fsw_misc.c
1023 lines
| 37.3 KiB
| text/x-c
|
CLexer
/ src / fsw_misc.c
|
r45 | /** General usage functions and RTEMS tasks. | |
* | |||
* @file | |||
* @author P. LEROY | |||
* | |||
*/ | |||
|
r40 | #include "fsw_misc.h" | |
|
r5 | ||
|
r328 | int16_t hk_lfr_sc_v_f3_as_int16 = 0; | |
int16_t hk_lfr_sc_e1_f3_as_int16 = 0; | |||
int16_t hk_lfr_sc_e2_f3_as_int16 = 0; | |||
|
r239 | void timer_configure(unsigned char timer, unsigned int clock_divider, | |
|
r5 | unsigned char interrupt_level, rtems_isr (*timer_isr)() ) | |
|
r45 | { | |
/** This function configures a GPTIMER timer instantiated in the VHDL design. | |||
* | |||
* @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |||
* @param timer is the number of the timer in the IP core (several timers can be instantiated). | |||
* @param clock_divider is the divider of the 1 MHz clock that will be configured. | |||
* @param interrupt_level is the interrupt level that the timer drives. | |||
* @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer. | |||
* | |||
* Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76 | |||
* | |||
*/ | |||
|
r21 | rtems_status_code status; | |
|
r5 | rtems_isr_entry old_isr_handler; | |
|
r320 | old_isr_handler = NULL; | |
|
r318 | gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register | |
|
r100 | ||
|
r21 | status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels | |
|
r35 | if (status!=RTEMS_SUCCESSFUL) | |
|
r31 | { | |
|
r35 | PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n") | |
|
r31 | } | |
|
r5 | ||
|
r239 | timer_set_clock_divider( timer, clock_divider); | |
|
r31 | } | |
|
r239 | void timer_start(unsigned char timer) | |
|
r31 | { | |
|
r45 | /** This function starts a GPTIMER timer. | |
* | |||
* @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |||
* @param timer is the number of the timer in the IP core (several timers can be instantiated). | |||
* | |||
*/ | |||
|
r318 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ; | |
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD; | |||
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN; | |||
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS; | |||
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE; | |||
|
r5 | } | |
|
r239 | void timer_stop(unsigned char timer) | |
|
r31 | { | |
|
r45 | /** This function stops a GPTIMER timer. | |
* | |||
* @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |||
* @param timer is the number of the timer in the IP core (several timers can be instantiated). | |||
* | |||
*/ | |||
|
r318 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK; | |
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK; | |||
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ; | |||
|
r31 | } | |
|
r239 | void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider) | |
|
r31 | { | |
|
r45 | /** This function sets the clock divider of a GPTIMER timer. | |
* | |||
* @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |||
* @param timer is the number of the timer in the IP core (several timers can be instantiated). | |||
* @param clock_divider is the divider of the 1 MHz clock that will be configured. | |||
* | |||
*/ | |||
|
r31 | gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz | |
} | |||
|
r239 | // WATCHDOG | |
rtems_isr watchdog_isr( rtems_vector_number vector ) | |||
{ | |||
rtems_status_code status_code; | |||
status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 ); | |||
|
r262 | ||
PRINTF("watchdog_isr *** this is the end, exit(0)\n"); | |||
exit(0); | |||
|
r239 | } | |
void watchdog_configure(void) | |||
{ | |||
/** This function configure the watchdog. | |||
* | |||
* @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |||
* @param timer is the number of the timer in the IP core (several timers can be instantiated). | |||
* | |||
* The watchdog is a timer provided by the GPTIMER IP core of the GRLIB. | |||
* | |||
*/ | |||
LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration | |||
timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr ); | |||
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt | |||
} | |||
void watchdog_stop(void) | |||
{ | |||
LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line | |||
timer_stop( TIMER_WATCHDOG ); | |||
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt | |||
} | |||
void watchdog_reload(void) | |||
{ | |||
/** This function reloads the watchdog timer counter with the timer reload value. | |||
* | |||
|
r251 | * @param void | |
* | |||
* @return void | |||
|
r239 | * | |
*/ | |||
|
r318 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD; | |
|
r239 | } | |
void watchdog_start(void) | |||
{ | |||
/** This function starts the watchdog timer. | |||
* | |||
* @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |||
* @param timer is the number of the timer in the IP core (several timers can be instantiated). | |||
* | |||
*/ | |||
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); | |||
|
r318 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ; | |
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD; | |||
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN; | |||
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE; | |||
|
r239 | ||
LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG ); | |||
} | |||
|
r253 | int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register | |
|
r5 | { | |
|
r18 | struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART; | |
|
r21 | ||
|
r95 | apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE; | |
|
r94 | ||
return 0; | |||
} | |||
|
r40 | void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value) | |
|
r17 | { | |
|
r40 | /** This function sets the scaler reload register of the apbuart module | |
* | |||
* @param regs is the address of the apbuart registers in memory | |||
* @param value is the value that will be stored in the scaler register | |||
* | |||
* The value shall be set by the software to get data on the serial interface. | |||
* | |||
*/ | |||
|
r18 | struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs; | |
|
r21 | ||
apbuart_regs->scaler = value; | |||
|
r253 | ||
|
r35 | BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value) | |
|
r17 | } | |
//************ | |||
// RTEMS TASKS | |||
|
r239 | rtems_task load_task(rtems_task_argument argument) | |
|
r21 | { | |
|
r239 | BOOT_PRINTF("in LOAD *** \n") | |
rtems_status_code status; | |||
unsigned int i; | |||
unsigned int j; | |||
rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic | |||
rtems_id watchdog_period_id; // id of the watchdog rate monotonic period | |||
|
r320 | watchdog_period_id = RTEMS_ID_NONE; | |
|
r239 | name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' ); | |
status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id ); | |||
if( status != RTEMS_SUCCESSFUL ) { | |||
PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status ) | |||
} | |||
|
r17 | i = 0; | |
|
r21 | j = 0; | |
|
r239 | ||
watchdog_configure(); | |||
watchdog_start(); | |||
|
r262 | set_sy_lfr_watchdog_enabled( true ); | |
|
r21 | while(1){ | |
|
r239 | status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD ); | |
watchdog_reload(); | |||
i = i + 1; | |||
|
r318 | if ( i == WATCHDOG_LOOP_PRINTF ) | |
|
r239 | { | |
|
r21 | i = 0; | |
|
r239 | j = j + 1; | |
PRINTF1("%d\n", j) | |||
|
r21 | } | |
|
r246 | #ifdef DEBUG_WATCHDOG | |
|
r318 | if (j == WATCHDOG_LOOP_DEBUG ) | |
|
r239 | { | |
status = rtems_task_delete(RTEMS_SELF); | |||
} | |||
|
r246 | #endif | |
|
r21 | } | |
|
r5 | } | |
|
r21 | ||
rtems_task hous_task(rtems_task_argument argument) | |||
|
r17 | { | |
|
r18 | rtems_status_code status; | |
|
r166 | rtems_status_code spare_status; | |
|
r35 | rtems_id queue_id; | |
|
r104 | rtems_rate_monotonic_period_status period_status; | |
|
r319 | bool isSynchronized; | |
|
r320 | queue_id = RTEMS_ID_NONE; | |
memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status)); | |||
|
r319 | isSynchronized = false; | |
|
r33 | ||
|
r82 | status = get_message_queue_id_send( &queue_id ); | |
|
r35 | if (status != RTEMS_SUCCESSFUL) | |
{ | |||
|
r82 | PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status) | |
|
r35 | } | |
|
r259 | BOOT_PRINTF("in HOUS ***\n"); | |
|
r17 | ||
|
r46 | if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) { | |
status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id ); | |||
|
r18 | if( status != RTEMS_SUCCESSFUL ) { | |
|
r259 | PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status ); | |
|
r18 | } | |
|
r17 | } | |
status = rtems_rate_monotonic_cancel(HK_id); | |||
|
r23 | if( status != RTEMS_SUCCESSFUL ) { | |
|
r259 | PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status ); | |
|
r23 | } | |
else { | |||
|
r259 | DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n"); | |
|
r23 | } | |
|
r21 | ||
|
r104 | // startup phase | |
status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks ); | |||
status = rtems_rate_monotonic_get_status( HK_id, &period_status ); | |||
DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state) | |||
|
r319 | while( (period_status.state != RATE_MONOTONIC_EXPIRED) | |
&& (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway | |||
|
r104 | { | |
|
r318 | if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization | |
|
r104 | { | |
|
r319 | isSynchronized = true; | |
|
r104 | } | |
else | |||
{ | |||
status = rtems_rate_monotonic_get_status( HK_id, &period_status ); | |||
|
r318 | ||
status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms | |||
|
r104 | } | |
} | |||
status = rtems_rate_monotonic_cancel(HK_id); | |||
DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state) | |||
|
r280 | set_hk_lfr_reset_cause( POWER_ON ); | |
|
r226 | ||
|
r17 | while(1){ // launch the rate monotonic task | |
|
r21 | status = rtems_rate_monotonic_period( HK_id, HK_PERIOD ); | |
|
r23 | if ( status != RTEMS_SUCCESSFUL ) { | |
|
r50 | PRINTF1( "in HOUS *** ERR period: %d\n", status); | |
|
r166 | spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 ); | |
|
r17 | } | |
|
r23 | else { | |
|
r318 | housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE); | |
housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK ); | |||
|
r149 | increment_seq_counter( &sequenceCounterHK ); | |
|
r318 | housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES); | |
housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES); | |||
housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE); | |||
housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time); | |||
housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE); | |||
housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time); | |||
|
r23 | ||
|
r279 | spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] ); | |
|
r264 | spacewire_read_statistics(); | |
|
r23 | ||
|
r264 | update_hk_with_grspw_stats(); | |
|
r263 | ||
|
r249 | set_hk_lfr_time_not_synchro(); | |
|
r197 | housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max; | |
housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max; | |||
housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max; | |||
housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max; | |||
housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max; | |||
|
r195 | housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare; | |
housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters; | |||
|
r185 | get_temperatures( housekeeping_packet.hk_lfr_temp_scm ); | |
get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 ); | |||
|
r134 | get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load ); | |
|
r129 | ||
|
r261 | hk_lfr_le_me_he_update(); | |
|
r31 | // SEND PACKET | |
|
r172 | status = rtems_message_queue_send( queue_id, &housekeeping_packet, | |
|
r46 | PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES); | |
|
r33 | if (status != RTEMS_SUCCESSFUL) { | |
|
r50 | PRINTF1("in HOUS *** ERR send: %d\n", status) | |
|
r17 | } | |
|
r21 | } | |
} | |||
|
r5 | ||
|
r17 | PRINTF("in HOUS *** deleting task\n") | |
|
r21 | ||
status = rtems_task_delete( RTEMS_SELF ); // should not return | |||
|
r227 | ||
|
r45 | return; | |
|
r16 | } | |
|
r298 | rtems_task avgv_task(rtems_task_argument argument) | |
{ | |||
#define MOVING_AVERAGE 16 | |||
rtems_status_code status; | |||
|
r349 | static int32_t v[MOVING_AVERAGE] = {0}; | |
static int32_t e1[MOVING_AVERAGE] = {0}; | |||
static int32_t e2[MOVING_AVERAGE] = {0}; | |||
|
r357 | static int old_v = 0; | |
static int old_e1 = 0; | |||
static int old_e2 = 0; | |||
|
r359 | int32_t current_v; | |
int32_t current_e1; | |||
int32_t current_e2; | |||
|
r349 | int32_t average_v; | |
int32_t average_e1; | |||
int32_t average_e2; | |||
int32_t newValue_v; | |||
int32_t newValue_e1; | |||
int32_t newValue_e2; | |||
|
r298 | unsigned char k; | |
unsigned char indexOfOldValue; | |||
BOOT_PRINTF("in AVGV ***\n"); | |||
|
r349 | if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &AVGV_id) != RTEMS_SUCCESSFUL) { | |
|
r298 | status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id ); | |
if( status != RTEMS_SUCCESSFUL ) { | |||
PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status ); | |||
} | |||
} | |||
status = rtems_rate_monotonic_cancel(AVGV_id); | |||
if( status != RTEMS_SUCCESSFUL ) { | |||
PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status ); | |||
} | |||
else { | |||
DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n"); | |||
} | |||
// initialize values | |||
indexOfOldValue = MOVING_AVERAGE - 1; | |||
|
r357 | current_v = 0; | |
current_e1 = 0; | |||
current_e2 = 0; | |||
|
r349 | average_v = 0; | |
average_e1 = 0; | |||
average_e2 = 0; | |||
newValue_v = 0; | |||
newValue_e1 = 0; | |||
newValue_e2 = 0; | |||
|
r298 | ||
|
r328 | k = INIT_CHAR; | |
|
r298 | ||
|
r328 | while(1) | |
{ // launch the rate monotonic task | |||
|
r298 | status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD ); | |
|
r328 | if ( status != RTEMS_SUCCESSFUL ) | |
{ | |||
|
r298 | PRINTF1( "in AVGV *** ERR period: %d\n", status); | |
} | |||
|
r328 | else | |
{ | |||
|
r357 | current_v = waveform_picker_regs->v; | |
current_e1 = waveform_picker_regs->e1; | |||
current_e2 = waveform_picker_regs->e2; | |||
|
r359 | if ( (current_v != old_v) | |
|| (current_e1 != old_e1) | |||
|| (current_e2 != old_e2)) | |||
{ | |||
|
r357 | // get new values | |
|
r359 | newValue_v = current_v; | |
newValue_e1 = current_e1; | |||
newValue_e2 = current_e2; | |||
|
r328 | ||
|
r357 | // compute the moving average | |
average_v = average_v + newValue_v - v[k]; | |||
average_e1 = average_e1 + newValue_e1 - e1[k]; | |||
average_e2 = average_e2 + newValue_e2 - e2[k]; | |||
|
r328 | ||
|
r357 | // store new values in buffers | |
v[k] = newValue_v; | |||
e1[k] = newValue_e1; | |||
e2[k] = newValue_e2; | |||
if (k == (MOVING_AVERAGE-1)) | |||
{ | |||
k = 0; | |||
} | |||
else | |||
{ | |||
k++; | |||
} | |||
|
r359 | ||
|
r357 | //update int16 values | |
hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / MOVING_AVERAGE ); | |||
hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / MOVING_AVERAGE ); | |||
hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / MOVING_AVERAGE ); | |||
|
r359 | } | |
|
r357 | old_v = current_v; | |
old_e1 = current_e1; | |||
old_e2 = current_e2; | |||
|
r298 | } | |
} | |||
|
r328 | PRINTF("in AVGV *** deleting task\n"); | |
|
r298 | ||
|
r328 | status = rtems_task_delete( RTEMS_SELF ); // should not return | |
|
r298 | ||
return; | |||
} | |||
|
r45 | rtems_task dumb_task( rtems_task_argument unused ) | |
|
r33 | { | |
|
r45 | /** This RTEMS taks is used to print messages without affecting the general behaviour of the software. | |
* | |||
* @param unused is the starting argument of the RTEMS task | |||
* | |||
* The DUMB taks waits for RTEMS events and print messages depending on the incoming events. | |||
* | |||
*/ | |||
|
r35 | ||
|
r45 | unsigned int i; | |
unsigned int intEventOut; | |||
unsigned int coarse_time = 0; | |||
unsigned int fine_time = 0; | |||
rtems_event_set event_out; | |||
|
r33 | ||
|
r320 | event_out = EVENT_SETS_NONE_PENDING; | |
|
r77 | ||
|
r45 | BOOT_PRINTF("in DUMB *** \n") | |
|
r35 | ||
|
r45 | while(1){ | |
|
r55 | rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3 | |
|
r103 | | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7 | |
|