##// END OF EJS Templates
Switched to CMake, added a basic python test (with ctypes), simplified kcoef init function
Switched to CMake, added a basic python test (with ctypes), simplified kcoef init function

File last commit:

r23:2e08872d5b98 tip TCH
r23:2e08872d5b98 tip TCH
Show More
basic_parameters.c
1002 lines | 60.7 KiB | text/x-c | CLexer
/ src / basic_parameters.c
// In the frame of RPW LFR Sofware ICD Issue1 Rev8 (05/07/2013) => R2 FSW
// version 1.0: 31/07/2013
// version 1.1: 02/04/2014
// version 1.2: 30/04/2014
// version 1.3: 02/05/2014
// version 1.4: 16/05/2014
// version 1.5: 20/05/2014
// version 1.6: 19/12/2014
// version 1.7: 15/01/2015 (modifs de Paul + correction erreurs qui se compensaient (LSB <=> MSB + indices [0,2] <=> [1,3])
// version 1.8: 02/02/2015 (gestion des divisions par zéro)
// In the frame of RPW LFR Sofware ICD Issue3 Rev6 (27/01/2015) => R3 FSW
// version 2.0: 19/06/2015
// version 2.1: 22/06/2015 (modifs de Paul)
// version 2.2: 23/06/2015 (modifs de l'ordre de déclaration/définition de init_k_coefficients dans basic_parameters.c ... + maintien des declarations dans le .h)
// version 2.3: 01/07/2015 (affectation initiale des octets 7 et 9 dans les BP1 corrigée ...)
// version 2.4: 05/10/2018 (added GPL headers)
// version 2.5: 09/10/2018 (dans main.c #include "basic_parameters_utilities.h" est changé par les déclarations extern correspondantes ...!
// + delta mise en conformité LOGISCOPE)
/*------------------------------------------------------------------------------
-- Solar Orbiter's Low Frequency Receiver Flight Software (LFR FSW),
-- This file is a part of the LFR FSW
-- Copyright (C) 2012-2018, Plasma Physics Laboratory - CNRS
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-------------------------------------------------------------------------------*/
/*-- Author : Thomas Chust
-- Contact : Thomas Chust
-- Mail : thomas.chust@lpp.polytechnique.fr
----------------------------------------------------------------------------*/
#include <stdio.h>
#include <math.h>
#include <stdint.h>
#include "basic_parameters_params.h"
void init_k_coefficients(float *k_coefficients,
unsigned char nb_binscompressed_matrix )
{
uint8_t i; // 8 bits unsigned
uint8_t j;
for(i=0; i<nb_binscompressed_matrix; i++)
{
for (j=0;j<NB_K_COEFF_PER_BIN;j++) {
k_coefficients[i*NB_K_COEFF_PER_BIN+j] = 1.f;
}
k_coefficients[i*NB_K_COEFF_PER_BIN+K45_PE_RE] = 0.;
k_coefficients[i*NB_K_COEFF_PER_BIN+K45_PE_IM] = 0.;
}
}
void BP1_set(float *compressed_spec_mat, float *k_coeff_intercalib, uint8_t nb_bins_compressed_spec_mat, uint8_t *lfr_bp1){
float PSDB; // 32-bit floating point
float PSDE;
float tmp;
float NVEC_V0;
float NVEC_V1;
float NVEC_V2;
float aux;
float tr_SB_SB;
float e_cross_b_re;
float e_cross_b_im;
float n_cross_e_scal_b_re;
float n_cross_e_scal_b_im;
float ny;
float nz;
float bx_bx_star;
float vphi;
float significand;
int exponent; // 32-bit signed integer
float alpha_M;
uint8_t nbitexp; // 8-bit unsigned integer
uint8_t nbitsig;
uint8_t tmp_uint8;
uint8_t *pt_uint8; // pointer on unsigned 8-bit integer
int8_t expmin; // 8-bit signed integer
int8_t expmax;
uint16_t rangesig; // 16-bit unsigned integer
uint16_t psd;
uint16_t exp;
uint16_t tmp_uint16;
uint16_t i;
alpha_M = 45 * (3.1415927f/180);
#ifdef DEBUG_TCH
printf("BP1 : \n");
printf("Number of bins: %d\n", nb_bins_compressed_spec_mat);
#endif
// initialization for managing the exponents of the floating point data:
nbitexp = 6; // number of bits for the exponent
expmax = 32+5; // maximum value of the exponent
expmin = (expmax - (1 << nbitexp)) + 1; // accordingly the minimum exponent value
// for floating point data to be recorded on 16-bit words:
nbitsig = 16 - nbitexp; // number of bits for the significand
rangesig = (1 << nbitsig)-1; // == 2^nbitsig - 1
#ifdef DEBUG_TCH
printf("nbitexp : %d, expmax : %d, expmin : %d\n", nbitexp, expmax, expmin);
printf("nbitsig : %d, rangesig : %d\n", nbitsig, rangesig);
#endif
for(i=0; i<nb_bins_compressed_spec_mat; i++){
//==============================================
// BP1 PSDB == PA_LFR_SC_BP1_PB_F0 == 16 bits = 6 bits (exponent) + 10 bits (significand)
PSDB = compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX] // S11
+ compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9] // S22
+ compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16]; // S33
significand = frexpf(PSDB, &exponent); // 0.5 <= significand < 1
// PSDB = significand * 2^exponent
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) { // in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
psd = (uint16_t) ((((significand*2) - 1)*rangesig) + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
// the first nbitexp bits are used (0, ..., 2^nbitexp-1)
tmp_uint16 = psd | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
// left place of the significand bits (nbitsig),
// making the 16-bit word to be recorded
pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
#ifdef MSB_FIRST_TCH
lfr_bp1[(i*NB_BYTES_BP1)+2] = pt_uint8[0]; // Record MSB of tmp_uint16
lfr_bp1[(i*NB_BYTES_BP1)+3] = pt_uint8[1]; // Record LSB of tmp_uint16
#endif
#ifdef LSB_FIRST_TCH
lfr_bp1[(i*NB_BYTES_BP1)+2] = pt_uint8[1]; // Record MSB of tmp_uint16
lfr_bp1[(i*NB_BYTES_BP1)+3] = pt_uint8[0]; // Record LSB of tmp_uint16
#endif
#ifdef DEBUG_TCH
printf("\nBin number: %d\n", i);
printf("PSDB : %16.8e\n",PSDB);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
printf("psd for PSDB significand : %d\n",psd);
printf("exp for PSDB exponent : %d\n",exp);
printf("pt_uint8[1] for PSDB exponent + significand: %.3d or %.2x\n",pt_uint8[1], pt_uint8[1]);
printf("pt_uint8[0] for PSDB significand: %.3d or %.2x\n",pt_uint8[0], pt_uint8[0]);
printf("lfr_bp1[i*NB_BYTES_BP1+2] : %.3d or %.2x\n",lfr_bp1[i*NB_BYTES_BP1+2], lfr_bp1[i*NB_BYTES_BP1+2]);
printf("lfr_bp1[i*NB_BYTES_BP1+3] : %.3d or %.2x\n",lfr_bp1[i*NB_BYTES_BP1+3], lfr_bp1[i*NB_BYTES_BP1+3]);
#endif
//==============================================
// BP1 PSDE == PA_LFR_SC_BP1_PE_F0 == 16 bits = 6 bits (exponent) + 10 bits (significand)
PSDE = (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 21] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K44_PE]) // S44
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 24] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K55_PE]) // S55
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 22] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K45_PE_RE]) // S45 Re
- (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 23] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K45_PE_IM]); // S45 Im
significand = frexpf(PSDE, &exponent); // 0.5 <= significand < 1
// PSDE = significand * 2^exponent
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) {// in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
psd = (uint16_t) ((((significand*2)-1)*rangesig) + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
// the first nbitexp bits are used (0, ..., 2^nbitexp-1)
tmp_uint16 = psd | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
// left place of the significand bits (nbitsig),
// making the 16-bit word to be recorded
pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
#ifdef MSB_FIRST_TCH
lfr_bp1[(i*NB_BYTES_BP1) + 0] = pt_uint8[0]; // Record MSB of tmp_uint16
lfr_bp1[(i*NB_BYTES_BP1) + 1] = pt_uint8[1]; // Record LSB of tmp_uint16
#endif
#ifdef LSB_FIRST_TCH
lfr_bp1[(i*NB_BYTES_BP1) + 0] = pt_uint8[1]; // Record MSB of tmp_uint16
lfr_bp1[(i*NB_BYTES_BP1) + 1] = pt_uint8[0]; // Record LSB of tmp_uint16
#endif
#ifdef DEBUG_TCH
printf("PSDE : %16.8e\n",PSDE);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
printf("psd for PSDE significand : %d\n",psd);
printf("exp for PSDE exponent : %d\n",exp);
printf("pt_uint8[1] for PSDE exponent + significand: %.3d or %.2x\n",pt_uint8[1], pt_uint8[1]);
printf("pt_uint8[0] for PSDE significand: %.3d or %.2x\n",pt_uint8[0], pt_uint8[0]);
printf("lfr_bp1[i*NB_BYTES_BP1+0] : %.3d or %.2x\n",lfr_bp1[i*NB_BYTES_BP1+0], lfr_bp1[i*NB_BYTES_BP1+0]);
printf("lfr_bp1[i*NB_BYTES_BP1+1] : %.3d or %.2x\n",lfr_bp1[i*NB_BYTES_BP1+1], lfr_bp1[i*NB_BYTES_BP1+1]);
#endif
//==============================================================================
// BP1 normal wave vector == PA_LFR_SC_BP1_NVEC_V0_F0 == 8 bits
// == PA_LFR_SC_BP1_NVEC_V1_F0 == 8 bits
// == PA_LFR_SC_BP1_NVEC_V2_F0 == 1 sign bit
tmp = sqrt( (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 2] *compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 2]) //Im S12
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 4] *compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 4]) //Im S13
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 11]*compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 11]) //Im S23
);
if (tmp != 0.) { // no division by 0.
NVEC_V0 = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 11] / tmp; // S23 Im => n1
NVEC_V1 = (-compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 4]) / tmp; // S13 Im => n2
NVEC_V2 = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 2] / tmp; // S12 Im => n3
}
else
{
NVEC_V0 = 0.;
NVEC_V1 = 0.;
NVEC_V2 = 0.;
}
lfr_bp1[(i*NB_BYTES_BP1) + 4] = (uint8_t) ((NVEC_V0*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
lfr_bp1[(i*NB_BYTES_BP1) + 5] = (uint8_t) ((NVEC_V1*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
pt_uint8 = (uint8_t*) &NVEC_V2; // Affect an uint8_t pointer with the adress of NVEC_V2
#ifdef LSB_FIRST_TCH
lfr_bp1[(i*NB_BYTES_BP1) + 6] = pt_uint8[3] & 0x80; // Extract the sign bit of NVEC_V2 (32-bit float, sign bit in the 4th octet:PC convention)
// Record it at the 8th bit position (from the right to the left) of lfr_bp1[i*NB_BYTES_BP1+6]
#endif
#ifdef MSB_FIRST_TCH
lfr_bp1[(i*NB_BYTES_BP1) + 6] = pt_uint8[0] & 0x80; // Extract the sign bit of NVEC_V2 (32-bit float, sign bit in the 1th octet:SPARC convention)
// Record it at the 8th bit position (from the right to the left) of lfr_bp1[i*NB_BYTES_BP1+6]
#endif
#ifdef DEBUG_TCH
printf("NVEC_V0 : %16.8e\n",NVEC_V0);
printf("NVEC_V1 : %16.8e\n",NVEC_V1);
printf("NVEC_V2 : %16.8e\n",NVEC_V2);
printf("lfr_bp1[i*NB_BYTES_BP1+4] for NVEC_V0 : %u\n",lfr_bp1[i*NB_BYTES_BP1+4]);
printf("lfr_bp1[i*NB_BYTES_BP1+5] for NVEC_V1 : %u\n",lfr_bp1[i*NB_BYTES_BP1+5]);
printf("lfr_bp1[i*NB_BYTES_BP1+6] for NVEC_V2 : %u\n",lfr_bp1[i*NB_BYTES_BP1+6]);
#endif
//=======================================================
// BP1 ellipticity == PA_LFR_SC_BP1_ELLIP_F0 == 4 bits
if (PSDB != 0.) { // no division by 0.
aux = 2*tmp / PSDB; // Compute the ellipticity
}
else
{
aux = 0.;
}
tmp_uint8 = (uint8_t) ((aux*15) + 0.5); // Shift and cast into a 8-bit uint8_t with rounding
// where just the first 4 bits are used (0, ..., 15)
lfr_bp1[(i*NB_BYTES_BP1) + 6] = lfr_bp1[(i*NB_BYTES_BP1) + 6] | (tmp_uint8 << 3); // Put these 4 bits next to the right place
// of the sign bit of NVEC_V2 (recorded
// previously in lfr_bp1[i*NB_BYTES_BP1+6])
#ifdef DEBUG_TCH
printf("ellipticity : %16.8e\n",aux);
printf("tmp_uint8 for ellipticity : %u\n",tmp_uint8);
printf("lfr_bp1[i*NB_BYTES_BP1+6] for NVEC_V2 + ellipticity : %u\n",lfr_bp1[i*NB_BYTES_BP1+6]);
#endif
//==============================================================
// BP1 degree of polarization == PA_LFR_SC_BP1_DOP_F0 == 3 bits
tr_SB_SB = (compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX] * compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX])
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9])
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16])
+ (2 * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 1] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 1])
+ (2 * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 2] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 2])
+ (2 * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 3] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 3])
+ (2 * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 4] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 4])
+ (2 * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 10]* compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 10])
+ (2 * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 11]* compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 11]);
aux = PSDB*PSDB;
if (aux != 0.) { // no division by 0.
tmp = ( 3*tr_SB_SB - aux ) / ( 2 * aux ); // Compute the degree of polarisation
}
else
{
tmp = 0.;
}
tmp_uint8 = (uint8_t) ((tmp*7) + 0.5); // Shift and cast into a 8-bit uint8_t with rounding
// where just the first 3 bits are used (0, ..., 7)
lfr_bp1[(i*NB_BYTES_BP1) + 6] = lfr_bp1[(i*NB_BYTES_BP1) + 6] | tmp_uint8; // Record these 3 bits at the 3 first bit positions
// (from the right to the left) of lfr_bp1[i*NB_BYTES_BP1+6]
#ifdef DEBUG_TCH
printf("DOP : %16.8e\n",tmp);
printf("tmp_uint8 for DOP : %u\n",tmp_uint8);
printf("lfr_bp1[i*NB_BYTES_BP1+6] for NVEC_V2 + ellipticity + DOP : %u\n",lfr_bp1[i*NB_BYTES_BP1+6]);
#endif
//=======================================================================================
// BP1 X_SO-component of the Poynting flux == PA_LFR_SC_BP1_SX_F0 == 16 bits
// = 1 sign bit + 1 argument bit (two sectors)
// + 6 bits (exponent) + 8 bits (significand)
e_cross_b_re = (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 17] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_SX_RE]) //S34 Re
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 19] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_SX_RE]) //S35 Re
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 5] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K14_SX_RE]) //S14 Re
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 7] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K15_SX_RE]) //S15 Re
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 12] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_SX_RE]) //S24 Re
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 14] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_SX_RE]) //S25 Re
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 18] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_SX_IM]) //S34 Im
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 20] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_SX_IM]) //S35 Im
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 6] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K14_SX_IM]) //S14 Im
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 8] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K15_SX_IM]) //S15 Im
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 13] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_SX_IM]) //S24 Im
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 15] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_SX_IM]); //S25 Im
// Im(S_ji) = -Im(S_ij)
// k_ji = k_ij
e_cross_b_im = (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 17]*k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_SX_IM]) //S34 Re
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 19]*k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_SX_IM]) //S35 Re
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 5] *k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K14_SX_IM]) //S14 Re
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 7] *k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K15_SX_IM]) //S15 Re
+ (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 12]*k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_SX_IM]) //S24 Re
+ ((compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 14]*k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_SX_IM]) //S25 Re
- (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 18]*k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_SX_RE]) //S34 Im
- (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 20]*k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_SX_RE]) //S35 Im
- (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 6] *k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K14_SX_RE]) //S14 Im
- (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 8] *k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K15_SX_RE]) //S15 Im
- (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 13]*k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_SX_RE]) //S24 Im
- (compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 15]*k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_SX_RE])); //S25 Im
#ifdef DEBUG_TCH
printf("ReaSX : %16.8e\n",e_cross_b_re);
#endif
pt_uint8 = (uint8_t*) &e_cross_b_re; // Affect an uint8_t pointer with the adress of e_cross_b_re
#ifdef LSB_FIRST_TCH
lfr_bp1[(i*NB_BYTES_BP1) + 7] = (uint8_t) (pt_uint8[3] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 4th octet:PC convention)
// Record it at the 8th bit position (from the right to the left)
// of lfr_bp1[i*NB_BYTES_BP1+7]
pt_uint8[3] = (pt_uint8[3] & 0x7f); // Make e_cross_b_re be positive in any case: |ReaSX|
#endif
#ifdef MSB_FIRST_TCH
lfr_bp1[(i*NB_BYTES_BP1) + 7] = (uint8_t) (pt_uint8[0] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 1th octet:SPARC convention)
// Record it at the 8th bit position (from the right to the left)
// of lfr_bp1[i*NB_BYTES_BP1+7]
pt_uint8[0] = (pt_uint8[0] & 0x7f); // Make e_cross_b_re be positive in any case: |ReaSX|
#endif
significand = frexpf(e_cross_b_re, &exponent); // 0.5 <= significand < 1
// ReaSX = significand * 2^exponent
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) { // in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
lfr_bp1[(i*NB_BYTES_BP1) + 8] = (uint8_t) ((((significand*2)-1)*255) + 0.5); // Shift and cast into a 8-bit uint8_t with rounding
// where all bits are used (0, ..., 255)
tmp_uint8 = (uint8_t) (exponent-expmin); // Shift and cast into a 8-bit uint8_t where
// just the first nbitexp bits are used (0, ..., 2^nbitexp-1)
#ifdef DEBUG_TCH
printf("|ReaSX| : %16.8e\n",e_cross_b_re);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
printf("tmp_uint8 for ReaSX exponent : %d\n",tmp_uint8);
#endif
lfr_bp1[(i*NB_BYTES_BP1) + 7] = lfr_bp1[(i*NB_BYTES_BP1) + 7] | tmp_uint8; // Record these nbitexp bits in the nbitexp first bits
// (from the right to the left) of lfr_bp1[i*NB_BYTES_BP1+7]
#ifdef DEBUG_TCH
printf("lfr_bp1[i*NB_BYTES_BP1+7] for ReaSX sign + RealSX exponent : %u\n",lfr_bp1[i*NB_BYTES_BP1+7]);
printf("lfr_bp1[i*NB_BYTES_BP1+8] for ReaSX significand : %u\n",lfr_bp1[i*NB_BYTES_BP1+8]);
printf("ImaSX : %16.8e\n",e_cross_b_im);
#endif
pt_uint8 = (uint8_t*) &e_cross_b_im; // Affect an uint8_t pointer with the adress of e_cross_b_im
#ifdef LSB_FIRST_TCH
pt_uint8[3] = pt_uint8[3] & 0x7f; // Make e_cross_b_im be positive in any case: |ImaSX| (32-bit float, sign bit in the 4th octet:PC convention)
#endif
#ifdef MSB_FIRST_TCH
pt_uint8[0] = pt_uint8[0] & 0x7f; // Make e_cross_b_im be positive in any case: |ImaSX| (32-bit float, sign bit in the 1th octet:SPARC convention)
#endif
// Determine the sector argument of SX. If |Im| > |Re| affect
// an unsigned 8-bit char with 01000000; otherwise with null.
if (e_cross_b_im > e_cross_b_re) {
tmp_uint8 = 0x40;
}
else {
tmp_uint8 = 0x00;
}
lfr_bp1[(i*NB_BYTES_BP1) + 7] = lfr_bp1[(i*NB_BYTES_BP1) + 7] | tmp_uint8; // Record it as a sign bit at the 7th bit position (from the right
// to the left) of lfr_bp1[i*NB_BYTES_BP1+7], by simple logical addition.
#ifdef DEBUG_TCH
printf("|ImaSX| : %16.8e\n",e_cross_b_im);
printf("ArgSX sign : %u\n",tmp_uint8);
printf("lfr_bp1[i*NB_BYTES_BP1+7] for ReaSX & ArgSX signs + ReaSX exponent : %u\n",lfr_bp1[i*NB_BYTES_BP1+7]);
#endif
//======================================================================
// BP1 phase velocity estimator == PA_LFR_SC_BP1_VPHI_F0 == 16 bits
// = 1 sign bit + 1 argument bit (two sectors)
// + 6 bits (exponent) + 8 bits (significand)
ny = (sin(alpha_M)*NVEC_V1) + (cos(alpha_M)*NVEC_V2);
nz = NVEC_V0;
bx_bx_star = (cos(alpha_M)*cos(alpha_M)*compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9]) // S22 Re
+ ((sin(alpha_M)*sin(alpha_M)*compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16]) // S33 Re
- (2*sin(alpha_M)*cos(alpha_M)*compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 10])); // S23 Re
n_cross_e_scal_b_re = (ny * ((compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 12] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_NY_RE]) //S24 Re
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 14] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_NY_RE]) //S25 Re
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 17] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_NY_RE]) //S34 Re
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 19] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_NY_RE]) //S35 Re
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 13] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_NY_IM]) //S24 Im
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 15] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_NY_IM]) //S25 Im
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 18] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_NY_IM]) //S34 Im
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 20] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_NY_IM]))) //S35 Im
+ (nz * ((compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 12] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_NZ_RE]) //S24 Re
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 14] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_NZ_RE]) //S25 Re
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 17] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_NZ_RE]) //S34 Re
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 19] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_NZ_RE]) //S35 Re
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 13] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_NZ_IM]) //S24 Im
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 15] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_NZ_IM]) //S25 Im
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 18] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_NZ_IM]) //S34 Im
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 20] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_NZ_IM])));//S35 Im
// Im(S_ji) = -Im(S_ij)
// k_ji = k_ij
n_cross_e_scal_b_im = (ny * ((compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 12] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_NY_IM]) //S24 Re
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 14] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_NY_IM]) //S25 Re
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 17] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_NY_IM]) //S34 Re
+((compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 19] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_NY_IM]) //S35 Re
-(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 13] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_NY_RE]) //S24 Im
-(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 15] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_NY_RE]) //S25 Im
-(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 18] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_NY_RE]) //S34 Im
-(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 20] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_NY_RE])))) //S35 Im
+ (nz * ((compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 12] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_NZ_IM]) //S24 Re
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 14] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_NZ_IM]) //S25 Re
+(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 17] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_NZ_IM] ) //S34 Re
+((compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 19] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_NZ_IM]) //S35 Re
-(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 13] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K24_NZ_RE]) //S24 Im
-(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 15] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K25_NZ_RE]) //S25 Im
-(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 18] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K34_NZ_RE]) //S34 Im
-(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 20] * k_coeff_intercalib[(i*NB_K_COEFF_PER_BIN) + K35_NZ_RE]))));//S35 Im
#ifdef DEBUG_TCH
printf("n_cross_e_scal_b_re : %16.8e\n",n_cross_e_scal_b_re);
printf("n_cross_e_scal_b_im : %16.8e\n",n_cross_e_scal_b_im);
#endif
// vphi = n_cross_e_scal_b_re / bx_bx_star => sign(VPHI) = sign(n_cross_e_scal_b_re)
pt_uint8 = (uint8_t*) &n_cross_e_scal_b_re; // Affect an uint8_t pointer with the adress of n_cross_e_scal_b_re
#ifdef LSB_FIRST_TCH
lfr_bp1[(i*NB_BYTES_BP1) + 9] = (uint8_t) (pt_uint8[3] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 4th octet:PC convention)
// Record it at the 8th bit position (from the right to the left)
// of lfr_bp1[i*NB_BYTES_BP1+9]
pt_uint8[3] = (pt_uint8[3] & 0x7f); // Make n_cross_e_scal_b_re be positive in any case: |n_cross_e_scal_b_re|
#endif
#ifdef MSB_FIRST_TCH
lfr_bp1[(i*NB_BYTES_BP1) + 9] = (uint8_t) (pt_uint8[0] & 0x80); // Extract its sign bit (32-bit float, sign bit in the 1th octet:SPARC convention)
// Record it at the 8th bit position (from the right to the left)
// of lfr_bp1[i*NB_BYTES_BP1+9]
pt_uint8[0] = (pt_uint8[0] & 0x7f); // Make n_cross_e_scal_b_re be positive in any case: |n_cross_e_scal_b_re|
#endif
if (bx_bx_star != 0.) { // no division by 0.
vphi = n_cross_e_scal_b_re / bx_bx_star; // Compute |VPHI|
}
else
{
vphi = 1.e+20; // Put a huge value
}
significand = frexpf(vphi, &exponent); // 0.5 <= significand < 1
// vphi = significand * 2^exponent
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) {// in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
lfr_bp1[(i*NB_BYTES_BP1) + 10] = (uint8_t) ((((significand*2)-1)*255) + 0.5); // Shift and cast into a 8-bit uint8_t with rounding
// where all the bits are used (0, ..., 255)
tmp_uint8 = (uint8_t) (exponent-expmin); // Shift and cast into a 8-bit uint8_t where
// just the first nbitexp bits are used (0, ..., 2^nbitexp-1)
#ifdef DEBUG_TCH
printf("|VPHI| : %16.8e\n",vphi);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
printf("tmp_uint8 for VPHI exponent : %d\n",tmp_uint8);
#endif
lfr_bp1[(i*NB_BYTES_BP1) + 9] = lfr_bp1[(i*NB_BYTES_BP1) + 9] | tmp_uint8; // Record these nbitexp bits in the nbitexp first bits
// (from the right to the left) of lfr_bp1[i*NB_BYTES_BP1+9]
#ifdef DEBUG_TCH
printf("lfr_bp1[i*NB_BYTES_BP1+9] for VPHI sign + VPHI exponent : %u\n",lfr_bp1[i*NB_BYTES_BP1+9]);
printf("lfr_bp1[i*NB_BYTES_BP1+10] for VPHI significand : %u\n",lfr_bp1[i*NB_BYTES_BP1+10]);
#endif
pt_uint8 = (uint8_t*) &n_cross_e_scal_b_im; // Affect an uint8_t pointer with the adress of n_cross_e_scal_b_im
#ifdef LSB_FIRST_TCH
pt_uint8[3] = pt_uint8[3] & 0x7f; // Make n_cross_e_scal_b_im be positive in any case: |ImaNEBX| (32-bit float, sign bit in the 4th octet:PC convention)
#endif
#ifdef MSB_FIRST_TCH
pt_uint8[0] = pt_uint8[0] & 0x7f; // Make n_cross_e_scal_b_im be positive in any case: |ImaNEBX| (32-bit float, sign bit in the 1th octet:SPARC convention)
#endif
// Determine the sector argument of NEBX. If |Im| > |Re| affect
// an unsigned 8-bit char with 01000000; otherwise with null.
if (n_cross_e_scal_b_im > n_cross_e_scal_b_re) {
tmp_uint8 = 0x40;
}
else {
tmp_uint8 = 0x00;
}
lfr_bp1[(i*NB_BYTES_BP1) + 9] = lfr_bp1[(i*NB_BYTES_BP1) + 9] | tmp_uint8; // Record it as a sign bit at the 7th bit position (from the right
// to the left) of lfr_bp1[i*NB_BYTES_BP1+9], by simple logical addition.
#ifdef DEBUG_TCH
printf("|n_cross_e_scal_b_im| : %16.8e\n",n_cross_e_scal_b_im);
printf("|n_cross_e_scal_b_im|/bx_bx_star : %16.8e\n",n_cross_e_scal_b_im/bx_bx_star);
printf("ArgNEBX sign : %u\n",tmp_uint8);
printf("lfr_bp1[i*NB_BYTES_BP1+9] for VPHI & ArgNEBX signs + VPHI exponent : %u\n",lfr_bp1[i*NB_BYTES_BP1+9]);
#endif
}
}
void BP2_set(float *compressed_spec_mat, uint8_t nb_bins_compressed_spec_mat, uint8_t *lfr_bp2)
{
float cross_re; // 32-bit floating point
float cross_im;
float aux;
float significand;
int exponent; // 32-bit signed integer
uint8_t nbitexp; // 8-bit unsigned integer
uint8_t nbitsig;
uint8_t *pt_uint8; // pointer on unsigned 8-bit integer
int8_t expmin; // 8-bit signed integer
int8_t expmax;
uint16_t rangesig; // 16-bit unsigned integer
uint16_t autocor;
uint16_t exp;
uint16_t tmp_uint16;
uint16_t i;
#ifdef DEBUG_TCH
printf("BP2 : \n");
printf("Number of bins: %d\n", nb_bins_compressed_spec_mat);
#endif
// For floating point data to be recorded on 16-bit words :
nbitexp = 6; // number of bits for the exponent
nbitsig = 16 - nbitexp; // number of bits for the significand
rangesig = (1 << nbitsig)-1; // == 2^nbitsig - 1
expmax = 32 + 5;
expmin = (expmax - (1 << nbitexp)) + 1;
#ifdef DEBUG_TCH
printf("nbitexp : %d, expmax : %d, expmin : %d\n", nbitexp, expmax, expmin);
printf("nbitsig : %d, rangesig : %d\n", nbitsig, rangesig);
#endif
for(i = 0; i<nb_bins_compressed_spec_mat; i++){
//==============================================
// BP2 normalized cross correlations == PA_LFR_SC_BP2_CROSS_F0 == 10 * (8+8) bits
// == PA_LFR_SC_BP2_CROSS_RE_0_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_0_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_1_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_1_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_2_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_2_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_3_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_3_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_4_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_4_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_5_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_5_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_6_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_6_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_7_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_7_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_8_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_8_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_RE_9_F0 == 8 bits
// == PA_LFR_SC_BP2_CROSS_IM_9_F0 == 8 bits
// S12
aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9]);
if (aux != 0.) { // no division by 0.
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 1] / aux;
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 2] / aux;
}
else
{
cross_re = 0.;
cross_im = 0.;
}
lfr_bp2[(i*NB_BYTES_BP2) + 10] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
lfr_bp2[(i*NB_BYTES_BP2) + 20] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
#ifdef DEBUG_TCH
printf("\nBin number: %d\n", i);
printf("lfr_bp2[i*NB_BYTES_BP2+10] for cross12_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+10]);
printf("lfr_bp2[i*NB_BYTES_BP2+20] for cross12_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+20]);
#endif
// S13
aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16]);
if (aux != 0.) { // no division by 0.
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 3] / aux;
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 4] / aux;
}
else
{
cross_re = 0.;
cross_im = 0.;
}
lfr_bp2[(i*NB_BYTES_BP2) + 11] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
lfr_bp2[(i*NB_BYTES_BP2) + 21] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
#ifdef DEBUG_TCH
printf("lfr_bp2[i*NB_BYTES_BP2+11] for cross13_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+11]);
printf("lfr_bp2[i*NB_BYTES_BP2+21] for cross13_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+21]);
#endif
// S14
aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 21]);
if (aux != 0.) { // no division by 0.
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 5] / aux;
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 6] / aux;
}
else
{
cross_re = 0.;
cross_im = 0.;
}
lfr_bp2[(i*NB_BYTES_BP2) + 12] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
lfr_bp2[(i*NB_BYTES_BP2) + 22] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
#ifdef DEBUG_TCH
printf("lfr_bp2[i*NB_BYTES_BP2+12] for cross14_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+12]);
printf("lfr_bp2[i*NB_BYTES_BP2+22] for cross14_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+22]);
#endif
// S15
aux = sqrt(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 24]);
if (aux != 0.) { // no division by 0.
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 7] / aux;
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 8] / aux;
}
else
{
cross_re = 0.;
cross_im = 0.;
}
lfr_bp2[(i*NB_BYTES_BP2) + 13] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
lfr_bp2[(i*NB_BYTES_BP2) + 23] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
#ifdef DEBUG_TCH
printf("lfr_bp2[i*NB_BYTES_BP2+13] for cross15_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+13]);
printf("lfr_bp2[i*NB_BYTES_BP2+23] for cross15_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+23]);
#endif
// S23
aux = sqrt(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16]);
if (aux != 0.) { // no division by 0.
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 10] / aux;
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 11] / aux;
}
else
{
cross_re = 0.;
cross_im = 0.;
}
lfr_bp2[(i*NB_BYTES_BP2) + 14] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
lfr_bp2[(i*NB_BYTES_BP2) + 24] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
#ifdef DEBUG_TCH
printf("lfr_bp2[i*NB_BYTES_BP2+14] for cross23_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+14]);
printf("lfr_bp2[i*NB_BYTES_BP2+24] for cross23_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+24]);
#endif
// S24
aux = sqrt(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 21]);
if (aux != 0.) { // no division by 0.
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 12] / aux;
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 13] / aux;
}
else
{
cross_re = 0.;
cross_im = 0.;
}
lfr_bp2[(i*NB_BYTES_BP2) + 15] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
lfr_bp2[(i*NB_BYTES_BP2) + 25] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
#ifdef DEBUG_TCH
printf("lfr_bp2[i*NB_BYTES_BP2+15] for cross24_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+15]);
printf("lfr_bp2[i*NB_BYTES_BP2+25] for cross24_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+25]);
#endif
// S25
aux = sqrt(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 24]);
if (aux != 0.) { // no division by 0.
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 14] / aux;
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 15] / aux;
}
else
{
cross_re = 0.;
cross_im = 0.;
}
lfr_bp2[(i*NB_BYTES_BP2) + 16] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
lfr_bp2[(i*NB_BYTES_BP2) + 26] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
#ifdef DEBUG_TCH
printf("lfr_bp2[i*NB_BYTES_BP2+16] for cross25_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+16]);
printf("lfr_bp2[i*NB_BYTES_BP2+26] for cross25_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+26]);
#endif
// S34
aux = sqrt(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 21]);
if (aux != 0.) { // no division by 0.
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 17] / aux;
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 18] / aux;
}
else
{
cross_re = 0.;
cross_im = 0.;
}
lfr_bp2[(i*NB_BYTES_BP2) + 17] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
lfr_bp2[(i*NB_BYTES_BP2) + 27] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
#ifdef DEBUG_TCH
printf("lfr_bp2[i*NB_BYTES_BP2+17] for cross34_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+17]);
printf("lfr_bp2[i*NB_BYTES_BP2+27] for cross34_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+27]);
#endif
// S35
aux = sqrt(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16] * compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 24]);
if (aux != 0.) { // no division by 0.
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 19] / aux;
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 20] / aux;
}
else
{
cross_re = 0.;
cross_im = 0.;
}
lfr_bp2[(i*NB_BYTES_BP2) + 18] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
lfr_bp2[(i*NB_BYTES_BP2) + 28] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
#ifdef DEBUG_TCH
printf("lfr_bp2[i*NB_BYTES_BP2+18] for cross35_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+18]);
printf("lfr_bp2[i*NB_BYTES_BP2+28] for cross35_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+28]);
#endif
// S45
aux = sqrt(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 21]*compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 24]);
if (aux != 0.) { // no division by 0.
cross_re = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 22] / aux;
cross_im = compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 23] / aux;
}
else
{
cross_re = 0.;
cross_im = 0.;
}
lfr_bp2[(i*NB_BYTES_BP2) + 19] = (uint8_t) ((cross_re*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
lfr_bp2[(i*NB_BYTES_BP2) + 29] = (uint8_t) ((cross_im*127.5) + 128); // Shift and cast into a 8-bit uint8_t (0, ..., 255) with rounding
#ifdef DEBUG_TCH
printf("lfr_bp2[i*NB_BYTES_BP2+19] for cross45_re (%16.8e) : %.3u\n",cross_re, lfr_bp2[i*NB_BYTES_BP2+19]);
printf("lfr_bp2[i*NB_BYTES_BP2+29] for cross45_im (%16.8e) : %.3u\n",cross_im, lfr_bp2[i*NB_BYTES_BP2+29]);
#endif
//==============================================
// BP2 auto correlations == PA_LFR_SC_BP2_AUTO_F0 == 5*16 bits = 5*[6 bits (exponent) + 10 bits (significand)]
// == PA_LFR_SC_BP2_AUTO_A0_F0 == 16 bits
// == PA_LFR_SC_BP2_AUTO_A1_F0 == 16 bits
// == PA_LFR_SC_BP2_AUTO_A2_F0 == 16 bits
// == PA_LFR_SC_BP2_AUTO_A3_F0 == 16 bits
// == PA_LFR_SC_BP2_AUTO_A4_F0 == 16 bits
// S11
significand = frexpf(compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX], &exponent); // 0.5 <= significand < 1
// S11 = significand * 2^exponent
#ifdef DEBUG_TCH
printf("S11 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX]);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
#endif
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) { // in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
autocor = (uint16_t) ((((significand*2)-1)*rangesig) + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
// the first nbitexp bits are used (0, ..., 2^nbitexp-1)
tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
// left place of the significand bits (nbitsig),
// making the 16-bit word to be recorded
pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
#ifdef MSB_FIRST_TCH
lfr_bp2[(i*NB_BYTES_BP2) + 0] = pt_uint8[0]; // Record MSB of tmp_uint16
lfr_bp2[(i*NB_BYTES_BP2) + 1] = pt_uint8[1]; // Record LSB of tmp_uint16
#endif
#ifdef LSB_FIRST_TCH
lfr_bp2[(i*NB_BYTES_BP2) + 0] = pt_uint8[1]; // Record MSB of tmp_uint16
lfr_bp2[(i*NB_BYTES_BP2) + 1] = pt_uint8[0]; // Record LSB of tmp_uint16
#endif
#ifdef DEBUG_TCH
printf("autocor for S11 significand : %u\n",autocor);
printf("exp for S11 exponent : %u\n",exp);
printf("pt_uint8[1] for S11 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
printf("pt_uint8[0] for S11 significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
printf("lfr_bp2[i*NB_BYTES_BP2+0] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+0], lfr_bp2[i*NB_BYTES_BP2+0]);
printf("lfr_bp2[i*NB_BYTES_BP2+1] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+1], lfr_bp2[i*NB_BYTES_BP2+1]);
#endif
// S22
significand = frexpf(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 9], &exponent); // 0.5 <= significand < 1
// S22 = significand * 2^exponent
#ifdef DEBUG_TCH
printf("S22 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+9]);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
#endif
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) { // in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
autocor = (uint16_t) ((((significand*2)-1)*rangesig) + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
// the first nbitexp bits are used (0, ..., 2^nbitexp-1)
tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
// left place of the significand bits (nbitsig),
// making the 16-bit word to be recorded
pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
#ifdef MSB_FIRST_TCH
lfr_bp2[(i*NB_BYTES_BP2) + 2] = pt_uint8[0]; // Record MSB of tmp_uint16
lfr_bp2[(i*NB_BYTES_BP2) + 3] = pt_uint8[1]; // Record LSB of tmp_uint16
#endif
#ifdef LSB_FIRST_TCH
lfr_bp2[(i*NB_BYTES_BP2) + 2] = pt_uint8[1]; // Record MSB of tmp_uint16
lfr_bp2[(i*NB_BYTES_BP2) + 3] = pt_uint8[0]; // Record LSB of tmp_uint16
#endif
#ifdef DEBUG_TCH
printf("autocor for S22 significand : %u\n",autocor);
printf("exp for S11 exponent : %u\n",exp);
printf("pt_uint8[1] for S22 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
printf("pt_uint8[0] for S22 significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
printf("lfr_bp2[i*NB_BYTES_BP2+2] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+2], lfr_bp2[i*NB_BYTES_BP2+2]);
printf("lfr_bp2[i*NB_BYTES_BP2+3] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+3], lfr_bp2[i*NB_BYTES_BP2+3]);
#endif
// S33
significand = frexpf(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 16], &exponent); // 0.5 <= significand < 1
// S33 = significand * 2^exponent
#ifdef DEBUG_TCH
printf("S33 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+16]);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
#endif
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) { // in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
autocor = (uint16_t) ((((significand*2)-1)*rangesig) + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
// the first nbitexp bits are used (0, ..., 2^nbitexp-1)
tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
// left place of the significand bits (nbitsig),
// making the 16-bit word to be recorded
pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
#ifdef MSB_FIRST_TCH
lfr_bp2[(i*NB_BYTES_BP2) + 4] = pt_uint8[0]; // Record MSB of tmp_uint16
lfr_bp2[(i*NB_BYTES_BP2) + 5] = pt_uint8[1]; // Record LSB of tmp_uint16
#endif
#ifdef LSB_FIRST_TCH
lfr_bp2[(i*NB_BYTES_BP2) + 4] = pt_uint8[1]; // Record MSB of tmp_uint16
lfr_bp2[(i*NB_BYTES_BP2) + 5] = pt_uint8[0]; // Record LSB of tmp_uint16
#endif
#ifdef DEBUG_TCH
printf("autocor for S33 significand : %u\n",autocor);
printf("exp for S33 exponent : %u\n",exp);
printf("pt_uint8[1] for S33 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
printf("pt_uint8[0] for S33 significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
printf("lfr_bp2[i*NB_BYTES_BP2+4] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+4], lfr_bp2[i*NB_BYTES_BP2+4]);
printf("lfr_bp2[i*NB_BYTES_BP2+5] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+5], lfr_bp2[i*NB_BYTES_BP2+5]);
#endif
// S44
significand = frexpf(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 21], &exponent); // 0.5 <= significand < 1
// S44 = significand * 2^exponent
#ifdef DEBUG_TCH
printf("S44 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+21]);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
#endif
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) { // in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
autocor = (uint16_t) ((((significand*2)-1)*rangesig )+ 0.5); // Shift and cast into a 16-bit unsigned int with rounding
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
// the first nbitexp bits are used (0, ..., 2^nbitexp-1)
tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
// left place of the significand bits (nbitsig),
// making the 16-bit word to be recorded
pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
#ifdef MSB_FIRST_TCH
lfr_bp2[(i*NB_BYTES_BP2) + 6] = pt_uint8[0]; // Record MSB of tmp_uint16
lfr_bp2[(i*NB_BYTES_BP2) + 7] = pt_uint8[1]; // Record LSB of tmp_uint16
#endif
#ifdef LSB_FIRST_TCH
lfr_bp2[(i*NB_BYTES_BP2) + 6] = pt_uint8[1]; // Record MSB of tmp_uint16
lfr_bp2[(i*NB_BYTES_BP2) + 7] = pt_uint8[0]; // Record LSB of tmp_uint16
#endif
#ifdef DEBUG_TCH
printf("autocor for S44 significand : %u\n",autocor);
printf("exp for S44 exponent : %u\n",exp);
printf("pt_uint8[1] for S44 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
printf("pt_uint8[0] for S44 significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
printf("lfr_bp2[i*NB_BYTES_BP2+6] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+6], lfr_bp2[i*NB_BYTES_BP2+6]);
printf("lfr_bp2[i*NB_BYTES_BP2+7] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+7], lfr_bp2[i*NB_BYTES_BP2+7]);
#endif
// S55
significand = frexpf(compressed_spec_mat[(i*NB_VALUES_PER_SPECTRAL_MATRIX) + 24], &exponent); // 0.5 <= significand < 1
// S55 = significand * 2^exponent
#ifdef DEBUG_TCH
printf("S55 : %16.8e\n",compressed_spec_mat[i*NB_VALUES_PER_SPECTRAL_MATRIX+24]);
printf("significand : %16.8e\n",significand);
printf("exponent : %d\n" ,exponent);
#endif
if (exponent < expmin) { // value should be >= 0.5 * 2^expmin
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
if (exponent > expmax) { // value should be < 0.5 * 2^(expmax+1)
exponent = expmax;
significand = 1.0; // max value that can be recorded
}
if (significand == 0) { // in that case exponent == 0 too
exponent = expmin;
significand = 0.5; // min value that can be recorded
}
autocor = (uint16_t) ((((significand*2)-1)*rangesig) + 0.5); // Shift and cast into a 16-bit unsigned int with rounding
// where just the first nbitsig bits are used (0, ..., 2^nbitsig-1)
exp = (uint16_t) (exponent-expmin); // Shift and cast into a 16-bit unsigned int where just
// the first nbitexp bits are used (0, ..., 2^nbitexp-1)
tmp_uint16 = autocor | (exp << nbitsig); // Put the exponent bits (nbitexp) next to the
// left place of the significand bits (nbitsig),
// making the 16-bit word to be recorded
pt_uint8 = (uint8_t*) &tmp_uint16; // Affect an uint8_t pointer with the adress of tmp_uint16
#ifdef MSB_FIRST_TCH
lfr_bp2[(i*NB_BYTES_BP2) + 8] = pt_uint8[0]; // Record MSB of tmp_uint16
lfr_bp2[(i*NB_BYTES_BP2) + 9] = pt_uint8[1]; // Record LSB of tmp_uint16
//printf("MSB:\n");
#endif
#ifdef LSB_FIRST_TCH
lfr_bp2[(i*NB_BYTES_BP2) + 8] = pt_uint8[1]; // Record MSB of tmp_uint16
lfr_bp2[(i*NB_BYTES_BP2) + 9] = pt_uint8[0]; // Record LSB of tmp_uint16
//printf("LSB:\n");
#endif
#ifdef DEBUG_TCH
printf("autocor for S55 significand : %u\n",autocor);
printf("exp for S55 exponent : %u\n",exp);
printf("pt_uint8[1] for S55 exponent + significand : %.3d or %2x\n",pt_uint8[1], pt_uint8[1]);
printf("pt_uint8[0] for S55 significand : %.3d or %2x\n",pt_uint8[0], pt_uint8[0]);
printf("lfr_bp2[i*NB_BYTES_BP2+8] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+8], lfr_bp2[i*NB_BYTES_BP2+8]);
printf("lfr_bp2[i*NB_BYTES_BP2+9] : %3u or %2x\n",lfr_bp2[i*NB_BYTES_BP2+9], lfr_bp2[i*NB_BYTES_BP2+9]);
#endif
}
}