].time[0] = 0x00;
597 761 headerCWF[ i ].time[0] = 0x00;
598 762 headerCWF[ i ].time[0] = 0x00;
599 763 headerCWF[ i ].time[0] = 0x00;
600 764 headerCWF[ i ].time[0] = 0x00;
601 765 headerCWF[ i ].time[0] = 0x00;
602 766 }
603 767 return LFR_SUCCESSFUL;
604 768 }
605 769
606 770 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
607 771 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
608 772 {
609 773 /** This function sends SWF CCSDS packets (F2, F1 or F0).
610 774 *
611 775 * @param waveform points to the buffer containing the data that will be send.
612 776 * @param sid is the source identifier of the data that will be sent.
613 777 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
614 778 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
615 779 * contain information to setup the transmission of the data packets.
616 780 *
617 781 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
618 782 *
619 783 */
620 784
621 785 unsigned int i;
622 786 int ret;
623 787 unsigned int coarseTime;
624 788 unsigned int fineTime;
625 789 rtems_status_code status;
626 790 spw_ioctl_pkt_send spw_ioctl_send_SWF;
627 791
628 792 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
629 793 spw_ioctl_send_SWF.options = 0;
630 794
631 795 ret = LFR_DEFAULT;
632 796
633 797 PRINTF1("sid = %d, ", sid)
634 798 PRINTF2("coarse = %x, fine = %x\n", waveform[0], waveform[1])
635 799
636 800 for (i=0; i<7; i++) // send waveform
637 801 {
638 802 #ifdef VHDL_DEV
639 803 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
640 804 #else
641 805 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
642 806 #endif
643 807 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
644 808 // BUILD THE DATA
645 809 if (i==6) {
646 810 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
647 811 }
648 812 else {
649 813 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
650 814 }
651 815 // SET PACKET SEQUENCE COUNTER
652 816 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
653 817 // SET PACKET TIME
654 818 #ifdef VHDL_DEV
655 819 coarseTime = waveform[0];
656 820 fineTime = waveform[1];
657 821 compute_acquisition_time( &coarseTime, &fineTime, sid, i);
658 822
659 823 headerSWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime >> 24 );
660 824 headerSWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime >> 16 );
661 825 headerSWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime >> 8 );
662 826 headerSWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime );
663 827 headerSWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime >> 8 );
664 828 headerSWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime );
665 829 #else
666 830 headerSWF[ i ].acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
667 831 headerSWF[ i ].acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
668 832 headerSWF[ i ].acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
669 833 headerSWF[ i ].acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
670 834 headerSWF[ i ].acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
671 835 headerSWF[ i ].acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
672 836 #endif
673 837 headerSWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
674 838 headerSWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
675 839 headerSWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
676 840 headerSWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
677 841 headerSWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
678 842 headerSWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
679 843 // SEND PACKET
680 844 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
681 845 if (status != RTEMS_SUCCESSFUL) {
682 846 printf("%d-%d, ERR %d\n", sid, i, (int) status);
683 847 ret = LFR_DEFAULT;
684 848 }
685 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
849 // rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
686 850 }
687 851
688 852 return ret;
689 853 }
690 854
691 855 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
692 856 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
693 857 {
694 858 /** This function sends CWF CCSDS packets (F2, F1 or F0).
695 859 *
696 860 * @param waveform points to the buffer containing the data that will be send.
697 861 * @param sid is the source identifier of the data that will be sent.
698 862 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
699 863 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
700 864 * contain information to setup the transmission of the data packets.
701 865 *
702 866 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
703 867 *
704 868 */
705 869
706 870 unsigned int i;
707 871 int ret;
708 872 unsigned char *coarseTimePtr;
709 873 unsigned char *fineTimePtr;
710 874 rtems_status_code status;
711 875 spw_ioctl_pkt_send spw_ioctl_send_CWF;
712 876
713 877 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
714 878 spw_ioctl_send_CWF.options = 0;
715 879
716 880 ret = LFR_DEFAULT;
717 881
718 882 for (i=0; i<7; i++) // send waveform
719 883 {
720 884 int coarseTime = 0x00;
721 885 int fineTime = 0x00;
722 886 #ifdef VHDL_DEV
723 887 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
724 888 #else
725 889 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
726 890 #endif
727 891 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
728 892 // BUILD THE DATA
729 893 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
730 894 // SET PACKET SEQUENCE COUNTER
731 895 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
732 896 // SET PACKET TIME
733 897 #ifdef VHDL_DEV
734 898 coarseTimePtr = (unsigned char *) &waveform;
735 899 fineTimePtr = (unsigned char *) &waveform[1];
736 900 headerCWF[ i ].acquisitionTime[0] = coarseTimePtr[2];
737 901 headerCWF[ i ].acquisitionTime[1] = coarseTimePtr[3];
738 902 headerCWF[ i ].acquisitionTime[2] = coarseTimePtr[0];
739 903 headerCWF[ i ].acquisitionTime[3] = coarseTimePtr[1];
740 904 headerCWF[ i ].acquisitionTime[4] = fineTimePtr[0];
741 905 headerCWF[ i ].acquisitionTime[5] = fineTimePtr[1];
742 906 #else
743 907 coarseTime = time_management_regs->coarse_time;
744 908 fineTime = time_management_regs->fine_time;
745 909 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
746 910 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
747 911 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
748 912 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
749 913 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
750 914 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
751 915 #endif
752 916
753 917 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
754 918 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
755 919 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
756 920 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
757 921 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
758 922 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
759 923 // SEND PACKET
760 924 if (sid == SID_NORM_CWF_LONG_F3)
761 925 {
762 926 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
763 927 if (status != RTEMS_SUCCESSFUL) {
764 928 printf("%d-%d, ERR %d\n", sid, i, (int) status);
765 929 ret = LFR_DEFAULT;
766 930 }
767 931 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
768 932 }
769 933 else
770 934 {
771 935 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
772 936 if (status != RTEMS_SUCCESSFUL) {
773 937 printf("%d-%d, ERR %d\n", sid, i, (int) status);
774 938 ret = LFR_DEFAULT;
775 939 }
776 940 }
777 941 }
778 942
779 943 return ret;
780 944 }
781 945
782 946 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
783 947 {
784 948 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
785 949 *
786 950 * @param waveform points to the buffer containing the data that will be send.
787 951 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
788 952 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
789 953 * contain information to setup the transmission of the data packets.
790 954 *
791 955 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
792 956 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
793 957 *
794 958 */
795 959
796 960 unsigned int i;
797 961 int ret;
798 962 unsigned char *coarseTimePtr;
799 963 unsigned char *fineTimePtr;
800 964 rtems_status_code status;
801 965 spw_ioctl_pkt_send spw_ioctl_send_CWF;
802 966 char *sample;
803 967
804 968 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
805 969 spw_ioctl_send_CWF.options = 0;
806 970
807 971 ret = LFR_DEFAULT;
808 972
809 973 //**********************
810 974 // BUILD CWF3_light DATA
811 975 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
812 976 {
813 977 #ifdef VHDL_DEV
814 978 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
815 979 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
816 980 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
817 981 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
818 982 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
819 983 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
820 984 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
821 985 #else
822 986 sample = (char*) &waveform[ i * NB_WORDS_SWF_BLK ];
823 987 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
824 988 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
825 989 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
826 990 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
827 991 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
828 992 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
829 993 #endif
830 994 }
831 995
832 996 //*********************
833 997 // SEND CWF3_light DATA
834 998
835 999 for (i=0; i<7; i++) // send waveform
836 1000 {
837 1001 int coarseTime = 0x00;
838 1002 int fineTime = 0x00;
839 1003
840 1004 #ifdef VHDL_DEV
841 1005 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
842 1006 #else
843 1007 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
844 1008 #endif
845 1009 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
846 1010 // BUILD THE DATA
847 1011 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
848 1012 // SET PACKET SEQUENCE COUNTER
849 1013 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
850 1014 // SET PACKET TIME
851 1015 #ifdef VHDL_DEV
852 1016 coarseTimePtr = (unsigned char *) &waveform;
853 1017 fineTimePtr = (unsigned char *) &waveform[1];
854 1018 headerCWF[ i ].acquisitionTime[0] = coarseTimePtr[2];
855 1019 headerCWF[ i ].acquisitionTime[1] = coarseTimePtr[3];
856 1020 headerCWF[ i ].acquisitionTime[2] = coarseTimePtr[0];
857 1021 headerCWF[ i ].acquisitionTime[3] = coarseTimePtr[1];
858 1022 headerCWF[ i ].acquisitionTime[4] = fineTimePtr[0];
859 1023 headerCWF[ i ].acquisitionTime[5] = fineTimePtr[1];
860 1024 #else
861 1025 coarseTime = time_management_regs->coarse_time;
862 1026 fineTime = time_management_regs->fine_time;
863 1027 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
864 1028 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
865 1029 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
866 1030 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
867 1031 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
868 1032 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
869 1033 #endif
870 1034 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
871 1035 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
872 1036 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
873 1037 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
874 1038 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
875 1039 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
876 1040 // SEND PACKET
877 1041 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
878 1042 if (status != RTEMS_SUCCESSFUL) {
879 1043 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
880 1044 ret = LFR_DEFAULT;
881 1045 }
882 1046 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
883 1047 }
884 1048
885 1049 return ret;
886 1050 }
887 1051
888 1052 void compute_acquisition_time( unsigned int *coarseTime, unsigned int *fineTime, unsigned int sid, unsigned char pa_lfr_pkt_nr )
889 1053 {
890 1054 unsigned long long int acquisitionTimeAsLong;
891 1055 unsigned char acquisitionTime[6];
892 1056 float deltaT = 0.;
893 1057
894 1058 acquisitionTime[0] = (unsigned char) ( *coarseTime >> 8 );
895 1059 acquisitionTime[1] = (unsigned char) ( *coarseTime );
896 1060 acquisitionTime[2] = (unsigned char) ( *coarseTime >> 24 );
897 1061 acquisitionTime[3] = (unsigned char) ( *coarseTime >> 16 );
898 1062 acquisitionTime[4] = (unsigned char) ( *fineTime >> 24 );
899 1063 acquisitionTime[5] = (unsigned char) ( *fineTime >> 16 );
900 1064
901 1065 acquisitionTimeAsLong = ( (unsigned long long int) acquisitionTime[0] << 40 )
902 1066 + ( (unsigned long long int) acquisitionTime[1] << 32 )
903 1067 + ( acquisitionTime[2] << 24 )
904 1068 + ( acquisitionTime[3] << 16 )
905 1069 + ( acquisitionTime[4] << 8 )
906 1070 + ( acquisitionTime[5] );
907 1071
908 1072 switch( sid )
909 1073 {
910 1074 case SID_NORM_SWF_F0:
911 1075 deltaT = ( (float ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
912 1076 break;
913 1077
914 1078 case SID_NORM_SWF_F1:
915 1079 deltaT = ( (float ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
916 1080 break;
917 1081
918 1082 case SID_NORM_SWF_F2:
919 1083 deltaT = ( (float ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
920 1084 break;
921 1085
922 1086 default:
923 1087 deltaT = 0.;
924 1088 break;
925 1089 }
926 1090
927 1091 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
928 1092
929 1093 *coarseTime = (unsigned int) (acquisitionTimeAsLong >> 16);
930 1094 *fineTime = (unsigned int) (acquisitionTimeAsLong & 0xffff);
931 1095 }
932 1096
933 1097 //**************
934 1098 // wfp registers
935 1099 void set_wfp_data_shaping()
936 1100 {
937 1101 /** This function sets the data_shaping register of the waveform picker module.
938 1102 *
939 1103 * The value is read from one field of the parameter_dump_packet structure:\n
940 1104 * bw_sp0_sp1_r0_r1
941 1105 *
942 1106 */
943 1107
944 1108 unsigned char data_shaping;
945 1109
946 1110 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
947 1111 // waveform picker : [R1 R0 SP1 SP0 BW]
948 1112
949 1113 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
950 1114
951 1115 #ifdef GSA
952 1116 #else
953 1117 waveform_picker_regs->data_shaping =
954 1118 ( (data_shaping & 0x10) >> 4 ) // BW
955 1119 + ( (data_shaping & 0x08) >> 2 ) // SP0
956 1120 + ( (data_shaping & 0x04) ) // SP1
957 1121 + ( (data_shaping & 0x02) << 2 ) // R0
958 1122 + ( (data_shaping & 0x01) << 4 ); // R1
959 1123 #endif
960 1124 }
961 1125
962 1126 char set_wfp_delta_snapshot()
963 1127 {
964 1128 /** This function sets the delta_snapshot register of the waveform picker module.
965 1129 *
966 1130 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
967 1131 * - sy_lfr_n_swf_p[0]
968 1132 * - sy_lfr_n_swf_p[1]
969 1133 *
970 1134 */
971 1135
972 1136 char ret;
973 1137 unsigned int delta_snapshot;
974 1138 unsigned int aux;
975 1139
976 1140 aux = 0;
977 1141 ret = LFR_DEFAULT;
978 1142
979 1143 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
980 1144 + parameter_dump_packet.sy_lfr_n_swf_p[1];
981 1145
982 1146 #ifdef GSA
983 1147 #else
984 1148 if ( delta_snapshot < MIN_DELTA_SNAPSHOT )
985 1149 {
986 1150 aux = MIN_DELTA_SNAPSHOT;
987 1151 ret = LFR_DEFAULT;
988 1152 }
989 1153 else
990 1154 {
991 1155 aux = delta_snapshot ;
992 1156 ret = LFR_SUCCESSFUL;
993 1157 }
994 1158 waveform_picker_regs->delta_snapshot = aux - 1; // max 2 bytes
995 1159 #endif
996 1160
997 1161 return ret;
998 1162 }
999 1163
1000 1164 #ifdef VHDL_DEV
1001 1165 void set_wfp_burst_enable_register( unsigned char mode )
1002 1166 {
1003 1167 /** This function sets the waveform picker burst_enable register depending on the mode.
1004 1168 *
1005 1169 * @param mode is the LFR mode to launch.
1006 1170 *
1007 1171 * The burst bits shall be before the enable bits.
1008 1172 *
1009 1173 */
1010 1174
1011 1175 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1012 1176 // the burst bits shall be set first, before the enable bits
1013 1177 switch(mode) {
1014 1178 case(LFR_MODE_NORMAL):
1015 1179 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1016 1180 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1017 1181 break;
1018 1182 case(LFR_MODE_BURST):
1019 1183 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1020 1184 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1021 1185 break;
1022 1186 case(LFR_MODE_SBM1):
1023 1187 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1024 1188 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1025 1189 break;
1026 1190 case(LFR_MODE_SBM2):
1027 1191 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1028 1192 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1029 1193 break;
1030 1194 default:
1031 1195 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1032 1196 break;
1033 1197 }
1034 1198 }
1035 1199 #else
1036 1200 void set_wfp_burst_enable_register( unsigned char mode )
1037 1201 {
1038 1202 /** This function sets the waveform picker burst_enable register depending on the mode.
1039 1203 *
1040 1204 * @param mode is the LFR mode to launch.
1041 1205 *
1042 1206 * The burst bits shall be before the enable bits.
1043 1207 *
1044 1208 */
1045 1209
1046 1210 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1047 1211 // the burst bits shall be set first, before the enable bits
1048 1212 switch(mode) {
1049 1213 case(LFR_MODE_NORMAL):
1050 1214 waveform_picker_regs->burst_enable = 0x00; // [0000 0000] no burst enable
1051 1215 waveform_picker_regs->burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1052 1216 break;
1053 1217 case(LFR_MODE_BURST):
1054 1218 waveform_picker_regs->burst_enable = 0x40; // [0100 0000] f2 burst enabled
1055 1219 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x04; // [0100] enable f2
1056 1220 break;
1057 1221 case(LFR_MODE_SBM1):
1058 1222 waveform_picker_regs->burst_enable = 0x20; // [0010 0000] f1 burst enabled
1059 1223 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1060 1224 break;
1061 1225 case(LFR_MODE_SBM2):
1062 1226 waveform_picker_regs->burst_enable = 0x40; // [0100 0000] f2 burst enabled
1063 1227 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1064 1228 break;
1065 1229 default:
1066 1230 waveform_picker_regs->burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1067 1231 break;
1068 1232 }
1069 1233 }
1070 1234 #endif
1071 1235
1072 1236 void reset_wfp_burst_enable()
1073 1237 {
1074 1238 /** This function resets the waveform picker burst_enable register.
1075 1239 *
1076 1240 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1077 1241 *
1078 1242 */
1079 1243
1080 1244 #ifdef VHDL_DEV
1081 1245 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1082 1246 #else
1083 1247 waveform_picker_regs->burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1084 1248 #endif
1085 1249 }
1086 1250
1087 1251 void reset_wfp_status()
1088 1252 {
1089 1253 /** This function resets the waveform picker status register.
1090 1254 *
1091 1255 * All status bits are set to 0 [new_err full_err full].
1092 1256 *
1093 1257 */
1094 1258
1095 1259 #ifdef GSA
1096 1260 #else
1097 1261 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1098 1262 #endif
1099 1263 }
1100 1264
1101 #ifdef VHDL_DEV
1102 void reset_waveform_picker_regs()
1265 void reset_waveform_picker_regs_vhdl_dev()
1103 1266 {
1104 1267 /** This function resets the waveform picker module registers.
1105 1268 *
1106 1269 * The registers affected by this function are located at the following offset addresses:
1107 1270 * - 0x00 data_shaping
1108 1271 * - 0x04 run_burst_enable
1109 1272 * - 0x08 addr_data_f0
1110 1273 * - 0x0C addr_data_f1
1111 1274 * - 0x10 addr_data_f2
1112 1275 * - 0x14 addr_data_f3
1113 1276 * - 0x18 status
1114 1277 * - 0x1C delta_snapshot
1115 1278 * - 0x20 delta_f0
1116 1279 * - 0x24 delta_f0_2
1117 1280 * - 0x28 delta_f1
1118 1281 * - 0x2c delta_f2
1119 1282 * - 0x30 nb_data_by_buffer
1120 1283 * - 0x34 nb_snapshot_param
1121 1284 * - 0x38 start_date
1122 1285 * - 0x3c nb_word_in_buffer
1123 1286 *
1124 1287 */
1125 1288 waveform_picker_regs->data_shaping = 0x01; // 0x00 *** R1 R0 SP1 SP0 BW
1126 1289 waveform_picker_regs->run_burst_enable = 0x00; // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1127 1290 //waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0); // 0x08
1128 1291 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1129 1292 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1130 1293 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1131 1294 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a); // 0x14
1132 1295 waveform_picker_regs->status = 0x00; // 0x18
1133 1296 //
1134 1297 waveform_picker_regs->delta_snapshot = 0x1000; // 0x1c *** 4096 = 16 * 256
1135 1298 waveform_picker_regs->delta_f0 = 0xc0b; // 0x20 *** 3083 = 4096 - 1013
1136 1299 waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7 [7 bits]
1137 1300 waveform_picker_regs->delta_f1 = 0xc40; // 0x28 *** 3136 = 4096 - 960
1138 1301 waveform_picker_regs->delta_f2 = 0xc00; // 0x2c *** 3072 = 12 * 256
1139 1302 //
1140 1303 // waveform_picker_regs->delta_snapshot = 0x1000; // 0x1c *** 4096 = 16 * 256
1141 1304 // waveform_picker_regs->delta_f0 = 0x1; // 0x20 ***
1142 1305 // waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7 [7 bits]
1143 1306 // waveform_picker_regs->delta_f1 = 0x1; // 0x28 ***
1144 1307 // waveform_picker_regs->delta_f2 = 0x1; // 0x2c ***
1145 1308 //
1146 1309 // waveform_picker_regs->delta_snapshot = 0x1000; // 0x1c *** 4096 = 16 * 256
1147 1310 // waveform_picker_regs->delta_f0 = 0x0fff; // 0x20 ***
1148 1311 // waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7 [7 bits]
1149 1312 // waveform_picker_regs->delta_f1 = 0x0fff; // 0x28 ***
1150 1313 // waveform_picker_regs->delta_f2 = 0x1; // 0x2c ***
1151 1314 // 2048
1152 1315 // waveform_picker_regs->nb_data_by_buffer = 0x7ff; // 0x30 *** 2048 -1 => nb samples -1
1153 1316 // waveform_picker_regs->snapshot_param = 0x800; // 0x34 *** 2048 => nb samples
1154 1317 // waveform_picker_regs->start_date = 0x00; // 0x38
1155 1318 // waveform_picker_regs->nb_word_in_buffer = 0x1802; // 0x3c *** 2048 * 3 + 2 = 6146
1156 1319 // 2352 = 7 * 336
1157 waveform_picker_regs->nb_data_by_buffer = 0x92f; // 0x30 *** 2352 - 1 => nb samples -1
1158 waveform_picker_regs->snapshot_param = 0x930; // 0x34 *** 2352 => nb samples
1320 // waveform_picker_regs->nb_data_by_buffer = 0x92f; // 0x30 *** 2352 - 1 => nb samples -1
1321 // waveform_picker_regs->snapshot_param = 0x930; // 0x34 *** 2352 => nb samples
1322 // waveform_picker_regs->start_date = 0x00; // 0x38
1323 // waveform_picker_regs->nb_word_in_buffer = 0x1b92; // 0x3c *** 2352 * 3 + 2 = 7058
1324 // 128
1325 waveform_picker_regs->nb_data_by_buffer = 0x7f; // 0x30 *** 128 - 1 => nb samples -1
1326 waveform_picker_regs->snapshot_param = 0x80; // 0x34 *** 128 => nb samples
1159 1327 waveform_picker_regs->start_date = 0x00; // 0x38
1160 waveform_picker_regs->nb_word_in_buffer = 0x1b92; // 0x3c *** 2352 * 3 + 2 = 7058
1328 waveform_picker_regs->nb_word_in_buffer = 0x182; // 0x3c *** 128 * 3 + 2 = 386
1329 }
1330
1331 void reset_waveform_picker_regs_vhdl_dev_debug()
1332 {
1333 /** This function resets the waveform picker module registers.
1334 *
1335 * The registers affected by this function are located at the following offset addresses:
1336 * - 0x00 data_shaping
1337 * - 0x04 run_burst_enable
1338 * - 0x08 addr_data_f0
1339 * - 0x0C addr_data_f1
1340 * - 0x10 addr_data_f2
1341 * - 0x14 addr_data_f3
1342 * - 0x18 status
1343 * - 0x1C delta_snapshot
1344 * - 0x20 delta_f0
1345 * - 0x24 delta_f0_2
1346 * - 0x28 delta_f1
1347 * - 0x2c delta_f2
1348 * - 0x30 nb_data_by_buffer
1349 * - 0x34 nb_snapshot_param
1350 * - 0x38 start_date
1351 * - 0x3c nb_word_in_buffer
1352 *
1353 */
1354 waveform_picker_regs->data_shaping = 0x01; // 0x00 *** R1 R0 SP1 SP0 BW
1355 waveform_picker_regs->run_burst_enable = 0x00; // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1356 //waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0); // 0x08
1357 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1358 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1359 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1360 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a); // 0x14
1361 waveform_picker_regs->status = 0x00; // 0x18
1362 //
1363 waveform_picker_regs->delta_snapshot = 0x100; // 0x1c *** 256
1364 waveform_picker_regs->delta_f0 = 0xc1; // 0x20 *** 256 - 63
1365 waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7 [7 bits]
1366 waveform_picker_regs->delta_f1 = 0xc4; // 0x28 *** 256 - 60
1367 waveform_picker_regs->delta_f2 = 0xc0; // 0x2c *** 192
1368 // 128
1369 waveform_picker_regs->nb_data_by_buffer = 0x7f; // 0x30 *** 128 - 1 => nb samples -1
1370 waveform_picker_regs->snapshot_param = 0x80; // 0x34 *** 128 => nb samples
1371 waveform_picker_regs->start_date = 0x00; // 0x38
1372 waveform_picker_regs->nb_word_in_buffer = 0x182; // 0x3c *** 128 * 3 + 2 = 386
1161 1373 }
1162 #else
1374
1375 void reset_waveform_picker_regs_vhdl_dev_debug_64()
1376 {
1377 /** This function resets the waveform picker module registers.
1378 *
1379 * The registers affected by this function are located at the following offset addresses:
1380 * - 0x00 data_shaping
1381 * - 0x04 run_burst_enable
1382 * - 0x08 addr_data_f0
1383 * - 0x0C addr_data_f1
1384 * - 0x10 addr_data_f2
1385 * - 0x14 addr_data_f3
1386 * - 0x18 status
1387 * - 0x1C delta_snapshot
1388 * - 0x20 delta_f0
1389 * - 0x24 delta_f0_2
1390 * - 0x28 delta_f1
1391 * - 0x2c delta_f2
1392 * - 0x30 nb_data_by_buffer
1393 * - 0x34 nb_snapshot_param
1394 * - 0x38 start_date
1395 * - 0x3c nb_word_in_buffer
1396 *
1397 */
1398 waveform_picker_regs->data_shaping = 0x01; // 0x00 *** R1 R0 SP1 SP0 BW
1399 waveform_picker_regs->run_burst_enable = 0x00; // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1400 //waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0); // 0x08
1401 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1402 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1403 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1404 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a); // 0x14
1405 waveform_picker_regs->status = 0x00; // 0x18
1406 //
1407 waveform_picker_regs->delta_snapshot = 0x80; // 0x1c *** 128
1408 waveform_picker_regs->delta_f0 = 0x60; // 0x20 *** 128 - 32 = 96
1409 waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7 [7 bits]
1410 waveform_picker_regs->delta_f1 = 0x62; // 0x28 *** 128 - 30 = 90
1411 waveform_picker_regs->delta_f2 = 0x60; // 0x2c *** 192
1412 // 128
1413 waveform_picker_regs->nb_data_by_buffer = 0x3f; // 0x30 *** 64 - 1 => nb samples -1
1414 waveform_picker_regs->snapshot_param = 0x40; // 0x34 *** 64 => nb samples
1415 waveform_picker_regs->start_date = 0x00; // 0x38
1416 waveform_picker_regs->nb_word_in_buffer = 0xc2; // 0x3c *** 64 * 3 + 2 = 194
1417 }
1418
1163 1419 void reset_waveform_picker_regs()
1164 1420 {
1165 1421 /** This function resets the waveform picker module registers.
1166 1422 *
1167 1423 * The registers affected by this function are located at the following offset addresses:
1168 1424 * - 0x00 data_shaping
1169 1425 * - 0x04 burst_enable
1170 1426 * - 0x08 addr_data_f0
1171 1427 * - 0x0C addr_data_f1
1172 1428 * - 0x10 addr_data_f2
1173 1429 * - 0x14 addr_data_f3
1174 1430 * - 0x18 status
1175 1431 * - 0x1C delta_snapshot
1176 1432 * - 0x20 delta_f2_f1
1177 1433 * - 0x24 delta_f2_f0
1178 1434 * - 0x28 nb_burst
1179 1435 * - 0x2C nb_snapshot
1180 1436 *
1181 1437 */
1182 1438
1439 #ifdef VHDL_DEV
1440 #else
1183 1441 reset_wfp_burst_enable();
1184 1442 reset_wfp_status();
1185 1443 // set buffer addresses
1186 1444 waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0);
1187 1445 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
1188 1446 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
1189 1447 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a);
1190 1448 // set other parameters
1191 1449 set_wfp_data_shaping();
1192 1450 set_wfp_delta_snapshot(); // time in seconds between two snapshots
1193 1451 waveform_picker_regs->delta_f2_f1 = 0xffff; // 0x16800 => 92160 (max 4 bytes)
1194 1452 waveform_picker_regs->delta_f2_f0 = 0x17c00; // 97 280 (max 5 bytes)
1195 1453 // waveform_picker_regs->nb_burst_available = 0x180; // max 3 bytes, size of the buffer in burst (1 burst = 16 x 4 octets)
1196 1454 // // 3 * 2048 / 16 = 384
1197 1455 // waveform_picker_regs->nb_snapshot_param = 0x7ff; // max 3 octets, 2048 - 1
1198 1456 waveform_picker_regs->nb_burst_available = 0x1b9; // max 3 bytes, size of the buffer in burst (1 burst = 16 x 4 octets)
1199 1457 // 3 * 2352 / 16 = 441
1200 1458 waveform_picker_regs->nb_snapshot_param = 0x944; // max 3 octets, 2372 - 1
1459 #endif
1201 1460 }
1202 #endif
1203 1461
1204 1462 //*****************
1205 1463 // local parameters
1206 1464 void set_local_nb_interrupt_f0_MAX( void )
1207 1465 {
1208 1466 /** This function sets the value of the nb_interrupt_f0_MAX local parameter.
1209 1467 *
1210 1468 * This parameter is used for the SM validation only.\n
1211 1469 * The software waits param_local.local_nb_interrupt_f0_MAX interruptions from the spectral matrices
1212 1470 * module before launching a basic processing.
1213 1471 *
1214 1472 */
1215 1473
1216 1474 param_local.local_nb_interrupt_f0_MAX = ( (parameter_dump_packet.sy_lfr_n_asm_p[0]) * 256
1217 1475 + parameter_dump_packet.sy_lfr_n_asm_p[1] ) * 100;
1218 1476 }
1219 1477
1220 1478 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1221 1479 {
1222 1480 unsigned short *sequence_cnt;
1223 1481 unsigned short segmentation_grouping_flag;
1224 1482 unsigned short new_packet_sequence_control;
1225 1483
1226 1484 if ( (sid ==SID_NORM_SWF_F0) || (sid ==SID_NORM_SWF_F1) || (sid ==SID_NORM_SWF_F2)
1227 1485 || (sid ==SID_NORM_CWF_F3) || (sid==SID_NORM_CWF_LONG_F3) || (sid ==SID_BURST_CWF_F2) )
1228 1486 {
1229 1487 sequence_cnt = &sequenceCounters_SCIENCE_NORMAL_BURST;
1230 1488 }
1231 1489 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2) )
1232 1490 {
1233 1491 sequence_cnt = &sequenceCounters_SCIENCE_SBM1_SBM2;
1234 1492 }
1235 1493 else
1236 1494 {
1237 1495 sequence_cnt = NULL;
1238 1496 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1239 1497 }
1240 1498
1241 1499 if (sequence_cnt != NULL)
1242 1500 {
1243 1501 segmentation_grouping_flag = (packet_sequence_control[ 0 ] & 0xc0) << 8;
1244 1502 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1245 1503
1246 1504 new_packet_sequence_control = segmentation_grouping_flag | *sequence_cnt ;
1247 1505
1248 1506 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1249 1507 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1250 1508
1251 1509 // increment the sequence counter for the next packet
1252 1510 if ( *sequence_cnt < SEQ_CNT_MAX)
1253 1511 {
1254 1512 *sequence_cnt = *sequence_cnt + 1;
1255 1513 }
1256 1514 else
1257 1515 {
1258 1516 *sequence_cnt = 0;
1259 1517 }
1260 1518 }
1261 1519 }
General Comments 0
You need to be logged in to leave comments. Login now