##// END OF EJS Templates
Bug 796 Don_Initialisation_P1
paul -
r321:0d3dfc6f1f08 R3_plus draft
parent child
Show More
@@ -1,131 +1,131
1 1 #ifndef FSW_MISC_H_INCLUDED
2 2 #define FSW_MISC_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6 #include <grspw.h>
7 7 #include <grlib_regs.h>
8 8
9 9 #include "fsw_params.h"
10 10 #include "fsw_spacewire.h"
11 11 #include "lfr_cpu_usage_report.h"
12 12
13 13 #define LFR_RESET_CAUSE_UNKNOWN_CAUSE 0
14 14 #define WATCHDOG_LOOP_PRINTF 10
15 15 #define WATCHDOG_LOOP_DEBUG 3
16 16
17 17 #define DUMB_MESSAGE_NB 15
18 18 #define NB_RTEMS_EVENTS 32
19 19 #define EVENT_12 12
20 20 #define EVENT_13 13
21 21 #define EVENT_14 14
22 22 #define DUMB_MESSAGE_0 "in DUMB *** default"
23 23 #define DUMB_MESSAGE_1 "in DUMB *** timecode_irq_handler"
24 24 #define DUMB_MESSAGE_2 "in DUMB *** f3 buffer changed"
25 25 #define DUMB_MESSAGE_3 "in DUMB *** in SMIQ *** Error sending event to AVF0"
26 26 #define DUMB_MESSAGE_4 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ"
27 27 #define DUMB_MESSAGE_5 "in DUMB *** waveforms_simulator_isr"
28 28 #define DUMB_MESSAGE_6 "VHDL SM *** two buffers f0 ready"
29 29 #define DUMB_MESSAGE_7 "ready for dump"
30 30 #define DUMB_MESSAGE_8 "VHDL ERR *** spectral matrix"
31 31 #define DUMB_MESSAGE_9 "tick"
32 32 #define DUMB_MESSAGE_10 "VHDL ERR *** waveform picker"
33 33 #define DUMB_MESSAGE_11 "VHDL ERR *** unexpected ready matrix values"
34 34 #define DUMB_MESSAGE_12 "WATCHDOG timer"
35 35 #define DUMB_MESSAGE_13 "TIMECODE timer"
36 36 #define DUMB_MESSAGE_14 "TIMECODE ISR"
37 37
38 38 enum lfr_reset_cause_t{
39 39 UNKNOWN_CAUSE,
40 40 POWER_ON,
41 41 TC_RESET,
42 42 WATCHDOG,
43 43 ERROR_RESET,
44 44 UNEXP_RESET
45 45 };
46 46
47 47 typedef struct{
48 48 unsigned char dpu_spw_parity;
49 49 unsigned char dpu_spw_disconnect;
50 50 unsigned char dpu_spw_escape;
51 51 unsigned char dpu_spw_credit;
52 52 unsigned char dpu_spw_write_sync;
53 53 unsigned char timecode_erroneous;
54 54 unsigned char timecode_missing;
55 55 unsigned char timecode_invalid;
56 56 unsigned char time_timecode_it;
57 57 unsigned char time_not_synchro;
58 58 unsigned char time_timecode_ctr;
59 59 unsigned char ahb_correctable;
60 60 } hk_lfr_le_t;
61 61
62 62 typedef struct{
63 63 unsigned char dpu_spw_early_eop;
64 64 unsigned char dpu_spw_invalid_addr;
65 65 unsigned char dpu_spw_eep;
66 66 unsigned char dpu_spw_rx_too_big;
67 67 } hk_lfr_me_t;
68 68
69 69 extern gptimer_regs_t *gptimer_regs;
70 70 extern void ASR16_get_FPRF_IURF_ErrorCounters( unsigned int*, unsigned int* );
71 71 extern void CCR_getInstructionAndDataErrorCounters( unsigned int*, unsigned int* );
72 72
73 rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
74 rtems_id HK_id; // id of the HK rate monotonic period
75 rtems_name name_avgv_rate_monotonic; // name of the AVGV rate monotonic
76 rtems_id AVGV_id; // id of the AVGV rate monotonic period
73 rtems_name name_hk_rate_monotonic = 0; // name of the HK rate monotonic
74 rtems_id HK_id = RTEMS_ID_NONE;// id of the HK rate monotonic period
75 rtems_name name_avgv_rate_monotonic = 0; // name of the AVGV rate monotonic
76 rtems_id AVGV_id = RTEMS_ID_NONE;// id of the AVGV rate monotonic period
77 77
78 78 void timer_configure( unsigned char timer, unsigned int clock_divider,
79 79 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
80 80 void timer_start( unsigned char timer );
81 81 void timer_stop( unsigned char timer );
82 82 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider);
83 83
84 84 // WATCHDOG
85 85 rtems_isr watchdog_isr( rtems_vector_number vector );
86 86 void watchdog_configure(void);
87 87 void watchdog_stop(void);
88 88 void watchdog_reload(void);
89 89 void watchdog_start(void);
90 90
91 91 // SERIAL LINK
92 92 int send_console_outputs_on_apbuart_port( void );
93 93 int enable_apbuart_transmitter( void );
94 94 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
95 95
96 96 // RTEMS TASKS
97 97 rtems_task load_task( rtems_task_argument argument );
98 98 rtems_task hous_task( rtems_task_argument argument );
99 99 rtems_task avgv_task( rtems_task_argument argument );
100 100 rtems_task dumb_task( rtems_task_argument unused );
101 101
102 102 void init_housekeeping_parameters( void );
103 103 void increment_seq_counter(unsigned short *packetSequenceControl);
104 104 void getTime( unsigned char *time);
105 105 unsigned long long int getTimeAsUnsignedLongLongInt( );
106 106 void send_dumb_hk( void );
107 107 void get_temperatures( unsigned char *temperatures );
108 108 void get_v_e1_e2_f3( unsigned char *spacecraft_potential );
109 109 void get_cpu_load( unsigned char *resource_statistics );
110 110 void set_hk_lfr_sc_potential_flag( bool state );
111 111 void set_sy_lfr_pas_filter_enabled( bool state );
112 112 void set_sy_lfr_watchdog_enabled( bool state );
113 113 void set_hk_lfr_calib_enable( bool state );
114 114 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause );
115 115 void hk_lfr_le_me_he_update();
116 116 void set_hk_lfr_time_not_synchro();
117 117
118 118 extern int sched_yield( void );
119 119 extern void rtems_cpu_usage_reset();
120 120 extern ring_node *current_ring_node_f3;
121 121 extern ring_node *ring_node_to_send_cwf_f3;
122 122 extern ring_node waveform_ring_f3[];
123 123 extern unsigned short sequenceCounterHK;
124 124
125 125 extern unsigned char hk_lfr_q_sd_fifo_size_max;
126 126 extern unsigned char hk_lfr_q_rv_fifo_size_max;
127 127 extern unsigned char hk_lfr_q_p0_fifo_size_max;
128 128 extern unsigned char hk_lfr_q_p1_fifo_size_max;
129 129 extern unsigned char hk_lfr_q_p2_fifo_size_max;
130 130
131 131 #endif // FSW_MISC_H_INCLUDED
@@ -1,102 +1,102
1 1 /** Global variables of the LFR flight software.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * Among global variables, there are:
7 7 * - RTEMS names and id.
8 8 * - APB configuration registers.
9 9 * - waveforms global buffers, used by the waveform picker hardware module to store data.
10 10 * - spectral matrices buffesr, used by the hardware module to store data.
11 11 * - variable related to LFR modes parameters.
12 12 * - the global HK packet buffer.
13 13 * - the global dump parameter buffer.
14 14 *
15 15 */
16 16
17 17 #include <rtems.h>
18 18 #include <grspw.h>
19 19
20 20 #include "ccsds_types.h"
21 21 #include "grlib_regs.h"
22 22 #include "fsw_params.h"
23 23 #include "fsw_params_wf_handler.h"
24 24
25 25 #define NB_OF_TASKS 20
26 26 #define NB_OF_MISC_NAMES 5
27 27
28 28 // RTEMS GLOBAL VARIABLES
29 rtems_name misc_name[NB_OF_MISC_NAMES];
30 rtems_name Task_name[NB_OF_TASKS]; /* array of task names */
31 rtems_id Task_id[NB_OF_TASKS]; /* array of task ids */
32 rtems_name timecode_timer_name;
33 rtems_id timecode_timer_id;
29 rtems_name misc_name[NB_OF_MISC_NAMES] = {0};
30 rtems_name Task_name[NB_OF_TASKS] = {0}; /* array of task names */
31 rtems_id Task_id[NB_OF_TASKS] = {0}; /* array of task ids */
32 rtems_name timecode_timer_name = {0};
33 rtems_id timecode_timer_id = {0};
34 34 int fdSPW = 0;
35 35 int fdUART = 0;
36 unsigned char lfrCurrentMode;
37 unsigned char pa_bia_status_info;
36 unsigned char lfrCurrentMode = 0;
37 unsigned char pa_bia_status_info = 0;
38 38 unsigned char thisIsAnASMRestart = 0;
39 39 unsigned char oneTcLfrUpdateTimeReceived = 0;
40 40
41 41 // WAVEFORMS GLOBAL VARIABLES // 2048 * 3 * 4 + 2 * 4 = 24576 + 8 bytes = 24584
42 42 // 97 * 256 = 24832 => delta = 248 bytes = 62 words
43 43 // WAVEFORMS GLOBAL VARIABLES // 2688 * 3 * 4 + 2 * 4 = 32256 + 8 bytes = 32264
44 44 // 127 * 256 = 32512 => delta = 248 bytes = 62 words
45 45 // F0 F1 F2 F3
46 volatile int wf_buffer_f0[ NB_RING_NODES_F0 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
47 volatile int wf_buffer_f1[ NB_RING_NODES_F1 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
48 volatile int wf_buffer_f2[ NB_RING_NODES_F2 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
49 volatile int wf_buffer_f3[ NB_RING_NODES_F3 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
46 volatile int wf_buffer_f0[ NB_RING_NODES_F0 * WFRM_BUFFER ] __attribute__((aligned(0x100))) = {0};
47 volatile int wf_buffer_f1[ NB_RING_NODES_F1 * WFRM_BUFFER ] __attribute__((aligned(0x100))) = {0};
48 volatile int wf_buffer_f2[ NB_RING_NODES_F2 * WFRM_BUFFER ] __attribute__((aligned(0x100))) = {0};
49 volatile int wf_buffer_f3[ NB_RING_NODES_F3 * WFRM_BUFFER ] __attribute__((aligned(0x100))) = {0};
50 50
51 51 //***********************************
52 52 // SPECTRAL MATRICES GLOBAL VARIABLES
53 53
54 54 // alignment constraints for the spectral matrices buffers => the first data after the time (8 bytes) shall be aligned on 0x00
55 volatile int sm_f0[ NB_RING_NODES_SM_F0 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
56 volatile int sm_f1[ NB_RING_NODES_SM_F1 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
57 volatile int sm_f2[ NB_RING_NODES_SM_F2 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
55 volatile int sm_f0[ NB_RING_NODES_SM_F0 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100))) = {0};
56 volatile int sm_f1[ NB_RING_NODES_SM_F1 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100))) = {0};
57 volatile int sm_f2[ NB_RING_NODES_SM_F2 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100))) = {0};
58 58
59 59 // APB CONFIGURATION REGISTERS
60 60 time_management_regs_t *time_management_regs = (time_management_regs_t*) REGS_ADDR_TIME_MANAGEMENT;
61 61 gptimer_regs_t *gptimer_regs = (gptimer_regs_t *) REGS_ADDR_GPTIMER;
62 62 waveform_picker_regs_0_1_18_t *waveform_picker_regs = (waveform_picker_regs_0_1_18_t*) REGS_ADDR_WAVEFORM_PICKER;
63 63 spectral_matrix_regs_t *spectral_matrix_regs = (spectral_matrix_regs_t*) REGS_ADDR_SPECTRAL_MATRIX;
64 64
65 65 // MODE PARAMETERS
66 Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
67 struct param_local_str param_local;
68 unsigned int lastValidEnterModeTime;
66 Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet = {0};
67 struct param_local_str param_local = {0};
68 unsigned int lastValidEnterModeTime = {0};
69 69
70 70 // HK PACKETS
71 Packet_TM_LFR_HK_t housekeeping_packet;
72 unsigned char cp_rpw_sc_rw_f_flags;
71 Packet_TM_LFR_HK_t housekeeping_packet = {0};
72 unsigned char cp_rpw_sc_rw_f_flags = 0;
73 73 // message queues occupancy
74 unsigned char hk_lfr_q_sd_fifo_size_max;
75 unsigned char hk_lfr_q_rv_fifo_size_max;
76 unsigned char hk_lfr_q_p0_fifo_size_max;
77 unsigned char hk_lfr_q_p1_fifo_size_max;
78 unsigned char hk_lfr_q_p2_fifo_size_max;
74 unsigned char hk_lfr_q_sd_fifo_size_max = 0;
75 unsigned char hk_lfr_q_rv_fifo_size_max = 0;
76 unsigned char hk_lfr_q_p0_fifo_size_max = 0;
77 unsigned char hk_lfr_q_p1_fifo_size_max = 0;
78 unsigned char hk_lfr_q_p2_fifo_size_max = 0;
79 79 // sequence counters are incremented by APID (PID + CAT) and destination ID
80 unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
81 unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
82 unsigned short sequenceCounters_TC_EXE[SEQ_CNT_NB_DEST_ID];
83 unsigned short sequenceCounters_TM_DUMP[SEQ_CNT_NB_DEST_ID];
80 unsigned short sequenceCounters_SCIENCE_NORMAL_BURST = 0;
81 unsigned short sequenceCounters_SCIENCE_SBM1_SBM2 = 0;
82 unsigned short sequenceCounters_TC_EXE[SEQ_CNT_NB_DEST_ID] = {0};
83 unsigned short sequenceCounters_TM_DUMP[SEQ_CNT_NB_DEST_ID] = {0};
84 84 unsigned short sequenceCounterHK;
85 spw_stats grspw_stats;
85 spw_stats grspw_stats = {0};
86 86
87 87 // TC_LFR_UPDATE_INFO
88 float cp_rpw_sc_rw1_f1;
89 float cp_rpw_sc_rw1_f2;
90 float cp_rpw_sc_rw2_f1;
91 float cp_rpw_sc_rw2_f2;
92 float cp_rpw_sc_rw3_f1;
93 float cp_rpw_sc_rw3_f2;
94 float cp_rpw_sc_rw4_f1;
95 float cp_rpw_sc_rw4_f2;
88 float cp_rpw_sc_rw1_f1 = INIT_FLOAT;
89 float cp_rpw_sc_rw1_f2 = INIT_FLOAT;
90 float cp_rpw_sc_rw2_f1 = INIT_FLOAT;
91 float cp_rpw_sc_rw2_f2 = INIT_FLOAT;
92 float cp_rpw_sc_rw3_f1 = INIT_FLOAT;
93 float cp_rpw_sc_rw3_f2 = INIT_FLOAT;
94 float cp_rpw_sc_rw4_f1 = INIT_FLOAT;
95 float cp_rpw_sc_rw4_f2 = INIT_FLOAT;
96 96
97 97 // TC_LFR_LOAD_FILTER_PAR
98 filterPar_t filterPar;
98 filterPar_t filterPar = {0};
99 99
100 fbins_masks_t fbins_masks;
100 fbins_masks_t fbins_masks = {0};
101 101 unsigned int acquisitionDurations[NB_ACQUISITION_DURATION]
102 102 = {ACQUISITION_DURATION_F0, ACQUISITION_DURATION_F1, ACQUISITION_DURATION_F2};
@@ -1,1631 +1,1631
1 1 /** Functions related to the SpaceWire interface.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle SpaceWire transmissions:
7 7 * - configuration of the SpaceWire link
8 8 * - SpaceWire related interruption requests processing
9 9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 10 * - reception of TeleCommands by a dedicated RTEMS task
11 11 *
12 12 */
13 13
14 14 #include "fsw_spacewire.h"
15 15
16 rtems_name semq_name;
17 rtems_id semq_id;
16 rtems_name semq_name = 0;
17 rtems_id semq_id = RTEMS_ID_NONE;
18 18
19 19 //*****************
20 20 // waveform headers
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF;
22 Header_TM_LFR_SCIENCE_SWF_t headerSWF;
23 Header_TM_LFR_SCIENCE_ASM_t headerASM;
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF = {0};
22 Header_TM_LFR_SCIENCE_SWF_t headerSW = {0};
23 Header_TM_LFR_SCIENCE_ASM_t headerASM = {0};
24 24
25 25 unsigned char previousTimecodeCtr = 0;
26 26 unsigned int *grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
27 27
28 28 //***********
29 29 // RTEMS TASK
30 30 rtems_task spiq_task(rtems_task_argument unused)
31 31 {
32 32 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
33 33 *
34 34 * @param unused is the starting argument of the RTEMS task
35 35 *
36 36 */
37 37
38 38 rtems_event_set event_out;
39 39 rtems_status_code status;
40 40 int linkStatus;
41 41
42 42 event_out = EVENT_SETS_NONE_PENDING;
43 43 linkStatus = 0;
44 44
45 45 BOOT_PRINTF("in SPIQ *** \n")
46 46
47 47 while(true){
48 48 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
49 49 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
50 50
51 51 // [0] SUSPEND RECV AND SEND TASKS
52 52 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
53 53 if ( status != RTEMS_SUCCESSFUL ) {
54 54 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
55 55 }
56 56 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
57 57 if ( status != RTEMS_SUCCESSFUL ) {
58 58 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
59 59 }
60 60
61 61 // [1] CHECK THE LINK
62 62 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
63 63 if ( linkStatus != SPW_LINK_OK) {
64 64 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
65 65 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
66 66 }
67 67
68 68 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
69 69 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
70 70 if ( linkStatus != SPW_LINK_OK ) // [2.a] not in run state, reset the link
71 71 {
72 72 spacewire_read_statistics();
73 73 status = spacewire_several_connect_attemps( );
74 74 }
75 75 else // [2.b] in run state, start the link
76 76 {
77 77 status = spacewire_stop_and_start_link( fdSPW ); // start the link
78 78 if ( status != RTEMS_SUCCESSFUL)
79 79 {
80 80 PRINTF1("in SPIQ *** ERR spacewire_stop_and_start_link %d\n", status)
81 81 }
82 82 }
83 83
84 84 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
85 85 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
86 86 {
87 87 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
88 88 if ( status != RTEMS_SUCCESSFUL ) {
89 89 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
90 90 }
91 91 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
92 92 if ( status != RTEMS_SUCCESSFUL ) {
93 93 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
94 94 }
95 95 }
96 96 else // [3.b] the link is not in run state, go in STANDBY mode
97 97 {
98 98 status = enter_mode_standby();
99 99 if ( status != RTEMS_SUCCESSFUL )
100 100 {
101 101 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
102 102 }
103 103 {
104 104 updateLFRCurrentMode( LFR_MODE_STANDBY );
105 105 }
106 106 // wake the LINK task up to wait for the link recovery
107 107 status = rtems_event_send ( Task_id[TASKID_LINK], RTEMS_EVENT_0 );
108 108 status = rtems_task_suspend( RTEMS_SELF );
109 109 }
110 110 }
111 111 }
112 112
113 113 rtems_task recv_task( rtems_task_argument unused )
114 114 {
115 115 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
116 116 *
117 117 * @param unused is the starting argument of the RTEMS task
118 118 *
119 119 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
120 120 * 1. It reads the incoming data.
121 121 * 2. Launches the acceptance procedure.
122 122 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
123 123 *
124 124 */
125 125
126 126 int len;
127 127 ccsdsTelecommandPacket_t currentTC;
128 128 unsigned char computed_CRC[ BYTES_PER_CRC ];
129 129 unsigned char currentTC_LEN_RCV[ BYTES_PER_PKT_LEN ];
130 130 unsigned char destinationID;
131 131 unsigned int estimatedPacketLength;
132 132 unsigned int parserCode;
133 133 rtems_status_code status;
134 134 rtems_id queue_recv_id;
135 135 rtems_id queue_send_id;
136 136
137 137 memset( &currentTC, 0, sizeof(ccsdsTelecommandPacket_t) );
138 138 destinationID = 0;
139 139 queue_recv_id = RTEMS_ID_NONE;
140 140 queue_send_id = RTEMS_ID_NONE;
141 141
142 142 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
143 143
144 144 status = get_message_queue_id_recv( &queue_recv_id );
145 145 if (status != RTEMS_SUCCESSFUL)
146 146 {
147 147 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
148 148 }
149 149
150 150 status = get_message_queue_id_send( &queue_send_id );
151 151 if (status != RTEMS_SUCCESSFUL)
152 152 {
153 153 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
154 154 }
155 155
156 156 BOOT_PRINTF("in RECV *** \n")
157 157
158 158 while(1)
159 159 {
160 160 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
161 161 if (len == -1){ // error during the read call
162 162 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
163 163 }
164 164 else {
165 165 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
166 166 PRINTF("in RECV *** packet lenght too short\n")
167 167 }
168 168 else {
169 169 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - PROTID_RES_APP); // => -3 is for Prot ID, Reserved and User App bytes
170 170 //PRINTF1("incoming TC with Length (byte): %d\n", len - 3);
171 171 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> SHIFT_1_BYTE);
172 172 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
173 173 // CHECK THE TC
174 174 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
175 175 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
176 176 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
177 177 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
178 178 || (parserCode == WRONG_SRC_ID) )
179 179 { // send TM_LFR_TC_EXE_CORRUPTED
180 180 PRINTF1("TC corrupted received, with code: %d\n", parserCode);
181 181 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
182 182 &&
183 183 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
184 184 )
185 185 {
186 186 if ( parserCode == WRONG_SRC_ID )
187 187 {
188 188 destinationID = SID_TC_GROUND;
189 189 }
190 190 else
191 191 {
192 192 destinationID = currentTC.sourceID;
193 193 }
194 194 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
195 195 computed_CRC, currentTC_LEN_RCV,
196 196 destinationID );
197 197 }
198 198 }
199 199 else
200 200 { // send valid TC to the action launcher
201 201 status = rtems_message_queue_send( queue_recv_id, &currentTC,
202 202 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + PROTID_RES_APP);
203 203 }
204 204 }
205 205 }
206 206
207 207 update_queue_max_count( queue_recv_id, &hk_lfr_q_rv_fifo_size_max );
208 208
209 209 }
210 210 }
211 211
212 212 rtems_task send_task( rtems_task_argument argument)
213 213 {
214 214 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
215 215 *
216 216 * @param unused is the starting argument of the RTEMS task
217 217 *
218 218 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
219 219 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
220 220 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
221 221 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
222 222 * data it contains.
223 223 *
224 224 */
225 225
226 226 rtems_status_code status; // RTEMS status code
227 227 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
228 228 ring_node *incomingRingNodePtr;
229 229 int ring_node_address;
230 230 char *charPtr;
231 231 spw_ioctl_pkt_send *spw_ioctl_send;
232 232 size_t size; // size of the incoming TC packet
233 233 rtems_id queue_send_id;
234 234 unsigned int sid;
235 235 unsigned char sidAsUnsignedChar;
236 236 unsigned char type;
237 237
238 238 incomingRingNodePtr = NULL;
239 239 ring_node_address = 0;
240 240 charPtr = (char *) &ring_node_address;
241 241 size = 0;
242 242 queue_send_id = RTEMS_ID_NONE;
243 243 sid = 0;
244 244 sidAsUnsignedChar = 0;
245 245
246 246 init_header_cwf( &headerCWF );
247 247 init_header_swf( &headerSWF );
248 248 init_header_asm( &headerASM );
249 249
250 250 status = get_message_queue_id_send( &queue_send_id );
251 251 if (status != RTEMS_SUCCESSFUL)
252 252 {
253 253 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
254 254 }
255 255
256 256 BOOT_PRINTF("in SEND *** \n")
257 257
258 258 while(1)
259 259 {
260 260 status = rtems_message_queue_receive( queue_send_id, incomingData, &size,
261 261 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
262 262
263 263 if (status!=RTEMS_SUCCESSFUL)
264 264 {
265 265 PRINTF1("in SEND *** (1) ERR = %d\n", status)
266 266 }
267 267 else
268 268 {
269 269 if ( size == sizeof(ring_node*) )
270 270 {
271 271 charPtr[0] = incomingData[0];
272 272 charPtr[1] = incomingData[1];
273 273 charPtr[BYTE_2] = incomingData[BYTE_2];
274 274 charPtr[BYTE_3] = incomingData[BYTE_3];
275 275 incomingRingNodePtr = (ring_node*) ring_node_address;
276 276 sid = incomingRingNodePtr->sid;
277 277 if ( (sid==SID_NORM_CWF_LONG_F3)
278 278 || (sid==SID_BURST_CWF_F2 )
279 279 || (sid==SID_SBM1_CWF_F1 )
280 280 || (sid==SID_SBM2_CWF_F2 ))
281 281 {
282 282 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
283 283 }
284 284 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
285 285 {
286 286 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
287 287 }
288 288 else if ( (sid==SID_NORM_CWF_F3) )
289 289 {
290 290 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
291 291 }
292 292 else if (sid==SID_NORM_ASM_F0)
293 293 {
294 294 spw_send_asm_f0( incomingRingNodePtr, &headerASM );
295 295 }
296 296 else if (sid==SID_NORM_ASM_F1)
297 297 {
298 298 spw_send_asm_f1( incomingRingNodePtr, &headerASM );
299 299 }
300 300 else if (sid==SID_NORM_ASM_F2)
301 301 {
302 302 spw_send_asm_f2( incomingRingNodePtr, &headerASM );
303 303 }
304 304 else if ( sid==TM_CODE_K_DUMP )
305 305 {
306 306 spw_send_k_dump( incomingRingNodePtr );
307 307 }
308 308 else
309 309 {
310 310 PRINTF1("unexpected sid = %d\n", sid);
311 311 }
312 312 }
313 313 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
314 314 {
315 315 sidAsUnsignedChar = (unsigned char) incomingData[ PACKET_POS_PA_LFR_SID_PKT ];
316 316 sid = sidAsUnsignedChar;
317 317 type = (unsigned char) incomingData[ PACKET_POS_SERVICE_TYPE ];
318 318 if (type == TM_TYPE_LFR_SCIENCE) // this is a BP packet, all other types are handled differently
319 319 // SET THE SEQUENCE_CNT PARAMETER IN CASE OF BP0 OR BP1 PACKETS
320 320 {
321 321 increment_seq_counter_source_id( (unsigned char*) &incomingData[ PACKET_POS_SEQUENCE_CNT ], sid );
322 322 }
323 323
324 324 status = write( fdSPW, incomingData, size );
325 325 if (status == -1){
326 326 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
327 327 }
328 328 }
329 329 else // the incoming message is a spw_ioctl_pkt_send structure
330 330 {
331 331 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
332 332 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
333 333 if (status == -1){
334 334 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
335 335 }
336 336 }
337 337 }
338 338
339 339 update_queue_max_count( queue_send_id, &hk_lfr_q_sd_fifo_size_max );
340 340
341 341 }
342 342 }
343 343
344 344 rtems_task link_task( rtems_task_argument argument )
345 345 {
346 346 rtems_event_set event_out;
347 347 rtems_status_code status;
348 348 int linkStatus;
349 349
350 350 event_out = EVENT_SETS_NONE_PENDING;
351 351 linkStatus = 0;
352 352
353 353 BOOT_PRINTF("in LINK ***\n")
354 354
355 355 while(1)
356 356 {
357 357 // wait for an RTEMS_EVENT
358 358 rtems_event_receive( RTEMS_EVENT_0,
359 359 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
360 360 PRINTF("in LINK *** wait for the link\n")
361 361 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
362 362 while( linkStatus != SPW_LINK_OK) // wait for the link
363 363 {
364 364 status = rtems_task_wake_after( SPW_LINK_WAIT ); // monitor the link each 100ms
365 365 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
366 366 watchdog_reload();
367 367 }
368 368
369 369 spacewire_read_statistics();
370 370 status = spacewire_stop_and_start_link( fdSPW );
371 371
372 372 if (status != RTEMS_SUCCESSFUL)
373 373 {
374 374 PRINTF1("in LINK *** ERR link not started %d\n", status)
375 375 }
376 376 else
377 377 {
378 378 PRINTF("in LINK *** OK link started\n")
379 379 }
380 380
381 381 // restart the SPIQ task
382 382 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
383 383 if ( status != RTEMS_SUCCESSFUL ) {
384 384 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
385 385 }
386 386
387 387 // restart RECV and SEND
388 388 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
389 389 if ( status != RTEMS_SUCCESSFUL ) {
390 390 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
391 391 }
392 392 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
393 393 if ( status != RTEMS_SUCCESSFUL ) {
394 394 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
395 395 }
396 396 }
397 397 }
398 398
399 399 //****************
400 400 // OTHER FUNCTIONS
401 401 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
402 402 {
403 403 /** This function opens the SpaceWire link.
404 404 *
405 405 * @return a valid file descriptor in case of success, -1 in case of a failure
406 406 *
407 407 */
408 408 rtems_status_code status;
409 409
410 410 status = RTEMS_SUCCESSFUL;
411 411
412 412 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
413 413 if ( fdSPW < 0 ) {
414 414 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
415 415 }
416 416 else
417 417 {
418 418 status = RTEMS_SUCCESSFUL;
419 419 }
420 420
421 421 return status;
422 422 }
423 423
424 424 int spacewire_start_link( int fd )
425 425 {
426 426 rtems_status_code status;
427 427
428 428 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
429 429 // -1 default hardcoded driver timeout
430 430
431 431 return status;
432 432 }
433 433
434 434 int spacewire_stop_and_start_link( int fd )
435 435 {
436 436 rtems_status_code status;
437 437
438 438 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
439 439 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
440 440 // -1 default hardcoded driver timeout
441 441
442 442 return status;
443 443 }
444 444
445 445 int spacewire_configure_link( int fd )
446 446 {
447 447 /** This function configures the SpaceWire link.
448 448 *
449 449 * @return GR-RTEMS-DRIVER directive status codes:
450 450 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
451 451 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
452 452 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
453 453 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
454 454 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
455 455 * - 5 EIO - Error when writing to grswp hardware registers.
456 456 * - 2 ENOENT - No such file or directory
457 457 */
458 458
459 459 rtems_status_code status;
460 460
461 461 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
462 462 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
463 463 spw_ioctl_packetsize packetsize;
464 464
465 465 packetsize.rxsize = SPW_RXSIZE;
466 466 packetsize.txdsize = SPW_TXDSIZE;
467 467 packetsize.txhsize = SPW_TXHSIZE;
468 468
469 469 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
470 470 if (status!=RTEMS_SUCCESSFUL) {
471 471 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
472 472 }
473 473 //
474 474 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
475 475 if (status!=RTEMS_SUCCESSFUL) {
476 476 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
477 477 }
478 478 //
479 479 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
480 480 if (status!=RTEMS_SUCCESSFUL) {
481 481 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
482 482 }
483 483 //
484 484 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
485 485 if (status!=RTEMS_SUCCESSFUL) {
486 486 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
487 487 }
488 488 //
489 489 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
490 490 if (status!=RTEMS_SUCCESSFUL) {
491 491 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
492 492 }
493 493 //
494 494 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
495 495 if (status!=RTEMS_SUCCESSFUL) {
496 496 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
497 497 }
498 498 //
499 499 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, CONF_TCODE_CTRL); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
500 500 if (status!=RTEMS_SUCCESSFUL) {
501 501 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
502 502 }
503 503 //
504 504 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_PACKETSIZE, packetsize); // set rxsize, txdsize and txhsize
505 505 if (status!=RTEMS_SUCCESSFUL) {
506 506 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_PACKETSIZE,\n")
507 507 }
508 508
509 509 return status;
510 510 }
511 511
512 512 int spacewire_several_connect_attemps( void )
513 513 {
514 514 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
515 515 *
516 516 * @return RTEMS directive status code:
517 517 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
518 518 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
519 519 *
520 520 */
521 521
522 522 rtems_status_code status_spw;
523 523 rtems_status_code status;
524 524 int i;
525 525
526 526 status_spw = RTEMS_SUCCESSFUL;
527 527
528 528 i = 0;
529 529 while (i < SY_LFR_DPU_CONNECT_ATTEMPT)
530 530 {
531 531 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
532 532
533 533 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
534 534
535 535 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
536 536
537 537 status_spw = spacewire_stop_and_start_link( fdSPW );
538 538
539 539 if ( status_spw != RTEMS_SUCCESSFUL )
540 540 {
541 541 i = i + 1;
542 542 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw);
543 543 }
544 544 else
545 545 {
546 546 i = SY_LFR_DPU_CONNECT_ATTEMPT;
547 547 }
548 548 }
549 549
550 550 return status_spw;
551 551 }
552 552
553 553 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
554 554 {
555 555 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
556 556 *
557 557 * @param val is the value, 0 or 1, used to set the value of the NP bit.
558 558 * @param regAddr is the address of the GRSPW control register.
559 559 *
560 560 * NP is the bit 20 of the GRSPW control register.
561 561 *
562 562 */
563 563
564 564 unsigned int *spwptr = (unsigned int*) regAddr;
565 565
566 566 if (val == 1) {
567 567 *spwptr = *spwptr | SPW_BIT_NP; // [NP] set the No port force bit
568 568 }
569 569 if (val== 0) {
570 570 *spwptr = *spwptr & SPW_BIT_NP_MASK;
571 571 }
572 572 }
573 573
574 574 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
575 575 {
576 576 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
577 577 *
578 578 * @param val is the value, 0 or 1, used to set the value of the RE bit.
579 579 * @param regAddr is the address of the GRSPW control register.
580 580 *
581 581 * RE is the bit 16 of the GRSPW control register.
582 582 *
583 583 */
584 584
585 585 unsigned int *spwptr = (unsigned int*) regAddr;
586 586
587 587 if (val == 1)
588 588 {
589 589 *spwptr = *spwptr | SPW_BIT_RE; // [RE] set the RMAP Enable bit
590 590 }
591 591 if (val== 0)
592 592 {
593 593 *spwptr = *spwptr & SPW_BIT_RE_MASK;
594 594 }
595 595 }
596 596
597 597 void spacewire_read_statistics( void )
598 598 {
599 599 /** This function reads the SpaceWire statistics from the grspw RTEMS driver.
600 600 *
601 601 * @param void
602 602 *
603 603 * @return void
604 604 *
605 605 * Once they are read, the counters are stored in a global variable used during the building of the
606 606 * HK packets.
607 607 *
608 608 */
609 609
610 610 rtems_status_code status;
611 611 spw_stats current;
612 612
613 613 memset(&current, 0, sizeof(spw_stats));
614 614
615 615 spacewire_get_last_error();
616 616
617 617 // read the current statistics
618 618 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
619 619
620 620 // clear the counters
621 621 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_CLR_STATISTICS );
622 622
623 623 // typedef struct {
624 624 // unsigned int tx_link_err; // NOT IN HK
625 625 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
626 626 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
627 627 // unsigned int rx_eep_err;
628 628 // unsigned int rx_truncated;
629 629 // unsigned int parity_err;
630 630 // unsigned int escape_err;
631 631 // unsigned int credit_err;
632 632 // unsigned int write_sync_err;
633 633 // unsigned int disconnect_err;
634 634 // unsigned int early_ep;
635 635 // unsigned int invalid_address;
636 636 // unsigned int packets_sent;
637 637 // unsigned int packets_received;
638 638 // } spw_stats;
639 639
640 640 // rx_eep_err
641 641 grspw_stats.rx_eep_err = grspw_stats.rx_eep_err + current.rx_eep_err;
642 642 // rx_truncated
643 643 grspw_stats.rx_truncated = grspw_stats.rx_truncated + current.rx_truncated;
644 644 // parity_err
645 645 grspw_stats.parity_err = grspw_stats.parity_err + current.parity_err;
646 646 // escape_err
647 647 grspw_stats.escape_err = grspw_stats.escape_err + current.escape_err;
648 648 // credit_err
649 649 grspw_stats.credit_err = grspw_stats.credit_err + current.credit_err;
650 650 // write_sync_err
651 651 grspw_stats.write_sync_err = grspw_stats.write_sync_err + current.write_sync_err;
652 652 // disconnect_err
653 653 grspw_stats.disconnect_err = grspw_stats.disconnect_err + current.disconnect_err;
654 654 // early_ep
655 655 grspw_stats.early_ep = grspw_stats.early_ep + current.early_ep;
656 656 // invalid_address
657 657 grspw_stats.invalid_address = grspw_stats.invalid_address + current.invalid_address;
658 658 // packets_sent
659 659 grspw_stats.packets_sent = grspw_stats.packets_sent + current.packets_sent;
660 660 // packets_received
661 661 grspw_stats.packets_received= grspw_stats.packets_received + current.packets_received;
662 662
663 663 }
664 664
665 665 void spacewire_get_last_error( void )
666 666 {
667 667 static spw_stats previous = {0};
668 668 spw_stats current;
669 669 rtems_status_code status;
670 670
671 671 unsigned int hk_lfr_last_er_rid;
672 672 unsigned char hk_lfr_last_er_code;
673 673 int coarseTime;
674 674 int fineTime;
675 675 unsigned char update_hk_lfr_last_er;
676 676
677 677 memset(&current, 0, sizeof(spw_stats));
678 678 update_hk_lfr_last_er = 0;
679 679
680 680 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
681 681
682 682 // get current time
683 683 coarseTime = time_management_regs->coarse_time;
684 684 fineTime = time_management_regs->fine_time;
685 685
686 686 // typedef struct {
687 687 // unsigned int tx_link_err; // NOT IN HK
688 688 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
689 689 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
690 690 // unsigned int rx_eep_err;
691 691 // unsigned int rx_truncated;
692 692 // unsigned int parity_err;
693 693 // unsigned int escape_err;
694 694 // unsigned int credit_err;
695 695 // unsigned int write_sync_err;
696 696 // unsigned int disconnect_err;
697 697 // unsigned int early_ep;
698 698 // unsigned int invalid_address;
699 699 // unsigned int packets_sent;
700 700 // unsigned int packets_received;
701 701 // } spw_stats;
702 702
703 703 // tx_link_err *** no code associated to this field
704 704 // rx_rmap_header_crc_err *** LE *** in HK
705 705 if (previous.rx_rmap_header_crc_err != current.rx_rmap_header_crc_err)
706 706 {
707 707 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
708 708 hk_lfr_last_er_code = CODE_HEADER_CRC;
709 709 update_hk_lfr_last_er = 1;
710 710 }
711 711 // rx_rmap_data_crc_err *** LE *** NOT IN HK
712 712 if (previous.rx_rmap_data_crc_err != current.rx_rmap_data_crc_err)
713 713 {
714 714 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
715 715 hk_lfr_last_er_code = CODE_DATA_CRC;
716 716 update_hk_lfr_last_er = 1;
717 717 }
718 718 // rx_eep_err
719 719 if (previous.rx_eep_err != current.rx_eep_err)
720 720 {
721 721 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
722 722 hk_lfr_last_er_code = CODE_EEP;
723 723 update_hk_lfr_last_er = 1;
724 724 }
725 725 // rx_truncated
726 726 if (previous.rx_truncated != current.rx_truncated)
727 727 {
728 728 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
729 729 hk_lfr_last_er_code = CODE_RX_TOO_BIG;
730 730 update_hk_lfr_last_er = 1;
731 731 }
732 732 // parity_err
733 733 if (previous.parity_err != current.parity_err)
734 734 {
735 735 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
736 736 hk_lfr_last_er_code = CODE_PARITY;
737 737 update_hk_lfr_last_er = 1;
738 738 }
739 739 // escape_err
740 740 if (previous.parity_err != current.parity_err)
741 741 {
742 742 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
743 743 hk_lfr_last_er_code = CODE_ESCAPE;
744 744 update_hk_lfr_last_er = 1;
745 745 }
746 746 // credit_err
747 747 if (previous.credit_err != current.credit_err)
748 748 {
749 749 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
750 750 hk_lfr_last_er_code = CODE_CREDIT;
751 751 update_hk_lfr_last_er = 1;
752 752 }
753 753 // write_sync_err
754 754 if (previous.write_sync_err != current.write_sync_err)
755 755 {
756 756 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
757 757 hk_lfr_last_er_code = CODE_WRITE_SYNC;
758 758 update_hk_lfr_last_er = 1;
759 759 }
760 760 // disconnect_err
761 761 if (previous.disconnect_err != current.disconnect_err)
762 762 {
763 763 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
764 764 hk_lfr_last_er_code = CODE_DISCONNECT;
765 765 update_hk_lfr_last_er = 1;
766 766 }
767 767 // early_ep
768 768 if (previous.early_ep != current.early_ep)
769 769 {
770 770 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
771 771 hk_lfr_last_er_code = CODE_EARLY_EOP_EEP;
772 772 update_hk_lfr_last_er = 1;
773 773 }
774 774 // invalid_address
775 775 if (previous.invalid_address != current.invalid_address)
776 776 {
777 777 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
778 778 hk_lfr_last_er_code = CODE_INVALID_ADDRESS;
779 779 update_hk_lfr_last_er = 1;
780 780 }
781 781
782 782 // if a field has changed, update the hk_last_er fields
783 783 if (update_hk_lfr_last_er == 1)
784 784 {
785 785 update_hk_lfr_last_er_fields( hk_lfr_last_er_rid, hk_lfr_last_er_code );
786 786 }
787 787
788 788 previous = current;
789 789 }
790 790
791 791 void update_hk_lfr_last_er_fields(unsigned int rid, unsigned char code)
792 792 {
793 793 unsigned char *coarseTimePtr;
794 794 unsigned char *fineTimePtr;
795 795
796 796 coarseTimePtr = (unsigned char*) &time_management_regs->coarse_time;
797 797 fineTimePtr = (unsigned char*) &time_management_regs->fine_time;
798 798
799 799 housekeeping_packet.hk_lfr_last_er_rid[0] = (unsigned char) ((rid & BYTE0_MASK) >> SHIFT_1_BYTE );
800 800 housekeeping_packet.hk_lfr_last_er_rid[1] = (unsigned char) (rid & BYTE1_MASK);
801 801 housekeeping_packet.hk_lfr_last_er_code = code;
802 802 housekeeping_packet.hk_lfr_last_er_time[0] = coarseTimePtr[0];
803 803 housekeeping_packet.hk_lfr_last_er_time[1] = coarseTimePtr[1];
804 804 housekeeping_packet.hk_lfr_last_er_time[BYTE_2] = coarseTimePtr[BYTE_2];
805 805 housekeeping_packet.hk_lfr_last_er_time[BYTE_3] = coarseTimePtr[BYTE_3];
806 806 housekeeping_packet.hk_lfr_last_er_time[BYTE_4] = fineTimePtr[BYTE_2];
807 807 housekeeping_packet.hk_lfr_last_er_time[BYTE_5] = fineTimePtr[BYTE_3];
808 808 }
809 809
810 810 void update_hk_with_grspw_stats( void )
811 811 {
812 812 //****************************
813 813 // DPU_SPACEWIRE_IF_STATISTICS
814 814 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (grspw_stats.packets_received >> SHIFT_1_BYTE);
815 815 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (grspw_stats.packets_received);
816 816 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (grspw_stats.packets_sent >> SHIFT_1_BYTE);
817 817 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (grspw_stats.packets_sent);
818 818
819 819 //******************************************
820 820 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
821 821 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) grspw_stats.parity_err;
822 822 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) grspw_stats.disconnect_err;
823 823 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) grspw_stats.escape_err;
824 824 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) grspw_stats.credit_err;
825 825 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) grspw_stats.write_sync_err;
826 826
827 827 //*********************************************
828 828 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
829 829 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) grspw_stats.early_ep;
830 830 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) grspw_stats.invalid_address;
831 831 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) grspw_stats.rx_eep_err;
832 832 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) grspw_stats.rx_truncated;
833 833 }
834 834
835 835 void spacewire_update_hk_lfr_link_state( unsigned char *hk_lfr_status_word_0 )
836 836 {
837 837 unsigned int *statusRegisterPtr;
838 838 unsigned char linkState;
839 839
840 840 statusRegisterPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_STATUS_REGISTER);
841 841 linkState =
842 842 (unsigned char) ( ( (*statusRegisterPtr) >> SPW_LINK_STAT_POS) & STATUS_WORD_LINK_STATE_BITS); // [0000 0111]
843 843
844 844 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 & STATUS_WORD_LINK_STATE_MASK; // [1111 1000] set link state to 0
845 845
846 846 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 | linkState; // update hk_lfr_dpu_spw_link_state
847 847 }
848 848
849 849 void increase_unsigned_char_counter( unsigned char *counter )
850 850 {
851 851 // update the number of valid timecodes that have been received
852 852 if (*counter == UINT8_MAX)
853 853 {
854 854 *counter = 0;
855 855 }
856 856 else
857 857 {
858 858 *counter = *counter + 1;
859 859 }
860 860 }
861 861
862 862 unsigned int check_timecode_and_previous_timecode_coherency(unsigned char currentTimecodeCtr)
863 863 {
864 864 /** This function checks the coherency between the incoming timecode and the last valid timecode.
865 865 *
866 866 * @param currentTimecodeCtr is the incoming timecode
867 867 *
868 868 * @return returned codes::
869 869 * - LFR_DEFAULT
870 870 * - LFR_SUCCESSFUL
871 871 *
872 872 */
873 873
874 874 static unsigned char firstTickout = 1;
875 875 unsigned char ret;
876 876
877 877 ret = LFR_DEFAULT;
878 878
879 879 if (firstTickout == 0)
880 880 {
881 881 if (currentTimecodeCtr == 0)
882 882 {
883 883 if (previousTimecodeCtr == SPW_TIMECODE_MAX)
884 884 {
885 885 ret = LFR_SUCCESSFUL;
886 886 }
887 887 else
888 888 {
889 889 ret = LFR_DEFAULT;
890 890 }
891 891 }
892 892 else
893 893 {
894 894 if (currentTimecodeCtr == (previousTimecodeCtr +1))
895 895 {
896 896 ret = LFR_SUCCESSFUL;
897 897 }
898 898 else
899 899 {
900 900 ret = LFR_DEFAULT;
901 901 }
902 902 }
903 903 }
904 904 else
905 905 {
906 906 firstTickout = 0;
907 907 ret = LFR_SUCCESSFUL;
908 908 }
909 909
910 910 return ret;
911 911 }
912 912
913 913 unsigned int check_timecode_and_internal_time_coherency(unsigned char timecode, unsigned char internalTime)
914 914 {
915 915 unsigned int ret;
916 916
917 917 ret = LFR_DEFAULT;
918 918
919 919 if (timecode == internalTime)
920 920 {
921 921 ret = LFR_SUCCESSFUL;
922 922 }
923 923 else
924 924 {
925 925 ret = LFR_DEFAULT;
926 926 }
927 927
928 928 return ret;
929 929 }
930 930
931 931 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
932 932 {
933 933 // a tickout has been emitted, perform actions on the incoming timecode
934 934
935 935 unsigned char incomingTimecode;
936 936 unsigned char updateTime;
937 937 unsigned char internalTime;
938 938 rtems_status_code status;
939 939
940 940 incomingTimecode = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
941 941 updateTime = time_management_regs->coarse_time_load & TIMECODE_MASK;
942 942 internalTime = time_management_regs->coarse_time & TIMECODE_MASK;
943 943
944 944 housekeeping_packet.hk_lfr_dpu_spw_last_timc = incomingTimecode;
945 945
946 946 // update the number of tickout that have been generated
947 947 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt );
948 948
949 949 //**************************
950 950 // HK_LFR_TIMECODE_ERRONEOUS
951 951 // MISSING and INVALID are handled by the timecode_timer_routine service routine
952 952 if (check_timecode_and_previous_timecode_coherency( incomingTimecode ) == LFR_DEFAULT)
953 953 {
954 954 // this is unexpected but a tickout could have been raised despite of the timecode being erroneous
955 955 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_erroneous );
956 956 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_ERRONEOUS );
957 957 }
958 958
959 959 //************************
960 960 // HK_LFR_TIME_TIMECODE_IT
961 961 // check the coherency between the SpaceWire timecode and the Internal Time
962 962 if (check_timecode_and_internal_time_coherency( incomingTimecode, internalTime ) == LFR_DEFAULT)
963 963 {
964 964 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_it );
965 965 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_IT );
966 966 }
967 967
968 968 //********************
969 969 // HK_LFR_TIMECODE_CTR
970 970 // check the value of the timecode with respect to the last TC_LFR_UPDATE_TIME => SSS-CP-FS-370
971 971 if (oneTcLfrUpdateTimeReceived == 1)
972 972 {
973 973 if ( incomingTimecode != updateTime )
974 974 {
975 975 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_ctr );
976 976 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_CTR );
977 977 }
978 978 }
979 979
980 980 // launch the timecode timer to detect missing or invalid timecodes
981 981 previousTimecodeCtr = incomingTimecode; // update the previousTimecodeCtr value
982 982 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT, timecode_timer_routine, NULL );
983 983 if (status != RTEMS_SUCCESSFUL)
984 984 {
985 985 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_14 );
986 986 }
987 987 }
988 988
989 989 rtems_timer_service_routine timecode_timer_routine( rtems_id timer_id, void *user_data )
990 990 {
991 991 static unsigned char initStep = 1;
992 992
993 993 unsigned char currentTimecodeCtr;
994 994
995 995 currentTimecodeCtr = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
996 996
997 997 if (initStep == 1)
998 998 {
999 999 if (currentTimecodeCtr == previousTimecodeCtr)
1000 1000 {
1001 1001 //************************
1002 1002 // HK_LFR_TIMECODE_MISSING
1003 1003 // the timecode value has not changed, no valid timecode has been received, the timecode is MISSING
1004 1004 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1005 1005 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1006 1006 }
1007 1007 else if (currentTimecodeCtr == (previousTimecodeCtr+1))
1008 1008 {
1009 1009 // the timecode value has changed and the value is valid, this is unexpected because
1010 1010 // the timer should not have fired, the timecode_irq_handler should have been raised
1011 1011 }
1012 1012 else
1013 1013 {
1014 1014 //************************
1015 1015 // HK_LFR_TIMECODE_INVALID
1016 1016 // the timecode value has changed and the value is not valid, no tickout has been generated
1017 1017 // this is why the timer has fired
1018 1018 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_invalid );
1019 1019 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_INVALID );
1020 1020 }
1021 1021 }
1022 1022 else
1023 1023 {
1024 1024 initStep = 1;
1025 1025 //************************
1026 1026 // HK_LFR_TIMECODE_MISSING
1027 1027 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1028 1028 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1029 1029 }
1030 1030
1031 1031 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_13 );
1032 1032 }
1033 1033
1034 1034 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
1035 1035 {
1036 1036 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1037 1037 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1038 1038 header->reserved = DEFAULT_RESERVED;
1039 1039 header->userApplication = CCSDS_USER_APP;
1040 1040 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
1041 1041 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
1042 1042 header->packetLength[0] = INIT_CHAR;
1043 1043 header->packetLength[1] = INIT_CHAR;
1044 1044 // DATA FIELD HEADER
1045 1045 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1046 1046 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1047 1047 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1048 1048 header->destinationID = TM_DESTINATION_ID_GROUND;
1049 1049 header->time[BYTE_0] = INIT_CHAR;
1050 1050 header->time[BYTE_1] = INIT_CHAR;
1051 1051 header->time[BYTE_2] = INIT_CHAR;
1052 1052 header->time[BYTE_3] = INIT_CHAR;
1053 1053 header->time[BYTE_4] = INIT_CHAR;
1054 1054 header->time[BYTE_5] = INIT_CHAR;
1055 1055 // AUXILIARY DATA HEADER
1056 1056 header->sid = INIT_CHAR;
1057 1057 header->pa_bia_status_info = DEFAULT_HKBIA;
1058 1058 header->blkNr[0] = INIT_CHAR;
1059 1059 header->blkNr[1] = INIT_CHAR;
1060 1060 }
1061 1061
1062 1062 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
1063 1063 {
1064 1064 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1065 1065 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1066 1066 header->reserved = DEFAULT_RESERVED;
1067 1067 header->userApplication = CCSDS_USER_APP;
1068 1068 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1069 1069 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1070 1070 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1071 1071 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1072 1072 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1073 1073 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1074 1074 // DATA FIELD HEADER
1075 1075 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1076 1076 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1077 1077 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1078 1078 header->destinationID = TM_DESTINATION_ID_GROUND;
1079 1079 header->time[BYTE_0] = INIT_CHAR;
1080 1080 header->time[BYTE_1] = INIT_CHAR;
1081 1081 header->time[BYTE_2] = INIT_CHAR;
1082 1082 header->time[BYTE_3] = INIT_CHAR;
1083 1083 header->time[BYTE_4] = INIT_CHAR;
1084 1084 header->time[BYTE_5] = INIT_CHAR;
1085 1085 // AUXILIARY DATA HEADER
1086 1086 header->sid = INIT_CHAR;
1087 1087 header->pa_bia_status_info = DEFAULT_HKBIA;
1088 1088 header->pktCnt = PKTCNT_SWF; // PKT_CNT
1089 1089 header->pktNr = INIT_CHAR;
1090 1090 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1091 1091 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1092 1092 }
1093 1093
1094 1094 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
1095 1095 {
1096 1096 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1097 1097 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1098 1098 header->reserved = DEFAULT_RESERVED;
1099 1099 header->userApplication = CCSDS_USER_APP;
1100 1100 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1101 1101 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1102 1102 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1103 1103 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1104 1104 header->packetLength[0] = INIT_CHAR;
1105 1105 header->packetLength[1] = INIT_CHAR;
1106 1106 // DATA FIELD HEADER
1107 1107 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1108 1108 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1109 1109 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
1110 1110 header->destinationID = TM_DESTINATION_ID_GROUND;
1111 1111 header->time[BYTE_0] = INIT_CHAR;
1112 1112 header->time[BYTE_1] = INIT_CHAR;
1113 1113 header->time[BYTE_2] = INIT_CHAR;
1114 1114 header->time[BYTE_3] = INIT_CHAR;
1115 1115 header->time[BYTE_4] = INIT_CHAR;
1116 1116 header->time[BYTE_5] = INIT_CHAR;
1117 1117 // AUXILIARY DATA HEADER
1118 1118 header->sid = INIT_CHAR;
1119 1119 header->pa_bia_status_info = INIT_CHAR;
1120 1120 header->pa_lfr_pkt_cnt_asm = INIT_CHAR;
1121 1121 header->pa_lfr_pkt_nr_asm = INIT_CHAR;
1122 1122 header->pa_lfr_asm_blk_nr[0] = INIT_CHAR;
1123 1123 header->pa_lfr_asm_blk_nr[1] = INIT_CHAR;
1124 1124 }
1125 1125
1126 1126 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
1127 1127 Header_TM_LFR_SCIENCE_CWF_t *header )
1128 1128 {
1129 1129 /** This function sends CWF CCSDS packets (F2, F1 or F0).
1130 1130 *
1131 1131 * @param waveform points to the buffer containing the data that will be send.
1132 1132 * @param sid is the source identifier of the data that will be sent.
1133 1133 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1134 1134 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1135 1135 * contain information to setup the transmission of the data packets.
1136 1136 *
1137 1137 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1138 1138 *
1139 1139 */
1140 1140
1141 1141 unsigned int i;
1142 1142 int ret;
1143 1143 unsigned int coarseTime;
1144 1144 unsigned int fineTime;
1145 1145 rtems_status_code status;
1146 1146 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1147 1147 int *dataPtr;
1148 1148 unsigned char sid;
1149 1149
1150 1150 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1151 1151 spw_ioctl_send_CWF.options = 0;
1152 1152
1153 1153 ret = LFR_DEFAULT;
1154 1154 sid = (unsigned char) ring_node_to_send->sid;
1155 1155
1156 1156 coarseTime = ring_node_to_send->coarseTime;
1157 1157 fineTime = ring_node_to_send->fineTime;
1158 1158 dataPtr = (int*) ring_node_to_send->buffer_address;
1159 1159
1160 1160 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1161 1161 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1162 1162 header->pa_bia_status_info = pa_bia_status_info;
1163 1163 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1164 1164 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1165 1165 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1166 1166
1167 1167 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
1168 1168 {
1169 1169 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
1170 1170 spw_ioctl_send_CWF.hdr = (char*) header;
1171 1171 // BUILD THE DATA
1172 1172 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
1173 1173
1174 1174 // SET PACKET SEQUENCE CONTROL
1175 1175 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1176 1176
1177 1177 // SET SID
1178 1178 header->sid = sid;
1179 1179
1180 1180 // SET PACKET TIME
1181 1181 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
1182 1182 //
1183 1183 header->time[0] = header->acquisitionTime[0];
1184 1184 header->time[1] = header->acquisitionTime[1];
1185 1185 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1186 1186 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1187 1187 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1188 1188 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1189 1189
1190 1190 // SET PACKET ID
1191 1191 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
1192 1192 {
1193 1193 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> SHIFT_1_BYTE);
1194 1194 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
1195 1195 }
1196 1196 else
1197 1197 {
1198 1198 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1199 1199 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1200 1200 }
1201 1201
1202 1202 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1203 1203 if (status != RTEMS_SUCCESSFUL) {
1204 1204 ret = LFR_DEFAULT;
1205 1205 }
1206 1206 }
1207 1207
1208 1208 return ret;
1209 1209 }
1210 1210
1211 1211 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
1212 1212 Header_TM_LFR_SCIENCE_SWF_t *header )
1213 1213 {
1214 1214 /** This function sends SWF CCSDS packets (F2, F1 or F0).
1215 1215 *
1216 1216 * @param waveform points to the buffer containing the data that will be send.
1217 1217 * @param sid is the source identifier of the data that will be sent.
1218 1218 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
1219 1219 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1220 1220 * contain information to setup the transmission of the data packets.
1221 1221 *
1222 1222 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1223 1223 *
1224 1224 */
1225 1225
1226 1226 unsigned int i;
1227 1227 int ret;
1228 1228 unsigned int coarseTime;
1229 1229 unsigned int fineTime;
1230 1230 rtems_status_code status;
1231 1231 spw_ioctl_pkt_send spw_ioctl_send_SWF;
1232 1232 int *dataPtr;
1233 1233 unsigned char sid;
1234 1234
1235 1235 spw_ioctl_send_SWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_SWF;
1236 1236 spw_ioctl_send_SWF.options = 0;
1237 1237
1238 1238 ret = LFR_DEFAULT;
1239 1239
1240 1240 coarseTime = ring_node_to_send->coarseTime;
1241 1241 fineTime = ring_node_to_send->fineTime;
1242 1242 dataPtr = (int*) ring_node_to_send->buffer_address;
1243 1243 sid = ring_node_to_send->sid;
1244 1244
1245 1245 header->pa_bia_status_info = pa_bia_status_info;
1246 1246 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1247 1247
1248 1248 for (i=0; i<PKTCNT_SWF; i++) // send waveform
1249 1249 {
1250 1250 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
1251 1251 spw_ioctl_send_SWF.hdr = (char*) header;
1252 1252
1253 1253 // SET PACKET SEQUENCE CONTROL
1254 1254 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1255 1255
1256 1256 // SET PACKET LENGTH AND BLKNR
1257 1257 if (i == (PKTCNT_SWF-1))
1258 1258 {
1259 1259 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
1260 1260 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> SHIFT_1_BYTE);
1261 1261 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
1262 1262 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> SHIFT_1_BYTE);
1263 1263 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
1264 1264 }
1265 1265 else
1266 1266 {
1267 1267 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
1268 1268 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> SHIFT_1_BYTE);
1269 1269 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
1270 1270 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> SHIFT_1_BYTE);
1271 1271 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
1272 1272 }
1273 1273
1274 1274 // SET PACKET TIME
1275 1275 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
1276 1276 //
1277 1277 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1278 1278 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1279 1279 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1280 1280 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1281 1281 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1282 1282 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1283 1283
1284 1284 // SET SID
1285 1285 header->sid = sid;
1286 1286
1287 1287 // SET PKTNR
1288 1288 header->pktNr = i+1; // PKT_NR
1289 1289
1290 1290 // SEND PACKET
1291 1291 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
1292 1292 if (status != RTEMS_SUCCESSFUL) {
1293 1293 ret = LFR_DEFAULT;
1294 1294 }
1295 1295 }
1296 1296
1297 1297 return ret;
1298 1298 }
1299 1299
1300 1300 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
1301 1301 Header_TM_LFR_SCIENCE_CWF_t *header )
1302 1302 {
1303 1303 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
1304 1304 *
1305 1305 * @param waveform points to the buffer containing the data that will be send.
1306 1306 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1307 1307 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1308 1308 * contain information to setup the transmission of the data packets.
1309 1309 *
1310 1310 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
1311 1311 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
1312 1312 *
1313 1313 */
1314 1314
1315 1315 unsigned int i;
1316 1316 int ret;
1317 1317 unsigned int coarseTime;
1318 1318 unsigned int fineTime;
1319 1319 rtems_status_code status;
1320 1320 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1321 1321 char *dataPtr;
1322 1322 unsigned char sid;
1323 1323
1324 1324 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1325 1325 spw_ioctl_send_CWF.options = 0;
1326 1326
1327 1327 ret = LFR_DEFAULT;
1328 1328 sid = ring_node_to_send->sid;
1329 1329
1330 1330 coarseTime = ring_node_to_send->coarseTime;
1331 1331 fineTime = ring_node_to_send->fineTime;
1332 1332 dataPtr = (char*) ring_node_to_send->buffer_address;
1333 1333
1334 1334 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> SHIFT_1_BYTE);
1335 1335 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
1336 1336 header->pa_bia_status_info = pa_bia_status_info;
1337 1337 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1338 1338 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> SHIFT_1_BYTE);
1339 1339 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
1340 1340
1341 1341 //*********************
1342 1342 // SEND CWF3_light DATA
1343 1343 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
1344 1344 {
1345 1345 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1346 1346 spw_ioctl_send_CWF.hdr = (char*) header;
1347 1347 // BUILD THE DATA
1348 1348 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1349 1349
1350 1350 // SET PACKET SEQUENCE COUNTER
1351 1351 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1352 1352
1353 1353 // SET SID
1354 1354 header->sid = sid;
1355 1355
1356 1356 // SET PACKET TIME
1357 1357 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1358 1358 //
1359 1359 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1360 1360 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1361 1361 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1362 1362 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1363 1363 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1364 1364 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1365 1365
1366 1366 // SET PACKET ID
1367 1367 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1368 1368 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1369 1369
1370 1370 // SEND PACKET
1371 1371 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1372 1372 if (status != RTEMS_SUCCESSFUL) {
1373 1373 ret = LFR_DEFAULT;
1374 1374 }
1375 1375 }
1376 1376
1377 1377 return ret;
1378 1378 }
1379 1379
1380 1380 void spw_send_asm_f0( ring_node *ring_node_to_send,
1381 1381 Header_TM_LFR_SCIENCE_ASM_t *header )
1382 1382 {
1383 1383 unsigned int i;
1384 1384 unsigned int length = 0;
1385 1385 rtems_status_code status;
1386 1386 unsigned int sid;
1387 1387 float *spectral_matrix;
1388 1388 int coarseTime;
1389 1389 int fineTime;
1390 1390 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1391 1391
1392 1392 sid = ring_node_to_send->sid;
1393 1393 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1394 1394 coarseTime = ring_node_to_send->coarseTime;
1395 1395 fineTime = ring_node_to_send->fineTime;
1396 1396
1397 1397 header->pa_bia_status_info = pa_bia_status_info;
1398 1398 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1399 1399
1400 1400 for (i=0; i<PKTCNT_ASM; i++)
1401 1401 {
1402 1402 if ((i==0) || (i==1))
1403 1403 {
1404 1404 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_1;
1405 1405 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1406 1406 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1407 1407 ];
1408 1408 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_1;
1409 1409 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1410 1410 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1411 1411 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_1); // BLK_NR LSB
1412 1412 }
1413 1413 else
1414 1414 {
1415 1415 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_2;
1416 1416 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1417 1417 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1418 1418 ];
1419 1419 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_2;
1420 1420 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1421 1421 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1422 1422 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_2); // BLK_NR LSB
1423 1423 }
1424 1424
1425 1425 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1426 1426 spw_ioctl_send_ASM.hdr = (char *) header;
1427 1427 spw_ioctl_send_ASM.options = 0;
1428 1428
1429 1429 // (2) BUILD THE HEADER
1430 1430 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1431 1431 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1432 1432 header->packetLength[1] = (unsigned char) (length);
1433 1433 header->sid = (unsigned char) sid; // SID
1434 1434 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1435 1435 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1436 1436
1437 1437 // (3) SET PACKET TIME
1438 1438 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1439 1439 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1440 1440 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1441 1441 header->time[BYTE_3] = (unsigned char) (coarseTime);
1442 1442 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1443 1443 header->time[BYTE_5] = (unsigned char) (fineTime);
1444 1444 //
1445 1445 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1446 1446 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1447 1447 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1448 1448 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1449 1449 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1450 1450 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1451 1451
1452 1452 // (4) SEND PACKET
1453 1453 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1454 1454 if (status != RTEMS_SUCCESSFUL) {
1455 1455 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1456 1456 }
1457 1457 }
1458 1458 }
1459 1459
1460 1460 void spw_send_asm_f1( ring_node *ring_node_to_send,
1461 1461 Header_TM_LFR_SCIENCE_ASM_t *header )
1462 1462 {
1463 1463 unsigned int i;
1464 1464 unsigned int length = 0;
1465 1465 rtems_status_code status;
1466 1466 unsigned int sid;
1467 1467 float *spectral_matrix;
1468 1468 int coarseTime;
1469 1469 int fineTime;
1470 1470 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1471 1471
1472 1472 sid = ring_node_to_send->sid;
1473 1473 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1474 1474 coarseTime = ring_node_to_send->coarseTime;
1475 1475 fineTime = ring_node_to_send->fineTime;
1476 1476
1477 1477 header->pa_bia_status_info = pa_bia_status_info;
1478 1478 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1479 1479
1480 1480 for (i=0; i<PKTCNT_ASM; i++)
1481 1481 {
1482 1482 if ((i==0) || (i==1))
1483 1483 {
1484 1484 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_1;
1485 1485 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1486 1486 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1487 1487 ];
1488 1488 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_1;
1489 1489 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1490 1490 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1491 1491 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_1); // BLK_NR LSB
1492 1492 }
1493 1493 else
1494 1494 {
1495 1495 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_2;
1496 1496 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1497 1497 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1498 1498 ];
1499 1499 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_2;
1500 1500 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1501 1501 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1502 1502 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_2); // BLK_NR LSB
1503 1503 }
1504 1504
1505 1505 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1506 1506 spw_ioctl_send_ASM.hdr = (char *) header;
1507 1507 spw_ioctl_send_ASM.options = 0;
1508 1508
1509 1509 // (2) BUILD THE HEADER
1510 1510 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1511 1511 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1512 1512 header->packetLength[1] = (unsigned char) (length);
1513 1513 header->sid = (unsigned char) sid; // SID
1514 1514 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1515 1515 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1516 1516
1517 1517 // (3) SET PACKET TIME
1518 1518 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1519 1519 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1520 1520 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1521 1521 header->time[BYTE_3] = (unsigned char) (coarseTime);
1522 1522 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1523 1523 header->time[BYTE_5] = (unsigned char) (fineTime);
1524 1524 //
1525 1525 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1526 1526 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1527 1527 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1528 1528 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1529 1529 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1530 1530 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1531 1531
1532 1532 // (4) SEND PACKET
1533 1533 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1534 1534 if (status != RTEMS_SUCCESSFUL) {
1535 1535 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1536 1536 }
1537 1537 }
1538 1538 }
1539 1539
1540 1540 void spw_send_asm_f2( ring_node *ring_node_to_send,
1541 1541 Header_TM_LFR_SCIENCE_ASM_t *header )
1542 1542 {
1543 1543 unsigned int i;
1544 1544 unsigned int length = 0;
1545 1545 rtems_status_code status;
1546 1546 unsigned int sid;
1547 1547 float *spectral_matrix;
1548 1548 int coarseTime;
1549 1549 int fineTime;
1550 1550 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1551 1551
1552 1552 sid = ring_node_to_send->sid;
1553 1553 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1554 1554 coarseTime = ring_node_to_send->coarseTime;
1555 1555 fineTime = ring_node_to_send->fineTime;
1556 1556
1557 1557 header->pa_bia_status_info = pa_bia_status_info;
1558 1558 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1559 1559
1560 1560 for (i=0; i<PKTCNT_ASM; i++)
1561 1561 {
1562 1562
1563 1563 spw_ioctl_send_ASM.dlen = DLEN_ASM_F2_PKT;
1564 1564 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1565 1565 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM )
1566 1566 ];
1567 1567 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1568 1568 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3;
1569 1569 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1570 1570 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1571 1571
1572 1572 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1573 1573 spw_ioctl_send_ASM.hdr = (char *) header;
1574 1574 spw_ioctl_send_ASM.options = 0;
1575 1575
1576 1576 // (2) BUILD THE HEADER
1577 1577 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1578 1578 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1579 1579 header->packetLength[1] = (unsigned char) (length);
1580 1580 header->sid = (unsigned char) sid; // SID
1581 1581 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1582 1582 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1583 1583
1584 1584 // (3) SET PACKET TIME
1585 1585 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1586 1586 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1587 1587 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1588 1588 header->time[BYTE_3] = (unsigned char) (coarseTime);
1589 1589 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1590 1590 header->time[BYTE_5] = (unsigned char) (fineTime);
1591 1591 //
1592 1592 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1593 1593 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1594 1594 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1595 1595 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1596 1596 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1597 1597 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1598 1598
1599 1599 // (4) SEND PACKET
1600 1600 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1601 1601 if (status != RTEMS_SUCCESSFUL) {
1602 1602 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1603 1603 }
1604 1604 }
1605 1605 }
1606 1606
1607 1607 void spw_send_k_dump( ring_node *ring_node_to_send )
1608 1608 {
1609 1609 rtems_status_code status;
1610 1610 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump;
1611 1611 unsigned int packetLength;
1612 1612 unsigned int size;
1613 1613
1614 1614 PRINTF("spw_send_k_dump\n")
1615 1615
1616 1616 kcoefficients_dump = (Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *) ring_node_to_send->buffer_address;
1617 1617
1618 1618 packetLength = (kcoefficients_dump->packetLength[0] * CONST_256) + kcoefficients_dump->packetLength[1];
1619 1619
1620 1620 size = packetLength + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
1621 1621
1622 1622 PRINTF2("packetLength %d, size %d\n", packetLength, size )
1623 1623
1624 1624 status = write( fdSPW, (char *) ring_node_to_send->buffer_address, size );
1625 1625
1626 1626 if (status == -1){
1627 1627 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
1628 1628 }
1629 1629
1630 1630 ring_node_to_send->status = INIT_CHAR;
1631 1631 }
@@ -1,424 +1,423
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf0_prc0.h"
11 #include "fsw_processing.h"
12 11
13 nb_sm_before_bp_asm_f0 nb_sm_before_f0;
12 nb_sm_before_bp_asm_f0 nb_sm_before_f0 = {0};
14 13
15 14 //***
16 15 // F0
17 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ];
18 ring_node_asm asm_ring_burst_sbm_f0 [ NB_RING_NODES_ASM_BURST_SBM_F0 ];
16 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ] = {0};
17 ring_node_asm asm_ring_burst_sbm_f0 [ NB_RING_NODES_ASM_BURST_SBM_F0 ] = {0};
19 18
20 ring_node ring_to_send_asm_f0 [ NB_RING_NODES_ASM_F0 ];
21 int buffer_asm_f0 [ NB_RING_NODES_ASM_F0 * TOTAL_SIZE_SM ];
19 ring_node ring_to_send_asm_f0 [ NB_RING_NODES_ASM_F0 ] = {0};
20 int buffer_asm_f0 [ NB_RING_NODES_ASM_F0 * TOTAL_SIZE_SM ] = {0};
22 21
23 float asm_f0_patched_norm [ TOTAL_SIZE_SM ];
24 float asm_f0_patched_burst_sbm [ TOTAL_SIZE_SM ];
25 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
22 float asm_f0_patched_norm [ TOTAL_SIZE_SM ] = {0};
23 float asm_f0_patched_burst_sbm [ TOTAL_SIZE_SM ] = {0};
24 float asm_f0_reorganized [ TOTAL_SIZE_SM ] = {0};
26 25
27 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0];
28 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ];
26 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0] = {0};
27 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ] = {0};
29 28
30 float k_coeff_intercalib_f0_norm[ NB_BINS_COMPRESSED_SM_F0 * NB_K_COEFF_PER_BIN ]; // 11 * 32 = 352
31 float k_coeff_intercalib_f0_sbm[ NB_BINS_COMPRESSED_SM_SBM_F0 * NB_K_COEFF_PER_BIN ]; // 22 * 32 = 704
29 float k_coeff_intercalib_f0_norm[ NB_BINS_COMPRESSED_SM_F0 * NB_K_COEFF_PER_BIN ] = {0}; // 11 * 32 = 352
30 float k_coeff_intercalib_f0_sbm[ NB_BINS_COMPRESSED_SM_SBM_F0 * NB_K_COEFF_PER_BIN ] = {0}; // 22 * 32 = 704
32 31
33 32 //************
34 33 // RTEMS TASKS
35 34
36 35 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
37 36 {
38 37 int i;
39 38
40 39 rtems_event_set event_out;
41 40 rtems_status_code status;
42 41 rtems_id queue_id_prc0;
43 42 asm_msg msgForPRC;
44 43 ring_node *nodeForAveraging;
45 44 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0_F1];
46 45 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
47 46 ring_node_asm *current_ring_node_asm_norm_f0;
48 47
49 48 unsigned int nb_norm_bp1;
50 49 unsigned int nb_norm_bp2;
51 50 unsigned int nb_norm_asm;
52 51 unsigned int nb_sbm_bp1;
53 52 unsigned int nb_sbm_bp2;
54 53
55 54 nb_norm_bp1 = 0;
56 55 nb_norm_bp2 = 0;
57 56 nb_norm_asm = 0;
58 57 nb_sbm_bp1 = 0;
59 58 nb_sbm_bp2 = 0;
60 59 event_out = EVENT_SETS_NONE_PENDING;
61 60 queue_id_prc0 = RTEMS_ID_NONE;
62 61
63 62 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
64 63 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
65 64 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
66 65 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
67 66 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
68 67
69 68 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode);
70 69
71 70 status = get_message_queue_id_prc0( &queue_id_prc0 );
72 71 if (status != RTEMS_SUCCESSFUL)
73 72 {
74 73 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
75 74 }
76 75
77 76 while(1){
78 77 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
79 78
80 79 //****************************************
81 80 // initialize the mesage for the MATR task
82 81 msgForPRC.norm = current_ring_node_asm_norm_f0;
83 82 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f0;
84 83 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC0 task
85 84 //
86 85 //****************************************
87 86
88 87 nodeForAveraging = getRingNodeForAveraging( 0 );
89 88
90 89 ring_node_tab[NB_SM_BEFORE_AVF0_F1-1] = nodeForAveraging;
91 90 for ( i = 1; i < (NB_SM_BEFORE_AVF0_F1); i++ )
92 91 {
93 92 nodeForAveraging = nodeForAveraging->previous;
94 93 ring_node_tab[NB_SM_BEFORE_AVF0_F1-i] = nodeForAveraging;
95 94 }
96 95
97 96 // compute the average and store it in the averaged_sm_f1 buffer
98 97 SM_average( current_ring_node_asm_norm_f0->matrix,
99 98 current_ring_node_asm_burst_sbm_f0->matrix,
100 99 ring_node_tab,
101 100 nb_norm_bp1, nb_sbm_bp1,
102 101 &msgForPRC, 0 ); // 0 => frequency channel 0
103 102
104 103 // update nb_average
105 104 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0_F1;
106 105 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0_F1;
107 106 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0_F1;
108 107 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0_F1;
109 108 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0_F1;
110 109
111 110 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
112 111 {
113 112 nb_sbm_bp1 = 0;
114 113 // set another ring for the ASM storage
115 114 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
116 115 if ( lfrCurrentMode == LFR_MODE_BURST )
117 116 {
118 117 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F0;
119 118 }
120 119 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
121 120 {
122 121 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F0;
123 122 }
124 123 }
125 124
126 125 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
127 126 {
128 127 nb_sbm_bp2 = 0;
129 128 if ( lfrCurrentMode == LFR_MODE_BURST )
130 129 {
131 130 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F0;
132 131 }
133 132 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
134 133 {
135 134 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F0;
136 135 }
137 136 }
138 137
139 138 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
140 139 {
141 140 nb_norm_bp1 = 0;
142 141 // set another ring for the ASM storage
143 142 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
144 143 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
145 144 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
146 145 {
147 146 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F0;
148 147 }
149 148 }
150 149
151 150 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
152 151 {
153 152 nb_norm_bp2 = 0;
154 153 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
155 154 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
156 155 {
157 156 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F0;
158 157 }
159 158 }
160 159
161 160 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
162 161 {
163 162 nb_norm_asm = 0;
164 163 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
165 164 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
166 165 {
167 166 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F0;
168 167 }
169 168 }
170 169
171 170 //*************************
172 171 // send the message to PRC
173 172 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
174 173 {
175 174 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC0);
176 175 }
177 176
178 177 if (status != RTEMS_SUCCESSFUL) {
179 178 PRINTF1("in AVF0 *** Error sending message to PRC, code %d\n", status)
180 179 }
181 180 }
182 181 }
183 182
184 183 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
185 184 {
186 185 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
187 186 size_t size; // size of the incoming TC packet
188 187 asm_msg *incomingMsg;
189 188 //
190 189 unsigned char sid;
191 190 rtems_status_code status;
192 191 rtems_id queue_id;
193 192 rtems_id queue_id_q_p0;
194 193 bp_packet_with_spare packet_norm_bp1;
195 194 bp_packet packet_norm_bp2;
196 195 bp_packet packet_sbm_bp1;
197 196 bp_packet packet_sbm_bp2;
198 197 ring_node *current_ring_node_to_send_asm_f0;
199 198 float nbSMInASMNORM;
200 199 float nbSMInASMSBM;
201 200
202 201 size = 0;
203 202 queue_id = RTEMS_ID_NONE;
204 203 queue_id_q_p0 = RTEMS_ID_NONE;
205 204 memset( &packet_norm_bp1, 0, sizeof(bp_packet_with_spare) );
206 205 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
207 206 memset( &packet_sbm_bp1, 0, sizeof(bp_packet) );
208 207 memset( &packet_sbm_bp2, 0, sizeof(bp_packet) );
209 208
210 209 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
211 210 init_ring( ring_to_send_asm_f0, NB_RING_NODES_ASM_F0, (volatile int*) buffer_asm_f0, TOTAL_SIZE_SM );
212 211 current_ring_node_to_send_asm_f0 = ring_to_send_asm_f0;
213 212
214 213 //*************
215 214 // NORM headers
216 215 BP_init_header_with_spare( &packet_norm_bp1,
217 216 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
218 217 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
219 218 BP_init_header( &packet_norm_bp2,
220 219 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
221 220 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
222 221
223 222 //****************************
224 223 // BURST SBM1 and SBM2 headers
225 224 if ( lfrRequestedMode == LFR_MODE_BURST )
226 225 {
227 226 BP_init_header( &packet_sbm_bp1,
228 227 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
229 228 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
230 229 BP_init_header( &packet_sbm_bp2,
231 230 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
232 231 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
233 232 }
234 233 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
235 234 {
236 235 BP_init_header( &packet_sbm_bp1,
237 236 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
238 237 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
239 238 BP_init_header( &packet_sbm_bp2,
240 239 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
241 240 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
242 241 }
243 242 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
244 243 {
245 244 BP_init_header( &packet_sbm_bp1,
246 245 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
247 246 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
248 247 BP_init_header( &packet_sbm_bp2,
249 248 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
250 249 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
251 250 }
252 251 else
253 252 {
254 253 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
255 254 }
256 255
257 256 status = get_message_queue_id_send( &queue_id );
258 257 if (status != RTEMS_SUCCESSFUL)
259 258 {
260 259 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
261 260 }
262 261 status = get_message_queue_id_prc0( &queue_id_q_p0);
263 262 if (status != RTEMS_SUCCESSFUL)
264 263 {
265 264 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
266 265 }
267 266
268 267 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
269 268
270 269 while(1){
271 270 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
272 271 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
273 272
274 273 incomingMsg = (asm_msg*) incomingData;
275 274
276 275 ASM_patch( incomingMsg->norm->matrix, asm_f0_patched_norm );
277 276 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f0_patched_burst_sbm );
278 277
279 278 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
280 279 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
281 280
282 281 //****************
283 282 //****************
284 283 // BURST SBM1 SBM2
285 284 //****************
286 285 //****************
287 286 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F0 ) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F0 ) )
288 287 {
289 288 sid = getSID( incomingMsg->event );
290 289 // 1) compress the matrix for Basic Parameters calculation
291 290 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_burst_sbm, compressed_sm_sbm_f0,
292 291 nbSMInASMSBM,
293 292 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
294 293 ASM_F0_INDICE_START, CHANNELF0);
295 294 // 2) compute the BP1 set
296 295 BP1_set( compressed_sm_sbm_f0, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp1.data );
297 296 // 3) send the BP1 set
298 297 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
299 298 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
300 299 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
301 300 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
302 301 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id,
303 302 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
304 303 sid);
305 304 // 4) compute the BP2 set if needed
306 305 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F0) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F0) )
307 306 {
308 307 // 1) compute the BP2 set
309 308 BP2_set( compressed_sm_sbm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp2.data );
310 309 // 2) send the BP2 set
311 310 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
312 311 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
313 312 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
314 313 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
315 314 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id,
316 315 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
317 316 sid);
318 317 }
319 318 }
320 319
321 320 //*****
322 321 //*****
323 322 // NORM
324 323 //*****
325 324 //*****
326 325 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
327 326 {
328 327 // 1) compress the matrix for Basic Parameters calculation
329 328 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_norm, compressed_sm_norm_f0,
330 329 nbSMInASMNORM,
331 330 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
332 331 ASM_F0_INDICE_START, CHANNELF0 );
333 332 // 2) compute the BP1 set
334 333 BP1_set( compressed_sm_norm_f0, k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp1.data );
335 334 // 3) send the BP1 set
336 335 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
337 336 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
338 337 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
339 338 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
340 339 BP_send( (char *) &packet_norm_bp1, queue_id,
341 340 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
342 341 SID_NORM_BP1_F0 );
343 342 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
344 343 {
345 344 // 1) compute the BP2 set using the same ASM as the one used for BP1
346 345 BP2_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp2.data );
347 346 // 2) send the BP2 set
348 347 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
349 348 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
350 349 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
351 350 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
352 351 BP_send( (char *) &packet_norm_bp2, queue_id,
353 352 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
354 353 SID_NORM_BP2_F0);
355 354 }
356 355 }
357 356
358 357 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
359 358 {
360 359 // 1) reorganize the ASM and divide
361 360 ASM_reorganize_and_divide( asm_f0_patched_norm,
362 361 (float*) current_ring_node_to_send_asm_f0->buffer_address,
363 362 nbSMInASMNORM );
364 363 current_ring_node_to_send_asm_f0->coarseTime = incomingMsg->coarseTimeNORM;
365 364 current_ring_node_to_send_asm_f0->fineTime = incomingMsg->fineTimeNORM;
366 365 current_ring_node_to_send_asm_f0->sid = SID_NORM_ASM_F0;
367 366
368 367 // 3) send the spectral matrix packets
369 368 status = rtems_message_queue_send( queue_id, &current_ring_node_to_send_asm_f0, sizeof( ring_node* ) );
370 369
371 370 // change asm ring node
372 371 current_ring_node_to_send_asm_f0 = current_ring_node_to_send_asm_f0->next;
373 372 }
374 373
375 374 update_queue_max_count( queue_id_q_p0, &hk_lfr_q_p0_fifo_size_max );
376 375
377 376 }
378 377 }
379 378
380 379 //**********
381 380 // FUNCTIONS
382 381
383 382 void reset_nb_sm_f0( unsigned char lfrMode )
384 383 {
385 384 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * NB_SM_PER_S_F0;
386 385 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * NB_SM_PER_S_F0;
387 386 nb_sm_before_f0.norm_asm =
388 387 ( (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256) + parameter_dump_packet.sy_lfr_n_asm_p[1]) * NB_SM_PER_S_F0;
389 388 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * NB_SM_PER_S1_BP_P0; // 0.25 s per digit
390 389 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * NB_SM_PER_S_F0;
391 390 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * NB_SM_PER_S_F0;
392 391 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * NB_SM_PER_S_F0;
393 392 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * NB_SM_PER_S_F0;
394 393 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * NB_SM_PER_S_F0;
395 394
396 395 if (lfrMode == LFR_MODE_SBM1)
397 396 {
398 397 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
399 398 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
400 399 }
401 400 else if (lfrMode == LFR_MODE_SBM2)
402 401 {
403 402 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
404 403 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
405 404 }
406 405 else if (lfrMode == LFR_MODE_BURST)
407 406 {
408 407 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
409 408 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
410 409 }
411 410 else
412 411 {
413 412 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
414 413 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
415 414 }
416 415 }
417 416
418 417 void init_k_coefficients_prc0( void )
419 418 {
420 419 init_k_coefficients( k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0 );
421 420
422 421 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f0_norm, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_F0);
423 422 }
424 423
@@ -1,409 +1,407
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf1_prc1.h"
11 11
12 nb_sm_before_bp_asm_f1 nb_sm_before_f1;
13
14 extern ring_node sm_ring_f1[ ];
12 nb_sm_before_bp_asm_f1 nb_sm_before_f1 = {0};
15 13
16 14 //***
17 15 // F1
18 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ];
19 ring_node_asm asm_ring_burst_sbm_f1 [ NB_RING_NODES_ASM_BURST_SBM_F1 ];
16 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ] = {0};
17 ring_node_asm asm_ring_burst_sbm_f1 [ NB_RING_NODES_ASM_BURST_SBM_F1 ] = {0};
20 18
21 ring_node ring_to_send_asm_f1 [ NB_RING_NODES_ASM_F1 ];
22 int buffer_asm_f1 [ NB_RING_NODES_ASM_F1 * TOTAL_SIZE_SM ];
19 ring_node ring_to_send_asm_f1 [ NB_RING_NODES_ASM_F1 ] = {0};
20 int buffer_asm_f1 [ NB_RING_NODES_ASM_F1 * TOTAL_SIZE_SM ] = {0};
23 21
24 float asm_f1_patched_norm [ TOTAL_SIZE_SM ];
25 float asm_f1_patched_burst_sbm [ TOTAL_SIZE_SM ];
26 float asm_f1_reorganized [ TOTAL_SIZE_SM ];
22 float asm_f1_patched_norm [ TOTAL_SIZE_SM ] = {0};
23 float asm_f1_patched_burst_sbm [ TOTAL_SIZE_SM ] = {0};
24 float asm_f1_reorganized [ TOTAL_SIZE_SM ] = {0};
27 25
28 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1];
29 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ];
26 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1] = {0};
27 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ] = {0};
30 28
31 float k_coeff_intercalib_f1_norm[ NB_BINS_COMPRESSED_SM_F1 * NB_K_COEFF_PER_BIN ]; // 13 * 32 = 416
32 float k_coeff_intercalib_f1_sbm[ NB_BINS_COMPRESSED_SM_SBM_F1 * NB_K_COEFF_PER_BIN ]; // 26 * 32 = 832
29 float k_coeff_intercalib_f1_norm[ NB_BINS_COMPRESSED_SM_F1 * NB_K_COEFF_PER_BIN ] = {0}; // 13 * 32 = 416
30 float k_coeff_intercalib_f1_sbm[ NB_BINS_COMPRESSED_SM_SBM_F1 * NB_K_COEFF_PER_BIN ] = {0}; // 26 * 32 = 832
33 31
34 32 //************
35 33 // RTEMS TASKS
36 34
37 35 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
38 36 {
39 37 int i;
40 38
41 39 rtems_event_set event_out;
42 40 rtems_status_code status;
43 41 rtems_id queue_id_prc1;
44 42 asm_msg msgForPRC;
45 43 ring_node *nodeForAveraging;
46 44 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0_F1];
47 45 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
48 46 ring_node_asm *current_ring_node_asm_norm_f1;
49 47
50 48 unsigned int nb_norm_bp1;
51 49 unsigned int nb_norm_bp2;
52 50 unsigned int nb_norm_asm;
53 51 unsigned int nb_sbm_bp1;
54 52 unsigned int nb_sbm_bp2;
55 53
56 54 event_out = EVENT_SETS_NONE_PENDING;
57 55 queue_id_prc1 = RTEMS_ID_NONE;
58 56
59 57 nb_norm_bp1 = 0;
60 58 nb_norm_bp2 = 0;
61 59 nb_norm_asm = 0;
62 60 nb_sbm_bp1 = 0;
63 61 nb_sbm_bp2 = 0;
64 62
65 63 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
66 64 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
67 65 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
68 66 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
69 67 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
70 68
71 69 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
72 70
73 71 status = get_message_queue_id_prc1( &queue_id_prc1 );
74 72 if (status != RTEMS_SUCCESSFUL)
75 73 {
76 74 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
77 75 }
78 76
79 77 while(1){
80 78 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
81 79
82 80 //****************************************
83 81 // initialize the mesage for the MATR task
84 82 msgForPRC.norm = current_ring_node_asm_norm_f1;
85 83 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f1;
86 84 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC1 task
87 85 //
88 86 //****************************************
89 87
90 88 nodeForAveraging = getRingNodeForAveraging( 1 );
91 89
92 90 ring_node_tab[NB_SM_BEFORE_AVF0_F1-1] = nodeForAveraging;
93 91 for ( i = 1; i < (NB_SM_BEFORE_AVF0_F1); i++ )
94 92 {
95 93 nodeForAveraging = nodeForAveraging->previous;
96 94 ring_node_tab[NB_SM_BEFORE_AVF0_F1-i] = nodeForAveraging;
97 95 }
98 96
99 97 // compute the average and store it in the averaged_sm_f1 buffer
100 98 SM_average( current_ring_node_asm_norm_f1->matrix,
101 99 current_ring_node_asm_burst_sbm_f1->matrix,
102 100 ring_node_tab,
103 101 nb_norm_bp1, nb_sbm_bp1,
104 102 &msgForPRC, 1 ); // 1 => frequency channel 1
105 103
106 104 // update nb_average
107 105 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0_F1;
108 106 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0_F1;
109 107 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0_F1;
110 108 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0_F1;
111 109 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0_F1;
112 110
113 111 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
114 112 {
115 113 nb_sbm_bp1 = 0;
116 114 // set another ring for the ASM storage
117 115 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
118 116 if ( lfrCurrentMode == LFR_MODE_BURST )
119 117 {
120 118 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F1;
121 119 }
122 120 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
123 121 {
124 122 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F1;
125 123 }
126 124 }
127 125
128 126 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
129 127 {
130 128 nb_sbm_bp2 = 0;
131 129 if ( lfrCurrentMode == LFR_MODE_BURST )
132 130 {
133 131 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F1;
134 132 }
135 133 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
136 134 {
137 135 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F1;
138 136 }
139 137 }
140 138
141 139 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
142 140 {
143 141 nb_norm_bp1 = 0;
144 142 // set another ring for the ASM storage
145 143 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
146 144 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
147 145 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
148 146 {
149 147 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F1;
150 148 }
151 149 }
152 150
153 151 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
154 152 {
155 153 nb_norm_bp2 = 0;
156 154 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
157 155 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
158 156 {
159 157 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F1;
160 158 }
161 159 }
162 160
163 161 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
164 162 {
165 163 nb_norm_asm = 0;
166 164 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
167 165 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
168 166 {
169 167 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F1;
170 168 }
171 169 }
172 170
173 171 //*************************
174 172 // send the message to PRC
175 173 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
176 174 {
177 175 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC1);
178 176 }
179 177
180 178 if (status != RTEMS_SUCCESSFUL) {
181 179 PRINTF1("in AVF1 *** Error sending message to PRC1, code %d\n", status)
182 180 }
183 181 }
184 182 }
185 183
186 184 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
187 185 {
188 186 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
189 187 size_t size; // size of the incoming TC packet
190 188 asm_msg *incomingMsg;
191 189 //
192 190 unsigned char sid;
193 191 rtems_status_code status;
194 192 rtems_id queue_id_send;
195 193 rtems_id queue_id_q_p1;
196 194 bp_packet_with_spare packet_norm_bp1;
197 195 bp_packet packet_norm_bp2;
198 196 bp_packet packet_sbm_bp1;
199 197 bp_packet packet_sbm_bp2;
200 198 ring_node *current_ring_node_to_send_asm_f1;
201 199 float nbSMInASMNORM;
202 200 float nbSMInASMSBM;
203 201
204 202 size = 0;
205 203 queue_id_send = RTEMS_ID_NONE;
206 204 queue_id_q_p1 = RTEMS_ID_NONE;
207 205 memset( &packet_norm_bp1, 0, sizeof(bp_packet_with_spare) );
208 206 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
209 207 memset( &packet_sbm_bp1, 0, sizeof(bp_packet) );
210 208 memset( &packet_sbm_bp2, 0, sizeof(bp_packet) );
211 209
212 210 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
213 211 init_ring( ring_to_send_asm_f1, NB_RING_NODES_ASM_F1, (volatile int*) buffer_asm_f1, TOTAL_SIZE_SM );
214 212 current_ring_node_to_send_asm_f1 = ring_to_send_asm_f1;
215 213
216 214 //*************
217 215 // NORM headers
218 216 BP_init_header_with_spare( &packet_norm_bp1,
219 217 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
220 218 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
221 219 BP_init_header( &packet_norm_bp2,
222 220 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
223 221 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
224 222
225 223 //***********************
226 224 // BURST and SBM2 headers
227 225 if ( lfrRequestedMode == LFR_MODE_BURST )
228 226 {
229 227 BP_init_header( &packet_sbm_bp1,
230 228 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
231 229 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
232 230 BP_init_header( &packet_sbm_bp2,
233 231 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
234 232 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
235 233 }
236 234 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
237 235 {
238 236 BP_init_header( &packet_sbm_bp1,
239 237 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
240 238 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
241 239 BP_init_header( &packet_sbm_bp2,
242 240 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
243 241 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
244 242 }
245 243 else
246 244 {
247 245 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
248 246 }
249 247
250 248 status = get_message_queue_id_send( &queue_id_send );
251 249 if (status != RTEMS_SUCCESSFUL)
252 250 {
253 251 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
254 252 }
255 253 status = get_message_queue_id_prc1( &queue_id_q_p1);
256 254 if (status != RTEMS_SUCCESSFUL)
257 255 {
258 256 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
259 257 }
260 258
261 259 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
262 260
263 261 while(1){
264 262 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
265 263 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
266 264
267 265 incomingMsg = (asm_msg*) incomingData;
268 266
269 267 ASM_patch( incomingMsg->norm->matrix, asm_f1_patched_norm );
270 268 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f1_patched_burst_sbm );
271 269
272 270 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
273 271 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
274 272
275 273 //***********
276 274 //***********
277 275 // BURST SBM2
278 276 //***********
279 277 //***********
280 278 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F1) )
281 279 {
282 280 sid = getSID( incomingMsg->event );
283 281 // 1) compress the matrix for Basic Parameters calculation
284 282 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_burst_sbm, compressed_sm_sbm_f1,
285 283 nbSMInASMSBM,
286 284 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
287 285 ASM_F1_INDICE_START, CHANNELF1);
288 286 // 2) compute the BP1 set
289 287 BP1_set( compressed_sm_sbm_f1, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp1.data );
290 288 // 3) send the BP1 set
291 289 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
292 290 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
293 291 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
294 292 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
295 293 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id_send,
296 294 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA,
297 295 sid );
298 296 // 4) compute the BP2 set if needed
299 297 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F1) )
300 298 {
301 299 // 1) compute the BP2 set
302 300 BP2_set( compressed_sm_sbm_f1, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp2.data );
303 301 // 2) send the BP2 set
304 302 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
305 303 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
306 304 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
307 305 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
308 306 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id_send,
309 307 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA,
310 308 sid );
311 309 }
312 310 }
313 311
314 312 //*****
315 313 //*****
316 314 // NORM
317 315 //*****
318 316 //*****
319 317 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
320 318 {
321 319 // 1) compress the matrix for Basic Parameters calculation
322 320 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_norm, compressed_sm_norm_f1,
323 321 nbSMInASMNORM,
324 322 NB_BINS_COMPRESSED_SM_F1, NB_BINS_TO_AVERAGE_ASM_F1,
325 323 ASM_F1_INDICE_START, CHANNELF1 );
326 324 // 2) compute the BP1 set
327 325 BP1_set( compressed_sm_norm_f1, k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp1.data );
328 326 // 3) send the BP1 set
329 327 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
330 328 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
331 329 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
332 330 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
333 331 BP_send( (char *) &packet_norm_bp1, queue_id_send,
334 332 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA,
335 333 SID_NORM_BP1_F1 );
336 334 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
337 335 {
338 336 // 1) compute the BP2 set
339 337 BP2_set( compressed_sm_norm_f1, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp2.data );
340 338 // 2) send the BP2 set
341 339 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
342 340 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
343 341 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
344 342 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
345 343 BP_send( (char *) &packet_norm_bp2, queue_id_send,
346 344 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA,
347 345 SID_NORM_BP2_F1 );
348 346 }
349 347 }
350 348
351 349 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
352 350 {
353 351 // 1) reorganize the ASM and divide
354 352 ASM_reorganize_and_divide( asm_f1_patched_norm,
355 353 (float*) current_ring_node_to_send_asm_f1->buffer_address,
356 354 nbSMInASMNORM );
357 355 current_ring_node_to_send_asm_f1->coarseTime = incomingMsg->coarseTimeNORM;
358 356 current_ring_node_to_send_asm_f1->fineTime = incomingMsg->fineTimeNORM;
359 357 current_ring_node_to_send_asm_f1->sid = SID_NORM_ASM_F1;
360 358
361 359 // 3) send the spectral matrix packets
362 360 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f1, sizeof( ring_node* ) );
363 361
364 362 // change asm ring node
365 363 current_ring_node_to_send_asm_f1 = current_ring_node_to_send_asm_f1->next;
366 364 }
367 365
368 366 update_queue_max_count( queue_id_q_p1, &hk_lfr_q_p1_fifo_size_max );
369 367
370 368 }
371 369 }
372 370
373 371 //**********
374 372 // FUNCTIONS
375 373
376 374 void reset_nb_sm_f1( unsigned char lfrMode )
377 375 {
378 376 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * NB_SM_PER_S_F1;
379 377 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * NB_SM_PER_S_F1;
380 378 nb_sm_before_f1.norm_asm =
381 379 ( (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256) + parameter_dump_packet.sy_lfr_n_asm_p[1]) * NB_SM_PER_S_F1;
382 380 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * NB_SM_PER_S_F1;
383 381 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * NB_SM_PER_S_F1;
384 382 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * NB_SM_PER_S_F1;
385 383 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * NB_SM_PER_S_F1;
386 384
387 385 if (lfrMode == LFR_MODE_SBM2)
388 386 {
389 387 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
390 388 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
391 389 }
392 390 else if (lfrMode == LFR_MODE_BURST)
393 391 {
394 392 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
395 393 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
396 394 }
397 395 else
398 396 {
399 397 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
400 398 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
401 399 }
402 400 }
403 401
404 402 void init_k_coefficients_prc1( void )
405 403 {
406 404 init_k_coefficients( k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1 );
407 405
408 406 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f1_norm, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_F1);
409 407 }
@@ -1,334 +1,332
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf2_prc2.h"
11 11
12 nb_sm_before_bp_asm_f2 nb_sm_before_f2;
13
14 extern ring_node sm_ring_f2[ ];
12 nb_sm_before_bp_asm_f2 nb_sm_before_f2 = {0};
15 13
16 14 //***
17 15 // F2
18 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ];
16 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ] = {0};
19 17
20 ring_node ring_to_send_asm_f2 [ NB_RING_NODES_ASM_F2 ];
21 int buffer_asm_f2 [ NB_RING_NODES_ASM_F2 * TOTAL_SIZE_SM ];
18 ring_node ring_to_send_asm_f2 [ NB_RING_NODES_ASM_F2 ] = {0};
19 int buffer_asm_f2 [ NB_RING_NODES_ASM_F2 * TOTAL_SIZE_SM ] = {0};
22 20
23 float asm_f2_patched_norm [ TOTAL_SIZE_SM ];
24 float asm_f2_reorganized [ TOTAL_SIZE_SM ];
21 float asm_f2_patched_norm [ TOTAL_SIZE_SM ] = {0};
22 float asm_f2_reorganized [ TOTAL_SIZE_SM ] = {0};
25 23
26 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2];
24 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2] = {0};
27 25
28 float k_coeff_intercalib_f2[ NB_BINS_COMPRESSED_SM_F2 * NB_K_COEFF_PER_BIN ]; // 12 * 32 = 384
26 float k_coeff_intercalib_f2[ NB_BINS_COMPRESSED_SM_F2 * NB_K_COEFF_PER_BIN ] = {0}; // 12 * 32 = 384
29 27
30 28 //************
31 29 // RTEMS TASKS
32 30
33 31 //***
34 32 // F2
35 33 rtems_task avf2_task( rtems_task_argument argument )
36 34 {
37 35 rtems_event_set event_out;
38 36 rtems_status_code status;
39 37 rtems_id queue_id_prc2;
40 38 asm_msg msgForPRC;
41 39 ring_node *nodeForAveraging;
42 40 ring_node_asm *current_ring_node_asm_norm_f2;
43 41
44 42 unsigned int nb_norm_bp1;
45 43 unsigned int nb_norm_bp2;
46 44 unsigned int nb_norm_asm;
47 45
48 46 event_out = EVENT_SETS_NONE_PENDING;
49 47 queue_id_prc2 = RTEMS_ID_NONE;
50 48 nb_norm_bp1 = 0;
51 49 nb_norm_bp2 = 0;
52 50 nb_norm_asm = 0;
53 51
54 52 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
55 53 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
56 54 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
57 55
58 56 BOOT_PRINTF("in AVF2 ***\n")
59 57
60 58 status = get_message_queue_id_prc2( &queue_id_prc2 );
61 59 if (status != RTEMS_SUCCESSFUL)
62 60 {
63 61 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
64 62 }
65 63
66 64 while(1){
67 65 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
68 66
69 67 //****************************************
70 68 // initialize the mesage for the MATR task
71 69 msgForPRC.norm = current_ring_node_asm_norm_f2;
72 70 msgForPRC.burst_sbm = NULL;
73 71 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC2 task
74 72 //
75 73 //****************************************
76 74
77 75 nodeForAveraging = getRingNodeForAveraging( CHANNELF2 );
78 76
79 77 // compute the average and store it in the averaged_sm_f2 buffer
80 78 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
81 79 nodeForAveraging,
82 80 nb_norm_bp1,
83 81 &msgForPRC );
84 82
85 83 // update nb_average
86 84 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
87 85 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
88 86 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
89 87
90 88 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
91 89 {
92 90 nb_norm_bp1 = 0;
93 91 // set another ring for the ASM storage
94 92 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
95 93 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
96 94 || (lfrCurrentMode == LFR_MODE_SBM2) )
97 95 {
98 96 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F2;
99 97 }
100 98 }
101 99
102 100 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
103 101 {
104 102 nb_norm_bp2 = 0;
105 103 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
106 104 || (lfrCurrentMode == LFR_MODE_SBM2) )
107 105 {
108 106 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F2;
109 107 }
110 108 }
111 109
112 110 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
113 111 {
114 112 nb_norm_asm = 0;
115 113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
116 114 || (lfrCurrentMode == LFR_MODE_SBM2) )
117 115 {
118 116 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F2;
119 117 }
120 118 }
121 119
122 120 //*************************
123 121 // send the message to PRC2
124 122 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
125 123 {
126 124 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC2);
127 125 }
128 126
129 127 if (status != RTEMS_SUCCESSFUL) {
130 128 PRINTF1("in AVF2 *** Error sending message to PRC2, code %d\n", status)
131 129 }
132 130 }
133 131 }
134 132
135 133 rtems_task prc2_task( rtems_task_argument argument )
136 134 {
137 135 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
138 136 size_t size; // size of the incoming TC packet
139 137 asm_msg *incomingMsg;
140 138 //
141 139 rtems_status_code status;
142 140 rtems_id queue_id_send;
143 141 rtems_id queue_id_q_p2;
144 142 bp_packet packet_norm_bp1;
145 143 bp_packet packet_norm_bp2;
146 144 ring_node *current_ring_node_to_send_asm_f2;
147 145 float nbSMInASMNORM;
148 146
149 147 unsigned long long int localTime;
150 148
151 149 size = 0;
152 150 queue_id_send = RTEMS_ID_NONE;
153 151 queue_id_q_p2 = RTEMS_ID_NONE;
154 152 memset( &packet_norm_bp1, 0, sizeof(bp_packet) );
155 153 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
156 154
157 155 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
158 156 init_ring( ring_to_send_asm_f2, NB_RING_NODES_ASM_F2, (volatile int*) buffer_asm_f2, TOTAL_SIZE_SM );
159 157 current_ring_node_to_send_asm_f2 = ring_to_send_asm_f2;
160 158
161 159 //*************
162 160 // NORM headers
163 161 BP_init_header( &packet_norm_bp1,
164 162 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
165 163 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
166 164 BP_init_header( &packet_norm_bp2,
167 165 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
168 166 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
169 167
170 168 status = get_message_queue_id_send( &queue_id_send );
171 169 if (status != RTEMS_SUCCESSFUL)
172 170 {
173 171 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
174 172 }
175 173 status = get_message_queue_id_prc2( &queue_id_q_p2);
176 174 if (status != RTEMS_SUCCESSFUL)
177 175 {
178 176 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
179 177 }
180 178
181 179 BOOT_PRINTF("in PRC2 ***\n")
182 180
183 181 while(1){
184 182 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
185 183 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF2
186 184
187 185 incomingMsg = (asm_msg*) incomingData;
188 186
189 187 ASM_patch( incomingMsg->norm->matrix, asm_f2_patched_norm );
190 188
191 189 localTime = getTimeAsUnsignedLongLongInt( );
192 190
193 191 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
194 192
195 193 //*****
196 194 //*****
197 195 // NORM
198 196 //*****
199 197 //*****
200 198 // 1) compress the matrix for Basic Parameters calculation
201 199 ASM_compress_reorganize_and_divide_mask( asm_f2_patched_norm, compressed_sm_norm_f2,
202 200 nbSMInASMNORM,
203 201 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
204 202 ASM_F2_INDICE_START, CHANNELF2 );
205 203 // BP1_F2
206 204 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
207 205 {
208 206 // 1) compute the BP1 set
209 207 BP1_set( compressed_sm_norm_f2, k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp1.data );
210 208 // 2) send the BP1 set
211 209 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
212 210 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
213 211 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
214 212 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
215 213 BP_send( (char *) &packet_norm_bp1, queue_id_send,
216 214 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
217 215 SID_NORM_BP1_F2 );
218 216 }
219 217 // BP2_F2
220 218 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
221 219 {
222 220 // 1) compute the BP2 set
223 221 BP2_set( compressed_sm_norm_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp2.data );
224 222 // 2) send the BP2 set
225 223 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
226 224 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
227 225 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
228 226 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
229 227 BP_send( (char *) &packet_norm_bp2, queue_id_send,
230 228 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
231 229 SID_NORM_BP2_F2 );
232 230 }
233 231
234 232 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
235 233 {
236 234 // 1) reorganize the ASM and divide
237 235 ASM_reorganize_and_divide( asm_f2_patched_norm,
238 236 (float*) current_ring_node_to_send_asm_f2->buffer_address,
239 237 nb_sm_before_f2.norm_bp1 );
240 238 current_ring_node_to_send_asm_f2->coarseTime = incomingMsg->coarseTimeNORM;
241 239 current_ring_node_to_send_asm_f2->fineTime = incomingMsg->fineTimeNORM;
242 240 current_ring_node_to_send_asm_f2->sid = SID_NORM_ASM_F2;
243 241
244 242 // 3) send the spectral matrix packets
245 243 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f2, sizeof( ring_node* ) );
246 244
247 245 // change asm ring node
248 246 current_ring_node_to_send_asm_f2 = current_ring_node_to_send_asm_f2->next;
249 247 }
250 248
251 249 update_queue_max_count( queue_id_q_p2, &hk_lfr_q_p2_fifo_size_max );
252 250
253 251 }
254 252 }
255 253
256 254 //**********
257 255 // FUNCTIONS
258 256
259 257 void reset_nb_sm_f2( void )
260 258 {
261 259 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
262 260 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
263 261 nb_sm_before_f2.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_asm_p[1];
264 262 }
265 263
266 264 void SM_average_f2( float *averaged_spec_mat_f2,
267 265 ring_node *ring_node,
268 266 unsigned int nbAverageNormF2,
269 267 asm_msg *msgForMATR )
270 268 {
271 269 float sum;
272 270 unsigned int i;
273 271 unsigned char keepMatrix;
274 272
275 273 // test acquisitionTime validity
276 274 keepMatrix = acquisitionTimeIsValid( ring_node->coarseTime, ring_node->fineTime, CHANNELF2 );
277 275
278 276 for(i=0; i<TOTAL_SIZE_SM; i++)
279 277 {
280 278 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
281 279 if ( (nbAverageNormF2 == 0) ) // average initialization
282 280 {
283 281 if (keepMatrix == 1) // keep the matrix and add it to the average
284 282 {
285 283 averaged_spec_mat_f2[ i ] = sum;
286 284 }
287 285 else // drop the matrix and initialize the average
288 286 {
289 287 averaged_spec_mat_f2[ i ] = INIT_FLOAT;
290 288 }
291 289 msgForMATR->coarseTimeNORM = ring_node->coarseTime;
292 290 msgForMATR->fineTimeNORM = ring_node->fineTime;
293 291 }
294 292 else
295 293 {
296 294 if (keepMatrix == 1) // keep the matrix and add it to the average
297 295 {
298 296 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
299 297 }
300 298 else
301 299 {
302 300 // nothing to do, the matrix is not valid
303 301 }
304 302 }
305 303 }
306 304
307 305 if (keepMatrix == 1)
308 306 {
309 307 if ( (nbAverageNormF2 == 0) )
310 308 {
311 309 msgForMATR->numberOfSMInASMNORM = 1;
312 310 }
313 311 else
314 312 {
315 313 msgForMATR->numberOfSMInASMNORM++;
316 314 }
317 315 }
318 316 else
319 317 {
320 318 if ( (nbAverageNormF2 == 0) )
321 319 {
322 320 msgForMATR->numberOfSMInASMNORM = 0;
323 321 }
324 322 else
325 323 {
326 324 // nothing to do
327 325 }
328 326 }
329 327 }
330 328
331 329 void init_k_coefficients_prc2( void )
332 330 {
333 331 init_k_coefficients( k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2);
334 332 }
@@ -1,802 +1,802
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "fsw_processing.h"
11 11 #include "fsw_processing_globals.c"
12 12 #include "fsw_init.h"
13 13
14 unsigned int nb_sm_f0;
15 unsigned int nb_sm_f0_aux_f1;
16 unsigned int nb_sm_f1;
17 unsigned int nb_sm_f0_aux_f2;
14 unsigned int nb_sm_f0 = 0;
15 unsigned int nb_sm_f0_aux_f1= 0;
16 unsigned int nb_sm_f1 = 0;
17 unsigned int nb_sm_f0_aux_f2= 0;
18 18
19 19 typedef enum restartState_t
20 20 {
21 21 WAIT_FOR_F2,
22 22 WAIT_FOR_F1,
23 23 WAIT_FOR_F0
24 24 } restartState;
25 25
26 26 //************************
27 27 // spectral matrices rings
28 ring_node sm_ring_f0[ NB_RING_NODES_SM_F0 ];
29 ring_node sm_ring_f1[ NB_RING_NODES_SM_F1 ];
30 ring_node sm_ring_f2[ NB_RING_NODES_SM_F2 ];
31 ring_node *current_ring_node_sm_f0;
32 ring_node *current_ring_node_sm_f1;
33 ring_node *current_ring_node_sm_f2;
34 ring_node *ring_node_for_averaging_sm_f0;
35 ring_node *ring_node_for_averaging_sm_f1;
36 ring_node *ring_node_for_averaging_sm_f2;
28 ring_node sm_ring_f0[ NB_RING_NODES_SM_F0 ] = {0};
29 ring_node sm_ring_f1[ NB_RING_NODES_SM_F1 ] = {0};
30 ring_node sm_ring_f2[ NB_RING_NODES_SM_F2 ] = {0};
31 ring_node *current_ring_node_sm_f0 = NULL;
32 ring_node *current_ring_node_sm_f1 = NULL;
33 ring_node *current_ring_node_sm_f2 = NULL;
34 ring_node *ring_node_for_averaging_sm_f0= NULL;
35 ring_node *ring_node_for_averaging_sm_f1= NULL;
36 ring_node *ring_node_for_averaging_sm_f2= NULL;
37 37
38 38 //
39 39 ring_node * getRingNodeForAveraging( unsigned char frequencyChannel)
40 40 {
41 41 ring_node *node;
42 42
43 43 node = NULL;
44 44 switch ( frequencyChannel ) {
45 45 case CHANNELF0:
46 46 node = ring_node_for_averaging_sm_f0;
47 47 break;
48 48 case CHANNELF1:
49 49 node = ring_node_for_averaging_sm_f1;
50 50 break;
51 51 case CHANNELF2:
52 52 node = ring_node_for_averaging_sm_f2;
53 53 break;
54 54 default:
55 55 break;
56 56 }
57 57
58 58 return node;
59 59 }
60 60
61 61 //***********************************************************
62 62 // Interrupt Service Routine for spectral matrices processing
63 63
64 64 void spectral_matrices_isr_f0( int statusReg )
65 65 {
66 66 unsigned char status;
67 67 rtems_status_code status_code;
68 68 ring_node *full_ring_node;
69 69
70 70 status = (unsigned char) (statusReg & BITS_STATUS_F0); // [0011] get the status_ready_matrix_f0_x bits
71 71
72 72 switch(status)
73 73 {
74 74 case 0:
75 75 break;
76 76 case BIT_READY_0_1:
77 77 // UNEXPECTED VALUE
78 78 spectral_matrix_regs->status = BIT_READY_0_1; // [0011]
79 79 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
80 80 break;
81 81 case BIT_READY_0:
82 82 full_ring_node = current_ring_node_sm_f0->previous;
83 83 full_ring_node->coarseTime = spectral_matrix_regs->f0_0_coarse_time;
84 84 full_ring_node->fineTime = spectral_matrix_regs->f0_0_fine_time;
85 85 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
86 86 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
87 87 // if there are enough ring nodes ready, wake up an AVFx task
88 88 nb_sm_f0 = nb_sm_f0 + 1;
89 89 if (nb_sm_f0 == NB_SM_BEFORE_AVF0_F1)
90 90 {
91 91 ring_node_for_averaging_sm_f0 = full_ring_node;
92 92 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
93 93 {
94 94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
95 95 }
96 96 nb_sm_f0 = 0;
97 97 }
98 98 spectral_matrix_regs->status = BIT_READY_0; // [0000 0001]
99 99 break;
100 100 case BIT_READY_1:
101 101 full_ring_node = current_ring_node_sm_f0->previous;
102 102 full_ring_node->coarseTime = spectral_matrix_regs->f0_1_coarse_time;
103 103 full_ring_node->fineTime = spectral_matrix_regs->f0_1_fine_time;
104 104 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
105 105 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
106 106 // if there are enough ring nodes ready, wake up an AVFx task
107 107 nb_sm_f0 = nb_sm_f0 + 1;
108 108 if (nb_sm_f0 == NB_SM_BEFORE_AVF0_F1)
109 109 {
110 110 ring_node_for_averaging_sm_f0 = full_ring_node;
111 111 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
112 112 {
113 113 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
114 114 }
115 115 nb_sm_f0 = 0;
116 116 }
117 117 spectral_matrix_regs->status = BIT_READY_1; // [0000 0010]
118 118 break;
119 119 default:
120 120 break;
121 121 }
122 122 }
123 123
124 124 void spectral_matrices_isr_f1( int statusReg )
125 125 {
126 126 rtems_status_code status_code;
127 127 unsigned char status;
128 128 ring_node *full_ring_node;
129 129
130 130 status = (unsigned char) ((statusReg & BITS_STATUS_F1) >> SHIFT_2_BITS); // [1100] get the status_ready_matrix_f1_x bits
131 131
132 132 switch(status)
133 133 {
134 134 case 0:
135 135 break;
136 136 case BIT_READY_0_1:
137 137 // UNEXPECTED VALUE
138 138 spectral_matrix_regs->status = BITS_STATUS_F1; // [1100]
139 139 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
140 140 break;
141 141 case BIT_READY_0:
142 142 full_ring_node = current_ring_node_sm_f1->previous;
143 143 full_ring_node->coarseTime = spectral_matrix_regs->f1_0_coarse_time;
144 144 full_ring_node->fineTime = spectral_matrix_regs->f1_0_fine_time;
145 145 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
146 146 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
147 147 // if there are enough ring nodes ready, wake up an AVFx task
148 148 nb_sm_f1 = nb_sm_f1 + 1;
149 149 if (nb_sm_f1 == NB_SM_BEFORE_AVF0_F1)
150 150 {
151 151 ring_node_for_averaging_sm_f1 = full_ring_node;
152 152 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
153 153 {
154 154 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
155 155 }
156 156 nb_sm_f1 = 0;
157 157 }
158 158 spectral_matrix_regs->status = BIT_STATUS_F1_0; // [0000 0100]
159 159 break;
160 160 case BIT_READY_1:
161 161 full_ring_node = current_ring_node_sm_f1->previous;
162 162 full_ring_node->coarseTime = spectral_matrix_regs->f1_1_coarse_time;
163 163 full_ring_node->fineTime = spectral_matrix_regs->f1_1_fine_time;
164 164 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
165 165 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
166 166 // if there are enough ring nodes ready, wake up an AVFx task
167 167 nb_sm_f1 = nb_sm_f1 + 1;
168 168 if (nb_sm_f1 == NB_SM_BEFORE_AVF0_F1)
169 169 {
170 170 ring_node_for_averaging_sm_f1 = full_ring_node;
171 171 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
172 172 {
173 173 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
174 174 }
175 175 nb_sm_f1 = 0;
176 176 }
177 177 spectral_matrix_regs->status = BIT_STATUS_F1_1; // [1000 0000]
178 178 break;
179 179 default:
180 180 break;
181 181 }
182 182 }
183 183
184 184 void spectral_matrices_isr_f2( int statusReg )
185 185 {
186 186 unsigned char status;
187 187 rtems_status_code status_code;
188 188
189 189 status = (unsigned char) ((statusReg & BITS_STATUS_F2) >> SHIFT_4_BITS); // [0011 0000] get the status_ready_matrix_f2_x bits
190 190
191 191 switch(status)
192 192 {
193 193 case 0:
194 194 break;
195 195 case BIT_READY_0_1:
196 196 // UNEXPECTED VALUE
197 197 spectral_matrix_regs->status = BITS_STATUS_F2; // [0011 0000]
198 198 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
199 199 break;
200 200 case BIT_READY_0:
201 201 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
202 202 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
203 203 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_0_coarse_time;
204 204 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_0_fine_time;
205 205 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
206 206 spectral_matrix_regs->status = BIT_STATUS_F2_0; // [0001 0000]
207 207 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
208 208 {
209 209 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
210 210 }
211 211 break;
212 212 case BIT_READY_1:
213 213 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
214 214 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
215 215 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_1_coarse_time;
216 216 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_1_fine_time;
217 217 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
218 218 spectral_matrix_regs->status = BIT_STATUS_F2_1; // [0010 0000]
219 219 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
220 220 {
221 221 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
222 222 }
223 223 break;
224 224 default:
225 225 break;
226 226 }
227 227 }
228 228
229 229 void spectral_matrix_isr_error_handler( int statusReg )
230 230 {
231 231 // STATUS REGISTER
232 232 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
233 233 // 10 9 8
234 234 // buffer_full ** [bad_component_err] ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
235 235 // 7 6 5 4 3 2 1 0
236 236 // [bad_component_err] not defined in the last version of the VHDL code
237 237
238 238 rtems_status_code status_code;
239 239
240 240 //***************************************************
241 241 // the ASM status register is copied in the HK packet
242 242 housekeeping_packet.hk_lfr_vhdl_aa_sm = (unsigned char) ((statusReg & BITS_HK_AA_SM) >> SHIFT_7_BITS); // [0111 1000 0000]
243 243
244 244 if (statusReg & BITS_SM_ERR) // [0111 1100 0000]
245 245 {
246 246 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
247 247 }
248 248
249 249 spectral_matrix_regs->status = spectral_matrix_regs->status & BITS_SM_ERR;
250 250
251 251 }
252 252
253 253 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
254 254 {
255 255 // STATUS REGISTER
256 256 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
257 257 // 10 9 8
258 258 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
259 259 // 7 6 5 4 3 2 1 0
260 260
261 261 int statusReg;
262 262
263 263 static restartState state = WAIT_FOR_F2;
264 264
265 265 statusReg = spectral_matrix_regs->status;
266 266
267 267 if (thisIsAnASMRestart == 0)
268 268 { // this is not a restart sequence, process incoming matrices normally
269 269 spectral_matrices_isr_f0( statusReg );
270 270
271 271 spectral_matrices_isr_f1( statusReg );
272 272
273 273 spectral_matrices_isr_f2( statusReg );
274 274 }
275 275 else
276 276 { // a restart sequence has to be launched
277 277 switch (state) {
278 278 case WAIT_FOR_F2:
279 279 if ((statusReg & BITS_STATUS_F2) != INIT_CHAR) // [0011 0000] check the status_ready_matrix_f2_x bits
280 280 {
281 281 state = WAIT_FOR_F1;
282 282 }
283 283 break;
284 284 case WAIT_FOR_F1:
285 285 if ((statusReg & BITS_STATUS_F1) != INIT_CHAR) // [0000 1100] check the status_ready_matrix_f1_x bits
286 286 {
287 287 state = WAIT_FOR_F0;
288 288 }
289 289 break;
290 290 case WAIT_FOR_F0:
291 291 if ((statusReg & BITS_STATUS_F0) != INIT_CHAR) // [0000 0011] check the status_ready_matrix_f0_x bits
292 292 {
293 293 state = WAIT_FOR_F2;
294 294 thisIsAnASMRestart = 0;
295 295 }
296 296 break;
297 297 default:
298 298 break;
299 299 }
300 300 reset_sm_status();
301 301 }
302 302
303 303 spectral_matrix_isr_error_handler( statusReg );
304 304
305 305 }
306 306
307 307 //******************
308 308 // Spectral Matrices
309 309
310 310 void reset_nb_sm( void )
311 311 {
312 312 nb_sm_f0 = 0;
313 313 nb_sm_f0_aux_f1 = 0;
314 314 nb_sm_f0_aux_f2 = 0;
315 315
316 316 nb_sm_f1 = 0;
317 317 }
318 318
319 319 void SM_init_rings( void )
320 320 {
321 321 init_ring( sm_ring_f0, NB_RING_NODES_SM_F0, sm_f0, TOTAL_SIZE_SM );
322 322 init_ring( sm_ring_f1, NB_RING_NODES_SM_F1, sm_f1, TOTAL_SIZE_SM );
323 323 init_ring( sm_ring_f2, NB_RING_NODES_SM_F2, sm_f2, TOTAL_SIZE_SM );
324 324
325 325 DEBUG_PRINTF1("sm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
326 326 DEBUG_PRINTF1("sm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
327 327 DEBUG_PRINTF1("sm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
328 328 DEBUG_PRINTF1("sm_f0 @%x\n", (unsigned int) sm_f0)
329 329 DEBUG_PRINTF1("sm_f1 @%x\n", (unsigned int) sm_f1)
330 330 DEBUG_PRINTF1("sm_f2 @%x\n", (unsigned int) sm_f2)
331 331 }
332 332
333 333 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
334 334 {
335 335 unsigned char i;
336 336
337 337 ring[ nbNodes - 1 ].next
338 338 = (ring_node_asm*) &ring[ 0 ];
339 339
340 340 for(i=0; i<nbNodes-1; i++)
341 341 {
342 342 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
343 343 }
344 344 }
345 345
346 346 void SM_reset_current_ring_nodes( void )
347 347 {
348 348 current_ring_node_sm_f0 = sm_ring_f0[0].next;
349 349 current_ring_node_sm_f1 = sm_ring_f1[0].next;
350 350 current_ring_node_sm_f2 = sm_ring_f2[0].next;
351 351
352 352 ring_node_for_averaging_sm_f0 = NULL;
353 353 ring_node_for_averaging_sm_f1 = NULL;
354 354 ring_node_for_averaging_sm_f2 = NULL;
355 355 }
356 356
357 357 //*****************
358 358 // Basic Parameters
359 359
360 360 void BP_init_header( bp_packet *packet,
361 361 unsigned int apid, unsigned char sid,
362 362 unsigned int packetLength, unsigned char blkNr )
363 363 {
364 364 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
365 365 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
366 366 packet->reserved = INIT_CHAR;
367 367 packet->userApplication = CCSDS_USER_APP;
368 368 packet->packetID[0] = (unsigned char) (apid >> SHIFT_1_BYTE);
369 369 packet->packetID[1] = (unsigned char) (apid);
370 370 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
371 371 packet->packetSequenceControl[1] = INIT_CHAR;
372 372 packet->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
373 373 packet->packetLength[1] = (unsigned char) (packetLength);
374 374 // DATA FIELD HEADER
375 375 packet->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
376 376 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
377 377 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
378 378 packet->destinationID = TM_DESTINATION_ID_GROUND;
379 379 packet->time[BYTE_0] = INIT_CHAR;
380 380 packet->time[BYTE_1] = INIT_CHAR;
381 381 packet->time[BYTE_2] = INIT_CHAR;
382 382 packet->time[BYTE_3] = INIT_CHAR;
383 383 packet->time[BYTE_4] = INIT_CHAR;
384 384 packet->time[BYTE_5] = INIT_CHAR;
385 385 // AUXILIARY DATA HEADER
386 386 packet->sid = sid;
387 387 packet->pa_bia_status_info = INIT_CHAR;
388 388 packet->sy_lfr_common_parameters_spare = INIT_CHAR;
389 389 packet->sy_lfr_common_parameters = INIT_CHAR;
390 390 packet->acquisitionTime[BYTE_0] = INIT_CHAR;
391 391 packet->acquisitionTime[BYTE_1] = INIT_CHAR;
392 392 packet->acquisitionTime[BYTE_2] = INIT_CHAR;
393 393 packet->acquisitionTime[BYTE_3] = INIT_CHAR;
394 394 packet->acquisitionTime[BYTE_4] = INIT_CHAR;
395 395 packet->acquisitionTime[BYTE_5] = INIT_CHAR;
396 396 packet->pa_lfr_bp_blk_nr[0] = INIT_CHAR; // BLK_NR MSB
397 397 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
398 398 }
399 399
400 400 void BP_init_header_with_spare( bp_packet_with_spare *packet,
401 401 unsigned int apid, unsigned char sid,
402 402 unsigned int packetLength , unsigned char blkNr)
403 403 {
404 404 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
405 405 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
406 406 packet->reserved = INIT_CHAR;
407 407 packet->userApplication = CCSDS_USER_APP;
408 408 packet->packetID[0] = (unsigned char) (apid >> SHIFT_1_BYTE);
409 409 packet->packetID[1] = (unsigned char) (apid);
410 410 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
411 411 packet->packetSequenceControl[1] = INIT_CHAR;
412 412 packet->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
413 413 packet->packetLength[1] = (unsigned char) (packetLength);
414 414 // DATA FIELD HEADER
415 415 packet->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
416 416 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
417 417 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
418 418 packet->destinationID = TM_DESTINATION_ID_GROUND;
419 419 // AUXILIARY DATA HEADER
420 420 packet->sid = sid;
421 421 packet->pa_bia_status_info = INIT_CHAR;
422 422 packet->sy_lfr_common_parameters_spare = INIT_CHAR;
423 423 packet->sy_lfr_common_parameters = INIT_CHAR;
424 424 packet->time[BYTE_0] = INIT_CHAR;
425 425 packet->time[BYTE_1] = INIT_CHAR;
426 426 packet->time[BYTE_2] = INIT_CHAR;
427 427 packet->time[BYTE_3] = INIT_CHAR;
428 428 packet->time[BYTE_4] = INIT_CHAR;
429 429 packet->time[BYTE_5] = INIT_CHAR;
430 430 packet->source_data_spare = INIT_CHAR;
431 431 packet->pa_lfr_bp_blk_nr[0] = INIT_CHAR; // BLK_NR MSB
432 432 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
433 433 }
434 434
435 435 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
436 436 {
437 437 rtems_status_code status;
438 438
439 439 // SEND PACKET
440 440 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
441 441 if (status != RTEMS_SUCCESSFUL)
442 442 {
443 443 PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
444 444 }
445 445 }
446 446
447 447 void BP_send_s1_s2(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
448 448 {
449 449 /** This function is used to send the BP paquets when needed.
450 450 *
451 451 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
452 452 *
453 453 * @return void
454 454 *
455 455 * SBM1 and SBM2 paquets are sent depending on the type of the LFR mode transition.
456 456 * BURST paquets are sent everytime.
457 457 *
458 458 */
459 459
460 460 rtems_status_code status;
461 461
462 462 // SEND PACKET
463 463 // before lastValidTransitionDate, the data are drops even if they are ready
464 464 // this guarantees that no SBM packets will be received before the requested enter mode time
465 465 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
466 466 {
467 467 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
468 468 if (status != RTEMS_SUCCESSFUL)
469 469 {
470 470 PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
471 471 }
472 472 }
473 473 }
474 474
475 475 //******************
476 476 // general functions
477 477
478 478 void reset_sm_status( void )
479 479 {
480 480 // error
481 481 // 10 --------------- 9 ---------------- 8 ---------------- 7 ---------
482 482 // input_fif0_write_2 input_fifo_write_1 input_fifo_write_0 buffer_full
483 483 // ---------- 5 -- 4 -- 3 -- 2 -- 1 -- 0 --
484 484 // ready bits f2_1 f2_0 f1_1 f1_1 f0_1 f0_0
485 485
486 486 spectral_matrix_regs->status = BITS_STATUS_REG; // [0111 1111 1111]
487 487 }
488 488
489 489 void reset_spectral_matrix_regs( void )
490 490 {
491 491 /** This function resets the spectral matrices module registers.
492 492 *
493 493 * The registers affected by this function are located at the following offset addresses:
494 494 *
495 495 * - 0x00 config
496 496 * - 0x04 status
497 497 * - 0x08 matrixF0_Address0
498 498 * - 0x10 matrixFO_Address1
499 499 * - 0x14 matrixF1_Address
500 500 * - 0x18 matrixF2_Address
501 501 *
502 502 */
503 503
504 504 set_sm_irq_onError( 0 );
505 505
506 506 set_sm_irq_onNewMatrix( 0 );
507 507
508 508 reset_sm_status();
509 509
510 510 // F1
511 511 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
512 512 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
513 513 // F2
514 514 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
515 515 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
516 516 // F3
517 517 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
518 518 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
519 519
520 520 spectral_matrix_regs->matrix_length = DEFAULT_MATRIX_LENGTH; // 25 * 128 / 16 = 200 = 0xc8
521 521 }
522 522
523 523 void set_time( unsigned char *time, unsigned char * timeInBuffer )
524 524 {
525 525 time[BYTE_0] = timeInBuffer[BYTE_0];
526 526 time[BYTE_1] = timeInBuffer[BYTE_1];
527 527 time[BYTE_2] = timeInBuffer[BYTE_2];
528 528 time[BYTE_3] = timeInBuffer[BYTE_3];
529 529 time[BYTE_4] = timeInBuffer[BYTE_6];
530 530 time[BYTE_5] = timeInBuffer[BYTE_7];
531 531 }
532 532
533 533 unsigned long long int get_acquisition_time( unsigned char *timePtr )
534 534 {
535 535 unsigned long long int acquisitionTimeAslong;
536 536 acquisitionTimeAslong = INIT_CHAR;
537 537 acquisitionTimeAslong =
538 538 ( (unsigned long long int) (timePtr[BYTE_0] & SYNC_BIT_MASK) << SHIFT_5_BYTES ) // [0111 1111] mask the synchronization bit
539 539 + ( (unsigned long long int) timePtr[BYTE_1] << SHIFT_4_BYTES )
540 540 + ( (unsigned long long int) timePtr[BYTE_2] << SHIFT_3_BYTES )
541 541 + ( (unsigned long long int) timePtr[BYTE_3] << SHIFT_2_BYTES )
542 542 + ( (unsigned long long int) timePtr[BYTE_6] << SHIFT_1_BYTE )
543 543 + ( (unsigned long long int) timePtr[BYTE_7] );
544 544 return acquisitionTimeAslong;
545 545 }
546 546
547 547 unsigned char getSID( rtems_event_set event )
548 548 {
549 549 unsigned char sid;
550 550
551 551 rtems_event_set eventSetBURST;
552 552 rtems_event_set eventSetSBM;
553 553
554 554 sid = 0;
555 555
556 556 //******
557 557 // BURST
558 558 eventSetBURST = RTEMS_EVENT_BURST_BP1_F0
559 559 | RTEMS_EVENT_BURST_BP1_F1
560 560 | RTEMS_EVENT_BURST_BP2_F0
561 561 | RTEMS_EVENT_BURST_BP2_F1;
562 562
563 563 //****
564 564 // SBM
565 565 eventSetSBM = RTEMS_EVENT_SBM_BP1_F0
566 566 | RTEMS_EVENT_SBM_BP1_F1
567 567 | RTEMS_EVENT_SBM_BP2_F0
568 568 | RTEMS_EVENT_SBM_BP2_F1;
569 569
570 570 if (event & eventSetBURST)
571 571 {
572 572 sid = SID_BURST_BP1_F0;
573 573 }
574 574 else if (event & eventSetSBM)
575 575 {
576 576 sid = SID_SBM1_BP1_F0;
577 577 }
578 578 else
579 579 {
580 580 sid = 0;
581 581 }
582 582
583 583 return sid;
584 584 }
585 585
586 586 void extractReImVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
587 587 {
588 588 unsigned int i;
589 589 float re;
590 590 float im;
591 591
592 592 for (i=0; i<NB_BINS_PER_SM; i++){
593 593 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + (i * SM_BYTES_PER_VAL) ];
594 594 im = inputASM[ (asmComponent*NB_BINS_PER_SM) + (i * SM_BYTES_PER_VAL) + 1];
595 595 outputASM[ ( asmComponent *NB_BINS_PER_SM) + i] = re;
596 596 outputASM[ ((asmComponent+1)*NB_BINS_PER_SM) + i] = im;
597 597 }
598 598 }
599 599
600 600 void copyReVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
601 601 {
602 602 unsigned int i;
603 603 float re;
604 604
605 605 for (i=0; i<NB_BINS_PER_SM; i++){
606 606 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + i];
607 607 outputASM[ (asmComponent*NB_BINS_PER_SM) + i] = re;
608 608 }
609 609 }
610 610
611 611 void ASM_patch( float *inputASM, float *outputASM )
612 612 {
613 613 extractReImVectors( inputASM, outputASM, ASM_COMP_B1B2); // b1b2
614 614 extractReImVectors( inputASM, outputASM, ASM_COMP_B1B3 ); // b1b3
615 615 extractReImVectors( inputASM, outputASM, ASM_COMP_B1E1 ); // b1e1
616 616 extractReImVectors( inputASM, outputASM, ASM_COMP_B1E2 ); // b1e2
617 617 extractReImVectors( inputASM, outputASM, ASM_COMP_B2B3 ); // b2b3
618 618 extractReImVectors( inputASM, outputASM, ASM_COMP_B2E1 ); // b2e1
619 619 extractReImVectors( inputASM, outputASM, ASM_COMP_B2E2 ); // b2e2
620 620 extractReImVectors( inputASM, outputASM, ASM_COMP_B3E1 ); // b3e1
621 621 extractReImVectors( inputASM, outputASM, ASM_COMP_B3E2 ); // b3e2
622 622 extractReImVectors( inputASM, outputASM, ASM_COMP_E1E2 ); // e1e2
623 623
624 624 copyReVectors(inputASM, outputASM, ASM_COMP_B1B1 ); // b1b1
625 625 copyReVectors(inputASM, outputASM, ASM_COMP_B2B2 ); // b2b2
626 626 copyReVectors(inputASM, outputASM, ASM_COMP_B3B3); // b3b3
627 627 copyReVectors(inputASM, outputASM, ASM_COMP_E1E1); // e1e1
628 628 copyReVectors(inputASM, outputASM, ASM_COMP_E2E2); // e2e2
629 629 }
630 630
631 631 void ASM_compress_reorganize_and_divide_mask(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
632 632 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage,
633 633 unsigned char ASMIndexStart,
634 634 unsigned char channel )
635 635 {
636 636 //*************
637 637 // input format
638 638 // component0[0 .. 127] component1[0 .. 127] .. component24[0 .. 127]
639 639 //**************
640 640 // output format
641 641 // matr0[0 .. 24] matr1[0 .. 24] .. matr127[0 .. 24]
642 642 //************
643 643 // compression
644 644 // matr0[0 .. 24] matr1[0 .. 24] .. matr11[0 .. 24] => f0 NORM
645 645 // matr0[0 .. 24] matr1[0 .. 24] .. matr22[0 .. 24] => f0 BURST, SBM
646 646
647 647 int frequencyBin;
648 648 int asmComponent;
649 649 int offsetASM;
650 650 int offsetCompressed;
651 651 int offsetFBin;
652 652 int fBinMask;
653 653 int k;
654 654
655 655 // BUILD DATA
656 656 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
657 657 {
658 658 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
659 659 {
660 660 offsetCompressed = // NO TIME OFFSET
661 661 (frequencyBin * NB_VALUES_PER_SM)
662 662 + asmComponent;
663 663 offsetASM = // NO TIME OFFSET
664 664 (asmComponent * NB_BINS_PER_SM)
665 665 + ASMIndexStart
666 666 + (frequencyBin * nbBinsToAverage);
667 667 offsetFBin = ASMIndexStart
668 668 + (frequencyBin * nbBinsToAverage);
669 669 compressed_spec_mat[ offsetCompressed ] = 0;
670 670 for ( k = 0; k < nbBinsToAverage; k++ )
671 671 {
672 672 fBinMask = getFBinMask( offsetFBin + k, channel );
673 673 compressed_spec_mat[offsetCompressed ] = compressed_spec_mat[ offsetCompressed ]
674 674 + (averaged_spec_mat[ offsetASM + k ] * fBinMask);
675 675 }
676 676 if (divider != 0)
677 677 {
678 678 compressed_spec_mat[ offsetCompressed ] = compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
679 679 }
680 680 else
681 681 {
682 682 compressed_spec_mat[ offsetCompressed ] = INIT_FLOAT;
683 683 }
684 684 }
685 685 }
686 686
687 687 }
688 688
689 689 int getFBinMask( int index, unsigned char channel )
690 690 {
691 691 unsigned int indexInChar;
692 692 unsigned int indexInTheChar;
693 693 int fbin;
694 694 unsigned char *sy_lfr_fbins_fx_word1;
695 695
696 696 sy_lfr_fbins_fx_word1 = parameter_dump_packet.sy_lfr_fbins.fx.f0_word1;
697 697
698 698 switch(channel)
699 699 {
700 700 case CHANNELF0:
701 701 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f0;
702 702 break;
703 703 case CHANNELF1:
704 704 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f1;
705 705 break;
706 706 case CHANNELF2:
707 707 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f2;
708 708 break;
709 709 default:
710 710 PRINTF("ERR *** in getFBinMask, wrong frequency channel")
711 711 }
712 712
713 713 indexInChar = index >> SHIFT_3_BITS;
714 714 indexInTheChar = index - (indexInChar * BITS_PER_BYTE);
715 715
716 716 fbin = (int) ((sy_lfr_fbins_fx_word1[ BYTES_PER_MASK - 1 - indexInChar] >> indexInTheChar) & 1);
717 717
718 718 return fbin;
719 719 }
720 720
721 721 unsigned char acquisitionTimeIsValid( unsigned int coarseTime, unsigned int fineTime, unsigned char channel)
722 722 {
723 723 u_int64_t acquisitionTime;
724 724 u_int64_t timecodeReference;
725 725 u_int64_t offsetInFineTime;
726 726 u_int64_t shiftInFineTime;
727 727 u_int64_t tBadInFineTime;
728 728 u_int64_t acquisitionTimeRangeMin;
729 729 u_int64_t acquisitionTimeRangeMax;
730 730 unsigned char pasFilteringIsEnabled;
731 731 unsigned char ret;
732 732
733 733 pasFilteringIsEnabled = (filterPar.spare_sy_lfr_pas_filter_enabled & 1); // [0000 0001]
734 734 ret = 1;
735 735
736 736 // compute acquisition time from caoarseTime and fineTime
737 737 acquisitionTime = ( ((u_int64_t)coarseTime) << SHIFT_2_BYTES )
738 738 + (u_int64_t) fineTime;
739 739
740 740 // compute the timecode reference
741 741 timecodeReference = (u_int64_t) ( (floor( ((double) coarseTime) / ((double) filterPar.sy_lfr_pas_filter_modulus) )
742 742 * ((double) filterPar.sy_lfr_pas_filter_modulus)) * CONST_65536 );
743 743
744 744 // compute the acquitionTime range
745 745 offsetInFineTime = ((double) filterPar.sy_lfr_pas_filter_offset) * CONST_65536;
746 746 shiftInFineTime = ((double) filterPar.sy_lfr_pas_filter_shift) * CONST_65536;
747 747 tBadInFineTime = ((double) filterPar.sy_lfr_pas_filter_tbad) * CONST_65536;
748 748
749 749 acquisitionTimeRangeMin =
750 750 timecodeReference
751 751 + offsetInFineTime
752 752 + shiftInFineTime
753 753 - acquisitionDurations[channel];
754 754 acquisitionTimeRangeMax =
755 755 timecodeReference
756 756 + offsetInFineTime
757 757 + shiftInFineTime
758 758 + tBadInFineTime;
759 759
760 760 if ( (acquisitionTime >= acquisitionTimeRangeMin)
761 761 && (acquisitionTime <= acquisitionTimeRangeMax)
762 762 && (pasFilteringIsEnabled == 1) )
763 763 {
764 764 ret = 0; // the acquisition time is INSIDE the range, the matrix shall be ignored
765 765 }
766 766 else
767 767 {
768 768 ret = 1; // the acquisition time is OUTSIDE the range, the matrix can be used for the averaging
769 769 }
770 770
771 771 // printf("coarseTime = %x, fineTime = %x\n",
772 772 // coarseTime,
773 773 // fineTime);
774 774
775 775 // printf("[ret = %d] *** acquisitionTime = %f, Reference = %f",
776 776 // ret,
777 777 // acquisitionTime / 65536.,
778 778 // timecodeReference / 65536.);
779 779
780 780 // printf(", Min = %f, Max = %f\n",
781 781 // acquisitionTimeRangeMin / 65536.,
782 782 // acquisitionTimeRangeMax / 65536.);
783 783
784 784 return ret;
785 785 }
786 786
787 787 void init_kcoeff_sbm_from_kcoeff_norm(float *input_kcoeff, float *output_kcoeff, unsigned char nb_bins_norm)
788 788 {
789 789 unsigned char bin;
790 790 unsigned char kcoeff;
791 791
792 792 for (bin=0; bin<nb_bins_norm; bin++)
793 793 {
794 794 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
795 795 {
796 796 output_kcoeff[ ( ( bin * NB_K_COEFF_PER_BIN ) + kcoeff ) * SBM_COEFF_PER_NORM_COEFF ]
797 797 = input_kcoeff[ (bin*NB_K_COEFF_PER_BIN) + kcoeff ];
798 798 output_kcoeff[ ( ( bin * NB_K_COEFF_PER_BIN ) + kcoeff ) * SBM_COEFF_PER_NORM_COEFF + 1 ]
799 799 = input_kcoeff[ (bin*NB_K_COEFF_PER_BIN) + kcoeff ];
800 800 }
801 801 }
802 802 }
@@ -1,481 +1,481
1 1 /** Functions related to TeleCommand acceptance.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands parsing.\n
7 7 *
8 8 */
9 9
10 10 #include "tc_acceptance.h"
11 11 #include <stdio.h>
12 12
13 unsigned int lookUpTableForCRC[CONST_256];
13 unsigned int lookUpTableForCRC[CONST_256] = {0};
14 14
15 15 //**********************
16 16 // GENERAL USE FUNCTIONS
17 17 unsigned int Crc_opt( unsigned char D, unsigned int Chk)
18 18 {
19 19 /** This function generate the CRC for one byte and returns the value of the new syndrome.
20 20 *
21 21 * @param D is the current byte of data.
22 22 * @param Chk is the current syndrom value.
23 23 *
24 24 * @return the value of the new syndrome on two bytes.
25 25 *
26 26 */
27 27
28 28 return(((Chk << SHIFT_1_BYTE) & BYTE0_MASK)^lookUpTableForCRC [(((Chk >> SHIFT_1_BYTE)^D) & BYTE1_MASK)]);
29 29 }
30 30
31 31 void initLookUpTableForCRC( void )
32 32 {
33 33 /** This function is used to initiates the look-up table for fast CRC computation.
34 34 *
35 35 * The global table lookUpTableForCRC[256] is initiated.
36 36 *
37 37 */
38 38
39 39 unsigned int i;
40 40 unsigned int tmp;
41 41
42 42 for (i=0; i<CONST_256; i++)
43 43 {
44 44 tmp = 0;
45 45 if((i & BIT_0) != 0) {
46 46 tmp = tmp ^ CONST_CRC_0;
47 47 }
48 48 if((i & BIT_1) != 0) {
49 49 tmp = tmp ^ CONST_CRC_1;
50 50 }
51 51 if((i & BIT_2) != 0) {
52 52 tmp = tmp ^ CONST_CRC_2;
53 53 }
54 54 if((i & BIT_3) != 0) {
55 55 tmp = tmp ^ CONST_CRC_3;
56 56 }
57 57 if((i & BIT_4) != 0) {
58 58 tmp = tmp ^ CONST_CRC_4;
59 59 }
60 60 if((i & BIT_5) != 0) {
61 61 tmp = tmp ^ CONST_CRC_5;
62 62 }
63 63 if((i & BIT_6) != 0) {
64 64 tmp = tmp ^ CONST_CRC_6;
65 65 }
66 66 if((i & BIT_7) != 0) {
67 67 tmp = tmp ^ CONST_CRC_7;
68 68 }
69 69 lookUpTableForCRC[i] = tmp;
70 70 }
71 71 }
72 72
73 73 void GetCRCAsTwoBytes(unsigned char* data, unsigned char* crcAsTwoBytes, unsigned int sizeOfData)
74 74 {
75 75 /** This function calculates a two bytes Cyclic Redundancy Code.
76 76 *
77 77 * @param data points to a buffer containing the data on which to compute the CRC.
78 78 * @param crcAsTwoBytes points points to a two bytes buffer in which the CRC is stored.
79 79 * @param sizeOfData is the number of bytes of *data* used to compute the CRC.
80 80 *
81 81 * The specification of the Cyclic Redundancy Code is described in the following document: ECSS-E-70-41-A.
82 82 *
83 83 */
84 84
85 85 unsigned int Chk;
86 86 int j;
87 87 Chk = CRC_RESET; // reset the syndrom to all ones
88 88 for (j=0; j<sizeOfData; j++) {
89 89 Chk = Crc_opt(data[j], Chk);
90 90 }
91 91 crcAsTwoBytes[0] = (unsigned char) (Chk >> SHIFT_1_BYTE);
92 92 crcAsTwoBytes[1] = (unsigned char) (Chk & BYTE1_MASK);
93 93 }
94 94
95 95 //*********************
96 96 // ACCEPTANCE FUNCTIONS
97 97 int tc_parser(ccsdsTelecommandPacket_t * TCPacket, unsigned int estimatedPacketLength, unsigned char *computed_CRC)
98 98 {
99 99 /** This function parses TeleCommands.
100 100 *
101 101 * @param TC points to the TeleCommand that will be parsed.
102 102 * @param estimatedPacketLength is the PACKET_LENGTH field calculated from the effective length of the received packet.
103 103 *
104 104 * @return Status code of the parsing.
105 105 *
106 106 * The parsing checks:
107 107 * - process id
108 108 * - category
109 109 * - length: a global check is performed and a per subtype check also
110 110 * - type
111 111 * - subtype
112 112 * - crc
113 113 *
114 114 */
115 115
116 116 int status;
117 117 int status_crc;
118 118 unsigned char pid;
119 119 unsigned char category;
120 120 unsigned int packetLength;
121 121 unsigned char packetType;
122 122 unsigned char packetSubtype;
123 123 unsigned char sid;
124 124
125 125 status = CCSDS_TM_VALID;
126 126
127 127 // APID check *** APID on 2 bytes
128 128 pid = ((TCPacket->packetID[0] & BITS_PID_0) << SHIFT_4_BITS)
129 129 + ( (TCPacket->packetID[1] >> SHIFT_4_BITS) & BITS_PID_1 ); // PID = 11 *** 7 bits xxxxx210 7654xxxx
130 130 category = (TCPacket->packetID[1] & BITS_CAT); // PACKET_CATEGORY = 12 *** 4 bits xxxxxxxx xxxx3210
131 131 packetLength = (TCPacket->packetLength[0] * CONST_256) + TCPacket->packetLength[1];
132 132 packetType = TCPacket->serviceType;
133 133 packetSubtype = TCPacket->serviceSubType;
134 134 sid = TCPacket->sourceID;
135 135
136 136 if ( pid != CCSDS_PROCESS_ID ) // CHECK THE PROCESS ID
137 137 {
138 138 status = ILLEGAL_APID;
139 139 }
140 140 if (status == CCSDS_TM_VALID) // CHECK THE CATEGORY
141 141 {
142 142 if ( category != CCSDS_PACKET_CATEGORY )
143 143 {
144 144 status = ILLEGAL_APID;
145 145 }
146 146 }
147 147 if (status == CCSDS_TM_VALID) // CHECK THE PACKET_LENGTH FIELD AND THE ESTIMATED PACKET_LENGTH COMPLIANCE
148 148 {
149 149 if (packetLength != estimatedPacketLength ) {
150 150 status = WRONG_LEN_PKT;
151 151 }
152 152 }
153 153 if (status == CCSDS_TM_VALID) // CHECK THAT THE PACKET DOES NOT EXCEED THE MAX SIZE
154 154 {
155 155 if ( packetLength > CCSDS_TC_PKT_MAX_SIZE ) {
156 156 status = WRONG_LEN_PKT;
157 157 }
158 158 }
159 159 if (status == CCSDS_TM_VALID) // CHECK THE TYPE
160 160 {
161 161 status = tc_check_type( packetType );
162 162 }
163 163 if (status == CCSDS_TM_VALID) // CHECK THE SUBTYPE
164 164 {
165 165 status = tc_check_type_subtype( packetType, packetSubtype );
166 166 }
167 167 if (status == CCSDS_TM_VALID) // CHECK THE SID
168 168 {
169 169 status = tc_check_sid( sid );
170 170 }
171 171 if (status == CCSDS_TM_VALID) // CHECK THE SUBTYPE AND LENGTH COMPLIANCE
172 172 {
173 173 status = tc_check_length( packetSubtype, packetLength );
174 174 }
175 175 status_crc = tc_check_crc( TCPacket, estimatedPacketLength, computed_CRC );
176 176 if (status == CCSDS_TM_VALID ) // CHECK CRC
177 177 {
178 178 status = status_crc;
179 179 }
180 180
181 181 return status;
182 182 }
183 183
184 184 int tc_check_type( unsigned char packetType )
185 185 {
186 186 /** This function checks that the type of a TeleCommand is valid.
187 187 *
188 188 * @param packetType is the type to check.
189 189 *
190 190 * @return Status code CCSDS_TM_VALID or ILL_TYPE.
191 191 *
192 192 */
193 193
194 194 int status;
195 195
196 196 status = ILL_TYPE;
197 197
198 198 if ( (packetType == TC_TYPE_GEN) || (packetType == TC_TYPE_TIME))
199 199 {
200 200 status = CCSDS_TM_VALID;
201 201 }
202 202 else
203 203 {
204 204 status = ILL_TYPE;
205 205 }
206 206
207 207 return status;
208 208 }
209 209
210 210 int tc_check_type_subtype( unsigned char packetType, unsigned char packetSubType )
211 211 {
212 212 /** This function checks that the subtype of a TeleCommand is valid and coherent with the type.
213 213 *
214 214 * @param packetType is the type of the TC.
215 215 * @param packetSubType is the subtype to check.
216 216 *
217 217 * @return Status code CCSDS_TM_VALID or ILL_SUBTYPE.
218 218 *
219 219 */
220 220
221 221 int status;
222 222
223 223 switch(packetType)
224 224 {
225 225 case TC_TYPE_GEN:
226 226 if ( (packetSubType == TC_SUBTYPE_RESET)
227 227 || (packetSubType == TC_SUBTYPE_LOAD_COMM)
228 228 || (packetSubType == TC_SUBTYPE_LOAD_NORM) || (packetSubType == TC_SUBTYPE_LOAD_BURST)
229 229 || (packetSubType == TC_SUBTYPE_LOAD_SBM1) || (packetSubType == TC_SUBTYPE_LOAD_SBM2)
230 230 || (packetSubType == TC_SUBTYPE_DUMP)
231 231 || (packetSubType == TC_SUBTYPE_ENTER)
232 232 || (packetSubType == TC_SUBTYPE_UPDT_INFO)
233 233 || (packetSubType == TC_SUBTYPE_EN_CAL) || (packetSubType == TC_SUBTYPE_DIS_CAL)
234 234 || (packetSubType == TC_SUBTYPE_LOAD_K) || (packetSubType == TC_SUBTYPE_DUMP_K)
235 235 || (packetSubType == TC_SUBTYPE_LOAD_FBINS)
236 236 || (packetSubType == TC_SUBTYPE_LOAD_FILTER_PAR))
237 237 {
238 238 status = CCSDS_TM_VALID;
239 239 }
240 240 else
241 241 {
242 242 status = ILL_SUBTYPE;
243 243 }
244 244 break;
245 245
246 246 case TC_TYPE_TIME:
247 247 if (packetSubType == TC_SUBTYPE_UPDT_TIME)
248 248 {
249 249 status = CCSDS_TM_VALID;
250 250 }
251 251 else
252 252 {
253 253 status = ILL_SUBTYPE;
254 254 }
255 255 break;
256 256
257 257 default:
258 258 status = ILL_SUBTYPE;
259 259 break;
260 260 }
261 261
262 262 return status;
263 263 }
264 264
265 265 int tc_check_sid( unsigned char sid )
266 266 {
267 267 /** This function checks that the sid of a TeleCommand is valid.
268 268 *
269 269 * @param sid is the sid to check.
270 270 *
271 271 * @return Status code CCSDS_TM_VALID or CORRUPTED.
272 272 *
273 273 */
274 274
275 275 int status;
276 276
277 277 status = WRONG_SRC_ID;
278 278
279 279 if ( (sid == SID_TC_MISSION_TIMELINE) || (sid == SID_TC_TC_SEQUENCES) || (sid == SID_TC_RECOVERY_ACTION_CMD)
280 280 || (sid == SID_TC_BACKUP_MISSION_TIMELINE)
281 281 || (sid == SID_TC_DIRECT_CMD) || (sid == SID_TC_SPARE_GRD_SRC1) || (sid == SID_TC_SPARE_GRD_SRC2)
282 282 || (sid == SID_TC_OBCP) || (sid == SID_TC_SYSTEM_CONTROL) || (sid == SID_TC_AOCS)
283 283 || (sid == SID_TC_RPW_INTERNAL))
284 284 {
285 285 status = CCSDS_TM_VALID;
286 286 }
287 287 else
288 288 {
289 289 status = WRONG_SRC_ID;
290 290 }
291 291
292 292 return status;
293 293 }
294 294
295 295 int tc_check_length( unsigned char packetSubType, unsigned int length )
296 296 {
297 297 /** This function checks that the subtype and the length are compliant.
298 298 *
299 299 * @param packetSubType is the subtype to check.
300 300 * @param length is the length to check.
301 301 *
302 302 * @return Status code CCSDS_TM_VALID or ILL_TYPE.
303 303 *
304 304 */
305 305
306 306 int status;
307 307
308 308 status = LFR_SUCCESSFUL;
309 309
310 310 switch(packetSubType)
311 311 {
312 312 case TC_SUBTYPE_RESET:
313 313 if (length!=(TC_LEN_RESET-CCSDS_TC_TM_PACKET_OFFSET)) {
314 314 status = WRONG_LEN_PKT;
315 315 }
316 316 else {
317 317 status = CCSDS_TM_VALID;
318 318 }
319 319 break;
320 320 case TC_SUBTYPE_LOAD_COMM:
321 321 if (length!=(TC_LEN_LOAD_COMM-CCSDS_TC_TM_PACKET_OFFSET)) {
322 322 status = WRONG_LEN_PKT;
323 323 }
324 324 else {
325 325 status = CCSDS_TM_VALID;
326 326 }
327 327 break;
328 328 case TC_SUBTYPE_LOAD_NORM:
329 329 if (length!=(TC_LEN_LOAD_NORM-CCSDS_TC_TM_PACKET_OFFSET)) {
330 330 status = WRONG_LEN_PKT;
331 331 }
332 332 else {
333 333 status = CCSDS_TM_VALID;
334 334 }
335 335 break;
336 336 case TC_SUBTYPE_LOAD_BURST:
337 337 if (length!=(TC_LEN_LOAD_BURST-CCSDS_TC_TM_PACKET_OFFSET)) {
338 338 status = WRONG_LEN_PKT;
339 339 }
340 340 else {
341 341 status = CCSDS_TM_VALID;
342 342 }
343 343 break;
344 344 case TC_SUBTYPE_LOAD_SBM1:
345 345 if (length!=(TC_LEN_LOAD_SBM1-CCSDS_TC_TM_PACKET_OFFSET)) {
346 346 status = WRONG_LEN_PKT;
347 347 }
348 348 else {
349 349 status = CCSDS_TM_VALID;
350 350 }
351 351 break;
352 352 case TC_SUBTYPE_LOAD_SBM2:
353 353 if (length!=(TC_LEN_LOAD_SBM2-CCSDS_TC_TM_PACKET_OFFSET)) {
354 354 status = WRONG_LEN_PKT;
355 355 }
356 356 else {
357 357 status = CCSDS_TM_VALID;
358 358 }
359 359 break;
360 360 case TC_SUBTYPE_DUMP:
361 361 if (length!=(TC_LEN_DUMP-CCSDS_TC_TM_PACKET_OFFSET)) {
362 362 status = WRONG_LEN_PKT;
363 363 }
364 364 else {
365 365 status = CCSDS_TM_VALID;
366 366 }
367 367 break;
368 368 case TC_SUBTYPE_ENTER:
369 369 if (length!=(TC_LEN_ENTER-CCSDS_TC_TM_PACKET_OFFSET)) {
370 370 status = WRONG_LEN_PKT;
371 371 }
372 372 else {
373 373 status = CCSDS_TM_VALID;
374 374 }
375 375 break;
376 376 case TC_SUBTYPE_UPDT_INFO:
377 377 if (length!=(TC_LEN_UPDT_INFO-CCSDS_TC_TM_PACKET_OFFSET)) {
378 378 status = WRONG_LEN_PKT;
379 379 }
380 380 else {
381 381 status = CCSDS_TM_VALID;
382 382 }
383 383 break;
384 384 case TC_SUBTYPE_EN_CAL:
385 385 if (length!=(TC_LEN_EN_CAL-CCSDS_TC_TM_PACKET_OFFSET)) {
386 386 status = WRONG_LEN_PKT;
387 387 }
388 388 else {
389 389 status = CCSDS_TM_VALID;
390 390 }
391 391 break;
392 392 case TC_SUBTYPE_DIS_CAL:
393 393 if (length!=(TC_LEN_DIS_CAL-CCSDS_TC_TM_PACKET_OFFSET)) {
394 394 status = WRONG_LEN_PKT;
395 395 }
396 396 else {
397 397 status = CCSDS_TM_VALID;
398 398 }
399 399 break;
400 400 case TC_SUBTYPE_LOAD_K:
401 401 if (length!=(TC_LEN_LOAD_K-CCSDS_TC_TM_PACKET_OFFSET)) {
402 402 status = WRONG_LEN_PKT;
403 403 }
404 404 else {
405 405 status = CCSDS_TM_VALID;
406 406 }
407 407 break;
408 408 case TC_SUBTYPE_DUMP_K:
409 409 if (length!=(TC_LEN_DUMP_K-CCSDS_TC_TM_PACKET_OFFSET)) {
410 410 status = WRONG_LEN_PKT;
411 411 }
412 412 else {
413 413 status = CCSDS_TM_VALID;
414 414 }
415 415 break;
416 416 case TC_SUBTYPE_LOAD_FBINS:
417 417 if (length!=(TC_LEN_LOAD_FBINS-CCSDS_TC_TM_PACKET_OFFSET)) {
418 418 status = WRONG_LEN_PKT;
419 419 }
420 420 else {
421 421 status = CCSDS_TM_VALID;
422 422 }
423 423 break;
424 424 case TC_SUBTYPE_LOAD_FILTER_PAR:
425 425 if (length!=(TC_LEN_LOAD_FILTER_PAR-CCSDS_TC_TM_PACKET_OFFSET)) {
426 426 status = WRONG_LEN_PKT;
427 427 }
428 428 else {
429 429 status = CCSDS_TM_VALID;
430 430 }
431 431 break;
432 432 case TC_SUBTYPE_UPDT_TIME:
433 433 if (length!=(TC_LEN_UPDT_TIME-CCSDS_TC_TM_PACKET_OFFSET)) {
434 434 status = WRONG_LEN_PKT;
435 435 }
436 436 else {
437 437 status = CCSDS_TM_VALID;
438 438 }
439 439 break;
440 440 default: // if the subtype is not a legal value, return ILL_SUBTYPE
441 441 status = ILL_SUBTYPE;
442 442 break ;
443 443 }
444 444
445 445 return status;
446 446 }
447 447
448 448 int tc_check_crc( ccsdsTelecommandPacket_t * TCPacket, unsigned int length, unsigned char *computed_CRC )
449 449 {
450 450 /** This function checks the CRC validity of the corresponding TeleCommand packet.
451 451 *
452 452 * @param TCPacket points to the TeleCommand packet to check.
453 453 * @param length is the length of the TC packet.
454 454 *
455 455 * @return Status code CCSDS_TM_VALID or INCOR_CHECKSUM.
456 456 *
457 457 */
458 458
459 459 int status;
460 460 unsigned char * CCSDSContent;
461 461
462 462 status = INCOR_CHECKSUM;
463 463
464 464 CCSDSContent = (unsigned char*) TCPacket->packetID;
465 465 GetCRCAsTwoBytes(CCSDSContent, computed_CRC, length + CCSDS_TC_TM_PACKET_OFFSET - BYTES_PER_CRC); // 2 CRC bytes removed from the calculation of the CRC
466 466
467 467 if (computed_CRC[0] != CCSDSContent[length + CCSDS_TC_TM_PACKET_OFFSET - BYTES_PER_CRC]) {
468 468 status = INCOR_CHECKSUM;
469 469 }
470 470 else if (computed_CRC[1] != CCSDSContent[length + CCSDS_TC_TM_PACKET_OFFSET -1]) {
471 471 status = INCOR_CHECKSUM;
472 472 }
473 473 else {
474 474 status = CCSDS_TM_VALID;
475 475 }
476 476
477 477 return status;
478 478 }
479 479
480 480
481 481
@@ -1,1657 +1,1657
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
19 ring_node kcoefficient_node_1;
20 ring_node kcoefficient_node_2;
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1 = {0};
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2 = {0};
19 ring_node kcoefficient_node_1 = {0};
20 ring_node kcoefficient_node_2 = {0};
21 21
22 22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 23 {
24 24 /** This function updates the LFR registers with the incoming common parameters.
25 25 *
26 26 * @param TC points to the TeleCommand packet that is being processed
27 27 *
28 28 *
29 29 */
30 30
31 31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 33 set_wfp_data_shaping( );
34 34 return LFR_SUCCESSFUL;
35 35 }
36 36
37 37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 38 {
39 39 /** This function updates the LFR registers with the incoming normal parameters.
40 40 *
41 41 * @param TC points to the TeleCommand packet that is being processed
42 42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 43 *
44 44 */
45 45
46 46 int result;
47 47 int flag;
48 48 rtems_status_code status;
49 49
50 50 flag = LFR_SUCCESSFUL;
51 51
52 52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 55 flag = LFR_DEFAULT;
56 56 }
57 57
58 58 // CHECK THE PARAMETERS SET CONSISTENCY
59 59 if (flag == LFR_SUCCESSFUL)
60 60 {
61 61 flag = check_normal_par_consistency( TC, queue_id );
62 62 }
63 63
64 64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_l( TC );
68 68 result = set_sy_lfr_n_swf_p( TC );
69 69 result = set_sy_lfr_n_bp_p0( TC );
70 70 result = set_sy_lfr_n_bp_p1( TC );
71 71 result = set_sy_lfr_n_asm_p( TC );
72 72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 73 }
74 74
75 75 return flag;
76 76 }
77 77
78 78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 79 {
80 80 /** This function updates the LFR registers with the incoming burst parameters.
81 81 *
82 82 * @param TC points to the TeleCommand packet that is being processed
83 83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 84 *
85 85 */
86 86
87 87 int flag;
88 88 rtems_status_code status;
89 89 unsigned char sy_lfr_b_bp_p0;
90 90 unsigned char sy_lfr_b_bp_p1;
91 91 float aux;
92 92
93 93 flag = LFR_SUCCESSFUL;
94 94
95 95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 97 flag = LFR_DEFAULT;
98 98 }
99 99
100 100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102 102
103 103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 104 if (flag == LFR_SUCCESSFUL)
105 105 {
106 106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 107 {
108 108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
109 109 flag = WRONG_APP_DATA;
110 110 }
111 111 }
112 112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 113 if (flag == LFR_SUCCESSFUL)
114 114 {
115 115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 116 {
117 117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
118 118 flag = WRONG_APP_DATA;
119 119 }
120 120 }
121 121 //****************************************************************
122 122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 123 if (flag == LFR_SUCCESSFUL)
124 124 {
125 125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 128 if (aux > FLOAT_EQUAL_ZERO)
129 129 {
130 130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
131 131 flag = LFR_DEFAULT;
132 132 }
133 133 }
134 134
135 135 // SET THE PARAMETERS
136 136 if (flag == LFR_SUCCESSFUL)
137 137 {
138 138 flag = set_sy_lfr_b_bp_p0( TC );
139 139 flag = set_sy_lfr_b_bp_p1( TC );
140 140 }
141 141
142 142 return flag;
143 143 }
144 144
145 145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 146 {
147 147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 148 *
149 149 * @param TC points to the TeleCommand packet that is being processed
150 150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 151 *
152 152 */
153 153
154 154 int flag;
155 155 rtems_status_code status;
156 156 unsigned char sy_lfr_s1_bp_p0;
157 157 unsigned char sy_lfr_s1_bp_p1;
158 158 float aux;
159 159
160 160 flag = LFR_SUCCESSFUL;
161 161
162 162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 164 flag = LFR_DEFAULT;
165 165 }
166 166
167 167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169 169
170 170 // sy_lfr_s1_bp_p0
171 171 if (flag == LFR_SUCCESSFUL)
172 172 {
173 173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 174 {
175 175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
176 176 flag = WRONG_APP_DATA;
177 177 }
178 178 }
179 179 // sy_lfr_s1_bp_p1
180 180 if (flag == LFR_SUCCESSFUL)
181 181 {
182 182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 183 {
184 184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
185 185 flag = WRONG_APP_DATA;
186 186 }
187 187 }
188 188 //******************************************************************
189 189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 190 if (flag == LFR_SUCCESSFUL)
191 191 {
192 192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
193 193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
194 194 if (aux > FLOAT_EQUAL_ZERO)
195 195 {
196 196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
197 197 flag = LFR_DEFAULT;
198 198 }
199 199 }
200 200
201 201 // SET THE PARAMETERS
202 202 if (flag == LFR_SUCCESSFUL)
203 203 {
204 204 flag = set_sy_lfr_s1_bp_p0( TC );
205 205 flag = set_sy_lfr_s1_bp_p1( TC );
206 206 }
207 207
208 208 return flag;
209 209 }
210 210
211 211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
212 212 {
213 213 /** This function updates the LFR registers with the incoming sbm2 parameters.
214 214 *
215 215 * @param TC points to the TeleCommand packet that is being processed
216 216 * @param queue_id is the id of the queue which handles TM related to this execution step
217 217 *
218 218 */
219 219
220 220 int flag;
221 221 rtems_status_code status;
222 222 unsigned char sy_lfr_s2_bp_p0;
223 223 unsigned char sy_lfr_s2_bp_p1;
224 224 float aux;
225 225
226 226 flag = LFR_SUCCESSFUL;
227 227
228 228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
229 229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
230 230 flag = LFR_DEFAULT;
231 231 }
232 232
233 233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
234 234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
235 235
236 236 // sy_lfr_s2_bp_p0
237 237 if (flag == LFR_SUCCESSFUL)
238 238 {
239 239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
240 240 {
241 241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
242 242 flag = WRONG_APP_DATA;
243 243 }
244 244 }
245 245 // sy_lfr_s2_bp_p1
246 246 if (flag == LFR_SUCCESSFUL)
247 247 {
248 248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
249 249 {
250 250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
251 251 flag = WRONG_APP_DATA;
252 252 }
253 253 }
254 254 //******************************************************************
255 255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
256 256 if (flag == LFR_SUCCESSFUL)
257 257 {
258 258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
259 259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
260 260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
261 261 if (aux > FLOAT_EQUAL_ZERO)
262 262 {
263 263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
264 264 flag = LFR_DEFAULT;
265 265 }
266 266 }
267 267
268 268 // SET THE PARAMETERS
269 269 if (flag == LFR_SUCCESSFUL)
270 270 {
271 271 flag = set_sy_lfr_s2_bp_p0( TC );
272 272 flag = set_sy_lfr_s2_bp_p1( TC );
273 273 }
274 274
275 275 return flag;
276 276 }
277 277
278 278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 279 {
280 280 /** This function updates the LFR registers with the incoming sbm2 parameters.
281 281 *
282 282 * @param TC points to the TeleCommand packet that is being processed
283 283 * @param queue_id is the id of the queue which handles TM related to this execution step
284 284 *
285 285 */
286 286
287 287 int flag;
288 288
289 289 flag = LFR_DEFAULT;
290 290
291 291 flag = set_sy_lfr_kcoeff( TC, queue_id );
292 292
293 293 return flag;
294 294 }
295 295
296 296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
297 297 {
298 298 /** This function updates the LFR registers with the incoming sbm2 parameters.
299 299 *
300 300 * @param TC points to the TeleCommand packet that is being processed
301 301 * @param queue_id is the id of the queue which handles TM related to this execution step
302 302 *
303 303 */
304 304
305 305 int flag;
306 306
307 307 flag = LFR_DEFAULT;
308 308
309 309 flag = set_sy_lfr_fbins( TC );
310 310
311 311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
312 312 merge_fbins_masks();
313 313
314 314 return flag;
315 315 }
316 316
317 317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
318 318 {
319 319 /** This function updates the LFR registers with the incoming sbm2 parameters.
320 320 *
321 321 * @param TC points to the TeleCommand packet that is being processed
322 322 * @param queue_id is the id of the queue which handles TM related to this execution step
323 323 *
324 324 */
325 325
326 326 int flag;
327 327
328 328 flag = LFR_DEFAULT;
329 329
330 330 flag = check_sy_lfr_filter_parameters( TC, queue_id );
331 331
332 332 if (flag == LFR_SUCCESSFUL)
333 333 {
334 334 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
335 335 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
336 336 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
337 337 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
338 338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
339 339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
340 340 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
341 341 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
342 342 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
343 343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
344 344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
345 345 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
346 346 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
347 347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
348 348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
349 349
350 350 //****************************
351 351 // store PAS filter parameters
352 352 // sy_lfr_pas_filter_enabled
353 353 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
354 354 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
355 355 // sy_lfr_pas_filter_modulus
356 356 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
357 357 // sy_lfr_pas_filter_tbad
358 358 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
359 359 parameter_dump_packet.sy_lfr_pas_filter_tbad );
360 360 // sy_lfr_pas_filter_offset
361 361 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
362 362 // sy_lfr_pas_filter_shift
363 363 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
364 364 parameter_dump_packet.sy_lfr_pas_filter_shift );
365 365
366 366 //****************************************************
367 367 // store the parameter sy_lfr_sc_rw_delta_f as a float
368 368 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
369 369 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
370 370 }
371 371
372 372 return flag;
373 373 }
374 374
375 375 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
376 376 {
377 377 /** This function updates the LFR registers with the incoming sbm2 parameters.
378 378 *
379 379 * @param TC points to the TeleCommand packet that is being processed
380 380 * @param queue_id is the id of the queue which handles TM related to this execution step
381 381 *
382 382 */
383 383
384 384 unsigned int address;
385 385 rtems_status_code status;
386 386 unsigned int freq;
387 387 unsigned int bin;
388 388 unsigned int coeff;
389 389 unsigned char *kCoeffPtr;
390 390 unsigned char *kCoeffDumpPtr;
391 391
392 392 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
393 393 // F0 => 11 bins
394 394 // F1 => 13 bins
395 395 // F2 => 12 bins
396 396 // 36 bins to dump in two packets (30 bins max per packet)
397 397
398 398 //*********
399 399 // PACKET 1
400 400 // 11 F0 bins, 13 F1 bins and 6 F2 bins
401 401 kcoefficients_dump_1.destinationID = TC->sourceID;
402 402 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
403 403 for( freq = 0;
404 404 freq < NB_BINS_COMPRESSED_SM_F0;
405 405 freq++ )
406 406 {
407 407 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
408 408 bin = freq;
409 409 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
410 410 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
411 411 {
412 412 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
413 413 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
414 414 ]; // 2 for the kcoeff_frequency
415 415 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
416 416 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
417 417 }
418 418 }
419 419 for( freq = NB_BINS_COMPRESSED_SM_F0;
420 420 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
421 421 freq++ )
422 422 {
423 423 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
424 424 bin = freq - NB_BINS_COMPRESSED_SM_F0;
425 425 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
426 426 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
427 427 {
428 428 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
429 429 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
430 430 ]; // 2 for the kcoeff_frequency
431 431 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
432 432 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
433 433 }
434 434 }
435 435 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
436 436 freq < KCOEFF_BLK_NR_PKT1 ;
437 437 freq++ )
438 438 {
439 439 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
440 440 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
441 441 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
442 442 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
443 443 {
444 444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
445 445 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
446 446 ]; // 2 for the kcoeff_frequency
447 447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
448 448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
449 449 }
450 450 }
451 451 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
452 452 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
453 453 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
454 454 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
455 455 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
456 456 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
457 457 // SEND DATA
458 458 kcoefficient_node_1.status = 1;
459 459 address = (unsigned int) &kcoefficient_node_1;
460 460 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
461 461 if (status != RTEMS_SUCCESSFUL) {
462 462 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
463 463 }
464 464
465 465 //********
466 466 // PACKET 2
467 467 // 6 F2 bins
468 468 kcoefficients_dump_2.destinationID = TC->sourceID;
469 469 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
470 470 for( freq = 0;
471 471 freq < KCOEFF_BLK_NR_PKT2;
472 472 freq++ )
473 473 {
474 474 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
475 475 bin = freq + KCOEFF_BLK_NR_PKT2;
476 476 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
477 477 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
478 478 {
479 479 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
480 480 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
481 481 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
482 482 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
483 483 }
484 484 }
485 485 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
486 486 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
487 487 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
488 488 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
489 489 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
490 490 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
491 491 // SEND DATA
492 492 kcoefficient_node_2.status = 1;
493 493 address = (unsigned int) &kcoefficient_node_2;
494 494 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
495 495 if (status != RTEMS_SUCCESSFUL) {
496 496 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
497 497 }
498 498
499 499 return status;
500 500 }
501 501
502 502 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
503 503 {
504 504 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
505 505 *
506 506 * @param queue_id is the id of the queue which handles TM related to this execution step.
507 507 *
508 508 * @return RTEMS directive status codes:
509 509 * - RTEMS_SUCCESSFUL - message sent successfully
510 510 * - RTEMS_INVALID_ID - invalid queue id
511 511 * - RTEMS_INVALID_SIZE - invalid message size
512 512 * - RTEMS_INVALID_ADDRESS - buffer is NULL
513 513 * - RTEMS_UNSATISFIED - out of message buffers
514 514 * - RTEMS_TOO_MANY - queue s limit has been reached
515 515 *
516 516 */
517 517
518 518 int status;
519 519
520 520 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
521 521 parameter_dump_packet.destinationID = TC->sourceID;
522 522
523 523 // UPDATE TIME
524 524 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
525 525 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
526 526 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
527 527 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
528 528 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
529 529 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
530 530 // SEND DATA
531 531 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
532 532 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
533 533 if (status != RTEMS_SUCCESSFUL) {
534 534 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
535 535 }
536 536
537 537 return status;
538 538 }
539 539
540 540 //***********************
541 541 // NORMAL MODE PARAMETERS
542 542
543 543 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
544 544 {
545 545 unsigned char msb;
546 546 unsigned char lsb;
547 547 int flag;
548 548 float aux;
549 549 rtems_status_code status;
550 550
551 551 unsigned int sy_lfr_n_swf_l;
552 552 unsigned int sy_lfr_n_swf_p;
553 553 unsigned int sy_lfr_n_asm_p;
554 554 unsigned char sy_lfr_n_bp_p0;
555 555 unsigned char sy_lfr_n_bp_p1;
556 556 unsigned char sy_lfr_n_cwf_long_f3;
557 557
558 558 flag = LFR_SUCCESSFUL;
559 559
560 560 //***************
561 561 // get parameters
562 562 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
563 563 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
564 564 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
565 565
566 566 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
567 567 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
568 568 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
569 569
570 570 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
571 571 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
572 572 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
573 573
574 574 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
575 575
576 576 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
577 577
578 578 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
579 579
580 580 //******************
581 581 // check consistency
582 582 // sy_lfr_n_swf_l
583 583 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
584 584 {
585 585 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
586 586 flag = WRONG_APP_DATA;
587 587 }
588 588 // sy_lfr_n_swf_p
589 589 if (flag == LFR_SUCCESSFUL)
590 590 {
591 591 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
592 592 {
593 593 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
594 594 flag = WRONG_APP_DATA;
595 595 }
596 596 }
597 597 // sy_lfr_n_bp_p0
598 598 if (flag == LFR_SUCCESSFUL)
599 599 {
600 600 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
601 601 {
602 602 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
603 603 flag = WRONG_APP_DATA;
604 604 }
605 605 }
606 606 // sy_lfr_n_asm_p
607 607 if (flag == LFR_SUCCESSFUL)
608 608 {
609 609 if (sy_lfr_n_asm_p == 0)
610 610 {
611 611 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
612 612 flag = WRONG_APP_DATA;
613 613 }
614 614 }
615 615 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
616 616 if (flag == LFR_SUCCESSFUL)
617 617 {
618 618 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
619 619 if (aux > FLOAT_EQUAL_ZERO)
620 620 {
621 621 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
622 622 flag = WRONG_APP_DATA;
623 623 }
624 624 }
625 625 // sy_lfr_n_bp_p1
626 626 if (flag == LFR_SUCCESSFUL)
627 627 {
628 628 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
629 629 {
630 630 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
631 631 flag = WRONG_APP_DATA;
632 632 }
633 633 }
634 634 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
635 635 if (flag == LFR_SUCCESSFUL)
636 636 {
637 637 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
638 638 if (aux > FLOAT_EQUAL_ZERO)
639 639 {
640 640 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
641 641 flag = LFR_DEFAULT;
642 642 }
643 643 }
644 644 // sy_lfr_n_cwf_long_f3
645 645
646 646 return flag;
647 647 }
648 648
649 649 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
650 650 {
651 651 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
652 652 *
653 653 * @param TC points to the TeleCommand packet that is being processed
654 654 * @param queue_id is the id of the queue which handles TM related to this execution step
655 655 *
656 656 */
657 657
658 658 int result;
659 659
660 660 result = LFR_SUCCESSFUL;
661 661
662 662 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
663 663 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
664 664
665 665 return result;
666 666 }
667 667
668 668 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
669 669 {
670 670 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
671 671 *
672 672 * @param TC points to the TeleCommand packet that is being processed
673 673 * @param queue_id is the id of the queue which handles TM related to this execution step
674 674 *
675 675 */
676 676
677 677 int result;
678 678
679 679 result = LFR_SUCCESSFUL;
680 680
681 681 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
682 682 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
683 683
684 684 return result;
685 685 }
686 686
687 687 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
688 688 {
689 689 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
690 690 *
691 691 * @param TC points to the TeleCommand packet that is being processed
692 692 * @param queue_id is the id of the queue which handles TM related to this execution step
693 693 *
694 694 */
695 695
696 696 int result;
697 697
698 698 result = LFR_SUCCESSFUL;
699 699
700 700 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
701 701 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
702 702
703 703 return result;
704 704 }
705 705
706 706 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
707 707 {
708 708 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
709 709 *
710 710 * @param TC points to the TeleCommand packet that is being processed
711 711 * @param queue_id is the id of the queue which handles TM related to this execution step
712 712 *
713 713 */
714 714
715 715 int status;
716 716
717 717 status = LFR_SUCCESSFUL;
718 718
719 719 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
720 720
721 721 return status;
722 722 }
723 723
724 724 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
725 725 {
726 726 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
727 727 *
728 728 * @param TC points to the TeleCommand packet that is being processed
729 729 * @param queue_id is the id of the queue which handles TM related to this execution step
730 730 *
731 731 */
732 732
733 733 int status;
734 734
735 735 status = LFR_SUCCESSFUL;
736 736
737 737 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
738 738
739 739 return status;
740 740 }
741 741
742 742 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
743 743 {
744 744 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
745 745 *
746 746 * @param TC points to the TeleCommand packet that is being processed
747 747 * @param queue_id is the id of the queue which handles TM related to this execution step
748 748 *
749 749 */
750 750
751 751 int status;
752 752
753 753 status = LFR_SUCCESSFUL;
754 754
755 755 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
756 756
757 757 return status;
758 758 }
759 759
760 760 //**********************
761 761 // BURST MODE PARAMETERS
762 762 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
763 763 {
764 764 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
765 765 *
766 766 * @param TC points to the TeleCommand packet that is being processed
767 767 * @param queue_id is the id of the queue which handles TM related to this execution step
768 768 *
769 769 */
770 770
771 771 int status;
772 772
773 773 status = LFR_SUCCESSFUL;
774 774
775 775 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
776 776
777 777 return status;
778 778 }
779 779
780 780 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
781 781 {
782 782 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
783 783 *
784 784 * @param TC points to the TeleCommand packet that is being processed
785 785 * @param queue_id is the id of the queue which handles TM related to this execution step
786 786 *
787 787 */
788 788
789 789 int status;
790 790
791 791 status = LFR_SUCCESSFUL;
792 792
793 793 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
794 794
795 795 return status;
796 796 }
797 797
798 798 //*********************
799 799 // SBM1 MODE PARAMETERS
800 800 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
801 801 {
802 802 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
803 803 *
804 804 * @param TC points to the TeleCommand packet that is being processed
805 805 * @param queue_id is the id of the queue which handles TM related to this execution step
806 806 *
807 807 */
808 808
809 809 int status;
810 810
811 811 status = LFR_SUCCESSFUL;
812 812
813 813 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
814 814
815 815 return status;
816 816 }
817 817
818 818 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
819 819 {
820 820 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
821 821 *
822 822 * @param TC points to the TeleCommand packet that is being processed
823 823 * @param queue_id is the id of the queue which handles TM related to this execution step
824 824 *
825 825 */
826 826
827 827 int status;
828 828
829 829 status = LFR_SUCCESSFUL;
830 830
831 831 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
832 832
833 833 return status;
834 834 }
835 835
836 836 //*********************
837 837 // SBM2 MODE PARAMETERS
838 838 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
839 839 {
840 840 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
841 841 *
842 842 * @param TC points to the TeleCommand packet that is being processed
843 843 * @param queue_id is the id of the queue which handles TM related to this execution step
844 844 *
845 845 */
846 846
847 847 int status;
848 848
849 849 status = LFR_SUCCESSFUL;
850 850
851 851 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
852 852
853 853 return status;
854 854 }
855 855
856 856 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
857 857 {
858 858 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
859 859 *
860 860 * @param TC points to the TeleCommand packet that is being processed
861 861 * @param queue_id is the id of the queue which handles TM related to this execution step
862 862 *
863 863 */
864 864
865 865 int status;
866 866
867 867 status = LFR_SUCCESSFUL;
868 868
869 869 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
870 870
871 871 return status;
872 872 }
873 873
874 874 //*******************
875 875 // TC_LFR_UPDATE_INFO
876 876 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
877 877 {
878 878 unsigned int status;
879 879
880 880 status = LFR_DEFAULT;
881 881
882 882 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
883 883 || (mode == LFR_MODE_BURST)
884 884 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
885 885 {
886 886 status = LFR_SUCCESSFUL;
887 887 }
888 888 else
889 889 {
890 890 status = LFR_DEFAULT;
891 891 }
892 892
893 893 return status;
894 894 }
895 895
896 896 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
897 897 {
898 898 unsigned int status;
899 899
900 900 status = LFR_DEFAULT;
901 901
902 902 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
903 903 || (mode == TDS_MODE_BURST)
904 904 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
905 905 || (mode == TDS_MODE_LFM))
906 906 {
907 907 status = LFR_SUCCESSFUL;
908 908 }
909 909 else
910 910 {
911 911 status = LFR_DEFAULT;
912 912 }
913 913
914 914 return status;
915 915 }
916 916
917 917 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
918 918 {
919 919 unsigned int status;
920 920
921 921 status = LFR_DEFAULT;
922 922
923 923 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
924 924 || (mode == THR_MODE_BURST))
925 925 {
926 926 status = LFR_SUCCESSFUL;
927 927 }
928 928 else
929 929 {
930 930 status = LFR_DEFAULT;
931 931 }
932 932
933 933 return status;
934 934 }
935 935
936 936 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
937 937 {
938 938 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
939 939 *
940 940 * @param TC points to the TeleCommand packet that is being processed
941 941 *
942 942 */
943 943
944 944 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
945 945
946 946 bytePosPtr = (unsigned char *) &TC->packetID;
947 947
948 948 // cp_rpw_sc_rw1_f1
949 949 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f1,
950 950 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
951 951
952 952 // cp_rpw_sc_rw1_f2
953 953 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f2,
954 954 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
955 955
956 956 // cp_rpw_sc_rw2_f1
957 957 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f1,
958 958 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
959 959
960 960 // cp_rpw_sc_rw2_f2
961 961 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f2,
962 962 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
963 963
964 964 // cp_rpw_sc_rw3_f1
965 965 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f1,
966 966 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
967 967
968 968 // cp_rpw_sc_rw3_f2
969 969 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f2,
970 970 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
971 971
972 972 // cp_rpw_sc_rw4_f1
973 973 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f1,
974 974 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
975 975
976 976 // cp_rpw_sc_rw4_f2
977 977 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f2,
978 978 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
979 979 }
980 980
981 981 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag )
982 982 {
983 983 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
984 984 *
985 985 * @param fbins_mask
986 986 * @param rw_f is the reaction wheel frequency to filter
987 987 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
988 988 * @param flag [true] filtering enabled [false] filtering disabled
989 989 *
990 990 * @return void
991 991 *
992 992 */
993 993
994 994 float f_RW_min;
995 995 float f_RW_MAX;
996 996 float fi_min;
997 997 float fi_MAX;
998 998 float fi;
999 999 float deltaBelow;
1000 1000 float deltaAbove;
1001 1001 int binBelow;
1002 1002 int binAbove;
1003 1003 int closestBin;
1004 1004 unsigned int whichByte;
1005 1005 int selectedByte;
1006 1006 int bin;
1007 1007 int binToRemove[NB_BINS_TO_REMOVE];
1008 1008 int k;
1009 1009
1010 1010 closestBin = 0;
1011 1011 whichByte = 0;
1012 1012 bin = 0;
1013 1013
1014 1014 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1015 1015 {
1016 1016 binToRemove[k] = -1;
1017 1017 }
1018 1018
1019 1019 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
1020 1020 f_RW_min = rw_f - (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1021 1021 f_RW_MAX = rw_f + (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1022 1022
1023 1023 // compute the index of the frequency bin immediately below rw_f
1024 1024 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1025 1025 deltaBelow = rw_f - binBelow * deltaFreq;
1026 1026
1027 1027 // compute the index of the frequency bin immediately above rw_f
1028 1028 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1029 1029 deltaAbove = binAbove * deltaFreq - rw_f;
1030 1030
1031 1031 // search the closest bin
1032 1032 if (deltaAbove > deltaBelow)
1033 1033 {
1034 1034 closestBin = binBelow;
1035 1035 }
1036 1036 else
1037 1037 {
1038 1038 closestBin = binAbove;
1039 1039 }
1040 1040
1041 1041 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1042 1042 fi = closestBin * deltaFreq;
1043 1043 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1044 1044 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1045 1045
1046 1046 //**************************************************************************************
1047 1047 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1048 1048 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1049 1049 //**************************************************************************************
1050 1050
1051 1051 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1052 1052 // => remove f_(i), f_(i-1) and f_(i+1)
1053 1053 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1054 1054 {
1055 1055 binToRemove[0] = (closestBin - 1) - 1;
1056 1056 binToRemove[1] = (closestBin) - 1;
1057 1057 binToRemove[2] = (closestBin + 1) - 1;
1058 1058 }
1059 1059 // 2. ELSE
1060 1060 // => remove the two f_(i) which are around f_RW
1061 1061 else
1062 1062 {
1063 1063 binToRemove[0] = (binBelow) - 1;
1064 1064 binToRemove[1] = (binAbove) - 1;
1065 1065 binToRemove[2] = (-1);
1066 1066 }
1067 1067
1068 1068 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1069 1069 {
1070 1070 bin = binToRemove[k];
1071 1071 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1072 1072 {
1073 1073 if (flag == 1)
1074 1074 {
1075 1075 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1076 1076 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1077 1077 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1078 1078 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1079 1079 }
1080 1080 }
1081 1081 }
1082 1082 }
1083 1083
1084 1084 void build_sy_lfr_rw_mask( unsigned int channel )
1085 1085 {
1086 1086 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1087 1087 unsigned char *maskPtr;
1088 1088 double deltaF;
1089 1089 unsigned k;
1090 1090
1091 1091 k = 0;
1092 1092
1093 1093 maskPtr = NULL;
1094 1094 deltaF = DELTAF_F2;
1095 1095
1096 1096 switch (channel)
1097 1097 {
1098 1098 case CHANNELF0:
1099 1099 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f0_word1;
1100 1100 deltaF = DELTAF_F0;
1101 1101 break;
1102 1102 case CHANNELF1:
1103 1103 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f1_word1;
1104 1104 deltaF = DELTAF_F1;
1105 1105 break;
1106 1106 case CHANNELF2:
1107 1107 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f2_word1;
1108 1108 deltaF = DELTAF_F2;
1109 1109 break;
1110 1110 default:
1111 1111 break;
1112 1112 }
1113 1113
1114 1114 for (k = 0; k < BYTES_PER_MASK; k++)
1115 1115 {
1116 1116 local_rw_fbins_mask[k] = INT8_ALL_F;
1117 1117 }
1118 1118
1119 1119 // RW1 F1
1120 1120 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F1) >> SHIFT_7_BITS ); // [1000 0000]
1121 1121
1122 1122 // RW1 F2
1123 1123 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F2) >> SHIFT_6_BITS ); // [0100 0000]
1124 1124
1125 1125 // RW2 F1
1126 1126 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F1) >> SHIFT_5_BITS ); // [0010 0000]
1127 1127
1128 1128 // RW2 F2
1129 1129 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F2) >> SHIFT_4_BITS ); // [0001 0000]
1130 1130
1131 1131 // RW3 F1
1132 1132 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F1) >> SHIFT_3_BITS ); // [0000 1000]
1133 1133
1134 1134 // RW3 F2
1135 1135 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F2) >> SHIFT_2_BITS ); // [0000 0100]
1136 1136
1137 1137 // RW4 F1
1138 1138 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F1) >> 1 ); // [0000 0010]
1139 1139
1140 1140 // RW4 F2
1141 1141 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F2) ); // [0000 0001]
1142 1142
1143 1143 // update the value of the fbins related to reaction wheels frequency filtering
1144 1144 if (maskPtr != NULL)
1145 1145 {
1146 1146 for (k = 0; k < BYTES_PER_MASK; k++)
1147 1147 {
1148 1148 maskPtr[k] = local_rw_fbins_mask[k];
1149 1149 }
1150 1150 }
1151 1151 }
1152 1152
1153 1153 void build_sy_lfr_rw_masks( void )
1154 1154 {
1155 1155 build_sy_lfr_rw_mask( CHANNELF0 );
1156 1156 build_sy_lfr_rw_mask( CHANNELF1 );
1157 1157 build_sy_lfr_rw_mask( CHANNELF2 );
1158 1158 }
1159 1159
1160 1160 void merge_fbins_masks( void )
1161 1161 {
1162 1162 unsigned char k;
1163 1163
1164 1164 unsigned char *fbins_f0;
1165 1165 unsigned char *fbins_f1;
1166 1166 unsigned char *fbins_f2;
1167 1167 unsigned char *rw_mask_f0;
1168 1168 unsigned char *rw_mask_f1;
1169 1169 unsigned char *rw_mask_f2;
1170 1170
1171 1171 fbins_f0 = parameter_dump_packet.sy_lfr_fbins.fx.f0_word1;
1172 1172 fbins_f1 = parameter_dump_packet.sy_lfr_fbins.fx.f1_word1;
1173 1173 fbins_f2 = parameter_dump_packet.sy_lfr_fbins.fx.f2_word1;
1174 1174 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask.fx.f0_word1;
1175 1175 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask.fx.f1_word1;
1176 1176 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask.fx.f2_word1;
1177 1177
1178 1178 for( k=0; k < BYTES_PER_MASK; k++ )
1179 1179 {
1180 1180 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1181 1181 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1182 1182 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1183 1183 }
1184 1184 }
1185 1185
1186 1186 //***********
1187 1187 // FBINS MASK
1188 1188
1189 1189 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1190 1190 {
1191 1191 int status;
1192 1192 unsigned int k;
1193 1193 unsigned char *fbins_mask_dump;
1194 1194 unsigned char *fbins_mask_TC;
1195 1195
1196 1196 status = LFR_SUCCESSFUL;
1197 1197
1198 1198 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins.raw;
1199 1199 fbins_mask_TC = TC->dataAndCRC;
1200 1200
1201 1201 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1202 1202 {
1203 1203 fbins_mask_dump[k] = fbins_mask_TC[k];
1204 1204 }
1205 1205
1206 1206 return status;
1207 1207 }
1208 1208
1209 1209 //***************************
1210 1210 // TC_LFR_LOAD_PAS_FILTER_PAR
1211 1211
1212 1212 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1213 1213 {
1214 1214 int flag;
1215 1215 rtems_status_code status;
1216 1216
1217 1217 unsigned char sy_lfr_pas_filter_enabled;
1218 1218 unsigned char sy_lfr_pas_filter_modulus;
1219 1219 float sy_lfr_pas_filter_tbad;
1220 1220 unsigned char sy_lfr_pas_filter_offset;
1221 1221 float sy_lfr_pas_filter_shift;
1222 1222 float sy_lfr_sc_rw_delta_f;
1223 1223 char *parPtr;
1224 1224
1225 1225 flag = LFR_SUCCESSFUL;
1226 1226 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1227 1227 sy_lfr_pas_filter_shift = INIT_FLOAT;
1228 1228 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1229 1229 parPtr = NULL;
1230 1230
1231 1231 //***************
1232 1232 // get parameters
1233 1233 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1234 1234 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1235 1235 copyFloatByChar(
1236 1236 (unsigned char*) &sy_lfr_pas_filter_tbad,
1237 1237 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1238 1238 );
1239 1239 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1240 1240 copyFloatByChar(
1241 1241 (unsigned char*) &sy_lfr_pas_filter_shift,
1242 1242 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1243 1243 );
1244 1244 copyFloatByChar(
1245 1245 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1246 1246 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1247 1247 );
1248 1248
1249 1249 //******************
1250 1250 // CHECK CONSISTENCY
1251 1251
1252 1252 //**************************
1253 1253 // sy_lfr_pas_filter_enabled
1254 1254 // nothing to check, value is 0 or 1
1255 1255
1256 1256 //**************************
1257 1257 // sy_lfr_pas_filter_modulus
1258 1258 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1259 1259 {
1260 1260 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1261 1261 flag = WRONG_APP_DATA;
1262 1262 }
1263 1263
1264 1264 //***********************
1265 1265 // sy_lfr_pas_filter_tbad
1266 1266 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1267 1267 {
1268 1268 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1269 1269 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1270 1270 flag = WRONG_APP_DATA;
1271 1271 }
1272 1272
1273 1273 //*************************
1274 1274 // sy_lfr_pas_filter_offset
1275 1275 if (flag == LFR_SUCCESSFUL)
1276 1276 {
1277 1277 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1278 1278 {
1279 1279 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1280 1280 flag = WRONG_APP_DATA;
1281 1281 }
1282 1282 }
1283 1283
1284 1284 //************************
1285 1285 // sy_lfr_pas_filter_shift
1286 1286 if (flag == LFR_SUCCESSFUL)
1287 1287 {
1288 1288 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1289 1289 {
1290 1290 parPtr = (char*) &sy_lfr_pas_filter_shift;
1291 1291 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1292 1292 flag = WRONG_APP_DATA;
1293 1293 }
1294 1294 }
1295 1295
1296 1296 //*************************************
1297 1297 // check global coherency of the values
1298 1298 if (flag == LFR_SUCCESSFUL)
1299 1299 {
1300 1300 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1301 1301 {
1302 1302 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1303 1303 flag = WRONG_APP_DATA;
1304 1304 }
1305 1305 }
1306 1306
1307 1307 //*********************
1308 1308 // sy_lfr_sc_rw_delta_f
1309 1309 // nothing to check, no default value in the ICD
1310 1310
1311 1311 return flag;
1312 1312 }
1313 1313
1314 1314 //**************
1315 1315 // KCOEFFICIENTS
1316 1316 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1317 1317 {
1318 1318 unsigned int kcoeff;
1319 1319 unsigned short sy_lfr_kcoeff_frequency;
1320 1320 unsigned short bin;
1321 1321 unsigned short *freqPtr;
1322 1322 float *kcoeffPtr_norm;
1323 1323 float *kcoeffPtr_sbm;
1324 1324 int status;
1325 1325 unsigned char *kcoeffLoadPtr;
1326 1326 unsigned char *kcoeffNormPtr;
1327 1327 unsigned char *kcoeffSbmPtr_a;
1328 1328 unsigned char *kcoeffSbmPtr_b;
1329 1329
1330 1330 status = LFR_SUCCESSFUL;
1331 1331
1332 1332 kcoeffPtr_norm = NULL;
1333 1333 kcoeffPtr_sbm = NULL;
1334 1334 bin = 0;
1335 1335
1336 1336 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
1337 1337 sy_lfr_kcoeff_frequency = *freqPtr;
1338 1338
1339 1339 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1340 1340 {
1341 1341 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1342 1342 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1343 1343 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1344 1344 status = LFR_DEFAULT;
1345 1345 }
1346 1346 else
1347 1347 {
1348 1348 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1349 1349 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1350 1350 {
1351 1351 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1352 1352 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1353 1353 bin = sy_lfr_kcoeff_frequency;
1354 1354 }
1355 1355 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1356 1356 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1357 1357 {
1358 1358 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1359 1359 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1360 1360 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1361 1361 }
1362 1362 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1363 1363 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1364 1364 {
1365 1365 kcoeffPtr_norm = k_coeff_intercalib_f2;
1366 1366 kcoeffPtr_sbm = NULL;
1367 1367 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1368 1368 }
1369 1369 }
1370 1370
1371 1371 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1372 1372 {
1373 1373 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1374 1374 {
1375 1375 // destination
1376 1376 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1377 1377 // source
1378 1378 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1379 1379 // copy source to destination
1380 1380 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1381 1381 }
1382 1382 }
1383 1383
1384 1384 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1385 1385 {
1386 1386 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1387 1387 {
1388 1388 // destination
1389 1389 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1390 1390 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1391 1391 // source
1392 1392 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1393 1393 // copy source to destination
1394 1394 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1395 1395 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1396 1396 }
1397 1397 }
1398 1398
1399 1399 // print_k_coeff();
1400 1400
1401 1401 return status;
1402 1402 }
1403 1403
1404 1404 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1405 1405 {
1406 1406 destination[BYTE_0] = source[BYTE_0];
1407 1407 destination[BYTE_1] = source[BYTE_1];
1408 1408 destination[BYTE_2] = source[BYTE_2];
1409 1409 destination[BYTE_3] = source[BYTE_3];
1410 1410 }
1411 1411
1412 1412 void floatToChar( float value, unsigned char* ptr)
1413 1413 {
1414 1414 unsigned char* valuePtr;
1415 1415
1416 1416 valuePtr = (unsigned char*) &value;
1417 1417 ptr[BYTE_0] = valuePtr[BYTE_0];
1418 1418 ptr[BYTE_1] = valuePtr[BYTE_1];
1419 1419 ptr[BYTE_2] = valuePtr[BYTE_2];
1420 1420 ptr[BYTE_3] = valuePtr[BYTE_3];
1421 1421 }
1422 1422
1423 1423 //**********
1424 1424 // init dump
1425 1425
1426 1426 void init_parameter_dump( void )
1427 1427 {
1428 1428 /** This function initialize the parameter_dump_packet global variable with default values.
1429 1429 *
1430 1430 */
1431 1431
1432 1432 unsigned int k;
1433 1433
1434 1434 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1435 1435 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1436 1436 parameter_dump_packet.reserved = CCSDS_RESERVED;
1437 1437 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1438 1438 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1439 1439 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1440 1440 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1441 1441 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1442 1442 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1443 1443 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1444 1444 // DATA FIELD HEADER
1445 1445 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1446 1446 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1447 1447 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1448 1448 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1449 1449 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1450 1450 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1451 1451 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1452 1452 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1453 1453 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1454 1454 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1455 1455 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1456 1456
1457 1457 //******************
1458 1458 // COMMON PARAMETERS
1459 1459 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1460 1460 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1461 1461
1462 1462 //******************
1463 1463 // NORMAL PARAMETERS
1464 1464 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1465 1465 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1466 1466 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1467 1467 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1468 1468 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1469 1469 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1470 1470 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1471 1471 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1472 1472 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1473 1473
1474 1474 //*****************
1475 1475 // BURST PARAMETERS
1476 1476 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1477 1477 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1478 1478
1479 1479 //****************
1480 1480 // SBM1 PARAMETERS
1481 1481 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1482 1482 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1483 1483
1484 1484 //****************
1485 1485 // SBM2 PARAMETERS
1486 1486 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1487 1487 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1488 1488
1489 1489 //************
1490 1490 // FBINS MASKS
1491 1491 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1492 1492 {
1493 1493 parameter_dump_packet.sy_lfr_fbins.raw[k] = INT8_ALL_F;
1494 1494 }
1495 1495
1496 1496 // PAS FILTER PARAMETERS
1497 1497 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1498 1498 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1499 1499 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1500 1500 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1501 1501 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1502 1502 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1503 1503 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1504 1504
1505 1505 // LFR_RW_MASK
1506 1506 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1507 1507 {
1508 1508 parameter_dump_packet.sy_lfr_rw_mask.raw[k] = INT8_ALL_F;
1509 1509 }
1510 1510
1511 1511 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1512 1512 merge_fbins_masks();
1513 1513 }
1514 1514
1515 1515 void init_kcoefficients_dump( void )
1516 1516 {
1517 1517 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1518 1518 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1519 1519
1520 1520 kcoefficient_node_1.previous = NULL;
1521 1521 kcoefficient_node_1.next = NULL;
1522 1522 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1523 1523 kcoefficient_node_1.coarseTime = INIT_CHAR;
1524 1524 kcoefficient_node_1.fineTime = INIT_CHAR;
1525 1525 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1526 1526 kcoefficient_node_1.status = INIT_CHAR;
1527 1527
1528 1528 kcoefficient_node_2.previous = NULL;
1529 1529 kcoefficient_node_2.next = NULL;
1530 1530 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1531 1531 kcoefficient_node_2.coarseTime = INIT_CHAR;
1532 1532 kcoefficient_node_2.fineTime = INIT_CHAR;
1533 1533 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1534 1534 kcoefficient_node_2.status = INIT_CHAR;
1535 1535 }
1536 1536
1537 1537 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1538 1538 {
1539 1539 unsigned int k;
1540 1540 unsigned int packetLength;
1541 1541
1542 1542 packetLength =
1543 1543 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1544 1544
1545 1545 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1546 1546 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1547 1547 kcoefficients_dump->reserved = CCSDS_RESERVED;
1548 1548 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1549 1549 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1550 1550 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1551 1551 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1552 1552 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1553 1553 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1554 1554 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1555 1555 // DATA FIELD HEADER
1556 1556 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1557 1557 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1558 1558 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1559 1559 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1560 1560 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1561 1561 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1562 1562 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1563 1563 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1564 1564 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1565 1565 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1566 1566 kcoefficients_dump->sid = SID_K_DUMP;
1567 1567
1568 1568 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1569 1569 kcoefficients_dump->pkt_nr = PKTNR_1;
1570 1570 kcoefficients_dump->blk_nr = blk_nr;
1571 1571
1572 1572 //******************
1573 1573 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1574 1574 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1575 1575 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1576 1576 {
1577 1577 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1578 1578 }
1579 1579 }
1580 1580
1581 1581 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1582 1582 {
1583 1583 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1584 1584 *
1585 1585 * @param packet_sequence_control points to the packet sequence control which will be incremented
1586 1586 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1587 1587 *
1588 1588 * If the destination ID is not known, a dedicated counter is incremented.
1589 1589 *
1590 1590 */
1591 1591
1592 1592 unsigned short sequence_cnt;
1593 1593 unsigned short segmentation_grouping_flag;
1594 1594 unsigned short new_packet_sequence_control;
1595 1595 unsigned char i;
1596 1596
1597 1597 switch (destination_id)
1598 1598 {
1599 1599 case SID_TC_GROUND:
1600 1600 i = GROUND;
1601 1601 break;
1602 1602 case SID_TC_MISSION_TIMELINE:
1603 1603 i = MISSION_TIMELINE;
1604 1604 break;
1605 1605 case SID_TC_TC_SEQUENCES:
1606 1606 i = TC_SEQUENCES;
1607 1607 break;
1608 1608 case SID_TC_RECOVERY_ACTION_CMD:
1609 1609 i = RECOVERY_ACTION_CMD;
1610 1610 break;
1611 1611 case SID_TC_BACKUP_MISSION_TIMELINE:
1612 1612 i = BACKUP_MISSION_TIMELINE;
1613 1613 break;
1614 1614 case SID_TC_DIRECT_CMD:
1615 1615 i = DIRECT_CMD;
1616 1616 break;
1617 1617 case SID_TC_SPARE_GRD_SRC1:
1618 1618 i = SPARE_GRD_SRC1;
1619 1619 break;
1620 1620 case SID_TC_SPARE_GRD_SRC2:
1621 1621 i = SPARE_GRD_SRC2;
1622 1622 break;
1623 1623 case SID_TC_OBCP:
1624 1624 i = OBCP;
1625 1625 break;
1626 1626 case SID_TC_SYSTEM_CONTROL:
1627 1627 i = SYSTEM_CONTROL;
1628 1628 break;
1629 1629 case SID_TC_AOCS:
1630 1630 i = AOCS;
1631 1631 break;
1632 1632 case SID_TC_RPW_INTERNAL:
1633 1633 i = RPW_INTERNAL;
1634 1634 break;
1635 1635 default:
1636 1636 i = GROUND;
1637 1637 break;
1638 1638 }
1639 1639
1640 1640 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1641 1641 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1642 1642
1643 1643 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1644 1644
1645 1645 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1646 1646 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1647 1647
1648 1648 // increment the sequence counter
1649 1649 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1650 1650 {
1651 1651 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1652 1652 }
1653 1653 else
1654 1654 {
1655 1655 sequenceCounters_TM_DUMP[ i ] = 0;
1656 1656 }
1657 1657 }
@@ -1,1343 +1,1343
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //***************
13 13 // waveform rings
14 14 // F0
15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
16 ring_node *current_ring_node_f0;
17 ring_node *ring_node_to_send_swf_f0;
15 ring_node waveform_ring_f0[NB_RING_NODES_F0]= {0};
16 ring_node *current_ring_node_f0 = NULL;
17 ring_node *ring_node_to_send_swf_f0 = NULL;
18 18 // F1
19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
20 ring_node *current_ring_node_f1;
21 ring_node *ring_node_to_send_swf_f1;
22 ring_node *ring_node_to_send_cwf_f1;
19 ring_node waveform_ring_f1[NB_RING_NODES_F1] = {0};
20 ring_node *current_ring_node_f1 = NULL;
21 ring_node *ring_node_to_send_swf_f1 = NULL;
22 ring_node *ring_node_to_send_cwf_f1 = NULL;
23 23 // F2
24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
25 ring_node *current_ring_node_f2;
26 ring_node *ring_node_to_send_swf_f2;
27 ring_node *ring_node_to_send_cwf_f2;
24 ring_node waveform_ring_f2[NB_RING_NODES_F2] = {0};
25 ring_node *current_ring_node_f2 = NULL;
26 ring_node *ring_node_to_send_swf_f2 = NULL;
27 ring_node *ring_node_to_send_cwf_f2 = NULL;
28 28 // F3
29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
30 ring_node *current_ring_node_f3;
31 ring_node *ring_node_to_send_cwf_f3;
32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ];
29 ring_node waveform_ring_f3[NB_RING_NODES_F3] = {0};
30 ring_node *current_ring_node_f3 = NULL;
31 ring_node *ring_node_to_send_cwf_f3 = NULL;
32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ] = {0};
33 33
34 34 bool extractSWF1 = false;
35 35 bool extractSWF2 = false;
36 36 bool swf0_ready_flag_f1 = false;
37 37 bool swf0_ready_flag_f2 = false;
38 38 bool swf1_ready = false;
39 39 bool swf2_ready = false;
40 40
41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
43 ring_node ring_node_swf1_extracted;
44 ring_node ring_node_swf2_extracted;
41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ] = {0};
42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ] = {0};
43 ring_node ring_node_swf1_extracted = {0};
44 ring_node ring_node_swf2_extracted = {0};
45 45
46 46 typedef enum resynchro_state_t
47 47 {
48 48 MEASURE,
49 49 CORRECTION
50 50 } resynchro_state;
51 51
52 52 //*********************
53 53 // Interrupt SubRoutine
54 54
55 55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
56 56 {
57 57 ring_node *node;
58 58
59 59 node = NULL;
60 60 switch ( frequencyChannel ) {
61 61 case CHANNELF1:
62 62 node = ring_node_to_send_cwf_f1;
63 63 break;
64 64 case CHANNELF2:
65 65 node = ring_node_to_send_cwf_f2;
66 66 break;
67 67 case CHANNELF3:
68 68 node = ring_node_to_send_cwf_f3;
69 69 break;
70 70 default:
71 71 break;
72 72 }
73 73
74 74 return node;
75 75 }
76 76
77 77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
78 78 {
79 79 ring_node *node;
80 80
81 81 node = NULL;
82 82 switch ( frequencyChannel ) {
83 83 case CHANNELF0:
84 84 node = ring_node_to_send_swf_f0;
85 85 break;
86 86 case CHANNELF1:
87 87 node = ring_node_to_send_swf_f1;
88 88 break;
89 89 case CHANNELF2:
90 90 node = ring_node_to_send_swf_f2;
91 91 break;
92 92 default:
93 93 break;
94 94 }
95 95
96 96 return node;
97 97 }
98 98
99 99 void reset_extractSWF( void )
100 100 {
101 101 extractSWF1 = false;
102 102 extractSWF2 = false;
103 103 swf0_ready_flag_f1 = false;
104 104 swf0_ready_flag_f2 = false;
105 105 swf1_ready = false;
106 106 swf2_ready = false;
107 107 }
108 108
109 109 inline void waveforms_isr_f3( void )
110 110 {
111 111 rtems_status_code spare_status;
112 112
113 113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
114 114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
115 115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
116 116 //***
117 117 // F3
118 118 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F3) != INIT_CHAR ) { // [1100 0000] check the f3 full bits
119 119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
120 120 current_ring_node_f3 = current_ring_node_f3->next;
121 121 if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_0) == BIT_WFP_BUF_F3_0){ // [0100 0000] f3 buffer 0 is full
122 122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
123 123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
124 124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
125 125 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_0; // [1000 1000 0100 0000]
126 126 }
127 127 else if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_1) == BIT_WFP_BUF_F3_1){ // [1000 0000] f3 buffer 1 is full
128 128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
129 129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
130 130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
131 131 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_1; // [1000 1000 1000 0000]
132 132 }
133 133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
134 134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
135 135 }
136 136 }
137 137 }
138 138 }
139 139
140 140 inline void waveforms_isr_burst( void )
141 141 {
142 142 unsigned char status;
143 143 rtems_status_code spare_status;
144 144
145 145 status = (waveform_picker_regs->status & BITS_WFP_STATUS_F2) >> SHIFT_WFP_STATUS_F2; // [0011 0000] get the status bits for f2
146 146
147 147 switch(status)
148 148 {
149 149 case BIT_WFP_BUFFER_0:
150 150 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
151 151 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
152 152 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
153 153 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
154 154 current_ring_node_f2 = current_ring_node_f2->next;
155 155 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
156 156 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
157 157 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
158 158 }
159 159 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
160 160 break;
161 161 case BIT_WFP_BUFFER_1:
162 162 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
163 163 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
164 164 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
165 165 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
166 166 current_ring_node_f2 = current_ring_node_f2->next;
167 167 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
168 168 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
169 169 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
170 170 }
171 171 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
172 172 break;
173 173 default:
174 174 break;
175 175 }
176 176 }
177 177
178 178 inline void waveform_isr_normal_sbm1_sbm2( void )
179 179 {
180 180 rtems_status_code status;
181 181
182 182 //***
183 183 // F0
184 184 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F0) != INIT_CHAR ) // [0000 0011] check the f0 full bits
185 185 {
186 186 swf0_ready_flag_f1 = true;
187 187 swf0_ready_flag_f2 = true;
188 188 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
189 189 current_ring_node_f0 = current_ring_node_f0->next;
190 190 if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_0) == BIT_WFP_BUFFER_0)
191 191 {
192 192
193 193 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
194 194 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
195 195 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
196 196 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_0; // [0001 0001 0000 0001]
197 197 }
198 198 else if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_1) == BIT_WFP_BUFFER_1)
199 199 {
200 200 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
201 201 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
202 202 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
203 203 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_1; // [0001 0001 0000 0010]
204 204 }
205 205 // send an event to the WFRM task for resynchro activities
206 206 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
207 207 }
208 208
209 209 //***
210 210 // F1
211 211 if ( (waveform_picker_regs->status & 0x0c) != INIT_CHAR ) { // [0000 1100] check the f1 full bits
212 212 // (1) change the receiving buffer for the waveform picker
213 213 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
214 214 current_ring_node_f1 = current_ring_node_f1->next;
215 215 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_0) == BIT_WFP_BUF_F1_0)
216 216 {
217 217 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
218 218 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
219 219 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
220 220 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_0; // [0010 0010 0000 0100] f1 bits = 0
221 221 }
222 222 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_1) == BIT_WFP_BUF_F1_1)
223 223 {
224 224 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
225 225 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
226 226 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
227 227 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_1; // [0010 0010 0000 1000] f1 bits = 0
228 228 }
229 229 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
230 230 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
231 231 }
232 232
233 233 //***
234 234 // F2
235 235 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F2) != INIT_CHAR ) { // [0011 0000] check the f2 full bit
236 236 // (1) change the receiving buffer for the waveform picker
237 237 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
238 238 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
239 239 current_ring_node_f2 = current_ring_node_f2->next;
240 240 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_0) == BIT_WFP_BUF_F2_0)
241 241 {
242 242 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
243 243 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
244 244 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
245 245 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
246 246 }
247 247 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_1) == BIT_WFP_BUF_F2_1)
248 248 {
249 249 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
250 250 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
251 251 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
252 252 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
253 253 }
254 254 // (2) send an event for the waveforms transmission
255 255 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
256 256 }
257 257 }
258 258
259 259 rtems_isr waveforms_isr( rtems_vector_number vector )
260 260 {
261 261 /** This is the interrupt sub routine called by the waveform picker core.
262 262 *
263 263 * This ISR launch different actions depending mainly on two pieces of information:
264 264 * 1. the values read in the registers of the waveform picker.
265 265 * 2. the current LFR mode.
266 266 *
267 267 */
268 268
269 269 // STATUS
270 270 // new error error buffer full
271 271 // 15 14 13 12 11 10 9 8
272 272 // f3 f2 f1 f0 f3 f2 f1 f0
273 273 //
274 274 // ready buffer
275 275 // 7 6 5 4 3 2 1 0
276 276 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
277 277
278 278 rtems_status_code spare_status;
279 279
280 280 waveforms_isr_f3();
281 281
282 282 //*************************************************
283 283 // copy the status bits in the housekeeping packets
284 284 housekeeping_packet.hk_lfr_vhdl_iir_cal =
285 285 (unsigned char) ((waveform_picker_regs->status & BYTE0_MASK) >> SHIFT_1_BYTE);
286 286
287 287 if ( (waveform_picker_regs->status & BYTE0_MASK) != INIT_CHAR) // [1111 1111 0000 0000] check the error bits
288 288 {
289 289 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
290 290 }
291 291
292 292 switch(lfrCurrentMode)
293 293 {
294 294 //********
295 295 // STANDBY
296 296 case LFR_MODE_STANDBY:
297 297 break;
298 298 //**************************
299 299 // LFR NORMAL, SBM1 and SBM2
300 300 case LFR_MODE_NORMAL:
301 301 case LFR_MODE_SBM1:
302 302 case LFR_MODE_SBM2:
303 303 waveform_isr_normal_sbm1_sbm2();
304 304 break;
305 305 //******
306 306 // BURST
307 307 case LFR_MODE_BURST:
308 308 waveforms_isr_burst();
309 309 break;
310 310 //********
311 311 // DEFAULT
312 312 default:
313 313 break;
314 314 }
315 315 }
316 316
317 317 //************
318 318 // RTEMS TASKS
319 319
320 320 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
321 321 {
322 322 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
323 323 *
324 324 * @param unused is the starting argument of the RTEMS task
325 325 *
326 326 * The following data packets are sent by this task:
327 327 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
328 328 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
329 329 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
330 330 *
331 331 */
332 332
333 333 rtems_event_set event_out;
334 334 rtems_id queue_id;
335 335 rtems_status_code status;
336 336 ring_node *ring_node_swf1_extracted_ptr;
337 337 ring_node *ring_node_swf2_extracted_ptr;
338 338
339 339 event_out = EVENT_SETS_NONE_PENDING;
340 340 queue_id = RTEMS_ID_NONE;
341 341
342 342 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
343 343 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
344 344
345 345 status = get_message_queue_id_send( &queue_id );
346 346 if (status != RTEMS_SUCCESSFUL)
347 347 {
348 348 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
349 349 }
350 350
351 351 BOOT_PRINTF("in WFRM ***\n");
352 352
353 353 while(1){
354 354 // wait for an RTEMS_EVENT
355 355 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
356 356 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
357 357
358 358 if (event_out == RTEMS_EVENT_MODE_NORMAL)
359 359 {
360 360 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
361 361 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
362 362 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
363 363 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
364 364 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
365 365 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
366 366 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
367 367 }
368 368 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
369 369 {
370 370 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
371 371 }
372 372 }
373 373 }
374 374
375 375 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
376 376 {
377 377 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
378 378 *
379 379 * @param unused is the starting argument of the RTEMS task
380 380 *
381 381 * The following data packet is sent by this task:
382 382 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
383 383 *
384 384 */
385 385
386 386 rtems_event_set event_out;
387 387 rtems_id queue_id;
388 388 rtems_status_code status;
389 389 ring_node ring_node_cwf3_light;
390 390 ring_node *ring_node_to_send_cwf;
391 391
392 392 event_out = EVENT_SETS_NONE_PENDING;
393 393 queue_id = RTEMS_ID_NONE;
394 394
395 395 status = get_message_queue_id_send( &queue_id );
396 396 if (status != RTEMS_SUCCESSFUL)
397 397 {
398 398 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
399 399 }
400 400
401 401 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
402 402
403 403 // init the ring_node_cwf3_light structure
404 404 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
405 405 ring_node_cwf3_light.coarseTime = INIT_CHAR;
406 406 ring_node_cwf3_light.fineTime = INIT_CHAR;
407 407 ring_node_cwf3_light.next = NULL;
408 408 ring_node_cwf3_light.previous = NULL;
409 409 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
410 410 ring_node_cwf3_light.status = INIT_CHAR;
411 411
412 412 BOOT_PRINTF("in CWF3 ***\n");
413 413
414 414 while(1){
415 415 // wait for an RTEMS_EVENT
416 416 rtems_event_receive( RTEMS_EVENT_0,
417 417 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
418 418 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
419 419 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
420 420 {
421 421 ring_node_to_send_cwf = getRingNodeToSendCWF( CHANNELF3 );
422 422 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & BIT_CWF_LONG_F3) == BIT_CWF_LONG_F3)
423 423 {
424 424 PRINTF("send CWF_LONG_F3\n");
425 425 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
426 426 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
427 427 }
428 428 else
429 429 {
430 430 PRINTF("send CWF_F3 (light)\n");
431 431 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
432 432 }
433 433
434 434 }
435 435 else
436 436 {
437 437 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
438 438 }
439 439 }
440 440 }
441 441
442 442 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
443 443 {
444 444 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
445 445 *
446 446 * @param unused is the starting argument of the RTEMS task
447 447 *
448 448 * The following data packet is sent by this function:
449 449 * - TM_LFR_SCIENCE_BURST_CWF_F2
450 450 * - TM_LFR_SCIENCE_SBM2_CWF_F2
451 451 *
452 452 */
453 453
454 454 rtems_event_set event_out;
455 455 rtems_id queue_id;
456 456 rtems_status_code status;
457 457 ring_node *ring_node_to_send;
458 458 unsigned long long int acquisitionTimeF0_asLong;
459 459
460 460 event_out = EVENT_SETS_NONE_PENDING;
461 461 queue_id = RTEMS_ID_NONE;
462 462
463 463 acquisitionTimeF0_asLong = INIT_CHAR;
464 464
465 465 status = get_message_queue_id_send( &queue_id );
466 466 if (status != RTEMS_SUCCESSFUL)
467 467 {
468 468 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
469 469 }
470 470
471 471 BOOT_PRINTF("in CWF2 ***\n");
472 472
473 473 while(1){
474 474 // wait for an RTEMS_EVENT// send the snapshot when built
475 475 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
476 476 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
477 477 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
478 478 ring_node_to_send = getRingNodeToSendCWF( CHANNELF2 );
479 479 if (event_out == RTEMS_EVENT_MODE_BURST)
480 480 { // data are sent whatever the transition time
481 481 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
482 482 }
483 483 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
484 484 {
485 485 if ( lfrCurrentMode == LFR_MODE_SBM2 )
486 486 {
487 487 // data are sent depending on the transition time
488 488 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
489 489 {
490 490 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
491 491 }
492 492 }
493 493 // launch snapshot extraction if needed
494 494 if (extractSWF2 == true)
495 495 {
496 496 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
497 497 // extract the snapshot
498 498 build_snapshot_from_ring( ring_node_to_send_swf_f2, CHANNELF2, acquisitionTimeF0_asLong,
499 499 &ring_node_swf2_extracted, swf2_extracted );
500 500 extractSWF2 = false;
501 501 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
502 502 }
503 503 if (swf0_ready_flag_f2 == true)
504 504 {
505 505 extractSWF2 = true;
506 506 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
507 507 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
508 508 swf0_ready_flag_f2 = false;
509 509 }
510 510 }
511 511 }
512 512 }
513 513
514 514 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
515 515 {
516 516 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
517 517 *
518 518 * @param unused is the starting argument of the RTEMS task
519 519 *
520 520 * The following data packet is sent by this function:
521 521 * - TM_LFR_SCIENCE_SBM1_CWF_F1
522 522 *
523 523 */
524 524
525 525 rtems_event_set event_out;
526 526 rtems_id queue_id;
527 527 rtems_status_code status;
528 528
529 529 ring_node *ring_node_to_send_cwf;
530 530
531 531 event_out = EVENT_SETS_NONE_PENDING;
532 532 queue_id = RTEMS_ID_NONE;
533 533
534 534 status = get_message_queue_id_send( &queue_id );
535 535 if (status != RTEMS_SUCCESSFUL)
536 536 {
537 537 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
538 538 }
539 539
540 540 BOOT_PRINTF("in CWF1 ***\n");
541 541
542 542 while(1){
543 543 // wait for an RTEMS_EVENT
544 544 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
545 545 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
546 546 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
547 547 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
548 548 if (lfrCurrentMode == LFR_MODE_SBM1)
549 549 {
550 550 // data are sent depending on the transition time
551 551 if ( time_management_regs->coarse_time >= lastValidEnterModeTime )
552 552 {
553 553 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
554 554 }
555 555 }
556 556 // launch snapshot extraction if needed
557 557 if (extractSWF1 == true)
558 558 {
559 559 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
560 560 // launch the snapshot extraction
561 561 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
562 562 extractSWF1 = false;
563 563 }
564 564 if (swf0_ready_flag_f1 == true)
565 565 {
566 566 extractSWF1 = true;
567 567 swf0_ready_flag_f1 = false; // this step shall be executed only one time
568 568 }
569 569 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
570 570 {
571 571 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
572 572 swf1_ready = false;
573 573 swf2_ready = false;
574 574 }
575 575 }
576 576 }
577 577
578 578 rtems_task swbd_task(rtems_task_argument argument)
579 579 {
580 580 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
581 581 *
582 582 * @param unused is the starting argument of the RTEMS task
583 583 *
584 584 */
585 585
586 586 rtems_event_set event_out;
587 587 unsigned long long int acquisitionTimeF0_asLong;
588 588
589 589 event_out = EVENT_SETS_NONE_PENDING;
590 590 acquisitionTimeF0_asLong = INIT_CHAR;
591 591
592 592 BOOT_PRINTF("in SWBD ***\n")
593 593
594 594 while(1){
595 595 // wait for an RTEMS_EVENT
596 596 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
597 597 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
598 598 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
599 599 {
600 600 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
601 601 build_snapshot_from_ring( ring_node_to_send_swf_f1, CHANNELF1, acquisitionTimeF0_asLong,
602 602 &ring_node_swf1_extracted, swf1_extracted );
603 603 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
604 604 }
605 605 else
606 606 {
607 607 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
608 608 }
609 609 }
610 610 }
611 611
612 612 //******************
613 613 // general functions
614 614
615 615 void WFP_init_rings( void )
616 616 {
617 617 // F0 RING
618 618 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
619 619 // F1 RING
620 620 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
621 621 // F2 RING
622 622 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
623 623 // F3 RING
624 624 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
625 625
626 626 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
627 627 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
628 628
629 629 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
630 630 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
631 631 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
632 632 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
633 633 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
634 634 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
635 635 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
636 636 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
637 637
638 638 }
639 639
640 640 void WFP_reset_current_ring_nodes( void )
641 641 {
642 642 current_ring_node_f0 = waveform_ring_f0[0].next;
643 643 current_ring_node_f1 = waveform_ring_f1[0].next;
644 644 current_ring_node_f2 = waveform_ring_f2[0].next;
645 645 current_ring_node_f3 = waveform_ring_f3[0].next;
646 646
647 647 ring_node_to_send_swf_f0 = waveform_ring_f0;
648 648 ring_node_to_send_swf_f1 = waveform_ring_f1;
649 649 ring_node_to_send_swf_f2 = waveform_ring_f2;
650 650
651 651 ring_node_to_send_cwf_f1 = waveform_ring_f1;
652 652 ring_node_to_send_cwf_f2 = waveform_ring_f2;
653 653 ring_node_to_send_cwf_f3 = waveform_ring_f3;
654 654 }
655 655
656 656 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
657 657 {
658 658 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
659 659 *
660 660 * @param waveform points to the buffer containing the data that will be send.
661 661 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
662 662 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
663 663 * contain information to setup the transmission of the data packets.
664 664 *
665 665 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
666 666 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
667 667 *
668 668 */
669 669
670 670 unsigned int i;
671 671 unsigned int j;
672 672 int ret;
673 673 rtems_status_code status;
674 674
675 675 char *sample;
676 676 int *dataPtr;
677 677
678 678 ret = LFR_DEFAULT;
679 679
680 680 dataPtr = (int*) ring_node_to_send->buffer_address;
681 681
682 682 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
683 683 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
684 684
685 685 //**********************
686 686 // BUILD CWF3_light DATA
687 687 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
688 688 {
689 689 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
690 690 for (j=0; j < CWF_BLK_SIZE; j++)
691 691 {
692 692 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + j] = sample[ j ];
693 693 }
694 694 }
695 695
696 696 // SEND PACKET
697 697 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
698 698 if (status != RTEMS_SUCCESSFUL) {
699 699 ret = LFR_DEFAULT;
700 700 }
701 701
702 702 return ret;
703 703 }
704 704
705 705 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
706 706 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
707 707 {
708 708 unsigned long long int acquisitionTimeAsLong;
709 709 unsigned char localAcquisitionTime[BYTES_PER_TIME];
710 710 double deltaT;
711 711
712 712 deltaT = INIT_FLOAT;
713 713
714 714 localAcquisitionTime[BYTE_0] = (unsigned char) ( coarseTime >> SHIFT_3_BYTES );
715 715 localAcquisitionTime[BYTE_1] = (unsigned char) ( coarseTime >> SHIFT_2_BYTES );
716 716 localAcquisitionTime[BYTE_2] = (unsigned char) ( coarseTime >> SHIFT_1_BYTE );
717 717 localAcquisitionTime[BYTE_3] = (unsigned char) ( coarseTime );
718 718 localAcquisitionTime[BYTE_4] = (unsigned char) ( fineTime >> SHIFT_1_BYTE );
719 719 localAcquisitionTime[BYTE_5] = (unsigned char) ( fineTime );
720 720
721 721 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[BYTE_0] << SHIFT_5_BYTES )
722 722 + ( (unsigned long long int) localAcquisitionTime[BYTE_1] << SHIFT_4_BYTES )
723 723 + ( (unsigned long long int) localAcquisitionTime[BYTE_2] << SHIFT_3_BYTES )
724 724 + ( (unsigned long long int) localAcquisitionTime[BYTE_3] << SHIFT_2_BYTES )
725 725 + ( (unsigned long long int) localAcquisitionTime[BYTE_4] << SHIFT_1_BYTE )
726 726 + ( (unsigned long long int) localAcquisitionTime[BYTE_5] );
727 727
728 728 switch( sid )
729 729 {
730 730 case SID_NORM_SWF_F0:
731 731 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T0_IN_FINETIME ;
732 732 break;
733 733
734 734 case SID_NORM_SWF_F1:
735 735 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T1_IN_FINETIME ;
736 736 break;
737 737
738 738 case SID_NORM_SWF_F2:
739 739 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T2_IN_FINETIME ;
740 740 break;
741 741
742 742 case SID_SBM1_CWF_F1:
743 743 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T1_IN_FINETIME ;
744 744 break;
745 745
746 746 case SID_SBM2_CWF_F2:
747 747 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
748 748 break;
749 749
750 750 case SID_BURST_CWF_F2:
751 751 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
752 752 break;
753 753
754 754 case SID_NORM_CWF_F3:
755 755 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * T3_IN_FINETIME ;
756 756 break;
757 757
758 758 case SID_NORM_CWF_LONG_F3:
759 759 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T3_IN_FINETIME ;
760 760 break;
761 761
762 762 default:
763 763 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
764 764 deltaT = 0.;
765 765 break;
766 766 }
767 767
768 768 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
769 769 //
770 770 acquisitionTime[BYTE_0] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_5_BYTES);
771 771 acquisitionTime[BYTE_1] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_4_BYTES);
772 772 acquisitionTime[BYTE_2] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_3_BYTES);
773 773 acquisitionTime[BYTE_3] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_2_BYTES);
774 774 acquisitionTime[BYTE_4] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_1_BYTE );
775 775 acquisitionTime[BYTE_5] = (unsigned char) (acquisitionTimeAsLong );
776 776
777 777 }
778 778
779 779 void build_snapshot_from_ring( ring_node *ring_node_to_send,
780 780 unsigned char frequencyChannel,
781 781 unsigned long long int acquisitionTimeF0_asLong,
782 782 ring_node *ring_node_swf_extracted,
783 783 int *swf_extracted)
784 784 {
785 785 unsigned int i;
786 786 unsigned int node;
787 787 unsigned long long int centerTime_asLong;
788 788 unsigned long long int acquisitionTime_asLong;
789 789 unsigned long long int bufferAcquisitionTime_asLong;
790 790 unsigned char *ptr1;
791 791 unsigned char *ptr2;
792 792 unsigned char *timeCharPtr;
793 793 unsigned char nb_ring_nodes;
794 794 unsigned long long int frequency_asLong;
795 795 unsigned long long int nbTicksPerSample_asLong;
796 796 unsigned long long int nbSamplesPart1_asLong;
797 797 unsigned long long int sampleOffset_asLong;
798 798
799 799 unsigned int deltaT_F0;
800 800 unsigned int deltaT_F1;
801 801 unsigned long long int deltaT_F2;
802 802
803 803 deltaT_F0 = DELTAT_F0;
804 804 deltaT_F1 = DELTAF_F1;
805 805 deltaT_F2 = DELTAF_F2;
806 806 sampleOffset_asLong = INIT_CHAR;
807 807
808 808 // (1) get the f0 acquisition time => the value is passed in argument
809 809
810 810 // (2) compute the central reference time
811 811 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
812 812 acquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
813 813 bufferAcquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
814 814 nbTicksPerSample_asLong = TICKS_PER_T2; //set to default value (Don_Initialisation_P2)
815 815
816 816 // (3) compute the acquisition time of the current snapshot
817 817 switch(frequencyChannel)
818 818 {
819 819 case CHANNELF1: // 1 is for F1 = 4096 Hz
820 820 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
821 821 nb_ring_nodes = NB_RING_NODES_F1;
822 822 frequency_asLong = FREQ_F1;
823 823 nbTicksPerSample_asLong = TICKS_PER_T1; // 65536 / 4096;
824 824 break;
825 825 case CHANNELF2: // 2 is for F2 = 256 Hz
826 826 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
827 827 nb_ring_nodes = NB_RING_NODES_F2;
828 828 frequency_asLong = FREQ_F2;
829 829 nbTicksPerSample_asLong = TICKS_PER_T2; // 65536 / 256;
830 830 break;
831 831 default:
832 832 acquisitionTime_asLong = centerTime_asLong;
833 833 nb_ring_nodes = 0;
834 834 frequency_asLong = FREQ_F2;
835 835 nbTicksPerSample_asLong = TICKS_PER_T2;
836 836 break;
837 837 }
838 838
839 839 //*****************************************************************************
840 840 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
841 841 node = 0;
842 842 while ( node < nb_ring_nodes)
843 843 {
844 844 //PRINTF1("%d ... ", node);
845 845 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
846 846 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
847 847 {
848 848 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
849 849 node = nb_ring_nodes;
850 850 }
851 851 else
852 852 {
853 853 node = node + 1;
854 854 ring_node_to_send = ring_node_to_send->previous;
855 855 }
856 856 }
857 857
858 858 // (5) compute the number of samples to take in the current buffer
859 859 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> SHIFT_2_BYTES;
860 860 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
861 861 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
862 862
863 863 // (6) compute the final acquisition time
864 864 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
865 865 (sampleOffset_asLong * nbTicksPerSample_asLong);
866 866
867 867 // (7) copy the acquisition time at the beginning of the extrated snapshot
868 868 ptr1 = (unsigned char*) &acquisitionTime_asLong;
869 869 // fine time
870 870 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
871 871 ptr2[BYTE_2] = ptr1[ BYTE_4 + OFFSET_2_BYTES ];
872 872 ptr2[BYTE_3] = ptr1[ BYTE_5 + OFFSET_2_BYTES ];
873 873 // coarse time
874 874 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
875 875 ptr2[BYTE_0] = ptr1[ BYTE_0 + OFFSET_2_BYTES ];
876 876 ptr2[BYTE_1] = ptr1[ BYTE_1 + OFFSET_2_BYTES ];
877 877 ptr2[BYTE_2] = ptr1[ BYTE_2 + OFFSET_2_BYTES ];
878 878 ptr2[BYTE_3] = ptr1[ BYTE_3 + OFFSET_2_BYTES ];
879 879
880 880 // re set the synchronization bit
881 881 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
882 882 ptr2[0] = ptr2[0] | (timeCharPtr[0] & SYNC_BIT); // [1000 0000]
883 883
884 884 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
885 885 {
886 886 nbSamplesPart1_asLong = 0;
887 887 }
888 888 // copy the part 1 of the snapshot in the extracted buffer
889 889 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
890 890 {
891 891 swf_extracted[i] =
892 892 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
893 893 }
894 894 // copy the part 2 of the snapshot in the extracted buffer
895 895 ring_node_to_send = ring_node_to_send->next;
896 896 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
897 897 {
898 898 swf_extracted[i] =
899 899 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
900 900 }
901 901 }
902 902
903 903 double computeCorrection( unsigned char *timePtr )
904 904 {
905 905 unsigned long long int acquisitionTime;
906 906 unsigned long long int centerTime;
907 907 unsigned long long int previousTick;
908 908 unsigned long long int nextTick;
909 909 unsigned long long int deltaPreviousTick;
910 910 unsigned long long int deltaNextTick;
911 911 double deltaPrevious_ms;
912 912 double deltaNext_ms;
913 913 double correctionInF2;
914 914
915 915 correctionInF2 = 0; //set to default value (Don_Initialisation_P2)
916 916
917 917 // get acquisition time in fine time ticks
918 918 acquisitionTime = get_acquisition_time( timePtr );
919 919
920 920 // compute center time
921 921 centerTime = acquisitionTime + DELTAT_F0; // (2048. / 24576. / 2.) * 65536. = 2730.667;
922 922 previousTick = centerTime - (centerTime & INT16_ALL_F);
923 923 nextTick = previousTick + TICKS_PER_S;
924 924
925 925 deltaPreviousTick = centerTime - previousTick;
926 926 deltaNextTick = nextTick - centerTime;
927 927
928 928 deltaPrevious_ms = (((double) deltaPreviousTick) / TICKS_PER_S) * MS_PER_S;
929 929 deltaNext_ms = (((double) deltaNextTick) / TICKS_PER_S) * MS_PER_S;
930 930
931 931 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
932 932
933 933 // which tick is the closest?
934 934 if (deltaPreviousTick > deltaNextTick)
935 935 {
936 936 // the snapshot center is just before the second => increase delta_snapshot
937 937 correctionInF2 = + (deltaNext_ms * FREQ_F2 / MS_PER_S );
938 938 }
939 939 else
940 940 {
941 941 // the snapshot center is just after the second => decrease delta_snapshot
942 942 correctionInF2 = - (deltaPrevious_ms * FREQ_F2 / MS_PER_S );
943 943 }
944 944
945 945 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
946 946
947 947 return correctionInF2;
948 948 }
949 949
950 950 void applyCorrection( double correction )
951 951 {
952 952 int correctionInt;
953 953
954 954 correctionInt = 0;
955 955
956 956 if (correction >= 0.)
957 957 {
958 958 if ( (ONE_TICK_CORR_INTERVAL_0_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_0_MAX) )
959 959 {
960 960 correctionInt = ONE_TICK_CORR;
961 961 }
962 962 else
963 963 {
964 964 correctionInt = CORR_MULT * floor(correction);
965 965 }
966 966 }
967 967 else
968 968 {
969 969 if ( (ONE_TICK_CORR_INTERVAL_1_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_1_MAX) )
970 970 {
971 971 correctionInt = -ONE_TICK_CORR;
972 972 }
973 973 else
974 974 {
975 975 correctionInt = CORR_MULT * ceil(correction);
976 976 }
977 977 }
978 978 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
979 979 }
980 980
981 981 void snapshot_resynchronization( unsigned char *timePtr )
982 982 {
983 983 /** This function compute a correction to apply on delta_snapshot.
984 984 *
985 985 *
986 986 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
987 987 *
988 988 * @return void
989 989 *
990 990 */
991 991
992 992 static double correction = INIT_FLOAT;
993 993 static resynchro_state state = MEASURE;
994 994 static unsigned int nbSnapshots = 0;
995 995
996 996 int correctionInt;
997 997
998 998 correctionInt = 0;
999 999
1000 1000 switch (state)
1001 1001 {
1002 1002
1003 1003 case MEASURE:
1004 1004 // ********
1005 1005 PRINTF1("MEASURE === %d\n", nbSnapshots);
1006 1006 state = CORRECTION;
1007 1007 correction = computeCorrection( timePtr );
1008 1008 PRINTF1("MEASURE === correction = %.2f\n", correction );
1009 1009 applyCorrection( correction );
1010 1010 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1011 1011 //****
1012 1012 break;
1013 1013
1014 1014 case CORRECTION:
1015 1015 //************
1016 1016 PRINTF1("CORRECTION === %d\n", nbSnapshots);
1017 1017 state = MEASURE;
1018 1018 computeCorrection( timePtr );
1019 1019 set_wfp_delta_snapshot();
1020 1020 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1021 1021 //****
1022 1022 break;
1023 1023
1024 1024 default:
1025 1025 break;
1026 1026
1027 1027 }
1028 1028
1029 1029 nbSnapshots++;
1030 1030 }
1031 1031
1032 1032 //**************
1033 1033 // wfp registers
1034 1034 void reset_wfp_burst_enable( void )
1035 1035 {
1036 1036 /** This function resets the waveform picker burst_enable register.
1037 1037 *
1038 1038 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1039 1039 *
1040 1040 */
1041 1041
1042 1042 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1043 1043 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & RST_BITS_RUN_BURST_EN;
1044 1044 }
1045 1045
1046 1046 void reset_wfp_status( void )
1047 1047 {
1048 1048 /** This function resets the waveform picker status register.
1049 1049 *
1050 1050 * All status bits are set to 0 [new_err full_err full].
1051 1051 *
1052 1052 */
1053 1053
1054 1054 waveform_picker_regs->status = INT16_ALL_F;
1055 1055 }
1056 1056
1057 1057 void reset_wfp_buffer_addresses( void )
1058 1058 {
1059 1059 // F0
1060 1060 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1061 1061 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1062 1062 // F1
1063 1063 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1064 1064 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1065 1065 // F2
1066 1066 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1067 1067 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1068 1068 // F3
1069 1069 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1070 1070 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1071 1071 }
1072 1072
1073 1073 void reset_waveform_picker_regs( void )
1074 1074 {
1075 1075 /** This function resets the waveform picker module registers.
1076 1076 *
1077 1077 * The registers affected by this function are located at the following offset addresses:
1078 1078 * - 0x00 data_shaping
1079 1079 * - 0x04 run_burst_enable
1080 1080 * - 0x08 addr_data_f0
1081 1081 * - 0x0C addr_data_f1
1082 1082 * - 0x10 addr_data_f2
1083 1083 * - 0x14 addr_data_f3
1084 1084 * - 0x18 status
1085 1085 * - 0x1C delta_snapshot
1086 1086 * - 0x20 delta_f0
1087 1087 * - 0x24 delta_f0_2
1088 1088 * - 0x28 delta_f1 (obsolet parameter)
1089 1089 * - 0x2c delta_f2
1090 1090 * - 0x30 nb_data_by_buffer
1091 1091 * - 0x34 nb_snapshot_param
1092 1092 * - 0x38 start_date
1093 1093 * - 0x3c nb_word_in_buffer
1094 1094 *
1095 1095 */
1096 1096
1097 1097 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1098 1098
1099 1099 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1100 1100
1101 1101 reset_wfp_buffer_addresses();
1102 1102
1103 1103 reset_wfp_status(); // 0x18
1104 1104
1105 1105 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1106 1106
1107 1107 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1108 1108
1109 1109 //the parameter delta_f1 [0x28] is not used anymore
1110 1110
1111 1111 set_wfp_delta_f2(); // 0x2c
1112 1112
1113 1113 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1114 1114 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1115 1115 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1116 1116 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1117 1117 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1118 1118 // 2688 = 8 * 336
1119 1119 waveform_picker_regs->nb_data_by_buffer = DFLT_WFP_NB_DATA_BY_BUFFER; // 0x30 *** 2688 - 1 => nb samples -1
1120 1120 waveform_picker_regs->snapshot_param = DFLT_WFP_SNAPSHOT_PARAM; // 0x34 *** 2688 => nb samples
1121 1121 waveform_picker_regs->start_date = COARSE_TIME_MASK;
1122 1122 //
1123 1123 // coarse time and fine time registers are not initialized, they are volatile
1124 1124 //
1125 1125 waveform_picker_regs->buffer_length = DFLT_WFP_BUFFER_LENGTH; // buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1126 1126 }
1127 1127
1128 1128 void set_wfp_data_shaping( void )
1129 1129 {
1130 1130 /** This function sets the data_shaping register of the waveform picker module.
1131 1131 *
1132 1132 * The value is read from one field of the parameter_dump_packet structure:\n
1133 1133 * bw_sp0_sp1_r0_r1
1134 1134 *
1135 1135 */
1136 1136
1137 1137 unsigned char data_shaping;
1138 1138
1139 1139 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1140 1140 // waveform picker : [R1 R0 SP1 SP0 BW]
1141 1141
1142 1142 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1143 1143
1144 1144 waveform_picker_regs->data_shaping =
1145 1145 ( (data_shaping & BIT_5) >> SHIFT_5_BITS ) // BW
1146 1146 + ( (data_shaping & BIT_4) >> SHIFT_3_BITS ) // SP0
1147 1147 + ( (data_shaping & BIT_3) >> 1 ) // SP1
1148 1148 + ( (data_shaping & BIT_2) << 1 ) // R0
1149 1149 + ( (data_shaping & BIT_1) << SHIFT_3_BITS ) // R1
1150 1150 + ( (data_shaping & BIT_0) << SHIFT_5_BITS ); // R2
1151 1151 }
1152 1152
1153 1153 void set_wfp_burst_enable_register( unsigned char mode )
1154 1154 {
1155 1155 /** This function sets the waveform picker burst_enable register depending on the mode.
1156 1156 *
1157 1157 * @param mode is the LFR mode to launch.
1158 1158 *
1159 1159 * The burst bits shall be before the enable bits.
1160 1160 *
1161 1161 */
1162 1162
1163 1163 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1164 1164 // the burst bits shall be set first, before the enable bits
1165 1165 switch(mode) {
1166 1166 case LFR_MODE_NORMAL:
1167 1167 case LFR_MODE_SBM1:
1168 1168 case LFR_MODE_SBM2:
1169 1169 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_SBM2; // [0110 0000] enable f2 and f1 burst
1170 1170 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1171 1171 break;
1172 1172 case LFR_MODE_BURST:
1173 1173 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_BURST; // [0100 0000] f2 burst enabled
1174 1174 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 and f2
1175 1175 break;
1176 1176 default:
1177 1177 waveform_picker_regs->run_burst_enable = INIT_CHAR; // [0000 0000] no burst enabled, no waveform enabled
1178 1178 break;
1179 1179 }
1180 1180 }
1181 1181
1182 1182 void set_wfp_delta_snapshot( void )
1183 1183 {
1184 1184 /** This function sets the delta_snapshot register of the waveform picker module.
1185 1185 *
1186 1186 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1187 1187 * - sy_lfr_n_swf_p[0]
1188 1188 * - sy_lfr_n_swf_p[1]
1189 1189 *
1190 1190 */
1191 1191
1192 1192 unsigned int delta_snapshot;
1193 1193 unsigned int delta_snapshot_in_T2;
1194 1194
1195 1195 delta_snapshot = (parameter_dump_packet.sy_lfr_n_swf_p[0] * CONST_256)
1196 1196 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1197 1197
1198 1198 delta_snapshot_in_T2 = delta_snapshot * FREQ_F2;
1199 1199 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1200 1200 }
1201 1201
1202 1202 void set_wfp_delta_f0_f0_2( void )
1203 1203 {
1204 1204 unsigned int delta_snapshot;
1205 1205 unsigned int nb_samples_per_snapshot;
1206 1206 float delta_f0_in_float;
1207 1207
1208 1208 delta_snapshot = waveform_picker_regs->delta_snapshot;
1209 1209 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1210 1210 delta_f0_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F0) ) * FREQ_F2;
1211 1211
1212 1212 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1213 1213 waveform_picker_regs->delta_f0_2 = DFLT_WFP_DELTA_F0_2; // 48 = 11 0000, max 7 bits
1214 1214 }
1215 1215
1216 1216 void set_wfp_delta_f1( void )
1217 1217 {
1218 1218 /** Sets the value of the delta_f1 parameter
1219 1219 *
1220 1220 * @param void
1221 1221 *
1222 1222 * @return void
1223 1223 *
1224 1224 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1225 1225 *
1226 1226 */
1227 1227
1228 1228 unsigned int delta_snapshot;
1229 1229 unsigned int nb_samples_per_snapshot;
1230 1230 float delta_f1_in_float;
1231 1231
1232 1232 delta_snapshot = waveform_picker_regs->delta_snapshot;
1233 1233 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1234 1234 delta_f1_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F1) ) * FREQ_F2;
1235 1235
1236 1236 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1237 1237 }
1238 1238
1239 1239 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1240 1240 {
1241 1241 /** Sets the value of the delta_f2 parameter
1242 1242 *
1243 1243 * @param void
1244 1244 *
1245 1245 * @return void
1246 1246 *
1247 1247 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1248 1248 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1249 1249 *
1250 1250 */
1251 1251
1252 1252 unsigned int delta_snapshot;
1253 1253 unsigned int nb_samples_per_snapshot;
1254 1254
1255 1255 delta_snapshot = waveform_picker_regs->delta_snapshot;
1256 1256 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1257 1257
1258 1258 waveform_picker_regs->delta_f2 = delta_snapshot - (nb_samples_per_snapshot / 2) - 1;
1259 1259 }
1260 1260
1261 1261 //*****************
1262 1262 // local parameters
1263 1263
1264 1264 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1265 1265 {
1266 1266 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1267 1267 *
1268 1268 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1269 1269 * @param sid is the source identifier of the packet being updated.
1270 1270 *
1271 1271 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1272 1272 * The sequence counters shall wrap around from 2^14 to zero.
1273 1273 * The sequence counter shall start at zero at startup.
1274 1274 *
1275 1275 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1276 1276 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1277 1277 *
1278 1278 */
1279 1279
1280 1280 unsigned short *sequence_cnt;
1281 1281 unsigned short segmentation_grouping_flag;
1282 1282 unsigned short new_packet_sequence_control;
1283 1283 rtems_mode initial_mode_set;
1284 1284 rtems_mode current_mode_set;
1285 1285 rtems_status_code status;
1286 1286
1287 1287 initial_mode_set = RTEMS_DEFAULT_MODES;
1288 1288 current_mode_set = RTEMS_DEFAULT_MODES;
1289 1289 sequence_cnt = NULL;
1290 1290
1291 1291 //******************************************
1292 1292 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1293 1293 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1294 1294
1295 1295 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1296 1296 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1297 1297 || (sid == SID_BURST_CWF_F2)
1298 1298 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1299 1299 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1300 1300 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1301 1301 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1302 1302 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1303 1303 {
1304 1304 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1305 1305 }
1306 1306 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1307 1307 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1308 1308 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1309 1309 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1310 1310 {
1311 1311 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1312 1312 }
1313 1313 else
1314 1314 {
1315 1315 sequence_cnt = (unsigned short *) NULL;
1316 1316 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1317 1317 }
1318 1318
1319 1319 if (sequence_cnt != NULL)
1320 1320 {
1321 1321 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1322 1322 *sequence_cnt = (*sequence_cnt) & SEQ_CNT_MASK;
1323 1323
1324 1324 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1325 1325
1326 1326 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1327 1327 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1328 1328
1329 1329 // increment the sequence counter
1330 1330 if ( *sequence_cnt < SEQ_CNT_MAX)
1331 1331 {
1332 1332 *sequence_cnt = *sequence_cnt + 1;
1333 1333 }
1334 1334 else
1335 1335 {
1336 1336 *sequence_cnt = 0;
1337 1337 }
1338 1338 }
1339 1339
1340 1340 //*************************************
1341 1341 // RESTORE THE MODE OF THE CALLING TASK
1342 1342 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1343 1343 }
General Comments 0
You need to be logged in to leave comments. Login now